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Abstract
In this article, an original data-driven approach is proposed to detect both linear and nonlinear damage in structures using 
output-only responses. The method deploys variational mode decomposition (VMD) and generalized autoregressive con-
ditional heteroscedasticity (GARCH) model for signal processing and feature extraction. To this end, VMD decomposes 
the response signals that are first decomposed to intrinsic mode functions (IMFs), and then, GARCH model is utilized to 
represent the statistics of IMFs. The model coefficients’ of IMFs construct the primary feature vector. Kernel-based principal 
component analysis (PCA) and linear discriminant analysis (LDA) are utilized to reduce the redundancy from the primary 
features by mapping them to the new feature space. The informative features are then fed separately into three supervised 
classifiers: support vector machine (SVM), k-nearest neighbor (kNN), and fine tree. The performance of the proposed method 
is evaluated on two experimental scaled models in terms of linear and nonlinear damage assessment. Kurtosis and ARCH 
tests proved the compatibility of GARCH model. The results demonstrate that the proposed technique reaches the accuracy 
of 100% and 98.82% in classifying linear and nonlinear damage, respectively. Also, its accuracy is higher than 80% in the 
presence of noise with a signal-to-noise ratio (SNR) of more than 10 dB.

Keywords  Data-driven SHM · Variational mode decomposition (VMD) · GARCH model · Linear and nonlinear damage

1  Introduction

Today’s current structural engineering industry requires con-
sideration to be directed towards structural health monitor-
ing (SHM) and optimizing safety. With forecasts of increas-
ing worlds’ population, structural infrastructure shall be 
subject to increased loading and deformation. To decrease 

the effects and consequences of structural deterioration, 
SHM processes are required more frequently, with high 
levels of accuracy necessary to achieve asset preservation. 
Hence, there has been a surge in interest surrounding SHM 
and the development of automated defect evaluation systems 
in an attempt to maintain existing structural networks and 
allow for asset expansion.

Concerning structural behavior, damage leads to devia-
tions in the structure’s dynamic characteristics and is con-
sidered a reliable indication of anomaly diagnosis. Also, it 
might cause a system with typically linear behavior to dem-
onstrate nonlinear responses, including cracking, impacts 
and rattling, delamination, stick or slip, rub, or deforma-
tion in connections [1, 2]. Nonlinear behavior is supposed 
to be unpredictable and more sophisticated compared to the 
linear one. As a case in point, it has been proven through 
experimental investigation that natural frequencies could 
rise instead of decrease in breathing phenomena [3]. This 
reaction originates from the fact that the crack conversely 
opens and closes in the experimental test. Subsequently, the 
detection of nonlinear anomalies is considered more chal-
lenging compared to linear damage [4].
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Over the decades, researchers have proposed several tech-
niques in terms of anomaly identification. Generally speaking, 
such methods are divided into physics-based (or model-based) 
and data-driven approaches [5]. In the physics-based, anoma-
lies are tracked utilizing monitoring variations within the simu-
lated responses from the structural numerical model [6]. This 
model is a detailed mathematical abstraction linking a studied 
system’s input and output variables employing known or pre-
sumed properties [7]. Post analysis is demanded for determin-
ing damage location and qualification. Finite-element methods 
(FEMs), boundary element methods (BEMs), and spectral 
finite-element methods (SFEMs) are some of the techniques 
used in this regard. However, FEMs are considered the sys-
tematic method compared to the others due to their compli-
ance in modeling complicated structures [8]. In the occurrence 
of damage, particular parameters of the simulated models are 
updated according to response measurements. Optimization 
algorithms are typically used to minimize variations between 
experimental and numerical responses by comparing mechani-
cal characteristics of stiffness, damping, or mass [6].

Despite the broad potential of physics-based approaches 
in damage assessment, especially for the evolution of com-
plex systems such as multi-stories buildings and multi-span 
bridges, they have some limitations. For example, exact 
modeling of a structure entails sufficient information regard-
ing different components of a monitored system, such as 
loading states, boundary conditions, material properties, 
and precise coordinates of members. Moreover, optimiza-
tion solutions commonly experience numerical instability as 
well as ill-conditions dilemma [9]. The performance of such 
optimization techniques substantially degrades proportion-
ally to the number of variables in the problem.

On the other side, data-driven SHM provides bottom–up 
solutions founded on tracking changes within the output signals 
appropriate for complex systems where the knowledge about 
geometries, properties, and initial conditions is limited [5]. Any 
sudden changes in the output signals are observed and analyzed 
through signal processing tools and pattern recognition proce-
dures to determine probable damage. Independence for having 
an initial model and prior knowledge causes data-driven SHM 
to be a faster technique and an economical and practical solu-
tion for online SHM. Signal processing techniques synthesize, 
modify and analyze the recorded responses, and highlight differ-
ent features in time, frequency, and frequency domains. Machine 
Learning algorithms are typically employed to identify and 
interpret features extracted from signals and recognize generated 
patterns in conjunction with such methods. Machine learning 
includes clustering, regression, neural networks, ensemble learn-
ing, deep learning, Bayesian methods, instance-based, decision 
trees, and dimensionality reduction [10].

Data-driven methods are helpful compared to physics-
based techniques when [11], first, the structure’s physical 
characteristics are unavailable or challenging to be modeled. 

Second, there are an adequate number of sensors installed 
for capturing the structure’s responses. Third, the computa-
tional operations are costly in the SHM project; in addition, 
multi-physics models consist of more physical processes 
in a system (e.g., thermal interactions, water precipitation, 
and magnetostatic and chemical reactions) may not seem 
efficient for utilizing a large amount of sensor data. The 
accuracy of physics-based depends on the response measure-
ments; the best performance is achieved in an environment 
with the slightest amount of  noise. In real-world structures 
and especially for in-servicing conditions, however, the 
amount of noise is considerable. As such, data-driven dam-
age identifications deploying actual responses have revealed 
preferable adaptability and thereby turned into an inspiring 
solution in the realm of SHM [10].

