
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4423–4449
https://doi.org/10.1007/s00366-021-01558-6

ORIGINAL ARTICLE

IFOSMONDI Co‑simulation Algorithm with Jacobian‑Free Methods
in PETSc

Yohan Eguillon1,2 · Bruno Lacabanne2 · Damien Tromeur‑Dervout1

Received: 19 March 2021 / Accepted: 22 November 2021 / Published online: 8 April 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Co-simulation is a widely used solution to enable global simulation of a modular system via the composition of black-boxed
simulators. Among co-simulation methods, the IFOSMONDI implicit iterative algorithm, previously introduced by the
authors, enables us to solve the non-linear coupling function while keeping the smoothness of interfaces without introducing a
delay. Moreover, it automatically adapts the size of the steps between data exchanges among the subsystems according to the
difficulty of solving the coupling constraint. The latter was solved by a fixed-point algorithm, whereas this paper introduces
the Jacobian-Free Methods version. Most implementations of Newton-like methods require a jacobian matrix which, except
in the Zero-Order-Hold case, can be difficult to compute in the co-simulation context. As IFOSMONDI coupling algorithm
uses Hermite interpolation for smoothness enhancement, we propose hereafter a new formulation of the non-linear coupling
function including both the values and the time-derivatives of the coupling variables. This formulation is well designed for
solving the coupling through jacobian-free Newton-type methods. Consequently, successive function evaluations consist in
multiple simulations of the systems on a co-simulation time-step using rollback. The orchestrator-workers structure of the
algorithm enables us to combine the PETSc framework on the orchestrator side for the non-linear Newton-type solvers with
the parallel integrations of the systems on the workers’ side thanks to MPI processes. Different non-linear methods will be
compared to one another and to the original fixed-point implementation on a newly proposed 2-system academic test case with
direct feedthrough on both sides. An industrial model will also be considered to investigate the performance of the method.

Keywords Co-simulation · Systems coupling · Coupling methods · Jacobian-free Newton · PETSc · Parallel integration ·
Strong coupling test case

1 Introduction

The use of co-simulation is increasing in the industry as it
enables to connect and simulate systems with given inter-
faces (input and output variables) without disclosing the

expertise inside. Hence, modellers can provide system archi-
tects with virtual systems as black-boxes since the systems
are able to interact through their interfaces. Among these
interactions, the minimal requirements are quite simple: a
system should at least be able to read the inputs given by
the other systems, to simulate its physics inside (most of the
time thanks to an embedded solver), and to provide outputs
of the simulation to the other systems.

Besides its black-box aspect protecting the know-how,
co-simulation also enables physic-based decomposition (one
system can represent the hydraulic part of a modular model,
another the mechanical part, a third one the electrical part,
and so on) and/or dynamics-based decomposition (some sys-
tems isolate the stiff state variables so that they do not con-
straint all the other states anymore during the simulation).
In other words, the co-simulation opens many doors thanks
to the modular aspect of the models handled.

Supported by organization Siemens Industry Software.

 * Yohan Eguillon
 yohan.eguillon@univ-lyon1.fr; yohan.eguillon@siemens.com

 Bruno Lacabanne
 bruno.lacabanne@siemens.com

 Damien Tromeur-Dervout
 damien.tromeur-dervout@univ-lyon1.fr

1 Institut Camille Jordan, Université de Lyon, UMR5208
CNRS-U.Lyon1, Villeurbanne, France

2 Siemens Industry Software, Roanne, France

http://orcid.org/0000-0002-9386-4646
http://orcid.org/0000-0003-1790-3663
http://orcid.org/0000-0002-0118-8100
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01558-6&domain=pdf

4424 Engineering with Computers (2022) 38:4423–4449

1 3

The co-simulation field of research nowadays focuses
on the numerical methods and algorithms that can be used
to process simulations of such modular models. From the
simplest implementations (non-iterative Jacobi) to very
advanced algorithms [4, 7, 11–13, 15], co-simulation meth-
ods have been developed in different fields, showing that the
underlying problems to be tackled are not straightforward.
Some arising problems could clearly be identified since the
moment it has become a center of interest for researchers,
such as the delay between the given inputs and the retrieved
outputs of a system (corresponding to the so-called “co-sim-
ulation step” or “macro-step”), the instabilities that might
occur as a consequence of this delay [16], the discontinui-
ties produced at each communication [5], the error estima-
tion (and the use of it to adapt the macro-step size) [13],
the techniques to solve the so-called “constraint function”
corresponding to the interface of the systems [9, 14], and
so on. Moreover, performance issues usually arise when co-
simulation codes are implemented in practice, for instance:
idling systems (in Gauss-Seidel-like methods systems are
simulated sequentially, one at a time, and in Jacobi-like
methods the time taken by a co-simulation step is the one
of the slowest system due to synchronization points where
faster systems have to wait for slower ones). Many of these
problems have been addressed in papers, either proposing
an analysis, a method to solve them, or both.

In our previous paper [6], an iterative method that sat-
isfies the interfaces’ consistency while avoiding disconti-
nuities at each macro-step was proposed and compared to
well-established methods (non-iterative Jacobi, zero-order
hold iterative co-simulation [9], and non-iterative algorithm
enhancing variables’ smoothness [5]). This algorithm was
based on a fixed-point iterative method. Its evolution, pre-
sented in this paper, is based on iterative methods that nor-
mally require jacobian matrix computation, yet we use their
jacobian-free version. The name of this method is IFOS-
MONDI-JFM, standing for Iterative and Flexible Order,
SMOoth and Non-Delayed Interfaces, based on Jacobian-
Free Methods. The enhancements it brings to the classical
IFOSMONDI method enable to solve cases that could not
be solved by this previous version. The integration of an eas-
ily modulable jacobian-free method to solve the constraint
function will be presented. The software integration, in par-
ticular, was made possible thanks to the PETSc framework,
a library that provides modulable numerical algorithms. The
interfacing between PETSc and the co-simulation frame-
work dealing with the systems, interfaces and polynomial
representations will be detailed.

2 Formalism and notations

2.1 A word on the JFM accronym

In the whole paper, the JFM abbreviation will denote jaco-
bian-free versions of iterative methods that are designed to
bring a given function (the so-called callback) to zero and
that normally require the computation of the jacobian matrix
of the callback function. In particular, a fixed-point method
does not meet these criteria: it is not a JFM, contrary to
matrix-free versions of the Newton method, the Anderson
method [1] or the non-linear GMRES method [10].

2.2 General notations

The set Ma,b(A) will represent the set of matrices of a rows
and b columns with its coefficients in the set A.

In this paper, we will focus on explicit systems. In other
words, we will consider that every system in the co-simula-
tion is a dynamical system corresponding to an ODE (Ordi-
nary Differential Equation). The time-domain of the ODEs
considered will be written [tinit , tend[, and the variable t will
denote the time.

