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Abstract
Sensitivity-based methods using modal data are effective and reliable tools for damage localization and quantification. 
However, those may fail in obtaining reasonable and accurate results due to low damage detectability of sensitivity functions 
and the ill-posedness problem caused by noisy modal data. To address these major challenges, this article proposes a new 
method for locating and quantifying damage by developing a new sensitivity function of modal strain energy and solving 
an ill-posed inverse problem via an optimization-based iterative regularization method called Iteratively Reweighted Norm-
Basis Pursuit Denoising (IRN-BPD). A stopping condition based on the residual of the solution and an improved generalized 
cross-validation function are proposed to terminate the iterative algorithm of IRN-BPD and determine an optimal regulari-
zation value. The major contributions of this article include getting an idea from the first-order necessary condition of the 
optimization problem for deriving a sensitivity formulation and proposing a new regularized solution. The great advantages 
of these methods are increasing damage detectability, determining an optimal regularization value, and obtaining an accurate 
solution. A simple mass–spring system and a full-scale bridge structure are considered to verify the accuracy and effective-
ness of the proposed methods in numerical studies. Results demonstrate that the methods presented in this article succeed 
in locating and quantifying damage under incomplete noisy modal data.

Keywords Damage identification · Sensitivity analysis · Modal strain energy · Optimization · Regularization · Incomplete 
noisy modal data

1 Introduction

In civil engineering communities, vibration-based damage 
identification methods have received considerable atten-
tion due to the importance of the health and integrity of 

civil structures. From the civil engineers’ perspective, the 
structural damage can occur with any deviation in geometry 
configurations, boundary conditions, and material deteriora-
tion leading to reductions in structural stiffness, undesirable 
stresses and displacements, inappropriate vibrations, failure, 
and even collapse. To prevent any catastrophic event and 
guarantee the safety and serviceability of civil structures, it 
is essential to perform Structural Health Monitoring (SHM) 
and damage diagnosis strategies for evaluating structural 
conditions as well as locating and quantifying damage using 
vibration data [1, 2].

Most of the vibration-based damage diagnosis methods 
are generally categorized into the three main levels includ-
ing early damage detection (level 1), damage localization 
(level 2), and damage quantification (level 3). The first 
level is a global process aiming at perceiving whether the 
damage is available throughout the structure. Recently, this 
process is often implemented by data-based methods under 
machine learning aspects [3–6] due to some benefits [i.e., no 
finite-element (FE) modeling, system identification, model 
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updating, data transformation, and incomplete data, etc.] 
against model-based techniques. The second and third levels 
are local, which are intended to identify the location of dam-
age and then estimate or quantify the damage severity using 
both model-based [7, 8] and data-based [9, 10] methods. 
A large number of research efforts have been developed to 
detect structural damage using modal data including natural 
frequencies (eigenvalues), mode shapes (eigenvectors), and 
other modal-based characteristics. Because such dynamic 
features depend only on the inherent physical properties of 
a structure (i.e., mass, damping, and stiffness) regardless of 
excitation sources, the model-based damage identification is 
still a popular and effective approach [11].

Due to major advances in numerical modeling of struc-
tural systems through engineering software and importance 
of the local levels of damage diagnosis, it is preferable to 
locating and quantifying structural damage by the model 
updating or model-based strategy [7, 8, 12–14]. This is 
because data-based methods need a dense sensor network 
and accurate sensor placement for damage localization [15], 
and are not able to quantitatively estimate the severity of 
damage [16]. The fundamental principle of the model-based 
strategy is to adjust the inherent properties of a structure 
owing to differences between the dynamic characteristics 
(i.e., structural responses or modal data) of the FE and real 
models [17]. On this basis, it is assumed that the FE model 
reflects the normal or undamaged condition of the struc-
ture, while the real model is an unknown state, which can be 
either undamaged or damaged [8]. Under such concepts, the 
inherent structural properties and analytical modal param-
eters are simply obtained from the FE model, whereas the 
only experimental data are available in the real structure. 
Because the model updating strategy is an inverse problem 
and the relationship between the structural parameters and 
modal data is intrinsically nonlinear, sensitivity-based meth-
ods are developed to simplify the solution to this problem 
using the linearization of equations [18, 19].

The majority of model-based sensitivity functions have 
been proposed by taking the first-order derivative of the 
modal data with respect to structural parameters using the 
fundamental dynamic equations such as the generalized 
eigenvalue problem and orthogonality conditions [18]. It is 
well known that the measurement of the modal frequencies 
is simpler and more accurate than the mode shapes. How-
ever, the main drawback is that those are global vibration 
characteristics and may not give sufficient spatial informa-
tion about damage [20]. This is due to the fact that the struc-
tural damage is an intrinsically local phenomenon. Hence, it 
is preferable to use the mode shapes in complicated and local 
problems such as damage localization and quantification. 
Although the application of the mode shape and its sensitiv-
ity to damage is reasonable, it is prominent to use a robust 
dynamic feature and a sensitivity function that should not 

only pertain to damage but also have high detectability [7]. 
One of them is the modal strain energy (MSE) that defines as 
a function of mode shapes and stiffness matrix [8, 11, 20]. In 
most cases, structural damage decreases the stiffness of the 
structure, while the mass often remains invariant. Therefore, 
one can utilize the MSE and its sensitivity formulations as 
efficient and reliable dynamic characteristics in early damage 
detection, localization, and quantification. Despite propos-
ing various sensitivity functions of MSE [8, 21, 22], it is 
necessary to develop a new and efficient sensitivity func-
tion for increasing damage detectability and dealing with the 
limitations of some existing formulations, particularly the 
functions proposed by Entezami et al. [8] and Li et al. [22] 
that require additional unknown parameters (i.e., Lagrange 
multipliers) and fall in the parametric class of sensitivity 
formulations.

The other major challenge is related to the ill-posedness 
of the inverse problem of damage identification based on the 
model updating strategy [23]. This problem is often a linear 
mathematical system containing a coefficient matrix, which 
originates from a sensitivity function, the vector of residual 
between the undamaged and damaged dynamic characteris-
tics, and unknown coefficients that should be determined [8]. 
Due to some reasons such as ill-conditioning and sparsity of 
the coefficient matrix and noise in measurements, the linear 
inverse problem is ill-posed. Regularization is an influential 
tool for addressing this challenge and solving the inverse 
problem stably [7, 17, 20, 23]. Generally, this process can 
be carried out by direct, iterative, and hybrid approaches.

Direct regularization methods are usually simple, easy-to-
use without any particular complexity. These methods often 
aim at solving the ill-posed inverse problem in one-step 
procedures. Tikhonov regularization and truncated singular 
value decomposition are two well-known direct techniques 
[23]. Iterative methods are often divided into subspace 
iterative and optimization-based iterative approaches. The 
first method is based on the Krylov subspace theory and a 
bidiagonalization algorithm for solving an inverse problem 
[e.g., Least-Squares Minimal Residual (LSMR) utilized by 
Sarmadi et al. [24] for model updating]. In this regard, a 
subspace iterative technique attempts to repeat the solution 
of the inverse problem without any regularization param-
eter until a stopping condition to be satisfied. Typically, the 
number of iterations behaves as a regularization value [25]. 
The second method is an optimization problem that aims at 
minimizing a solution function consisting of the penalty and 
regularization terms in an iterative algorithm [26]. Finally, 
hybrid methods combine direct and iterative regularization 
algorithms for solving ill-posed inverse problems [7, 20].