1.1 � Need for research

Although nonlinear damage has been studied before and 
practical solutions are proposed in this realm, most focus on 
damage identification as the first level based on Rytter’s clas-
sification levels in SHM [12]. Hence, limited research has 
been conducted to reach higher levels (e.g., damage locali-
zation and classification). This study attempts to address 
nonlinear damage detection in building structures through 
a robust data-driven approach. Adverse conditions such as 
environmental and operational effects in recording responses 
and analyzing signals are the other crucial points that should 
be considered. These issues become more though in the case 
of buildings where the story correlations can affect the struc-
tural responses. Therefore, proposing a robust model with 
appropriate precision in identifying different kinds of linear 
and nonlinear anomalies considering these issues leads to a 
practical approach in assessing real-world structures under 
adverse conditions.

Accordingly, the rest of the paper is organized as fol-
lows. In Sect. 2, related works are discussed, and gaps are 
highlighted once again. Case studies are presented in detail 
in Sect. 3. Section 4 provides the details of the proposed 
data-driven approach. Experimental results and discussion 
are given in Sect. 5. Finally, Sect. 6 concludes the work and 
suggests future directions.

2 � Background

Signal processing techniques play a fundamental role in 
data-driven SHM for analysis responses in time, frequency, 
or time–frequency domains. Fourier spectra, spectrum 
analysis, difference frequency analysis, and the high-fre-
quency resonance technique are appropriate for damage 
identification, especially for gear faults and roller bear-
ings [13]. Wavelets proved the efficiency for damage and 
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deterioration detection in building structures based on a 
stochastic approach [14]. Fourier transform (FT) and fast 
Fourier transform (FFT) are considered the main concepts 
for anomaly detection. A time-series model is a promising 
tool for simulating and predicting structural signals in the 
time-domain. Since this method is based on a partial struc-
tural dynamics model, it can identify even a small number 
of vibrations [15]. In this area, autoregressive (AR) models 
are investigated for damage and deterioration detection in 
buildings and bridges [16–18]. Auto-regressive and moving 
average model (ARMA), as well as generalized autoregres-
sive conditional heteroscedasticity model (GARCH), have 
proved to be beneficial for nonlinear damage identification 
in building specimens [19]. Transient behaviors caused by 
damage or adverse environmental conditions can be recog-
nized through a signal’s time–frequency form [20].

In a broad perspective, the real-world signals are linear 
and stationary and are coupled with noise. Consequently, 
linear signal processing techniques, such as spectral anal-
ysis, are not appropriate in this realm of scope [21]. Hil-
bert–Huang transform (HHT), introduced by Huang et al. 
[22], consists of two sequential steps. The first step, called 
empirical mode decomposition (EMD), separates the com-
plicated initial signal into a determined and commonly lim-
ited number of intrinsic mode functions (IMFs) or modes. 
Each mode is an oscillatory function with time-varying 
frequencies that reveals the input signals’ local features 
and corresponds to different frequencies and a residue [23, 
24]. The algorithm detects the maxima/minima recursively, 
assesses the envelopes using the extrema, and removes the 
average envelopes, which leads to isolating high-frequency 
bands.[25]. In the next step, the Hilbert transform (HT) 
includes each IMF’s orthogonal pair with 90° difference in 
the phase [26]. As a result, each IMF set and the correspond-
ing pair can evaluate instant variations of signal magnitude 
and frequency concerning time. Compared to wavelet analy-
sis and Fourier transform, EMD benefits from tracing out 
the IMFs by interpolating between the extremums instead 
of using any given wavelet basis. Despite the wide usage 
of EMD in a variety of time–frequency applications such 
as medical [27], economics [28], climate predictions [29], 
SHM [30, 31], and many other fields, it may dace with some 
issues like sensitivity to noise and sampling frequency which 
cause the performance relies on the frequency ratio [25, 31, 
32].

Some modified algorithms have been developed, includ-
ing ensemble EMD (EEMD), complete ensemble EMD with 
adaptive noise (CEEMDAN), and variational mode decom-
position (VMD) [32] to address these limitations. VMD is a 
relatively new algorithm that decomposes a signal into dis-
tinctive amplitude and frequency adjusted sub-signals where 
together they reproduce the primary input signal [32]. This 
approach is entirely non-recursive, and the sub-signals are 

extracted simultaneously; it is proven that VMD outperforms 
the EMD algorithm in various areas such as signal analysis 
and damage detection.

Variational mode decomposition has been deployed in the 
real SHM by some researchers. For instance, Bagheri et al. 
[31] calculated damping ratios for each extracted modal 
response obtained from VMD. The mode shape vector was 
obtained for each decomposed structure mode, which was 
then practiced for damage identification in three specimens, 
including numerical, experiment, and field case studies. 
Xin et al. [33] established two damage indices relying on 
modal parameters obtained from VMD. An experimental 
and numerical assessment demonstrated the efficiency of 
the method for nonlinear to find the location and severity 
of nonlinear damage scenarios in the models. Das and Saha 
[34] investigated the impact of a heavy noise environment on 
a new hybrid algorithm using VMD along with frequency-
domain decomposition (FDD). It was deducted that the 
hybrid method could detect damage location accurately 
for noises above 20%. A novel methodology is illustrated 
and assessed in the following sections on two experimental 
specimens with linear and nonlinear damage scenarios.

3 � Case studies

In this section, two case studies used in this work are thor-
oughly explained and discussed.

3.1 � Case study 1: linear damage

The first case study is a three-story metal frame with alu-
minum columns and floors, investigated in linear damage 
simulation [35]. A roller at the base supports the specimen 
and can move horizontally using a hydraulic jack. Piezoelec-
tric single-axis accelerometers instrument each floor. Nine 
linear damage scenarios are imitated employing stiffness 
reduction of columns and replacement of a 1.2 kg mass. 
Hence, 50 signals are recorded for each status with a sample 
rate of 320 Hz. Therefore, 450 signals are acquired for all 
scenarios, as illustrated in Table 1. As depicted, there are 
nine statuses, including healthy condition (S1) showing the 
intact structures without any changes in components, two 
scenarios simulate the operational and environmental effects 
by changing mass of floors (S2 and S3), and six damage 
scenarios by changing the stiffness of columns (S4–S9).