Let’s consider nsys ∈ ℕ∗ systems are involved: we will use
the index k ∈ [[1, nsys]] to denote the kth system, and nst,k ,
nin,k , and nout,k will respectively denote the number of state
variables, the number of inputs, and the number of outputs
of system k.

The time-dependant vectors of states, inputs and
outputs of system k will, respectively, be written
xk ∈ L([tinit , tend[,ℝnst,k) , uk ∈ L([tinit , tend[,ℝnin,k) , a n d
yk ∈ L([tinit , tend[,ℝnout,k) where L(A, B) denotes the set of
functions of domain A and co-domain B. We can write the
ODE form of the system k:

Please note that co-simulation is mainly interesting on 0D
systems. Indeed, CFD systems for instance can be split in
term of physics, generating systems coupled on every point
in space. This would generate a very high number of inter-
faces nin,k and nout,k for all k in [[1, nsys]] . Although co-simu-
lation can work on such cases, we will focus on 0D systems
(such as the test-cases presented in Sect. 5) as co-simulation
becomes relevant when the stiffness of the systems are local
on each of them, and where the interface variables (inputs
and outputs) are smooth and relatively few.

(1)
{

ẋk(t) = fk(t, xk(t), uk(t))

yk(t) = gk(t, xk(t), uk(t))

4425Engineering with Computers (2022) 38:4423–4449

1 3

Let nin,tot and nout,tot respectively be the total amount of
inputs

∑nsys

k=1
nin,k and the total amount of outputs

∑nsys

k=1
nout,k.

The total input and the total output vectors are simply
concatenations of input and output vectors of every system.
They will be denoted by underlined vectors. The underline
will denote a quantity “upon every subsystem”.

To illustrate the notations introduced above, an example is
given further in this paper, in Fig. 3.

Finally, a tilde symbol ̃ will be added to a functional
quantity to represent an element of its co-domain. exempli
gratia, y ∈ L([t[N], t[N+1][,ℝ) , so we can use ỹ to represent
an element of ℝnout,tot.

2.3 Extractors and rearrangement

To easily switch from global to local inputs, extractors are
defined. For k ∈ [[1, nsys]] , the extractor Eu

k
 is the matrix

defined by (3).

where ∀n ∈ ℕ, In denotes the identity matrix of size n by n.
The extractors enable to extract the inputs of a given sys-

tem from the global inputs vector with a relation of the form
ũk = Eu

k
ũ . We have: ∀k ∈ [[1, nsys]], E

u
k
∈ Mnin,k ,nin,tot

({0, 1}).
A rearrangement operator will also be needed to han-

dle concatenations of outputs and output derivatives.
For this purpose, we will use the rearrangement matrix
Ry ∈ Mnout,tot ,nout,tot

({0, 1}) defined blockwise in (4).

The Ry operator makes it possible to rearrange the outputs
and output derivatives with a relation of the form (5).

(2)
u(t) = (u1(t)

T ,… , unsys(t)
T)T ∈ L([tinit , tend[,ℝnin,tot)

y(t) = (y1(t)
T ,… , ynsys (t)

T)T ∈ L([tinit , tend[,ℝnout,tot)

(3)
Eu
k
=

�
0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

���
�
Inin,k

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

��� 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

nin,k ×
∑k−1

l=1
nin,l nin,k × nin,k nin,k ×

∑nsys

l=k+1
nin,l

(4)

Ry =
�
R
y

K,L

�
K ∈ [[1, 2 nsys]]

L ∈ [[1, 2 nsys]]

where

R
y

K,L
=

⎧⎪⎨⎪⎩

Inout,K if K ⩽ nsys and L = 2K − 1

Inout,K−nsys
if K > nsys and L = 2(K − nsys)

0 otherwise

As explained in Sect. 2.2, a reduced number of inputs
and outputs is advised. On the extractors and rearrange-

ment operators, a high number of interface variables will
produce large matrices. However, the operations implying
such matrices will not be strongly impacted as they are not
explicitely constructed in practice. Indeed, these operators
help to define the mathematical formalism (namely the call-
back function, further introduced in Sect. 3.2) yet in prac-
tice the application of the extractor operators can be done
while communicating with a simple call to ���_��������
function, and the application of the rearrangement opera-
tor can be done while communicating with a simple call to
���_������� function (such workflow will be presented
further in this paper and illustrated in Fig. 7). Lastly, in the
implementation, the Eu

k
 (for all k in [[1, nsys]]) and Ry matrices

will never be assembled.

2.4 Time discretization

In the context of co-simulation, the gk and fk functions in
(1) are usually not available directly. Thus, several co-simu-
lation steps, the so-called “macro-steps”, are made between
tinit and tend . Let’s introduce the notations of the discrete ver-
sion of the quantities introduced in Sect. 2.2.

A macro-step will be defined by its starting and ending
times, respectively denoted as [t[N], t[N+1]] for the N th macro-
step. The subscript [N] will be written with square brackets to

(5)

⎛
⎜⎜⎜⎜⎜⎜⎝

ỹ

̃̇y

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ỹ1
ỹ2
⋮

ỹnsys
̃̇y1
̃̇y2
⋮

̃̇ynsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Inout,1 0 0 0 ⋯ 0 0

0 0 Inout,2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ Inout,nsys
0

0 Inout,1 0 0 ⋯ 0 0

0 0 0 Inout,2 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ 0 Inout,nsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

���

Ry

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ỹ1
̃̇y1
ỹ2
̃̇y2
⋮

ỹnsys
̃̇ynsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4426 Engineering with Computers (2022) 38:4423–4449

1 3

avoid confusion with power exponents (exempli gratia: t2).
The macro-steps define a partition of the time-domain, as
described in (6) and Fig. 1.

Let �t[N] denote the size of the Nth macro-step:

Let � denote the set of possible macro-steps.

An element of this set is a macro-step: for instance � ∈ �
with � = [t[N], t[N+1][.

On a given macro-step [t[N], t[N+1][, N ∈ [0,Nmax] , for all
systems, the restrictions of the piecewise equivalents of uk
and yk will be denoted by u[N]

k
 and y[N]

k
 respectively. In case

several iterations are made on the same step, we will refer
to the functions by a left superscript index m. Finally, we
will denote the coordinate of these vectors with an extra
subscript index.

In (9), mmax(N) denotes the number of iterations (minus one)
done on the N th macro-step. mmax(N) across N can be plotted
in order to see where the method needs to proceed more or
less iterations.

All derived notations introduced in this subsection can
also be applied to the total input and output vectors.