Although the utilization of direct methods is usually sim-
ple without any complexity, it may not be sufficiently influ-
ential resulting from solving the ill-posed inverse problem 
once and their poor performances under noisy measurements 
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[8]. The major drawback of subspace iterative methods is 
that those may suffer from a semi-convergence behavior that 
affects the stability of the solution leading to their poor per-
formances [27]. Despite accurate and reasonable results of 
hybrid methods, computational complexity stemming from 
the combination of two different regularized solution algo-
rithms is the major limitation of these methods. In contrast, 
the optimization-based iterative methods have neither the 
drawbacks of the direct and subspace iterative techniques 
(i.e., unstable solutions and poor performances) nor the com-
plexity of hybrid approaches.

The main objective of this article is to propose a new 
sensitivity-based method by deriving a new sensitivity func-
tion of MSE and solving an ill-posed inverse problem via 
an optimization-based iterative regularization method called 
Iteratively Reweighted Norm-Basis Pursuit Denoising (IRN-
BPD). The major novelty of the proposed sensitivity func-
tion is to get an idea from the concept of the optimization 
problem and its first-order necessary condition. The main 
merits of this function are its high sensitivity to damage 
that increases damage detectability and its non-parametric 
property without any additional unknown parameter needed 
for deriving the sensitivity formulation. In this regard, a term 
concerning the variation in structural stiffness, which is 
taken into account as the main damage index, is added to the 
first-order derivatives of the eigenvalue (modal frequency) 
and eigenvector (mode shape), which are directly used in the 
proposed sensitivity formulation. Unlike Entezami et al. [8], 
who proposed an improved sensitivity function of MSE for 
the problem of damage detection by developing the sensi-
tivity formulation of Li et al. [22], the proposed sensitivity 
function in this article is more efficient than the mentioned 
improved formulation. Although both the proposed and 
improved functions are suitable for damage identification, 
the main novelty of the proposed sensitivity function is 
its non-parametric characteristic. As described earlier, the 
sensitivity formulations in [8, 22] depend strongly on some 
unknown parameters (the Lagrange multipliers), which 
should be determined properly, so that inaccurate calcula-
tions of these parameters may cause inappropriate sensitivity 
functions and coefficient (sensitivity) matrices. In contrast, 
the sensitivity function of MSE proposed in this article not 
only enhances the detectability of damage but also provides 
a non-parametric class of sensitivity formulation without any 
dependency on unknown parameters. The great advantage 
of the proposed IRN-BPD method is to provide an effec-
tive and computationally efficient iterative algorithm for 
solving the ill-posed inverse problem of damage identifica-
tion. Although IRN-BPD has originally been proposed by 
Rodriguez and Wohlberg [26], some deficiencies such as 
the lack of having a criterion for stopping condition and an 
approach to determining an optimal regularization parameter 
make it difficult to use in the damage diagnosis problems. 

In this article, therefore, the residual of the solution and 
an improved generalized cross-validation (GCV) func-
tion are presented to address the mentioned deficiencies of 
IRN-BPD and increase its applicability. The effectiveness 
and performance of the proposed methods are verified in 
numerical studies by a simple mass–spring system and the 
full-scale I-40 bridge. Furthermore, comparative studies are 
performed to evaluate the superiority of the proposed meth-
ods over some existing and well-known approaches. Results 
demonstrate that the methods presented here are successful 
in locating and quantifying damage under incomplete and 
noisy modal data and those are also superior to some clas-
sical techniques.

The remainder of this article is organized as follows. Sec-
tion 2 describes the relation between the optimization prob-
lem and sensitivity analysis. In this section, one can realize 
how to obtain a sensitivity function via the fundamental 
principle of the optimization problem. Section 3 proposes 
the new sensitivity function of MSE. In Sect. 4, the inverse 
problem of damage identification is derived using the pro-
posed sensitivity function and the discrepancy between the 
MSE of the undamaged and damaged conditions. Section 5 
describes the proposed IRN-BPD method for solving the 
inverse problem of damage identification. In this section, 
the proposed stopping condition and the improved GCV 
function for determining an optimal regularization value are 
explained as well. In Sect. 6, the results of damage localiza-
tion and quantification along with comparative studies are 
presented. Finally, Sect. 7 summarizes the main conclusions 
of this article.

2  Relation between optimization problem 
and sensitivity analysis

Optimization is a computational tool that intends to find 
the minimum or maximum value of an objective function 
[28]. This process can be implemented in constrained (either 
equality or inequality) and unconstrained problems. For the 
first class of optimization, the problem consists of the three 
basic ingredients: (i) the vector of variables x = [x1…xv], 
where v denotes the number of variables (ii) an objective or 
cost function f(x), and (iii) equality and/or inequality con-
straints. In the second class of optimization, which requires 
no constraints, the problem includes two main ingredients: 
(i) the vector of variables x, and (ii) the objective function 
f(x) [28]. The fundamental principle of any optimization 
problem is to minimize the objective function f(x) with or 
without constraints under the first-order and second-order 
necessary conditions [29]. In the first-order necessary condi-
tion, the main goal is to find a local minimum or maximum 
( ̂x ) of the objective function f(x) by taking the first-order 
derivative or gradient of f(x) at that local point as follows:
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where i = 1,2,…,v. On the other hand, the second-order nec-
essary condition of an optimization problem is intended to 
utilize the second-order derivative of the objective function 
at the local minimum and maximum. Because sensitivity 
analysis directly relates to the first-order derivative of any 
dynamical function with respect to structural parameters, 
one can realize that the first-order necessary condition of 
the optimization problem allows us to develop various sen-
sitivity formulations by defining proper objective functions.