Additionally, Fig. 1 presents sample recorded signals 
in different scenarios, where y1(t) , y2(t) , and y3(t) repre-
sent the recorded data by sensor 1, sensor 2, and sensor 3, 
respectively. It is evident that the recorded responses for 
all damage scenarios follow a random pattern, and usage 
of time-domain data cannot discriminate damage status 
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from healthy cases. Thus, there is a need to model output 
responses through signal processing techniques to find suit-
able features indicating variations in the signals.

3.2 � Case study 2: nonlinear damage

This case is the adjusted model of the first case study and 
is used for studying the impact of nonlinear damage. The 

sampling rate is the same as the linear model and is set 
to 322.58 Hz with 8192 data points for each record. Ten 
measurements are recorded for each state. Likewise, in the 
initial specimen, this frame also glides on rails that enable 
a transmission in one direction with the aid of an actuator. 
Four accelerometers with a sensitivity of 1000 mV/g are 
attached on the opposite side of the shaker at the center of 
the floors; thus, they do not help determine the specimen’s 
torsion models.

To simulate nonlinear damage, a mechanical bumper 
and a center column are installed onto the frame. This 
mechanism imitates the breathing crack and will cause 
nonlinear behaviors in the condition that the installed col-
umn hits the bumper, which is placed on the second floor. 
The adjustable gap between the bumper and the installed 
column is used for defining different degrees of nonlinear-
ity. Hence, the larger the gap is, the smaller the nonlinear 
behavior becomes. The specimen’s outline and the dam-
age scenarios are provided in Fig. 2 and Table 2, respec-
tively. Some recorded nonlinear signals are given in Fig. 3, 
where y1(t) , y2(t) , y3(t) , and y4(t) , respectively, represent 
the recorded data by sensor 1, sensor 2, sensor 3, and 
sensor 4. Similar to the previous case, the time-domain 

Table 1   Damage scenarios of case study 1 [17]

Scenario Records Description

S1 0–50 Healthy state
S2 51–100 Mass = 1.2 kg at the base
S3 101–150 Mass = 1.2 kg on the 1st level
S4 151–200 87.5% stiffness decrease in column 1BD
S5 201–250 87.5% stiffness decrease in column 1AD and 

1BD
S6 251–300 87.5% stiffness decrease in column 2BD
S7 301–350 87.5% stiffness decrease in column 2AD and 

2BD
S8 351–400 87.5% stiffness decrease in column 3BD
S9 401–450 87.5% stiffness decrease in column 3AD and 

3BD

(a) Scenario S1 (b) Scenario S3

(c) Scenario S6 (d) Scenario S9
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Fig. 1   Samples from some scenarios in linear damage (scenario 1)
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presentation of responses cannot indicate variations due 
to damage properly.

As noted, two three-story models were presented for linear 
and nonlinear damage scenarios. Linear damage were simu-
lated by reducing the cross-section area of columns, while 
nonlinear behavior was considered as hitting a bumper with 
a mid-column in the second case study. The environmental 
and operational conditions were also considered by adding a 
mass to different damage scenarios. Story accelerations were 
recorded for damage identification and classification, with a 
novel methodology discussed in the following section.

4 � Proposed method

In this work, anomaly detection is performed in three steps. 
First, VMD decomposes the signal into several sub-signals 
with separated bandwidths. Second, primary features are 
extracted using the time-series modeling, and then, the num-
ber of features is reduced by KPCA and KDA. Finally, three 
supervised classifiers are separately deployed to discriminate 
different damage states within three specimens. A schematic 
workflow of the proposed method is depicted in Fig. 4. In the 
following, these stages are illustrated thoroughly.

4.1 � Signal processing

Herein, the input acceleration signals are decomposed using 
VMD, so that an input signal S(t) is broken down into d 
limited-bandwidth IMFs depicted as [36]

where Ak(t)  and �k(t) present the instantaneous ampli-
tude and frequency of uk(t) , respectively. The constructed 
variational problem is obtained using Hilbert transform as 
follows:

such that

where �(t) denotes the par tial derivative of t,

{uk(t)} = {u1(t), ..., un(t)} and {�k} = {�1, ...,�n} shows 
the IMFs of signal St and their center frequencies of each 
signal sub-band, respectively. Equation (2) is presented in a 
Lagrange function using � and � as a multiplier operator and 
penalty factor, respectively, to solve the optimization problem

(1)uk(t) = Ak(t) cos(�k(t)),

(2)min
uk ,�k

{
∑

k

‖‖‖‖‖
�t

(
�(t) +

jut(t)

t

)
e−j�kt

‖‖‖‖‖

2

2

}
,

(3)St =
∑

k

uk(t),

Fig. 2   Three-story bookshelf (adapted from [14])

Table 2   Damage scenarios of case study 2 [17, 35]

Scenario Records Description

S1 1–10 Mass = 1.2 kg on the 1st floor
S2 11–20 Mass = 1.2 kg at the base
S3 21–30 Gap = 0.13 mm
S4 31–40 Gap = 0.10 mm
S5 41–50 Gap = 0.05 mm
S6 51–60 Gap = 0.15 mm
S7 61–70 Gap = 0.20 mm
S8 71–79 Healthy State
S9 80–89 Gap = 0.20 mm and mass = 1.2 kg at the 1st 

floor
S10 90–99 Gap = 0.10 mm and mass = 1.2 kg at the 1st 

floor
S11 100–109 Gap = 0.20 mm and mass = 1.2 kg at the base
S12 110–119 50.0% stiffness reduction in column 1BD
S13 120–129 50.0% stiffness reduction in column 1AD + 1BD
S14 130–139 50.0% stiffness reduction in column 3BD
S15 140–149 50.0% stiffness reduction in column 3AD and 

3BD
S16 150–159 50.0% stiffness reduction in column 2AD and 

2BD
S17 160–169 50.0% stiffness reduction in column 2BD
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Afterward, Eq. (4) is transformed into the time–frequency 
space, and the equivalent extremum solution is solved to 
obtain the frequency-domain form of the modal element uk(t) 
as well as the center frequency �k

(4)

L
(
{uk}, {�k}, �

)
= �

∑

k

‖‖‖‖‖
�t

(
�(t) +

j

t
ut(t)

)
e−j�kt

‖‖‖‖‖

2

2

+
‖‖‖‖‖
S(t) −

∑

k

uk(t)
‖‖‖‖‖

2

2

+

⟨
�(t), S(t) −

∑

k

uk(t)

⟩
.