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[tinit , tend[=

Nmax−1�
N=0

[t[N], t[N+1][

t[0] = tinit

t[Nmax] = tend

∀N ∈ [[0,Nmax − 1]], t[N+1] > t[N]

(7)

⎧
⎪⎪⎨⎪⎪⎩

∀N ∈ [[0,Nmax − 1]], 𝛿t[N] = t[N+1] − t[N] > 0

Nmax−1�
N=0

𝛿t[N] = tend − tinit

(8)𝕋
𝛥
= {[a, b[| tinit ⩽ a < b ⩽ tend}

(9)

∀k ∈ [[1, nsys]],∀N ∈ [[0,Nmax]], ∀m ∈ [0,mmax(N)],

∀j ∈ [[1, nin,k]],
[m] u

[N]

k,j
∈ L([t[N], t[N+1][,ℝ)

∀i ∈ [[1, nout,k]],
[m] y

[N]

k,i
∈ L([t[N], t[N+1][,ℝ)

Indices 𝚤 and 𝚥 in (10) will be called global indices in oppo-
sition to the local indices i and j in (9).

2.5 Step function

Let Sk, k ∈ [[1, nsys]] be the ideal step function of the kth sys-
tem, that is to say the function which takes the system to its
future state one macro-step forward.

In practice, the state vector x̃ will not be explicited. Indeed,
it will be embedded inside of the system k and successive
calls will either be done:

• with � beginning where the � at the previous call of Sk
ended (moving on),

• with � beginning where the � at the previous call of Sk
started (step replay),

• with � of the shape [tinit , t[1][with t[1] ∈]tinit , tend] (first
step).

Moreover, the uk argument only needs to be defined on
domain � (not necessarily on [tinit , tend[). Thus, Sk will not
be considered in the method, but the Ŝk function (practical
step function) defined hereafter will be considered instead.
Despite Ŝk is not properly mathematically defined (the
domain depends on the value of one of the arguments: � and
some quantities are hidden: the states), it does not lead to
any problem, considering the hypotheses above.

(10)

∀N ∈ [[0,Nmax]], ∀m ∈ [[0,mmax(N)]],

∀𝚥 ∈ nin,tot,
[m] u

[N]
𝚥

∈ L([t[N], t[N+1][,ℝ)

∀𝚤 ∈ nout,tot,
[m] y

[N]
𝚤

∈ L([t[N], t[N+1][,ℝ)

(11)

Sk ∶

{
𝕋 × L([tinit , tend[,ℝnin,k) ×ℝnst,k → ℝnout,k ×ℝnst,k

(𝜏, uk, x̃) ↦ Sk(𝜏, uk, x̃)

(12)

Ŝk ∶

{
𝕋 × L(𝜏,ℝnin,k) ↦ ℝnout,k

(𝜏, uk) ↦ Ŝk(𝜏, uk)

satisfying

Ŝk([t
[N], t[N+1][, [m]u

[N]

k
) = [m]y

[N]

k
(t[N+1])

Fig. 1 Partition of the time
domain in macro-steps

4427Engineering with Computers (2022) 38:4423–4449

1 3

The Ŝk function is the one available in practice, namely in the
FMI (Functional Mock-up Interface) standard.

2.6 Extended step function

The values of the output variables might not be sufficient for
every co-simulation scheme. It is namely the case for both
classical IFOSMONDI and IFOSMONDI-JFM. Indeed, the
time-derivatives of the outputs are also needed.

Let ̂̂Sk be the extension of Ŝk returning both the output
values and derivatives.

To evaluate ̂̂Sk , system k is integrated over the time-domain
� (first argument) with inputs given by the second argument:
vectorial function (of dimension nin,k) of the time, and the
values and derivatives of the outputs (vectorial function of
the time, of dimension nout,k) are returned, evaluated at the
time corresponding to the end of the first argument (sup(�)).
Figure 2 presents an example of this workflow.

2.7 Connections

The connections between the systems will be denoted by
a matrix filled with zeros and ones, with nout,tot rows and
nin,tot columns denoted by � . Please note that if each out-
put is connected to exactly one input, � is a square matrix.
Moreover, it is a permutation matrix. Otherwise, if an output
is connected to several inputs, more than one 1 appears at
the corresponding row of � . Without loss of generality, let’s

(13)

̂̂
Sk ∶

�
𝕋 × L(𝜏,ℝnin,k) ↦ ℝnout,k ×ℝnout,k

(𝜏, uk) ↦
̂̂
Sk(𝜏, uk)

satisfying

̂̂
Sk([t

[N], t[N+1][, [m]u
[N]

k
) =

⎛
⎜⎜⎜⎝

[m]y
[N]

k
(t[N+1])

d [m]y
[N]

k

dt
(t[N+1])

⎞⎟⎟⎟⎠

consider that there can neither be more nor less than one 1
on each column of � considering that an input can neither
be connected to none nor several outputs. Indeed, a system
with an input connected to nothing is not possible (a value
has to be given), and a connection of several outputs in the
same input can always be decomposed regarding a relation
(sum, difference, ...) so that this situation is similar to dis-
tinct inputs connected to a single output each, with these
inputs are combined (added, substracted, ...) inside of the
system considered.

An example of a connection matrix is presented in Fig. 3.
The dispatching will denote the stage where the inputs are

generated from their connected inputs, using the connections
represented by �.

Analogously to the extractor and rearrangement operators
introduced in Sect. 2.3, the � matrix does not need to be
explicitly constructed in practice. Indeed, the implementa-
tion only needs to know the connections to proceed with the
dispatching (15).

The coupling function (16) will denote the absolute dif-
ference between corresponding connected variables in a
total input vector and a total output vector. In other words,
it represents the absolute error between a total input vector
and the dispatching of a total output vector. The � subscript
does not correspond to a quantity, it is a simple notation
inherited from a “Lagrange multipliers” approach of system
coupling [14].

(14)
∀𝚤 ∈ nout,tot, ∀𝚥 ∈ nin,tot,

𝛷𝚤,𝚥 =

{
1 if output 𝚤 is connected to input 𝚥

0 otherwise

(15)ũ = 𝛷T ỹ

(16)g𝜆 ∶

{
ℝnin,tot ×ℝnout,tot → ℝnin,tot

(ũ, ỹ) ↦ |ũ −𝛷T ỹ|

Fig. 2 Extended step function’s
workflow visualization on an
example where system k has 2
inputs (nin,k = 2), 2 states, and 2
outputs (nout,k = 2)

4428 Engineering with Computers (2022) 38:4423–4449

1 3

The coupling condition (17) is the situation where every
output of the total output vector corresponds to its connected
input in the total input vector.