3  A new sensitivity function of modal strain 
energy

The proposed sensitivity function for damage identification 
is based on MSE. This is a modal-based dynamic function 
that is defined as energy stored in a structural system when 
the mode shapes are equivalent to nodal displacements. In 
addition, the MSE is directly related to the structural stiff-
ness, which is known as the main damage index [8]. Given 
a structural system with n degrees-of-freedom (DOFs) and 
q elements, the MSE function in the ith mode is formulated 
as MSEi = ½(φi

TKφi), where i = 1,2,…,m refers to the num-
ber of measured modes; φi ∈ ℜn and K ∈ ℜn×n are the vec-
tor of mode shape in the ith mode and the stiffness matrix, 
respectively. Assuming the jth stiffness parameter pj of the 
structural stiffness K, where j = 1,2,…,q, the objective func-
tion required for the optimization problem can be defined 
as follows:

Based on the first-order necessary condition of the opti-
mization problem presented in Eq. (1), the sensitivity func-
tion of MSE in the ith mode with respect to the jth structural 
parameter pj is written as follows:

Since Kφi = φi
TK, Eq. (3) can be rewritten as

Unlike ∂K/∂pj, the first-order derivative of the modal vec-
tor (the sensitivity of eigenvector) is unknown and should be 
determined. Although a large number of methods have been 
presented to formulate ∂φi/∂pj, one of the well-known and 
effective ways is Nelson’s technique [18]. The fundamental 
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principle of this technique lies in taking the first-order deriv-
ative of the generalized eigenvalue problem (K − λiM)φi = 0, 
where λi and M ∈ ℜn×n are the ith eigenvalue (the square 
of natural frequency) and the mass matrix, respectively. 
Accordingly, the first-order derivative of this problem with 
respect to pj is given by

Since the mass matrix remains invariant during dam-
age occurrence, one can neglect its derivative. As Eq. (5) 
appears, the sensitivity of mode shape depends on the deriv-
ative of the eigenvalue. Using the stiffness-orthogonality 
condition φi

TKφi = λi, the derivative of the eigenvalue with 
respect to the jth structural parameter pj is expressed as

The first term of the right-hand side of Eq. (6) describes 
the variation in the structural stiffness that is known. This 
means that the unknown component in Eq. (6) is the deriva-
tive of mode shape that can be approximated by the rate of 
change in the global stiffness matrix as follows [30]:

Therefore, the first-order derivative of the eigenvalue is 
developed as
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By inserting the above expression into Eq. (4), one can 
yield

Since ∂f(pj)/∂pj = 0, the proposed sensitivity function of 
MSE is presented here as follows:

The great benefit of the proposed sensitivity function of 
MSE is that it only utilizes the inherent properties of the 
FE model (the mass and stiffness matrices), the modal data 
of the undamaged state, and the derivative of the stiffness 
matrix. It should be clarified that the derivative of mode 
shape presented in Eq.  (7) can directly be inserted into 
Eq. (4) to address the limitation of that equation (the una-
vailability of ∂φi/∂pj) and derive the classical sensitivity of 
MSE as follows:

Due to the importance of damage identification by a 
robust sensitivity function with high damage detectability, 
however, the proposed sensitivity of MSE in Eq. (12) not 
only presents a new formulation but also incorporates more 
components of the structural stiffness as the main damage 
index. Compared with the sensitivity functions of MSE pro-
posed by Entezami et al. [8] and Li et al. [22], moreover, 
one can state that the proposed sensitivity function in this 
article is more efficient than those formulations due to no 
additional parameters (i.e., the Lagrange multipliers needed 
for their sensitivity functions) for establishing the proposed 
sensitivity formulation.
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4  The sensitivity‑based damage 
identification strategy

Once the formulation of the proposed sensitivity function 
has been completed, it is necessary to define an inverse 
problem of damage identification. One of the great advan-
tages of the sensitivity-based methods is that the definition 
of the inverse problem of interest can be carried out by the 
formulation of the sensitivity function. It is well known 
that the perturbation of each structural parameter leads 
to changes in the structural stiffness and MSE. Using the 
first-order Taylor’s series, such changes can be described 
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basis, it is possible to expand the discrepancy of MSE by 
inserting the proposed sensitivity of MSE as follows:
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Additionally, the discrepancy of MSE is formulated in 
the following form:

where �̂i ∈ ℜn and �̂j ∈ ℜn×n denote the ith mode shape and 
the local stiffness matrix of the jth element regarding the 
damaged state, respectively. An important note is that the 
mode shapes of the undamaged and damaged states should 
originate from the same physical condition [19]. This means 
that the modal vectors of these states should be mass nor-
malized. Since the global mass matrix of the FE model 
regarding the undamaged condition is available, the mode 
shapes of this condition are always mass normalized, while 
this situation is not valid for the modal vector concerning 
the damaged state related to the real structure. Therefore, it 
needs to normalize the mode shapes of both the undamaged 
and damaged conditions by the modal scale factor [8]. The 
other important issue is the incompleteness of the modal dis-
placements of the damaged state, which are usually available 
at a few DOFs. To address this limitation, one can exploit the 
System-Equivalent-Reduction-Expansion-Process (SEREP) 
technique [8] to expand the normalized mode shapes of 
the damaged structure. On the other hand, since the local 
stiffness matrix of the damaged state in Eq. (18) is mainly 
unknown, one can express it as �̂j = (1 − αj)kj. Hence, the 
discrepancy of MSE is rewritten as follows:
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problem of damage identification is formulated as Sa = r. 
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Therefore, the main objective is to solve the inverse prob-
lem Sa = r and determine the vector a. In this regard, it is 
expected that the undamaged areas of the structure have the 
stiffness reduction factors equal or close to zero. Further-
more, the damage locations are then identified by finding 
elements with the largest stiffness reduction factors.

5  An optimization‑based iterative 
regularization method

5.1  Regularization of ill‑posed problems

The main objective of any regularization technique is to find 
an approximate solution of an inverse problem in the form of 
Saexact = rexact, where aexact and rexact refer to the exact solu-
tion and the noise-free data, respectively. An important note 
is that both the vectors aexact and rexact are rare in practice 
due to the presence of noise. In other words, noise in data 
causes that the exact solution to Saexact = rexact is unavailable 
owing to unavailability of rexact. Therefore, one attempts to 
solve the ill-posed problem Sa = r, where each of the com-
ponents of the vector r can be expressed as r = rexact + ε; a 
is the approximate solution of aexact and ε is the noise, by a 
regularization method under the principle of perturbation 
theory [31]. Based on this theory, the solution of Sa = r is 
very sensitive to any perturbation (noise) in data (i.e., the 
vector r) that makes the problem of interest ill-posed lead-
ing to an unreliable and unstable solution. Under inevitable 
circumstances of the presence of noise in data, regulariza-
tion methods are used to filter the perturbation influences 
caused by noise, such that the solution is less dominated by 
the noise [31].

More precisely, these methods are called regularization 
methods, because they enforce regularity on the solution. 
By enforcing this regularity (smoothness), one can sup-
press some of the noise components leading to a more stable 
approximate solution. In this regard, the regularization value 
is added to control the stability of the solution and approach 
to the exact solution. On this basis, it is well known that 
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one can compute an approximation to aexact by means of an 
effective regularization method and a proper regularization 
parameter that leads to much less sensitivity to the perturba-
tions in data [31]. Therefore, regularization methods should 
be considered to reduce the influence noise and solve ill-
posed problems. In this case, the regularization parameter 
plays a crucial role in providing both accuracy and stability 
of solution.