(5)un+1
k

(�) =
f (�) −

∑k

i=1,i≠k ui(�) + 0.5�(�)

1 + 2
�(� − �k)

2,

Finally, the alternative direction of multipliers (ADMM) 
is deployed to optimize the constrained variational model. 
Subsequently, the initial signal S(t) is broken down by d 
IMFs as described in the following:

•	 Initialize the parameters {uk}, {�k}, {�
1} and n → 0

•	 The value of un+1
k

 and �n+1
k

 is updated according to (5) and 
(6).

•	 The �n+1 is updated as stated in

(6)�n+1
k

=
∫ ∞

0
�||uk(�)||

2
d�

∫ ∞

0
||uk(�)||

2
d�

.

(a) Scenario S7 (b) Scenario S9

(c) Scenario S11 (d) Scenario S6
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Fig. 3   Samples from nonlinear scenarios in case study 2
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•	 Equation (7) is continued till the following criteria are 
satisfied:

Proved that the above condition is met, the iteration 
procedure stops.

Herein, the iteration is stopped; otherwise, it returns to step 
2, and d IMFs can be extracted [31, 36]. In Figs. 5, 6, 7, and 
8, the IMFs of linear and nonlinear signals are shown. Due to 
space limitations, we only present the two IMFs.

4.2 � Feature extraction

4.2.1 � GARCH modeling of IMFs

Generally speaking, a signal can be modeled via ARMA time-
series to evaluate the conditional mean. As an illustration, the 
ARMA(p, q) prediction for the conditional mean is formulated 
as [37]

where p denotes the autoregressive model order, �i presents 
the autoregressive variable, q stands for the moving aver-
age model order, �j shows the moving average variable, 

(7)�n(�) + �

(
f (�) −

n+1∑

k

uk(�)

)
.

(8)

∑
k

���u
n+1
k

− un
k

���
2

2

���u
n
k

���
2

2

< 𝜀.

(9)St =

p∑

i=1

�iSt−i+

q∑

j=1

�j�t−j + �t + c,

�t denotes the residual, and c is a constant. However, the 
residual is usually considered to have a mean of zero with 
constant variance. In some time-series, it is not homosce-
dastic and has no constant variance [37]. In this case, the 
time-varying variance is called conditional variance that is 
described as

The GARCH model, established by Bollersl [38], is a 
dynamic model that addresses the conditional heterosce-
dasticity or volatility clustering for an innovation process 
using a weighted combination of past heteroscedasticity 
functions coupled with the squared residuals of the past. It 
causes a reduction in the parameters and complexity of the 
model. A GARCH(r,m) model for the conditional variance 
of residual �t is formed as

In which � , bi , and aj are the parameters of the GARCH 
model. Herein, the following constraints are defined to 
ensure that the conditional variance is positive:

Moreover, the following formula is defined to make the 
covariance stationary:

This paper utilizes the GRACH model to create the con-
ditional variance model for IMFs obtained from VMD. The 

(10)�2
t
= vart−1(�t) = Et−1

(
�2
t

)
.

(11)�2
t
= � +

r∑

i=1

bi�
2
t−j

+

m∑

j=1

aj�
2
t−j
.

(12)𝛽 > 0, bi ≥ 0, aj ≥ 0.

(13)
r∑

i=1

bi +

m∑

j=1

aj < 1.

Fig. 4   Workflow of the proposed method
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GARCH model showed reliable performance in nonlinear 
problems, as discussed in [19]. The coefficients of 
GARCH(r,m) , i.e., {bi} and {aj} , are considered as features. 
Hence, kth IMF is described by 

{
b
(k)

1
,… , b(k)

r
, a

(k)

1
,… , a(k)

m

}
 . 

Considering d IMFs, the feature vector of signal with 
d(r + m) features, �

(d(r+m))×1
 , is constructed as

Finally, since each signal is recorded by several sensors, 
each record is described with nf =

∑n

i=1
di(r + m) features, 

where n shows the number of sensors and di stands for the 
number of IMFs is used to decompose the signal of the ith 
sensor. Hence, the feature vector of a signal with n sensors 
is given as � =

[
�T
1
,… , �T

n

]T . All obtained features are not 
suitable for classification, and feature vectors may suffer 
from redundant features. Hence, we should utilize feature 
reduction techniques to remove such features from the fea-
ture vector.

(14)
� =

[
b
(1)

1
,… , b(1)

r
, a

(1)

1
,… , a(1)

m
, b

(d)

1
,… , b(d)

r
, a

(d)

1
,… , a(d)

m

]T
.

4.2.2 � Feature reduction

The general concept of kernel-based feature reduction is based 
on deploying a particular sort of nonlinear mapping function 
to protrude the initial vector f into a high-dimensional feature 
space as F. Regarding the new feature space, the principal com-
ponents are obtained through the regular principal component 
analysis (PCA). In other words, the principal nonlinear com-
ponents in the initial space correspond to the principal com-
ponents in feature space F. Afterward, the kernel functions, 
including polynomial, radial basis function, and sigmoid, are 
used to perform the nonlinear mapping in KPCA [39].