3 IFOSMONDI‑JFM method

3.1 Modified extended step function

As in classical IFOSMONDI [6], the IFOSMONDI-JFM
method preserves the C1 smoothness of the interface vari-
ables at the communication times (t[N])N∈[[1,Nmax−1]]

 . Thus,
when a time t[N] has been reached, the input functions for
every system will all satisfy the property (18) illustrated in
Fig. 4.

(17)g𝜆(ũ, ỹ) = 0ℝnin,tot

The IFOSMONDI-JFM method also represents the inputs
as 3rd order polynomial (maximum) to satisfy the smooth-
ness condition (18) and to respect imposed values and deriv-
atives at t[N+1] for every macro-step.

Knowing these constraints, it is possible to write a speci-
fication of the practical step function ̂̂Sk in the IFOSMONDI-
JFM case (also applicable in the classical IFOSMONDI
method):

where the three cases discussed in Sect. 2.5 have to be
considered.

Once each of these cases has been detailed, Figs. 5 and 6
will show the succession of such cases.

3.1.1 Case 1: Moving on

In this case, the last call to �k was done with a � ∈ � ending
at current t[N] . In other words, the system k “reached” time
t[N] . The inputs were, at this last call: [mmax(N−1)]u

[N−1]

k
.

To reproduce a behavior analog to that of the classical
IFOSMONDI method, the inputs [0]u[N]

k
 will be defined as

the 2nd order polynomial (or less) satisfying the three fol-
lowing constraints:

(18)

∀k ∈ [[1, nsys]], ∀m ∈ [[0,mmax(N)]],

⎧
⎪⎨⎪⎩

[m]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N])

d [m]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N])

(19)𝜁k ∶

{
𝕋 ×ℝnin,k ×ℝnin,k ↦ ℝnout,k ×ℝnout,k

(𝜏, ũk, ̃̇uk) ↦ 𝜁k(𝜏, ũk, ̃̇uk)

Fig. 3 Example of a 3-system
co-simulation model with its
interfaces and its � matrix

Fig. 4 C1 smoothness constraints at the left of � for jth input of system
k

4429Engineering with Computers (2022) 38:4423–4449

1 3

The two first constraints guarantee the smoothness property
(18), and the third one minimizes the risk of out-of-range
values (as in the classical IFOSMONDI method).

In this case, �k in (19) is defined by the specification (21).

2nd and 3rd arguments of �k are unused.

(20)

[0]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N])

d [0]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N])

[0]u
[N]

k
(t[N+1]) = [mmax(N−1)]u

[N−1]

k
(t[N])

(21)
𝜁k([t

[N], t[N+1][, ⋅, ⋅) = ̂̂
Sk([t

[N], t[N+1][, [0]u
[N]

k
���

)

computed with (20)

3.1.2 Case 2: Step replay

In this case, the last call to �k was done with a � ∈ � starting
at current t[N] . In other words, the system did not manage
to reach the ending time of the previous � (either because
the method did not converge, or because the step has been
rejected, or another reason).

Two particular subcases have to be considered here: either
the step we are computing is following the previous one in
the iterative method detailed after this section, or the pre-
vious iteration has been rejected and we are trying to re-
integrate the step starting from � with a smaller size �t[N].

3.1.2.1 Subcase 2.1: Following a previous classical step In
this subcase, the last call of �k was not only done with the
same starting time, but also with the same step ending time
t[N+1] . The inputs were, at this last call: [m−1]u[N]

k
 with m ⩾ 1 ,

and satisfied the two conditions at t[N] of (21).

Fig. 5 Workflow of the calibra-
tion of the inputs, visualization
on a single given jth input of a
given system k, and algorithm’s
tasks in transitions between
cases. This figure does not rep-
resent the whole method: it only
focuses on the inputs calibration

Fig. 6 Focus on a single input
j of system k: on the co-simu-
lation step � , it can be seen that
the constraints at the beginning
of the steps come from the
last iteration of the previous
co-simulation step, and the con-
straints at the end of the steps
come from the method, or are
artificial (for the first iteration)

4430 Engineering with Computers (2022) 38:4423–4449

1 3

The jacobian-free iterative method will ask for given
input values ũk and time-derivatives ̃̇uk that will be used as
constraints at t[N+1] , thus [m]u[N]

k
 will be defined as the 3rd

order polynomial (or less) satisfying the four constraints
depicted in (22).

The two firsts constraints ensure the (18) smoothness prop-
erty, and the third and fourth one will enable the iterative
method to find the best values and derivatives to satisfy the
coupling condition.

In this subcase, �k in (19) is defined by the specification
(23).

3.1.2.2 Subcase 2.2: Re‑integrate a step starting from t[N]
but with different ıt[N] than at the previous call of �k In this
subcase, current t[N+1] is different from sup (�) with � being
the one used at the last call of �k.

As it shows that a step rejection just occurred, we will
simply do the same than in case 1, as if we were moving on
from t[N] . In other words, all calls to �k with � starting at t[N]
are “forgotten”.

P l e a s e n o t e t h a t [mmax(N−1)]u
[N−1]

k
(t[N]) a n d

d [mmax(N−1)]u
[N−1]

k

dt
(t[N]) can be retrieved using the values and

derivatives constraints at t[N] of the inputs at the last call of
�k thanks to the smoothness constraint (18).

3.1.3 Case 3: First step

In this particular case, we will do the same as in the other
cases, except that we would not impose any constraint for
the time-derivative at tinit . That is to say:

• at the first call of �k , we have N = m = 0 , we will only
impose [0]u[0]

k
(tinit) = [0]u

[0]

k
(t[1]) = uinit

k
 to have a zero

order polynomial satisfying the initial conditions uinit
k

(supposed given),

• at the other calls, case 2 will be used without considering
the constraints for the derivatives at tinit (this will lower
the polynomial’s degrees). For (22), the first condition
becomes [m]u[N]

k
(tinit) = uinit

k
 , the second one vanishes, and

(22)

[m]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N]) = [m−1]u

[N]

k
(t[N])

d [m]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N]) =

d [m−1]u
[N]

k

dt
(t[N])

[m]u
[N]

k
(t[N+1]) = ũk

d [m]u
[N]

k

dt
(t[N+1]) = ̃̇uk

(23)
𝜁k([t

[N], t[N+1][, ũk, ̃̇uk) =
̂̂
Sk([t

[N], t[N+1][, [m]u
[N]

k
���

)

computed with (22)

the third ans fourth ones remain unchanged. For the sub-
c a s e 2 . 2 , i t c a n b e c o n s i d e r e d t h a t
[mmax(−1)]u

[−1]

k
(tinit) = uinit

k
 , and

d [mmax(−1)]u
[−1]

k

dt
(tinit) will not

be needed as it is a time-derivative in tinit.

Finally, we have �k defined in every case, wrapping both the
computation of the polynomial inputs and the integration
done with ̂̂Sk.