Tikhonov regularization is one of the well-known and 
classical regularized solution techniques that utilizes a regu-
larization value for controlling the stability of an ill-posed 
inverse problem. Generally, this technique is based on mini-
mizing a least-square problem comprising the penalty term 
||Sa − r||2 and the regularization term γ||a||2, where γ denotes 
the regularization parameter. The penalty term measures the 
goodness-of-fit, which means how well the solution a pre-
dicts the given (noisy) data r. Obviously, if this term is large, 
then, the vector a cannot be considered as a good solution 
in the sense that the problem of interest has not been solved 
properly. The regularization term adds a weight through the 
regularization value γ to the norm of the solution, so that it 
controls the regularity of the solution and plays a critical 
role in reducing the effect of noise. In this case, the balance 
between the terms of accuracy (i.e., the small value of the 
penalty term) and stability (i.e., the regularity of the solu-
tion) is controlled by the regularization parameter [31].

5.2  IRN‑BPD

The proposed IRN-BPD method is an optimization tool for 
solving the ill-posed linear problems such as Sa = r, where 
S is a rectangular matrix (m < q), and the vector r includes 
unwanted and unknown noise levels in measurements (i.e., 
the mode shapes of the damaged structure). This technique 
is based on minimizing an l2 penalty (fidelity) term subjected 
to an l1 regularization term (sparsity constraint) in the fol-
lowing form [26]:

where 1
2
|| Sa-r ||2

2
 and ||a||1 refer to the penalty and regu-

larization terms, respectively. On this basis, the proposed 
IRN-BPD method is similar to the well-known Tikhonov 
regularization technique. The main objective of IRN-BPD is 
to map Sa = r to a quadratic algorithm and solve it iteratively 
[26]. At the iteration k, this algorithm is based on a quadratic 
function as follows:

In this equation, Wk = diag(Sak − r) and �k = diag(τ(x)) 
are the weighting diagonal matrices of the penalty and 
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regularization terms at the kth iteration. For the variable 
x, moreover, τ(x) is a function equal to 1 for |x|> ε and 0 
for |x|≤ ε, where ε is a small positive scalar. To minimize 
Eq. (23), it is necessary to move the weighting diagonal 
matrix W k from the regularization term into the penalty 
term. By setting ak=�

1∕2

k
 vk, Eq. (23) can be rewritten as

where vk=�
1∕2

k
 STuk. In this expression, the vector uk is 

given by

At the iteration k = 0,1,2,…, the vector uk is initially sub-
stituted into the expression of vk. Subsequently, this vector 
is replaced to the expression of ak = �

1∕2

k
 vk to obtain the 

final solution of the linear ill-posed problem in the follow-
ing form:

where 
∼

�k = diag(τ(ak)) and τ(.) has been described earlier. 
The criterion for stopping the iterative algorithm is to com-
pare the l2-norm of the residual of solution ||δk||2 =||Sak − r||2 
with an insubstantial scalar value e. On this basis, the itera-
tive algorithm terminates when ||δk||2 < e. The other impor-
tant issue is related to the initialization of the IRN-BPD 
method, which requires the initial solution vector a0 when 
k = 0. To address this problem, the initial solution vector can 
be defined as follows:

where I ∈ ℜm×m is the identity matrix. It should be clarified 
that Eq. (27) is equivalent to the regularized solution by the 
Tikhonov regularization technique [31]. On the other hand, 
although the proposed method follows the same strategy 
as the classical Tikhonov regularization by minimizing the 
penalty and regularization terms, there are some advantages 
that make it superior to that classical technique. First, the 
Tikhonov regularization presents a direct regularized solu-
tion, which means that it solves the ill-posed inverse problem 
one time. Despite computational efficiency of this procedure, 
the comparative studies in this study (see Sects. 6.1 and 6.2) 
demonstrate that the proposed method provides more reli-
able results than the Tikhonov regularization. Second, the 
regularization parameters used in both the IRN-BPD and 
Tikhonov regularization (and other regularization tech-
niques) add weights to the solutions of any ill-posed inverse 
problem. For this reason, they are able to better solve such 
problem and provide more accurate results in comparison 
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with non-regularized solution techniques. Nonetheless, 
the comparison between Eqs. (26) and (27) concerning the 
regularized solutions by IRN-BPD and Tikhonov regulari-
zation, respectively, reveals that the proposed method adds 
more weights on the solution of the ill-posed problem, not 
only on the regularization term but also on the penalty term. 
Therefore, it can be observed in the results of the compara-
tive studies that the proposed IRN-BPD method outperforms 
the classical Tikhonov regularization with smaller compu-
tational errors due to its iterative nature and considering 
more weights.

5.3  Determination of an optimal regularization 
parameter

The regularization parameter is a crucial component of each 
regularized solution method [32]. An optimal regularization 
value enables the method of interest to solve the ill-posed 
inverse problem appropriately and obtain a stable solution 
[25]. When the regularized solution technique is non-itera-
tive, it is possible to determine the regularization parameter 
one time. However, this approach may not be sufficiently 
suitable for iterative regularization methods, for which the 
solution of the inverse problem varies at each iteration. For 
this reason, this article proposes an algorithm based on an 
improved GCV function with the aid of IRN-BPD for choos-
ing the optimal regularization parameter γk. Having consid-
ered the sensitivity matrix S and the vector r, the general 
form of the GCV function is given by [25]

where S# stands for the matrix that maps the vector r onto 
the regularized solution a. The utilization of this function for 
obtaining the regularization parameter has two main limita-
tions. First, the determination of the matrix S# depends on 
the type of regularization technique. Second, this function 
is often useful for non-iterative regularized solution meth-
ods. The first limitation can be dealt with using the residual 
of the solution δk rather than (I − SS#)r in the numerator 
of Eq. (28) and the SVD of the sensitivity matrix for the 
denominator of this equation, that is
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where σj is the jth singular value of the sensitivity matrix 
after using the SVD. Therefore, the improved GCV function 
for the IRN-BPD method is expressed as follows:

The determination of an optimal regularization param-
eter is based on minimizing the improved GCV function. 
Since this function depends on the iteration number k, the 
procedures of stopping condition and regularization value 
determination are implemented in a simultaneous manner. 
This means that an initial regularization parameter is first 
computed by minimizing the GCV function of the non-
iterative approach. Next, this regularization parameter is 
incorporated into the algorithm of the IRN-BPD method 
to obtain the solution residual at the first iteration. In most 
cases, since the l2-norm of this residual is not usually smaller 
than the predefined quantity e, the inverse problem is solved 
by determining a new regularization parameter by minimiz-
ing Eq. (30) at a new iteration. This procedure continues 
until the iterative algorithm of IRN-BPD terminates on the 
basis of the stopping condition ||δk||2 < e. In this regard, the 
last regularization value at the iteration k is chosen as the 
optimal value.

6  Numerical models

6.1  The mass–spring system

To demonstrate the correctness and efficiency of the 
proposed methods in damage identification, a simple 
mass–spring system with six elements and DOFs (q = n = 6) 
is considered, as shown in Fig. 1. Assume that the mass 
and stiffness of each element correspond to 1000 kg and 
2000 KN/m, respectively. Given such physical properties, 
the global mass and stiffness matrices of the numerical 
model are simply obtained by the basic formulations related 
to discrete dynamical systems. The generalized eigenvalue 
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Fig. 1  The mass–spring system 
(m: Mass, k: Stiffness, and D: 
DOF)
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problem is then applied to extract the modal frequencies and 
mode shapes.