Assume nonlinear mapping � ; the initial data space ℝnf is 
mapped into a new feature space like H as [40]

For a training sample set �1, �2, ..., �M in ℝnf  , where M 
denotes training sample numbers. Subsequently, the covari-
ance matrix is formulated as [40]

(15)
� ∶ ℝ

nf → H

� ↦ �(�).
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Fig. 5   IMF of signals from scenario S1 (healthy) in case study 1
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such that

Since �� it is a bounded, compact, positive, and symmetric 
matrix, its nonzero values are also positive. For the sake of 
finding these nonzero values, Schölkopf et al. [41] suggested 
linearly express every eigenvector of �� by [40]

To compute expansion coefficients, the Gram matrix is 
formed as R̃ = �T� , where � = [�(�1), ...,�(�M)] . Conse-
quently, each component  � is computed using kernel tricks 
as [40]

Accordingly, �̃ is centralized by [40]

(16)�� =
1

M

∑M

j=1

(
�(�j) −�

�

0

)(
�(�j) −�

�

0

)T

,

(17)�
�

0
=

1

M

∑M

j=1
�(�j).

(18)� =
∑M

i=1
�i�(�i).

(19)R̃ij = 𝜙
(
�i
)T
𝜙
(
�j
)
=
(
𝜙(�i).𝜙(�j)

)
= K

(
�i, �j

)
.

(20)� = �̃ − �M�̃ − �̃�M + �M�̃�M ,

where

Afterward, the orthonormal eigenvectors �1,⋯ , �np of R 
are calculated related to np the most significant positive 
eigenvalues, such that �1 ≥ �2 ≥ ⋯ ≥ �np . Consequently, 
the orthonormal eigenvectors �1, �2, ..., �np of correspond-
ing �� are obtained via [40]

Af ter  that ,  the  KPCA transformed feature 
� =

(
y1, ..., ynp

)T

 vector is obtained by the projection of the 
mapped sample �(� ) onto the eigenvector �1, �2, ..., �np as 
formulated below [40]

The training matrix � =
[
�T
1
; �T

2
;… ;�T

M

]T with the size of 
nf ×M is mapped to the matrix � =

[
�T
1
; �T

2
;… ;�T

M

]T with 
the size of np ×M.

(21)�M =

(
1

M

)

M×M
.

(22)�j =
1√
�j

Q�j ; j = 1, ..., np.

(23)� =

(
�1, �2, ..., �np

)T

�(� ).
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Fig. 6   IMF of signals from scenario S9 in case study 1
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The aim of linear LDA is as follows [42]:

where �b and �w reveal the between-class and within-class 
scatter matrices, which are obtained as

where � is the global mean, mk stands for the number of 
samples in the kth class, and �(k) denotes the mean of the 
kth class. Afterward, the total scatter matrix is defined as 
�t = �b + �w, . The optimum values of a correspond to the 
nonzero eigenvalue of eigenproblem

A maximum number of nc − 1 eigenvectors are obtained 
corresponding to nonzero eigenvalues, because the rank of 

(24)�opt = argmax
�T�b�

�T�w�
,

(25)�b =
∑nc

k=1
mk

(
�
(k) − �

)(
�
(k) − �

)T
,

(26)�w =
∑nc

k=1

(∑mk

i=1

(
�
(k)

i
− �

(k)
)(

�
(k)

i
− �

(k)
)T

)
,

(27)�b� = ��t�.

�b is limited to nc − 1 . Similar mapping (15) is considered 
to extend the LDA to the nonlinear case. Hence, ��

b
 , ��w , and 

�
�

t  , respectively, stand for the between-class, within-class, and 
total scatter matrices in feature space, which are obtained by 
the following formulation:

Assume that � shows the projective function in feature 
space, and the associated objective function in feature space 
is defined as

(28)�
�

b
=
∑nc

k=1
mk

(
�
(k)
�

− ��

)(
�
(k)
�

− ��

)T

,

(29)

��
w
=
∑nc

k=1

(∑mk

i=1

(
�

(
�
(k)

i

)
− �

(k)
�

)(
�

(
�
(k)

i

)
− �

(k)
�

)T
)

(30)�
�

t =
∑M

i=1

(
�
(
�
i

)
− �

�

)(
�
(
�
i

)
− �

�

)T

.

(31)�opt = argmax
�
T�

�

b
�

�T�
�

t �
.

(a) IMF 2 of y1(t) (b) IMF 4 of y1(t)

(c) IMF 2 of y2(t) (d) IMF 4 of y2(t)

(e) IMF 2 of y3(t) (f) IMF 4 of y3(t)

(g) IMF 2 of y4(t) (h) IMF 4 of y4(t)

0 5 10 15 20 25
Time (s)

-1

0

1
 A

m
pl

itu
de

0 5 10 15 20 25
Time (s)

-1

0

1

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-1

0

1

 A
m

pl
itu

de

5 10 15 20
Time (s)

-0.4
-0.2

0
0.2
0.4

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-1

0

1

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5
 A

m
pl

itu
de

Fig. 7   IMF of signals from scenario S7 in case study 2
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This function can be solved by eigenproblem as

And we have

Then, we can define an equivalent problem as:

where � = [�1, ..., �M]
T . The corresponding eigenproblem is 

as ���� = ���� , where K shows the kernel matrix, i.e., 
Kij = �(�i, �j) and W is defined as

Each eigenvector � provides a projective function � in the 
feature space. Let y a data, and then, we have

(32)�
�

b
� = ��

�

t �.

(33)� =
∑M

i=1
�i�

(
�i
)
.

(34)�opt = argmax
�
T����

�T���
,

(35)

Wij =

{
1
/
mk, if �i and �j both belongs to the kth class

0, otherwise
.

where �(∶, y) ≐
[
�
(
y1, y

)
,… , �

(
ym, y

)]T . Let 
{
�1,… ,�nc−1

}
 

be the nc − 1 eigenvectors of the eigenproblem concern-
ing nonzero eigenvalues. The transformation matrix 
Θ =

[
�1,… ,�nc−1

]
 is M × (nc − 1) a matrix that embeds 

the data sample y into nc − 1 dimensional subspace by

4.3 � Classification

In the next section, three classifiers are applied to the 
selected features previously taken and are called predictors. 
These classifiers are prevailing in the realm of Machine 
Learning, including support vector machine (SVM), fine 
tree, and k-nearest neighbor (kNN). SVM is a supervised 
training algorithm founded on the fact that measurements 
can be considered two-dimensional space. Each sample 

(36)
⟨�,�(y)⟩ =

�m

i=1
�i⟨�(yi),�(y)⟩ =

�m

i=1
�i�

�
yi, y

�
= �

T�(∶, y),

(37)� → � = ΘT�(∶, �).