The workflow consisting in the succession of the cases
detailed above can be visualized in Fig. 5. An example on
a given single input of a given single system is presented in
Fig. 6 on 2 successive co-simulation steps. Squared number
1 to 6 denote the order of the successive input computations.

Until here, the polynomial inputs computation stage dur-
ing an evaluation of �k for k ∈ [[1, nsys]] has been detailed
among all the possible cases. However, the constraints at
the end of the co-simulation steps have been described as
“coming from the method”. Indeed, the JFM will decide of
the constraints to use as they will exactly be the variables of
the function to zero (the aforementioned callback function,
see Sect. 3.2).

3.2 Iterative method’s callback function

The aim is to solve the co-simulation problem by using a
jacobian-free version of an iterative method that usually
requires a jacobian computation (see Sect. 2.1). Modern
matrix-free versions of such algorithms make it possible to
avoid perturbating the systems and re-integrating them for
every input, as done in [14], to compute a finite-differences
jacobian matrix. This saves a lot of integrations over each
macro-step and saves time.

Nevertheless, on every considered macro-step � , a func-
tion to be brought to zero has to be defined. This so-called
JFM’s callback (standing for Jacobian-Free Method’s call-
back) presented hereafter will be denoted by �� . In zero-
order hold co-simulation, this function if often ũ −𝛷T ỹ (or
equivalent) where ỹ are the output at t[N+1] generated by con-
stant inputs ũ over [t[N], t[N+1][.

In IFOSMONDI-JFM, we will only enable to change the
inputs at t[N+1] , the smoothness condition at t[N] guarantee-
ing that the coupling condition (17) remains satisfied at t[N]
if it was satisfied before moving on to the step [t[N], t[N+1][.
The time-derivatives will also be considered to maintain
C1 smoothness, so the coupling condition (17) will also be
applied to these time-derivatives.

Finally, the formulation of the JFM’s callback for IFOS-
MONDI-JFM is given in (24).

4431Engineering with Computers (2022) 38:4423–4449

1 3

3.2.1 Link with the fixed‑point implementation

The formulation (24) can be used to represent the expression
of the fixed-point �� function. The latter has been introduced
in classical IFOSMONDI algorithm [6] where a fixed-point
method was used instead of a JFM one.

We can now rewrite a proper expression of �� including
the time-derivatives.

�� was referred as � in [6] and did not include the deriva-
tives in its formulation, yet the smoothness enhancement
done by the Hermite interpolation led to an underlying use
of these derivatives.

When the result of the mth iteration is available, a fixed-
point iteration on macro-step � = [t[N], t[N+1][is simply done
by:

3.3 First and last integrations of a step

The first iteration of a given macro-step � ∈ � is a particular
case to be taken into account. Considering the breakdown
presented in Sect. 2.5, this corresponds to case 1, case 2
subcase 2.2, case 3 first bullet point, and case 3 second bullet
point when falling into subcase 2.2.

All these cases have something in common: they denote
calls to �k using a � argument that has never been used in
a previous call of �k . In these cases, the latter function is
defined by (21).

For this reason, the first call of �� for a given macro-step
� will be completed before applying the JFM. Then, every
time the JFM will call �� , the (�k)k∈[[1,nsys]] functions called by
�� will behave the same way.

Once the JFM method ends, if it converged, a last call to
�� is made with the solution

(
([mmax(N)]ũ[N])T , ([mmax(N)] ̃̇u[N])T

)T

(24)𝛾𝜏 ∶

⎧
⎪⎪⎨⎪⎪⎩

ℝnin,tot ×ℝnin,tot → ℝnin,tot ×ℝnin,tot

�
ũ
̃̇u

�
↦

�
ũ
̃̇u

�
−

�
𝛷T 0

0 𝛷T

�
Ry

⎛
⎜⎜⎜⎝

𝜁1
�
𝜏,Eu

1
ũ,Eu

1
̃̇u
�

⋮

𝜁nsys

�
𝜏,Eu

nsys
ũ,Eu

nsys
̃̇u
�
⎞
⎟⎟⎟⎠

(25)

𝛹𝜏 ∶

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ℝnin,tot ×ℝnin,tot → ℝnin,tot ×ℝnin,tot�
ũ
̃̇u

�
↦

�
ũ
̃̇u

�
− 𝛾𝜏

��
ũ
̃̇u

��

=

�
𝛷T 0

0 𝛷T

�
Ry

⎛
⎜⎜⎜⎝

𝜁1
�
𝜏,Eu

1
ũ,Eu

1
̃̇u
�

⋮

𝜁nsys

�
𝜏,Eu

nsys
ũ,Eu

nsys
̃̇u
�
⎞⎟⎟⎟⎠

(26)
(

[m+1]ũ
[m+1] ̃̇u

)
∶= 𝛹𝜏

((
[m]ũ
[m] ̃̇u

))

for the systems to be in a good state for the next step (as
explained in Sect. 2.5, the state of a system is hidden but
affected at each call to a step function).

3.4 Step size control

The step size control is defined with the same rule-of-thumbs
than the one used in [6]. The adaptation is not done on an
error-based criterion such as in [13], but instead with a
predefined rule based on the convergence of the iterative
method (yes/no).

A minimal step size �tmin ∈ ℝ+
∗
 , a maximal step size

�tmax ∈ ℝ+
∗
 and an initial step size �tinit ∈ [�tmin, �tmax] are

defined for any simulation with IFOSMONDI-JFM method.
At certain times (the communication times), the method will
be allowed to reduce this step to help the convergence of
the JFM.

The convergence criterion for the iterative method is
defined by the rule (27).

When the iterative method does not converge on the step
[t[N], t[N+1][, either because a maximum number of iterations
is reached or for any other reason (linear search does not
converge, a Krylov internal method finds a singular matrix,
...), the step will be rejected and retried on the half (28) with-
out subceeding �tmin . Otherwise, once the method converged
on [t[N], t[N+1][, the next integration step � tries to increase
the size of 30% , without exceeding �tmax.

Once the iterative method exits on �old , the next step �new
is defined by expression (28).

When �abs = �rel , these values will be denoted by �.
When �tmax = �tinit , these values will be denoted by �tref.

(27)

Given (𝜀abs, 𝜀rel) ∈ (ℝ∗
+
)2,

convergence is reached when

�����
𝛾𝜏

�
ũ
̃̇u

������
<
�����

�
ũ
̃̇u

������
𝜀rel +

�������

⎛⎜⎜⎝

1

⋮

1

⎞⎟⎟⎠

�������
𝜀abs

(28)�new =

⎧
⎪⎪⎨⎪⎪⎩

�
sup(�old), min

�
tend, sup(�old) +min

�
�tmax, 1.3

�
sup(�old) − inf(�old)

����
if convergence (27) was reached

�
inf(�old), inf(�old) +max

�
�tmin,

sup(�old) − inf(�old)

2

��
otherwise (divergence)

4432 Engineering with Computers (2022) 38:4423–4449

1 3

When the step size cannot be reduced as �tmin is reached,
the co-simulation stops with an error. One can retry with a
smaller �tmin , or with �tmin = 0.