The stiffness values of some elements are reduced to 
define two damage cases. For the first one, the stiffness quan-
tities of the first and second elements decrease by 10% and 
25%. In the second case, the stiffness values of the first–sixth 
elements reduce by 10%, 20%, 30%, 35%, 40%, and 50%, 
respectively. Using the generalized eigenvalue problem, the 
modal parameters of the damaged conditions are obtained, 
as well. To simulate a realistic condition, the first three 
modal frequencies (m = 3) along with the modal displace-
ments at the first, second, and fourth DOFs are selected 
to consider the incompleteness conditions of modal data. 
Another simulation is to incorporate noise in the selected 
modal displacements of the damaged structure. Since the 
modal frequencies of the damaged state are not available in 
the sensitivity matrix S and the residual vector r, different 
noise levels are only applied to the selected mode shapes. 
For the numerical problems, the noisy modal vector is sim-
ply simulated as follows:

where η denotes the noise level; w is a randomly normal dis-
tribution vector with the same dimension as the mode shape. 
Based on the descriptions in Sect. 5.1, each value of ηw is 
equivalent to ε. Furthermore, �i and �∗

i
 are the incomplete 

mode shapes of the damaged state in the ith mode associ-
ated with the noisy and noise-free conditions, respectively. 
For the mass–spring system, the noise levels equal to 1%, 
3%, 5%, and 10% are considered to apply to the incomplete 
mode shapes of the damaged structure. Finally, each of the 
incomplete modal vectors is normalized by the modal scale 
factor and then expanded through the SEREP technique to 
obtain the vector �̂i.

Using all requirements for establishing the proposed 
sensitivity function of MSE and assuming that the stiff-
ness matrices of the damaged conditions are available, 
Fig. 2 illustrates the damage detectability of the proposed 

(31)�i = �
∗

i
+ ��,

sensitivity function in both damage cases in the 10% noise 
level. From Fig. 2a, it can be realized that the amounts of 
sensitivity matrix at the first and second elements are more 
than the other ones, which are roughly identical to zero. Fur-
thermore, it can be observed in Fig. 2b that the minimum 
and maximum changes in the values of S have occurred at 
the first and sixth elements, which have the smallest and 
largest stiffness reduction factors. As another important 
observation, one can discern that the sensitivity quantity 
increases from the elements 1–6. All the obtained results in 
Fig. 2 prove that the proposed sensitivity function of MSE 
is sensitive to damage.

By constructing the sensitivity matrix S and the residual 
vector r, the inverse problem of damage identification is 
solved by the proposed IRN-BPD method to compute the 
vector of the estimated stiffness reduction factors a. Accord-
ingly, Table 1 lists the number of iterations needed for the 
solution of the inverse problem Sa = r. Figure 3 illustrates 
the convergence rates of the solution of the inverse problem 
using the l2-norm of δk in Cases 1 and 2 for all noise levels. 
The stopping criterion for terminating the iterative algorithm 
is set as e = 1e−7. Furthermore, Fig. 4 shows the optimal 
regularization values in Case 1 for the 3% and 10% noise 
levels, respectively. From Fig. 4, one can observe that the 
regularization values at the last iterations (k = 34 in Fig. 4a 
and k = 60 in Fig. 4b) are chosen as the optimal quantities. 
The results of damage localization and quantification by the 
proposed methods (i.e., the proposed sensitivity function and 
IRN-BPD) in the first and second cases are shown in Fig. 5.

Fig. 2  Damage detectability of 
the proposed sensitivity func-
tion of MSE: a Case 1 and b 
Case 2

Table 1  The iteration numbers 
for solving the inverse problem 
of damage identification by 
IRN-BPD

Noise levels 
(%)

Case no.

1 2

0 22 21
1 34 33
3 34 32
5 46 51
10 60 63
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In Fig. 5a, it is clear that the first and second elements are 
the damage locations and their estimated stiffness reduction 
factors in the noise-free and noisy conditions are in good 
agreement with the actual reduction values (i.e., 10% and 
25%), while the other elements approximately have zero 
reduction factors. As Fig. 5b illustrates, all elements of the 
mass–spring system are identified as the damage locations 
and one can discern that the estimated values in |a| are simi-
lar to their actual quantities implying the accurate quantifi-
cation of the damage severities in Case 2. Therefore, these 
results confirm that the proposed methods in this article are 

able to localize the damaged areas of the system and accu-
rately quantify the damage severities.

Despite reasonable results of damage localization and 
quantification, it would be very appropriate to compare the 
proposed methods with their counterparts. For this purpose, 
the relative error between the actual and estimated values of 
the stiffness reduction factor is applied to define a criterion 
for the comparison. First, the proposed sensitivity function 
of MSE is compared with the classical sensitivity formula-
tion, as presented in Eq. (13), the function proposed by Yan 
and Ren [21]. Since the sensitivity functions proposed by 

Fig. 3  Convergence rates of the 
solution of the inverse problem 
using the l2-norm of δk: a Case 
1 and b Case 2

Fig. 4  Determination of the 
optimal regularization param-
eters via the improved GCV 
function in Case 1: a 3% noise 
level; b 10% noise level

Fig. 5  Damage localization 
and quantification in the mass–
spring system: a Case 1 and b 
Case 2
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Fig. 6  The comparison of the different sensitivity functions of MSE in Case 2

Fig. 7  The comparison of the different regularized solution methods in Case 2
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Entezami et al. [8] and Li et al. [22] require determining 
unknown parameters (i.e., the Lagrange multipliers) and 
fall in the parametric class of sensitivity formulations, it 
is neglected to compare the proposed sensitivity function 
of MSE, which belongs to the non-parametric class, with 
those functions. For this comparison, the inverse problem of 
damage identification is solved by the proposed IRN-BPD 
method. The results of this comparison in Case 2 are shown 
in Fig. 6. Second, the performance of the proposed IRN-
BPD method is evaluated by the Tikhonov regularization (a 
direct regularized solution) and LSMR (a subspace iterative 
regularized solution), as illustrated in Fig. 7. Despite reason-
able and accurate results of hybrid methods [7, 20], one also 
neglects to compare IRN-BPD with these approaches due to 
their complexity. In this comparison, the sensitivity matrix 
is obtained from the proposed formulation.

As Fig. 6 appears, the best performance in terms of the 
smallest rate of the relative error is associated with the pro-
posed sensitivity function, particularly in the highest noise 
level with the errors less than 1%. Although the sensitivity 
function of Yan and Ren outperforms the classical MSE sen-
sitivity, both of them suffer from larger relative errors than 
the proposed formulation. Furthermore, one can discern in 
Fig. 7 that the proposed IRN-BPD method yields smaller 
relative errors than the Tikhonov regularization and LSMR 
techniques. This observation indicates the superiority of the 
proposed regularized solution over the mentioned conven-
tional techniques. From Fig. 7, it is also seen that the direct 
Tikhonov regularization method performs better than the 
iterative LSMR technique, in which the number of iterations 
acts as the regularization value, in terms of the smallest rela-
tive error. Therefore, this comparison reveals the positive 
effect of using a regularization parameter on the solution of 
the ill-posed inverse problem.