(a) IMF 2 of y1(t) (b) IMF 4 of y1(t)

(c) IMF 2 of y2(t) (d) IMF 4 of y2(t)

(e) IMF 2 of y3(t) (f) IMF 4 of y3(t)

0 5 10 15 20 25
Time (s)

-0.5

0

0.5
 A

m
pl

itu
de

0 5 10 15 20 25
Time (s)

-2

0

2

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-1

0

1

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5

 A
m

pl
itu

de

(g) IMF 2 of y4(t) (h) IMF 4 of y4(t)

0 5 10 15 20 25
Time (s)

-1

0

1

 A
m

pl
itu

de

0 5 10 15 20 25
Time (s)

-0.5

0

0.5
 A

m
pl

itu
de

Fig. 8   IMF of signals from scenario S9 in case study 2
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denotes a data point in the space and can be separated by a 
line in the case of a two-dimensional problem and a plane 
in the case of the dimensional system [43]. Regarding kNN, 
despite its simplicity, it is common in terms of suing in large 
training datasets. It allocates an estimated value to a new 
sample on the ground of plurality or weighted of the k-near-
est neighbors in the training set [44]. Classification using a 
decision tree (fine tree) algorithm is very fast and suitable 
for high-dimensional classification problems. A fine tree is 
a predictive algorithm mapping from samples about an item 
to conclusions about its target value. In this model, leaves 
represent the labels, nodes are the features, and branches 
denote the junction of features, resulting in label classifica-
tion [45]. Subsequently, the prediction using these classifiers 
is compared with each in the following sections.

5 � Results and discussion

This section provides the experimental results and relevant 
discussions. We considered the fivefold cross-validation to 
assess the performance of the proposed method. To this end, 
data were randomly partitioned into five equal-sized groups, 
and then, the training and testing procedures were repeated 
for five trials. One group was considered for testing data in 
each trial, and other groups were used to train the classifier. 
Finally, results were averaged. 

5.1 � The effect of the number of IMFs on residual

The number of IMFs has a considerable effect on the number 
of extracted features and the complexity of the proposed 
method. Here, we determine the efficient number of IMFs 
based on the mean absolute of residuals, shown in Fig. 9 
for different numbers of IMFs of nonlinear signals. It is 

observed that residual generally reduces as the number of 
IMFs increases. However, the slope of reduction varies for 
different sensors. The residuals of sensors 2, 3, and 4 reduce 
faster than that of sensor 1. As observed, the residual of 
sensor one does not have a significant variation when the 
number of IMFs are greater than ten. On the other side, the 
reduction in residuals of sensors 2, 3, and 4 is not notable for 
the number of IMFs greater than seven. Hence, we consider 
the ten IMFs for sensor one and seven IMFs for the remain-
ing sensors. Considering 31 IMFs and two features extracted 
from each IMF, each recording is described with 62 features.

Following the linear case, as observed in Fig. 10, the 
residuals of all sensors dwindle gradually at nearly the same 
pace. For any figures over eight IMFs, the residual does not 
show significant deviations. Thus, for the linear signals, 
the eight values of IMFs are assigned for all sensors of sto-
ries. Considering two features for each IMF, each record is 
denoted through 48 features.

5.2 � Classification accuracy

To assess the stability of the proposed method and evaluate 
the effect of features on results, the authors considered four 
cases as follows:

•	 SA: no feature reduction method is employed
•	 SB: only KPCA is used for feature reduction
•	 SC: only KDA is employed for feature reduction
•	 SD: at first, KPCA and then KDA is considered for fea-

ture reduction.

The number of features in conditions SB, SC, and SD is 
obtained based on the normalized cumulative summation of 
eigenvalues (NCSE). When the NCSE reaches higher than 
0.95 for the first time, the efficient number of features is 
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Fig. 9   The residual of VMD of nonlinear data for different numbers of IMFs and data length. a Length of 512, b length of 2048, and c length of 
8192
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obtained. Considering 
[
�1,⋯ , �nf

]
 as sorted eigenvalues in 

descending order, the NSCE is calculated as follows:

Classification accuracy of the proposed method for non-
linear and linear data considering kNN, SVM, and fine tree 
classifiers and different lengths of signals obtained from sen-
sors are given in Tables 3 and 4, respectively.

Concerning the nonlinear case, the minimum and maxi-
mum performance are observed in scenario SA and SD 
with 76.92% and 98.82%, respectively. In all scenarios, 
fine tree classifiers seem to be more efficient compared to 
the other classifiers. Moreover, kNN is the second accurate 
classifier, and SVM indicates the lowest performance in 
this case. It is noteworthy that the signal length has the 

Λi =

∑i

k=1
�k∑nf

k=1
�k

; i = 1,⋯ , nf.

highest impact on the SB and the lowest on SD with the 
relative variation ( Δmax ) of 9.09% and 3.69%, respectively.

Regarding the nonlinear case study, the highest 
and lowest performance, likewise the nonlinear case, 
were observed in SA and SD with the accuracy of 100.0% 
and 89.56%, respectively. Similar to the previous case, the 
fine tree is the suitable classifier in all proposed scenarios. 
Except for the SB, kNN indicates higher performance in 
comparison with SVM. Scenario SB reveals less sensitiv-
ity to the signal length, whereas scenario SA shows the 
highest sensitivity to the signal variations based on Δmax.