4 Note on the implementation

Our implementation is based on an orchestrator-worker
architecture, where nsys + 1 processes are involved. One of
them is dedicated to global manipulations: the orchestrator.
It is not responsible of any system and only deals with global
quantities (such as the time, the step � , the ũ and ỹ vectors
and the corresponding time-derivatives, and so on). The nsys
remaining processes, the workers, are responsible for one
system each. They only deal with local quantities related to
the system they are responsible for.

4.1 Parallel evaluation of � using MPI

An evaluation of �� consists in evaluations of the nsys func-
tions (�k)k∈[[1,nsys]] , plus some manipulations of vectors and
matrices (24). An evaluation of a single �k for a given
k ∈ [[1, nsys]] consists in polynomial computations and an
integration (21) (23) through a call of the corresponding ̂̂Sk
function (13).

A single call to �� can be evaluated parallelly by nsys pro-
cesses, each of them carrying out the integration of one of
the systems. To achieve this, the MPI standard (standing
for Message Passing Interface has been used, as the latter
provides a routine to handle multi-process communications
of data.

As the kth system only needs Eu
k
ũ and Eu

k
̃̇u (see (3))

among ũ and ̃̇u , the data can be send in an optimized man-
ner from the orchestrator process to nsys workers by using the
���_�������� routine.

Analogously, each worker process will have to communi-
cate their contribution both to the outputs and their deriva-
tives (assembling the block vector at the right of the expres-
sion (24)). This can be done by using the ���_�������
routine.

Finally, the communication of global quantities such as � ,
m, the notifications of statuses and so on, can be done easily
thanks to the ���_��������� routine.

In all cases, the communications are organized in a “bus”
architecture (all workers communicate with the orchestrator,
but not to one another). Synchronization points before and
after each evaluation of all �k functions for all k in [[1, nsys]]
(in a single call of ��) would generate, in the worst case
(when every system has connection with every other sys-
tem), nsys(nsys − 1) communications for every input/output
dispatching or gathering in a point-to-point architecture,
whereas only 2 nsys communications are needed for a bus

architecture, with the same total amount of exchanged data.
Thus, our code uses the bus architecture.

4.2 Using PETSc for the JFM

PETSc [2, 3] is a library used for parallel numerical com-
putations. For this paper, the several matrix-free ver-
sions of the Newton method and variants implemented in
PETSc were very attractive. Indeed, the flexibility of this
library at runtime enables the use of command-line argu-
ments to control the resolution: −����_�� orders the use
of a matrix-free non-linear solver, −����_������������ ,
�������� [1] and ������ [10] are various usable solv-
ing methods that can be used as JFMs, −����_���� ,
−����_���� and −����_���_�� control the convergence
criterion, −����_���������_������ , −����_�������
and −���_���� produce information and statistics about
the run, ...

This subsection proposes a solution to use these PETSc
implementations in a manner that is compliant with the par-
allel evaluation of the JFM’s callback (24). This implemen-
tation has been used to generate the results of Sect. 5.

First of all, PETSc needs a view on the environment of
the running code: the processes, and their relationships. In
our case, the nsys + 1 processes of the orchestrator-worker
architecture are not dedicated to the JFM. Thus, PETSc
runs on the orchestrator process only. In terms of code,
this can be done by creating PETSc objects referring to
�����_����_���� communicator on the orchestrator pro-
cess, and creating no PETSc object on the workers.

The callback �� implements internally the communica-
tions with the workers, and is given to the PETSc ����
object. The ���� non-linear solver will call this callback
blindly, and the workers will be triggered behind the scene
for integrations, preceded by the communications of the (
([mmax(N)]ũ[N])T , ([mmax(N)] ̃̇u[N])T

)T values asked by the ����
and followed by the gathering of the outputs and related
derivatives. The latters are finally returned to PETSc by the
callback on the orchestrator side, after reordering and dis-
patching them as in (24).

4.3 JFM’s callback implementation

In this section, a suggestion of implementation is proposed
for the �� function, both on the orchestrator side and on the
workers side. Precisions about variables in the snippets are
given below them.

By convention, the process of rank 0 is the orchestra-
tor, and any process of rank k ∈ [[1, nsys]] is responsible of
system k.

4433Engineering with Computers (2022) 38:4423–4449

1 3

Snippet 1. JFM’s callback on the orchestrator side (γτ)
PetscErrorCode JFM_callback(SNES /* snes */, Vec u_and_du , Vec res , void *

ctx_as_void)
{

MyCtxType *ctx = (MyCtxType *) ctx_as_void;
const int order = DO_A_STEP;
PetscScalar const * pscalar_u_and_du;
PetscScalar * pscalar_res;
size_t k;

// conversion PetscScalar -> C double
VecGetArrayRead(u_and_du , &pscalar_u_and_du);
for (k = 0; k < ctx ->n_in_tot * 2; k++)

ctx ->double_u_and_du[k] = (double)(pswork_x[k]);
VecRestoreArrayRead(u_and_du , &pscalar_u_and_du);

// Notify workers that we want them to run ,
// and telling them what tau is
MPI_Bcast (&order , 1, MPI_INT , 0, MPI_COMM_WORLD);
MPI_Bcast (&(ctx ->t_N), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Bcast (&(ctx ->t_Np1), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

// Apply extractors and communicate at the same time:
// values , then derivatives
MPI_Scatterv(ctx ->double_u_and_du , ctx ->in_sizes , ctx ->in_offsets ,

MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Scatterv(ctx ->double_u_and_du + ctx ->n_in_tot , ctx ->in_sizes , ctx ->

in_offsets , MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);

/* Workers proceed integration here */

// Assemble vector R^{\ bar{y}} * (\ zeta_1^T, ... \zeta_2^T)^T directly
// while communicating values and derivatives
MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work1_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work2_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);

// Dispatching (equivalent of [[Phi^T, 0], [0, Phi^T]])
dispatch(ctx ->work1_n_out , ctx ->out_sizes , ctx ->n_sys ,

ctx ->double_res , ctx ->in_sizes , ctx ->connections);
dispatch(ctx ->work2_n_out , ctx ->out_sizes , ctx ->n_sys ,

ctx ->double_res + ctx ->n_in_tot , ctx ->in_sizes , ctx ->connections);

// Difference between original entries and permuted outputs
for (k = 0; k < ctx ->n_in_tot * 2; k++)

ctx ->double_res[k] = ctx ->double_u_and_du[k] - ctx ->double_res;

// conversion C double -> PetscScalar
VecGetArray(res , &pscalar_res);
for (k = 0; k < ctx ->n_in_tot * 2; k++)

pswork_f[k] = (PetscScalar)(ctx ->double_res[k]);
VecRestoreArray(res , &pscalar_res);

return 0;
}

On the worker’s side, the corresponding running code
section is the one in Snippet 2.