Despite better performance of the proposed IRN-BPD 
method against the LSMR and Tikhonov regularization tech-
niques in providing more accurate results of the ill-posed 
inverse problem and damage identification with smaller 
errors, it is important to compare them in terms of com-
putational efficiency. For this purpose, Table 2 presents 
the computational time, in the unit of sec, for solving the 

inverse problem of damage identification in Case 2 under 
noisy modal data. Note that this comparison is implemented 
by a laptop featuring an Intel Core i5-5200@2.20 GHz CPU 
and 8 GB RAM.

As the data in Table 2 appear, the Tikhonov regulari-
zation needs shorter time for solving the ill-posed inverse 
problem in comparison with the iterative solution methods, 
LSMR and IRN-BPD. In contrast, the proposed method 
requires longer computational time for solving the problem 
of interest. It is reasonable, because this method solves the 
problem in an iterative manner for both obtaining the vector 
ak and the regularization γk simultaneously. Regardless of 
more accurate results of solution obtained from IRN-BPD, 
it should be noted that although this method needs longer 
time, the time amounts are not considerable for concluding 
that it is computationally inefficient.

6.2  The I‑40 bridge

For further investigation using a more rigorous numerical 
model than the previous example, this section aims at vali-
dating the proposed methods by a numerical simulation of a 
full-scale structure. This simulation is implemented on the 
I-40 bridge, as shown in Fig. 8a, located along Interstate 
Highway 40 across the Rio Grande River in Albuquerque, 
New Mexico, USA [33]. The I-40 bridge included twin 
spans with separate highways for each traffic direction. This 
structure was constructed from a concrete deck containing 
a wide of 13.3 m and a thickness of 0.178 m. The deck was 
supported by two steel plate girders and three steel string-
ers. Figure 8b depicts the cross-section of the bridge deck. 
External loads caused by traffics from the stringers were 
transformed to the steel plate girders by the floor beams. 
Furthermore, cross-bracing was also provided between the 
floor beams.

The section that was instrumented with some sensors in 
its experimental study [34] is applied to construct the numer-
ical or FE model of the I-40 bridge. This section, which is 
illustrated in Fig. 8c, was composed of three spans with a 
combined length of 129.5 m, so that the first and third spans 
had an equal length of 39.9 m, and the length of the middle 
span was identical to 49.7 m. To avoid challenges related to 
model updating, the numerical models of the I-40 bridge in 
the undamaged and damaged states are considered to iden-
tify simulated damage cases. Due to use of the numerical 
models, it is feasible to evaluate more damage patterns com-
pared to the experimental case study [34].

The numerical model of the I-40 bridge is constructed in 
the MATLAB environment using shell and 3D beam ele-
ments [35]. Figure 9 shows the element numbers of the con-
crete deck, the girder webs, and the piers. The concrete deck 
and the girder webs are modeled using 144 and 48 four-node 
shell elements, each of which consists of the membrane and 

Table 2  Computational time (s) for solving the ill-posed inverse 
problem Sa = r regarding the mass–spring system in Case 2 under dif-
ferent noise levels

Noise levels (%) Methods

LSMR Tikhonov IRN-BPD

1 6 3 17
3 7 3 18
5 7 2 18
10 7 3 20
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rectangular plate elements. In Fig. 9a, the elements 1–144 
relate to the shell components of the concrete deck. Addi-
tionally, the elements 145–168 in Fig. 9b and the elements 
169–192 in Fig. 9c are associated with the girder webs on 
the north and south sides, respectively. The 3D beam ele-
ments are utilized to model the top and bottom piers (i.e., the 
elements 193–204) in Fig. 9b, c and the stringers (W21 × 68) 
and the floor beams (W36 × 182). Because the stringers and 
floor beams are not considered to use in the process of dam-
age identification, it is neglected to define their element 
labels and numbers. Nonetheless, those are incorporated in 
numerical modeling. The materials used in the I-40 bridge 
were concrete and steel. Hence, the modulus of elasticity, 

density, and the Passion’s ratio needed for the numerical 
modeling are identical to 24.8 GPa, 2322.6 kg/m3, and 0.2 
for concrete and 210 GPa, 7850 kg/m3, and 0.3 for steel, 
respectively. Moreover, the model of the concrete deck is 
simplified using a constant thickness of 0.2209 m without 
considering the steel rebars.

Once the numerical model has been modeled, which 
refers to the undamaged state of the bridge, simulated dam-
age cases are defined as reductions in stiffness (the flexural 
rigidity) of some elements to model the damaged condi-
tions as listed in Table 3. To simulate the incompleteness 
conditions of the modal data, one assumes that the only 
vertical and horizontal DOFs at the simulated sensors from 

Fig. 8  a The image of the I-40 
bridge; b the cross-section; c 
the elevation view

(a)

(b)

(c)
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six modes (m = 6) are only measurable. Such simulated sen-
sors and measured DOFs are observable in Fig. 9. Apply-
ing the mass and stiffness matrices of the FE model of the 
I-40 bridge, the full sets of the analytical modal parameters 
can be obtained using the generalized eigenvalue problem. 
Similar to the previous numerical example, the incomplete 

mode shapes of the damaged states are initially scaled by the 
modal scale factor. Next, the SEREP technique is utilized 
to expand the incomplete mass-normalized modal vectors. 
Furthermore, the noise levels equal to 3% and 10% are con-
sidered to simulate the noisy modal data.

Having constructed the sensitivity matrix S and the resid-
ual vector r, the inverse problem of damage identification 
Sa = r is solved by the proposed IRN-BPD method under the 
mentioned noise levels. Table 4 presents the number of itera-
tions needed for solving the inverse problem. Additionally, 
Fig. 10 and Fig. 11 display the convergence rates in all cases 

Fig. 9  The numerical model and element numbers of the I-40 bridge: a the concrete deck, b the north girder and piers, and c the south girder and 
piers (Dh horizontal DOF, Dv vertical DOF)

Table 3  Simulated damage cases for the numerical study of the I-40 
bridge

Case no. Damage locations (elements) Damage severity (%)

1 63, 64, 69, 70, 75, 76 − 20
2 155, 156, 157 − 20
3 164, 172, 179 − 20, − 25, − 20

197, 202 − 30, − 20
4 17, 62, 93, 112 − 20, − 40, − 30, − 20

155, 189 − 30, − 20
196, 204 − 20, − 30

Table 4  The iteration numbers 
for solving the inverse problem 
of damage identification by 
IRN-BPD

Noise 
levels 
(%)

Case no.