5.3 � Confusion matrix

In this part, the classification performance for both case stud-
ies is provided through confusion matrices. Considering the 
confusion matrix, we provide the recall or sensitivity (Sens.), 
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Fig. 10   The residual of VMD of linear data for different numbers of IMFs and data length. a Length of 512, b length of 2048, and c length of 
8192

Table 3   Classification accuracy 
of the proposed method for 
different classifiers and lengths 
of nonlinear data

Condition Number of 
features

Classifier Signal length Max Min Δ
max

(%)

512 1024 2048 4096 8192

SA 62 kNN 79.88 82.25 84.02 84.61 85.79 85.79 79.88 6.89
SVM 76.92 78.69 79.88 81.65 84.02 84.02 76.92 8.45
Fine tree 80.47 84.02 85.21 86.98 87.57 87.57 80.47 8.11

SB Variable 
for dif-
ferent 
lengths

51, 51, 50, 
48, 43

kNN 82.84 83.43 85.80 88.75 91.12 91.12 82.84 9.09
SVM 81.65 84.61 85.80 87.57 88.75 88.75 81.65 8.00
Fine tree 85.79 88.76 90.53 92.89 93.49 93.49 85.79 8.24

SC 16 kNN 91.12 91.71 94.08 94.67 94.67 94.67 91.12 3.75
SVM 85.79 86.39 89.35 91.12 91.17 91.17 85.79 5.90
Fine tree 91.71 92.89 94.67 95.85 96.45 96.45 91.71 4.91

SD 16 kNN 92.89 94.05 95.27 96.45 96.45 96.45 92.89 3.69
SVM 89.94 94.08 95.27 95.27 95.86 95.86 89.94 6.18
Fine tree 94.08 97.63 98.22 98.82 98.82 98.82 94.08 4.80
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precision (Prec.), total accuracy (Acc.), and F-score, which 
are defined as

where TP, TN, FP, and FN denote the true positive, true 
negative, false positive, and false negative, respectively.

(38)Sens. =
TP

TP + FN
,

(39)Prec. =
TP

TP + FP
,

(40)Acc. = 100
TP + TN

TP + TN + FP + FN
,

(41)F-score = 2
Prec. × Sens.

Prec. + Sens.
=

TP

TP + 0.5(FP + FN)
,

The results are given in Table 5 for the linear damage and 
the performance metrics are computed for the nine scenarios 
described earlier. As indicated, the proposed method deter-
mines all damage scenarios with no errors. Consequently, 
this approach expresses the highest performance for dis-
criminating linear damage based on reference to this study.

Regarding the nonlinear case study, 17 separate states 
of the specimen are predicted through the presented tech-
nique, and the results are presented by the confusion matrix 
as depicted in Table 6. As noted, in the majority of the dam-
age states, the prediction accuracy is 100%. Regarding the 
remaining cases, which are two out of seventeen scenarios, 
the classification performance is 90.0%. Subsequently, the 
established strategy revealed considerable performance for 
recognizing nonlinear and linear damage with significant 
precision.

Table 4   Classification accuracy 
of the proposed method for 
different classifiers and lengths 
of linear data

Scenario Number of 
features

Classifier Signal length Max Min Δ
max

(%)

512 1024 2048 4096 8192

SA 48 kNN 90.44 91.11 91.78 92.22 93.33 93.33 90.44 3.10
SVM 89.56 90.22 90.89 91.56 92.66 92.66 89.56 3.35
Fine tree 90.66 91.55 92.22 93.11 93.78 93.78 90.66 3.33

SB Variable 
for dif-
ferent 
lengths

40, 39, 35, 
32, 30

kNN 90.66 91.11 91.33 92.22 92.66 92.66 90.66 2.16
SVM 90.89 91.33 92.44 93.33 93.78 93.78 90.89 3.08
Fine tree 90.89 92.44 93.33 94 95.55 95.55 90.89 4.88

SC 8 kNN 91.11 94.22 96.22 97.33 100 100.00 91.11 8.89
SVM 90.22 91.33 92.44 94.67 98.22 98.22 90.22 8.14
Fine tree 95.77 97.77 99.33 100 100 100.00 95.77 4.23

SD 8 kNN 96.22 97.78 99.56 100 100 100.00 96.22 3.78
SVM 93.33 95.11 97.11 98.67 100 100.00 93.33 6.67
Fine tree 97.66 98.89 100 100 100 100.00 97.66 2.34

Table 5   Confusion matrix for 
linear case study

Total accuracy: 100%; F-score: 1

Linear case Predicted class Sens Prec

S1 S2 S3 S4 S5 S6 S7 S8 S9

Actual class S1 50 0 0 0 0 0 0 0 0 1 1
S2 0 50 0 0 0 0 0 0 0 1 1
S3 0 0 50 0 0 0 0 0 0 1 1
S4 0 0 0 50 0 0 0 0 0 1 1
S5 0 0 0 0 50 0 0 0 0 1 1
S6 0 0 0 0 0 50 0 0 0 1 1
S7 0 0 0 0 0 0 50 0 0 1 1
S8 0 0 0 0 0 0 0 50 0 1 1
S9 0 0 0 0 0 0 0 0 50 1 1
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5.4 � The effect of noise

The various intensity of noises is applied to the responses 
on the grounds of signal–noise ratio (SNR) to assess the 
stability of the proposed method against noise, as depicted in 
Fig. 11. As observed, the proposed method is efficient even 
in environments contaminated with severe noise (SNR = 1). 
Furthermore, the established approach can maintain its per-
formance against noise where it shows insignificant varia-
tions in the case of SNR of 20 and 15.

6 � GARCH effect assessment

In this section, two tests are applied to demonstrate the 
compatibility of the GARCH model [46]. Thus, Kurtosis 
and ARCH tests are provided in the following sections.

6.1 � Kurtosis test

GARCH model is appropriate for those signals that have the 
shape of heavy tails. Therefore, the Kurtosis test is utilized 
to find out that signals have heavy tails or not. The Kurtosis 
for a distribution (s) is formulated as follows [46]:

where � and � denote the mean and standard deviation of 
distribution s, respectively, and E(s) stands for the expected 
value of s. For Gaussian distribution, the Kurtosis value of 
three and higher values shows that the distribution of coef-
ficients has a heavier tail than the Gaussian distribution. This 
paper applies this test to the IMFs for each sensor, and the 
average results for minimum and maximum values of sub-
bands are presented in Table 7. Regarding the results, it can 
be seen that the maximum values are higher than 3, which 
proves that the IMFs do not have Gaussian distribution.