4434 Engineering with Computers (2022) 38:4423–4449

1 3

Snippet 2. JFM’s callback on the worker side (ζk and communications)
/* ... */

while (1)
{

MPI_Bcast (&order , 1, MPI_INT , 0, me__ ->comm);
if (order != DO_A_STEP)

break;

// get tau
MPI_Bcast (&t_N , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Bcast (&t_Np1 , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

// receive relevant inputs and derivatives for this system
MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,

sys_inputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);
MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,

sys_dinputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);

/* integration : */
zeta_do_a_step(t_N , t_Np1 , inputs , sys_dinputs , // [in]

sys_outputs , sys_doutputs); // [out]

// send the outputs and derivatives (results of zeta)
MPI_Gatherv_outputs(sys_outputs , sys_n_out , MPI_DOUBLE ,

NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Gatherv_outputs(sys_doutputs , sys_n_out , MPI_DOUBLE ,

NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
}

/* ... */

The aim is not to show the code that has been used to gen-
erate the results of Sect. 5, but to figure out how to combine
the PETSc and MPI standard (PETSc being based on MPI)
to implement a parallel evaluation of ��.

In the code snippet 1, the function ���_��������
is the one that is given to the PETSc ���� object with
��������������� . The context pointer ��� can be anything
that can be used to have access to extra data inside of this
callback. The principle is: when ��������� is called, the
callback function which has been given to the ���� object
will be called an unknown number of times. For this exam-
ple, we suggested a context structure ��������� at least
containing:

• �_� , �_��� the boundary times of � , id est t[N] and t[N+1]
(as ������ each),

• �_��_��� the total number of inputs nin,tot (as ����_�),
• ������_�_���_�� an array dedicated to the storage of

(ũT , ̃̇uT)T (as ������ ∗),
• ��_����� the array containing the number of inputs for

each process (nin,k)k∈[[0,nsys]] including process 0 (with the
convention nin,0 = 0) (as ��� ∗),

• ��_������� t h e m e m o r y d i s p l a c e m e n t s �∑k

l=1
nin,l

�
k∈[[0,nsys]]

 for inputs scattering for each process

(as ��� ∗),

• �����_�_���_��� and �����_�_���_��� two arrays of
size nout,tot for temporary storage (as ������ ∗),

• ���_����� and ���_������� two arrays analogous to
��_����� and ��_������� respectively, considering the
outputs,

• �_��� tot number of systems nsys (as ����_�),
• ������_��� an array of size 2 nin,tot dedicated to the stor-

age of the result of �� (as ������ ∗), and
• ����������� any structure to represent the connections

between the systems �T (a full matrix might be a bad
idea as � is expected to be very sparse).

The function �������� is expected to process the dispatch-
ing (15) of the values given in its first argument into the
array pointed by its fourth argument.

Please note that the orchestrator process has to explicitly
send an order different from ��_�_���� (with ���_�����)
to notify the workers that the callback will not be called any-
more. Nonetheless, this order might not be sent right after
the call to ��������� on the orchestrator side. Indeed, if the
procedure converged, a last call has to be made explicitly in
the orchestrator (see Sect. 3.3).

Another explicit call to ���_�������� should also be
explicitly made on the orchestrator side before the call of
��������� (as also explained in Sect. 3.3).

4435Engineering with Computers (2022) 38:4423–4449

1 3

Figure 7 presents a schematic view of these two snippets
running parallelly.

5 Results on test cases

Two test cases will be treated here. The first one is a simple
case that enables to understand the kind of configurations
that really benefit from the IFOSMONDI-JFM method (id
estwhen the function of the fixed-point formulation is not
contractant), and the second one is an industrial-scale model

with 148 interface variables that allows the comparison of
classical IFOSMONDI (based on the fixed-point method),
IFOSMONDI-JFM and the natural explicit ZOH co-simula-
tion method in terms of time/accuracy trade-off.

5.1 Mechanical model with multiple feed‑through

Difficulties may appear in a co-simulation problem when the
coupling is not straightforward. Some of the most difficult
cases to solve are the algebraic coupling (addressed in [8])
arising from causal conflicts, and the multiple feed-through,

Fig. 7 Workflow of the callback function called by SNESSolve: example with nsys = 2 (external first call to the callback is supposed to be
already made before ��������� is called)

4436 Engineering with Computers (2022) 38:4423–4449

1 3

id estthe case where outputs of a system linearly depend
on its inputs, and the connected system(s) have the same
behavior. In some case, this may lead to a non-contractant
�� function.

This section presents a test case we designed, belonging
to this second category. The fixed-point convergence can be
accurately analyzed so that its limitations are highlighted.

Please note that this test case is intentionally simple in
order to easily enlight the enhancements brought by the
IFOSMONDI-JFM method compared to the fixed-point
IFOSMONDI method. Although very simple, this example
enables to understand the convergence properties of the pro-
posed JFM, as the latter is not objected by the non-contract-
ance of �� (contrary to a fixed-point underlying method like
in classical IFOSMONDI).

5.1.1 Test case presentation

The test case has been modeled, parameterized and simu-
lated with Simcenter Amesim software, a 0D modeling
and simulation software developed by Siemens Industry
Software. The co-simulations have been run with our code
(implementing fixed-point IFOSMONDI and IFOSMONDI-
JFM algorithms), coupled with the systems modeled in Sim-
center Amesim for underlying ̂̂Sk evaluations (see Fig. 2)
in �k evaluation (polynomial input computations stage in �k
happens in our code).

Figure 8 represents a 1-mass test case with a classical
mechanical coupling on force, velocity and position. These
coupling quantities are respectively denoted by fc , vc and
xc . The component on the right represents a damper with a
massless plate, computing a velocity (and integrating it to
compute a displacement) by reaction to a force input.

We propose the parameters values in Table 1.
All variables will be denoted by either f, v or x (corre-

sponding to forces, velocities and positions, respectively)
with an index specifying its role in the model (see Fig. 8).

The predefined force fL is a C∞ function starting from 5
N and definitely reaching 0 N at t = 2 s. The expression of
fL is (29) and the visualization of it is presented on Fig. 9.

The expected behavior of the model is presented in
Table 2 referring to conventionnal directions of Fig. 10.