1 2 3 4

3 82 76 76 81
10 127 122 127 133
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and the process of determining the optimal regularization 
parameters for Case 1, respectively. The stopping condition 
for terminating the iterative algorithm of IRN-BPD is set as 

e = 1e−5. As can be seen in Fig. 11, the optimal values of 
γk are chosen at the last iterations. Obtaining the solution 
vector a in the two noise levels, Figs. 12, 13, 14, and 15 indi-
cate the results of damage localization and quantification in 
Cases 1–4, respectively.

From Fig. 12, one can observe that the concrete deck 
elements 63, 64, 69, 70, 75, and 76 are the damaged areas 
of the I-40 bridge in Case 1 for both the noise levels. The 
amounts of |a| or the absolute values of the stiffness reduc-
tion factor at these locations are identical to 0.1955, 0.1947, 
0.1944, 0.1958, 0.1950, and 0.1944 in the 3% noise level 
and 0.1921, 0.1928, 0.1912, 0.1918, 0.1920, and 0.1904 in 
the 10% noise level. These amounts disclose that the relative 
errors in quantifying damage are less than 3% and 5% in the 
3% and 10% noise levels, respectively.

Moreover, the maximum errors in the undamaged ele-
ments of Case 1 correspond to 2.92% and 3.61% in these 
levels, respectively. In Fig. 13, it is seen that the elements 
155–157 in the north girder are the damaged areas in Case 
2. The values of |a| at these elements are equal to 0.1967, 
0.1971, and 0.1953 in the 3% noise level (i.e., the maximum 
relative error of 2.35%) and 0.1911, 0.1905, and 0.1899 in 
the 10% noise level (i.e., the maximum relative error of 
5.05%). Moreover, the maximum errors in the undamaged 
elements in Fig. 13 correspond to 2.09% and 3.79% for the 
mentioned noise levels. On the other hand, the damage loca-
tions as well as the amounts of |a| in Cases 3 and 4 are shown 
in Figs. 14 and 15, respectively. In these figures, the maxi-
mum relative errors in the 3% and 10% noise levels are equal 
to 2.68% and 4.61%, respectively. All the obtained results in 
Figs. 12, 13, 14, and 15 confirm that the proposed sensitivity 
function and IRN-BPD succeed in locating and quantifying 
damage under noisy modal data.

Similar to the preceding example, Fig. 16 shows the com-
parisons among the proposed, classical, and Yan and Ren’s 
sensitivity functions in locating and quantifying the damage 
in Case 4 by considering the 3% and 10% noise levels. More-
over, Fig. 17 indicates the comparisons among IRN-BPD, 
LSMR, and Tikhonov regularization in Case 4 under the 
two noise levels using the proposed sensitivity of MSE. As 

Fig. 10  Convergence rates of the solution of the inverse problem 
using the l2-norm of δk: a Case 1, b Case 2, c Case 3, and d Case 4

Fig. 11  Determination of the 
optimal regularization param-
eters via the improved GCV 
function in Case 1: a 3% noise; 
b 10% noise
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Fig. 16 appears, the relative errors regarding the proposed 
sensitivity function of MSE are smaller than the correspond-
ing errors associated with the classical formulation as well 
as Yan and Ren’s sensitivity. In addition, one can observe 
that the sensitivity formulation proposed by Yan and Ren is 
better than the classical formulation in the aspect of having 
smaller errors. On the other hand, the amounts of relative 
errors in Fig. 17 demonstrate that the proposed IRN-BPD 
method outperforms the LSMR and Tikhonov regularization 
techniques owing to its smaller errors. It is also observed 

that the Tikhonov regularization method is more successful 
in solving the ill-posed inverse problem compared to the 
LSMR technique. It should be noted that the same conclu-
sions are also valid for other cases. Therefore, the results of 
comparative analyses prove the superiority of the proposed 
sensitivity function and IRN-BPD over their counterparts.

On the other hand, the other comparison is to evaluate the 
computational time for solving the ill-posed inverse prob-
lem by IRN-BPD, Tikhonov regularization, and LSMR, 
as presented in Table 5. For this comparison, all damaged 

(a) (b)

Fig. 12  Damage localization and quantification in Case 1: a 3% noise; b 10% noise

(a) (b)

Fig. 13  Damage localization and quantification in Case 2: a 3% noise; b 10% noise

(a) (c)

(b) (d)

Fig. 14  Damage localization and quantification in Case 3: a the girder elements in the 3% noise level, b the pier elements in the 3% noise level, c 
the girder elements in the 10% noise level, d the pier elements in the 10% noise level
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cases and noise levels are considered. As can be observed, 
the Tikhonov regularization technique needs shorter time 
for solving the inverse problem, due to its non-iterative 
nature, compared to the iterative solution approaches. By 
contrast, the proposed IRN-BPD takes longer time for solv-
ing the problem of interest. This is also reasonable, since 
this method requires solving Sa = r in an iterative manner 

and simultaneously determining the regularization value γk. 
Hence, as the number of iterations increases, the computa-
tional time increases as well. However, the time amounts in 
Table 5 regarding IRN-BPD are not substantial by consider-
ing the noise levels, the number of elements, and complex-
ity of the model. Therefore, it is difficult to state that this 
method is computationally inefficient.

(a) (d)

(b) (e)

(c) (f)

Fig. 15  Damage localization and quantification in Case 4: a the deck 
elements in the 3% noise level, b the girder elements in the 3% noise 
level, c the pier elements in the 3% noise level, d the deck elements in 

the 10% noise level, e the girder elements in the 10% noise level, and 
f the pier elements in the 10% noise level

Fig. 16  The comparison of the 
different MSE sensitivity func-
tions in Case 4: a 3% noise; b 
10% noise
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In the problem of damage diagnosis based on the concept 
of model updating, it is considered that the FE model of the 
structure, which refers to its normal condition, should be as 
close as the real model. Hence, one attempts to prepare such 
a numerical model after some model updating procedures [8, 
36]. Nevertheless, since any FE model can be a simplified 

representation of a real structure, modeling errors such as an 
inaccurate estimation of the mass matrix often exist and may 
result in a systematic error in detecting, locating, and quan-
tifying damage. Although structural damage does not affect 
the mass parameters, an inaccurate or unreliable assumption 
of the mass properties may cause errors in estimating the 
mode shapes and natural frequencies of the FE model (i.e., 
analytical or numerical data). Since these modal parameters 
are utilized to construct the sensitivity matrix, this issue may 
affect the problem of damage diagnosis [36, 37]. With these 
descriptions, distributed mass errors including 1%, 5%, and 
10% are added to all elements separately and individually to 
investigate the performance of the proposed method under 
these modeling errors.