(42)K(s) =
E(s − �)4

�4
,

Table 6   Confusion matrix for nonlinear case study

Total accuracy: 98.82%; F-score: 0.988

Nonlinear case Predicted label Sens Prec

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17

Actual label S1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
S2 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
S3 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
S4 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
S5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 1 1
S6 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 1 1
S7 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 1 1
S8 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 1 1
S9 0 0 0 0 0 0 0 0 9 0 1 0 0 0 0 0 0 0.9 1
S10 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 1 0.909
S11 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 1 0.909
S12 0 0 0 0 0 0 0 0 0 1 0 9 0 0 0 0 0 0.9 1
S13 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 1 1
S14 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 1 1
S15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 1 1
S16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 1
S17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 1 1
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Fig. 11   Effect of noise on classification performance
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6.2 � ARCH test

Based on the hypothesis provided in [47], the ARCH test is 
deployed to see the existence of ARCH/GARCH impact in 
the IMFs of each sensor. In this reference, the Lagrange mul-
tiplier test is presented based on regression. Subsequently, 
the test statistic is asymptotically Chi-square distributed has 
q degrees of freedom [46].

Thus, in this part, the ARCH test is applied to the IMFs 
for different sub-bands, and the average results for signals 
are shown in Table 8. In this table, h stands for the Boolean 
decision variable, where 1 shows the rejection of the null 
hypothesis, which depicts that no GARCH effect exists. 
p Value is the significance level at which the test rejects 
the null hypothesis. GARCHstat and CriticalValue are the 
ARCH test static and critical values of the Chi-square dis-
tribution, respectively. Based on this test, if GARCHstat 
is less than the critical value, no GARCH effect exists. In 

this study, the significance level is set to 0.05, frequently 
deployed in [48]. Notably, these results are the average of 
all signals; for example, the average value of h for the fourth 
IMF of the first sensor is 0.74, which demonstrates that 74% 
of the signals have the GARCH effect. Thus, in general, the 
results of the table prove the existence of the GARCH effect 
in most cases.

7 � Conclusion

In this paper, a novel methodology was proposed with 
the potential to identify and classify linear and nonlin-
ear damage in building structures. Here, the VMD was 
applied to address the variational conditioning in the 
input signals and the GARCH model used for modeling 
the decomposed signals. Afterward, the IMFs were 
deployed as the features of input signals. It was revealed 

Table 7   Kurtosis test for IMFs Sensor Statistic IMF number

1 2 3 4 5 6 7 8 9 10

1 Min 2.81 2.75 2.75 2.80 2.87 2.87 2.99 2.78 2.72 2.88
Max 3.36 3.28 3.41 3.89 3.54 3.87 4.27 4.07 3.47 4.74

2 Min 2.88 2.78 2.92 2.57 2.67 2.85 2.54 2.73 2.89 2.75
Max 4.61 6.93 8.18 4.92 6.50 4.10 3.63 3.91 3.99 6.70

3 Min 2.77 2.84 2.82 2.88 2.92 2.94 2.89 2.86 2.77 2.94
Max 24.57 23.77 8.97 4.76 4.62 4.38 3.91 6.02 8.85 4.83

4 Min 2.88 2.98 2.91 2.92 2.81 2.93 2.93 2.93 2.87 2.97
Max 41.64 8.66 4.78 4.68 4.23 3.93 3.61 4.08 4.277 4.24

Table 8   ARCH test for IMFs

Sensor Results of ARCH test IMF number

1 2 3 4 5 6 7 8 9 10

1 h 1 1 0.95 0.74 0.66 0.76 0.94 1 1 1
pValue 0 0 0.01 0.09 0.17 0.11 0.01 0 0 0
GARCHstat 4416.8 1532.5 300.2 33.8 26.2 95.1 276.8 695.1 1667.1 3923.4
CriticalValue 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

2 h 0.62 0.65 0.92 0.97 1 1 1 1 1 1
pValue 0.19 0.14 0.03 0.01 0 0 0 0 0 0
GARCHstat 62.19 77.38 366.2 503.6 761.6 1023.2 1503.2 2280.3 3219.2 4629.9
CriticalValue 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

3 h 0.83 0.78 0.93 0.98 0.95 0.97 0.99 1 1 1
pValue 0.07 0.08 0.02 0.01 0.01 0.01 0.01 0 0 0
GARCHstat 1338.5 388.9 138.8 169.1 323.8 493.9 651.6 1019.5 2495.7 4811.8
CriticalValue 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84

4 h 0.76 0.94 0.96 0.98 1 1 1 1 1 1
pValue 0.09 0.02 0.01 0.01 0 0 0 0 0 0
GARCHstat 1031.6 207.1 293.1 516.1 683.1 1056.8 1742.9 2750.4 3717.3 4590.4
CriticalValue 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84
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that using all IMFs led to an increase in residuals. Thus, 
KPCA and KDA are applied to the extracted features, 
respectively, to find the optimum and appropriate fea-
tures. It was observed that using kernel-based dimen-
sional reduction could enhance classification performance 
using SVM, KNN, and fine tree algorithms. It was dem-
onstrated through the use of two empirical models that the 
proposed method could discriminate linear damage states 
correctly and without any error and classify nonlinear 
damage with significant accuracy. Moreover, the proposed 
method proves its efficiency even in a highly noisy envi-
ronment with an SNR of 20 and 15. Finally, to see the 
existence of the GARCH effect, Kurtosis and ARCH tests 
were deployed, and the results showed that IMFs followed 
the GARCH effect; thereby, they were appropriate candi-
dates for the proposed method.

The authors suggest the application of VMD and the 
GARCH model for unsupervised approaches and rein-
forcement learning. Moreover, optimization algorithms 
such as particle swarm optimization (PSO) and grey wolf 
optimizer (GWO) could be deployed to find the optimum 
number of features. The current limitation of the proposed 
method is sensitivity to the noisy signals, which can be 
solved by SNR estimation and reducing the noise by signal 
processing approaches. Also, we can consider the semi-
supervised schemes to reduce the effect of noisy features 
on the performance of feature reduction schemes.
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