To evaluate the influence of these modeling errors on the 
performance of the proposed method, the relative errors in 
quantifying damage concerning Case 4 under 3% and 10% 
noise levels are incorporated. Figure 18 shows the computed 
relative errors at the damaged elements of Case 4 in the case 
of no modeling error (i.e., the condition without the mass 
errors regarding the previous results) and the three men-
tioned errors. As can be seen, the amounts of the relative 

Fig. 17  The comparison of the 
different regularized solution 
methods in Case 4: a 3% noise; 
b 10% noise

Table 5  Computational time (s) for solving the ill-posed inverse 
problem Sa = r regarding the I-40 Bridge in all cases under different 
noise levels

Noise levels 
(%)

Case no. Methods

LSMR Tikhonov IRN-BPD

3 1 13 6 33
2 14 6 25
3 14 7 25
4 14 8 25

10 1 15 10 56
2 19 10 52
3 19 10 54
4 21 11 57

Fig. 18  Performance evaluation 
of the proposed method under 
different mass modeling errors 
in Case 4: a 3% noise; b 10% 
noise
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errors are roughly in the same range, i.e., smaller than 4% 
in Fig. 18a and 6% in Fig. 18b. It is important to mention 
that the maximum relative errors in the undamaged areas 
of Case 4 for 1, 5, and 10% mass modeling errors corre-
spond to 3.01%, 3.66%, and 3.81% in 3% noise level and 
4.62%, 5.18%, and 5.22% in 10% noise level, respectively. 
All these conclusions demonstrate that the proposed IRN-
BPD method in cooperation with the proposed sensitivity 
function succeeds in locating and quantifying damage even 
under the mass modeling errors.

The other important issue in model-based strategies per-
tains to the problem of deploying a limited number of sen-
sors. Since the previous results have been based on a densely 
sensor networks (i.e., the red nodes on the deck, the bottom 
flanges of the north and south girders, and the middle of the 
columns), as shown in Fig. 9, it is necessary to conduct a 
comparative study for assessing the influence of the num-
ber of sensors on the performance of the proposed method. 
Notice that the nodes on the top flanges of the north and 
south girders and the nodes on the deck related to these gird-
ers are equivalent. For this purpose, three different simula-
tions are considered by decreasing the simulated sensors as 
presented in Table 6.

In all these cases, it is attempted to choose some nodes 
(i.e., both the vertical and horizontal DOFs) of the deck, 
bottom flanges, and columns without knowing the damaged 
elements of Case 4. In Table 6, the first scenario refers to 

the initial consideration of the simulated sensors for damage 
diagnosis. The second scenario uses 50% of the simulated 
sensors on the deck and bottom flanges of the north and 
south girders as well as all sensors on the middle of the col-
umns. In the third and fourth deployment scenarios, 25% of 
the simulated sensors on the decks and bottom flanges with-
out any sensors on the columns are considered. The main 
difference between these scenarios is to select various (lim-
ited) sensors on the deck and bottom flanges. It should be 
mentioned that the selected sensors of the fourth scenarios 
are farther from the damaged elements of Case 4 compared 
with the third scenario.

By implementing all steps of the sensitivity-based dam-
age diagnosis, Fig. 19 shows the relative errors at the dam-
aged elements of Case 4 in 3% and 10% noise levels under 
the defined scenarios of the sensor deployments. From 
Fig. 19, it can be discerned that the first and second sce-
narios approximately yield similar performances (i.e., the 
amounts of the relative errors are smaller than 3% and 6% 
related to the 3% and 10% noise levels); however, the second 
scenario slightly has more errors in comparison with the first 
one. Regarding the third and fourth scenarios, some incon-
siderable increases in the relative errors of the damaged ele-
ments, with the exception of the elements 196 and 204, are 
also observable. Regardless of these elements, it is seen that 
the relative errors are smaller than 5% and 8% in the first 
and second noise levels, respectively. The main reasons for 
sudden increases in the relative errors at the elements 196 
and 204 are most likely related to the lack of assignment of 
the simulated sensors on the middle of the columns or the 
poor performance of the SEREP technique for expanding 
the mode shapes of the DOFs of these elements. By compar-
ing the error values in Fig. 19, thus, one can conclude that 
the use of adequate sensors and consideration of an optimal 
sensor placement are effective for having a reliable damage 
localization and quantification.

Table 6  Different scenarios of sensor simulations in the i-40 bridge

Scenario no. Bridge areas for sensor deployment Total

Deck Bottom 
flanges

Columns

1 36 24 6 66
2 18 12 6 36
3 9 6 – 15
4 9 6 – 15

Fig. 19  Performance evaluation 
of the proposed method under 
different sensor deployments in 
Case 4: a 3% noise; b 10% noise
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7  Conclusions

In this study, a new sensitivity-based damage identifica-
tion method under the model updating strategy has been 
proposed to locate and quantify structural damage using 
incomplete noisy modal data. A new sensitivity function of 
MSE has been developed to improve the classical sensitiv-
ity formulation by getting idea from the first-order neces-
sary condition of the optimization problem and adding a 
term associated with the variation in structural stiffness as 
the main damage index to the derivatives of eigenvalue and 
eigenvector. The IRN-BPD method has been presented to 
solve the inverse problem of damage identification in an iter-
ative manner. A stopping condition and an improved GCV 
function have also been proposed to terminate the iterative 
algorithm of IRN-BPD and choose an optimal regulariza-
tion value. Eventually, the accuracy and performance of the 
proposed methods have been verified by the mass–spring 
system and the I-40 bridge in numerical studies.

The results have demonstrated that the proposed sen-
sitivity function of MSE is sensitive to damage and has 
sufficient damage detectability. It has been observed that 
the proposed methods succeed in locating and quantifying 
damage even under the noisy modal data. The comparisons 
among different sensitivity formulations have revealed that 
the proposed function outperforms the classical sensitiv-
ity functions of MSE. Moreover, the comparative analy-
ses on the performances of different regularized solution 
approaches have indicated that the proposed IRN-BPD 
method is superior to the LSMR and Tikhonov regulari-
zation techniques in the aspect of having smaller relative 
errors. Regarding the computational time, it has been seen 
that the Tikhonov regularization and IRN-BPD had the 
shortest and longest computational time for solving the 
ill-posed inverse problem of damage identification, respec-
tively. However, the time amounts regarding the proposed 
method have not been considerable for concluding that it 
is computationally inefficient. The performance evaluation 
of the proposed method and sensitivity function under dif-
ferent mass modeling errors has demonstrated that they 
are still successful in accurately locating and quantifying 
damage. By considering different sensor deployments and 
reducing their numbers regarding the numerical problem 
of the I-40 bridge, the comparison results have shown that 
the reductions in the simulated sensors and changes in their 
deployments do not significantly affect the performance of 
the proposed method until an important part of the struc-
ture (e.g., the bridge columns in this research) has not been 
equipped with adequate sensors. For this reason, an opti-
mal sensor placement and consideration of adequate and 
effective sensors are importance to the problem of damage 
diagnosis.

Despite reasonable and reliable results of damage diag-
nosis in this research, the proposed sensitivity function and 
regularized solution have only been verified numerically. 
Due to the importance of an experimental validation, it is 
recommended to verify the proposed methods by experimen-
tal data of full-scale or laboratory structures.
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