(29)fL ∶

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[0, 10] → [0, 5]

t ↦

⎧⎪⎪⎨⎪⎪⎩

5

e−1
e

�� t

2

�2

− 1

�−1

if t < 2

0 if t ⩾ 2

Fig. 8 Mass spring damper with
damping reaction modelled with
Simcenter Amesim - Parameters
are above, variables are below

Table 1 Parameters and initial values of the test case model

Notation Description Value

ML Mass of the body in (S1) 1 kg
KSD Spring rate of the spring in (S1) 1 N/m
DSD Viscosity coefficient in the damper in (S1) 1 N/(m/s)
DD Viscosity coefficient in the damper in (S2) ∈ [0.01, 4]

xL(0) Initial position of the body in (S1) 0 m
vL(0) Initial velocity of the body in (S1) 0 m/s
xD(0) Initial position of the plate in (S2) 0 m
tinit Initial time 0 s
tend Final time 10 s

Fig. 9 Predefined force fL

4437Engineering with Computers (2022) 38:4423–4449

1 3

The behavior presented in Table 2 might slightly change
while parameter DD changes (all other parameters being
fixed, see Table 1).

5.1.2 Equations and eigenvalues of the fixed‑point callback
��

The displacement of the mass ML is due to the difference
of the forces applied on its left side (fL , generated from a
force source, cf. Fig. 9) and on its right side (fSD , resulting
from spring compression/dilatation and damper effect). This
movement can be computed using the acceleration of the
mass. Indeed, second Newton’s law gives:

and the spring and damper forces can be expressed the fol-
lowing way:

(30)
v̇L = (fL + fSD)M

−1
L

ẋL = vL

Fig. 10 Test model visualized
with Simcenter Amesim

Table 2 Main stages of a
simulation of the test case
model

Stage Body displacement Plate displacement Description

1 Front Front Positive fL pushes everything
2 Back Front The spring pushes the body

backward as it is close to the plate
3 Back Back The spring pulls the plate backwards as

the body is moving backward with inertia
4 Front Back The spring pulls the body forward as the

inertia made it go too far in the backward
direction

5 Front Front The body is still moving frontward with
inertia, so the compressed spring pushes the
plate forward

Fig. 11 Displacement of the mass (xL) for different damping ratios
of the right damper (DD) simulated on a monolithic model (without
co-simulation). Associated spectral radii of J� are recalled for further
coupled formulations

4438 Engineering with Computers (2022) 38:4423–4449

1 3

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

)
%(rorre evitaler

δt ref

NewtonLS
ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

re
la

�v
e

er
ro

r (
%

)

δt ref

Ngmres
ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

)
%(rorre evitaler

δt ref

Anderson

ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

re
la

�v
e

er
ro

r (
%

)

δt ref

Fixed-point

ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

re
la

�v
e

er
ro

r (
%

)

δt ref

Explicit ZOH
 Explicit ZOH

Fig. 12 Error accross �tref with different methods on a contractant
case (DD = 4.0 , �(JPsi) = 0.5)—NewtonLS, Ngmres and Anderson
are matrix-free iterative methods used with the IFOSMONDI-JFM

algorithm, Fixed-point is the fixed-point IFOSMONDI algorithm,
and Explicit ZOH is the non-iterative zero-order hold fixed-step co-
simulation

4439Engineering with Computers (2022) 38:4423–4449

1 3

leading to the expression (32) of the coupled systems.

(31)

fSD = KSD(xC − xL) + DSD(vC − vL)

fC = −fSD
fD = −DD(0 − vC)

fC = fD
vC = fC∕DD

(32)

(S1) ∶

⎧
⎪⎪⎨⎪⎪⎩

�
v̇L
ẋL

�
=

�
−DSD

ML

−KSD

ML

1 0

��
vL
xL

�
+

�
DSD

ML

KSD

ML

0 0

��
vC
xC

�
+

�
fL

ML

0

�

fC =
�
DSD KSD

�� vL
xL

�
+
�
−DSD − KSD

�� vC
xC

�

(S2) ∶

⎧
⎪⎨⎪⎩

ẋD = 0 xD +
1

DD

fC�
vC
xC

�
=

�
0

1

�
xD +

�
1

DD

0

�
fC

.

At a given time t, we can state the jacobian of �� introduced
in (25) using the expressions of the coupling quantities (32).

Indeed, the output variables got at a call are at the same time
than the one at which the imposed inputs are reached (end of
the macro-step) thanks to the definitions of �k.

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

)
%(rorre

evitaler

δt ref

NewtonLS

ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

re
la

�v
e

er
ro

r (
%

)

δt ref

Ngmres

ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

1,00E-05

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E-04 1,00E-03 1,00E-02 1,00E-01 1,00E+00

re
la

�v
e

er
ro

r (
%

)

δt ref

Anderson
ε = 1e-5

ε = 1e-4

ε = 1e-3

ε = 1e-2

Fig. 13 Error accross �tref with different methods on a non-contractant case (DD = 0.64 , �(JPsi) = 1.25)—NewtonLS, Ngmres and Anderson are
matrix-free iterative methods used with the IFOSMONDI-JFM algorithm

4440 Engineering with Computers (2022) 38:4423–4449

1 3

(33)

The framed zeros are “by-design” zeros: indeed, systems
never produce outputs depending on inputs given to other
systems. The block called “Block” in (33) depends on the
methods used to retrieve the time-derivatives of the coupling
quantities (see (13) and its finite differences version). Nev-
ertheless, this block does not change the eigenvalues of J��

500

5000

50000

0,5 0,75 0,95 1,25 10

snoitareti#

ρ(J Ψ)

#itera�ons across spectral radius
NewtonLS
Ngmres
Ngmres with Linesearch
Anderson
Fixed-point

5000

50000

0,5 0,75 0,95 1,25 10

#i
nt

eg
ra

�o
ns

ρ(J Ψ)

#integra�ons across spectral radius

NewtonLS
Ngmres
Ngmres with Linesearch
Anderson
Fixed-point

1,00E-05

1,00E-04

1,00E-03

1,00E-02

0,5 0,75 0,95 1,25 10

re
la

�v
e

er
ro

r (
%

)

ρ(J Ψ)

Error across spectral radius

NewtonLS
Ngmres
Ngmres with Linesearch
Anderson
Fixed-point

Fig. 14 Total number of iterations, integrations, and error across
spectral radius of J� for different methods (Fixed-point corresponds
to classical IFOSMONDI algorithms, and all other methods are used

with the IFOSMONDI-JFM version). All co-simulation ran with
� = 10−4 and �tref = 10−2

Fig. 15 Subsketch inside of a single module of the battery pack: the 6 cells can be seen

4441Engineering with Computers (2022) 38:4423–4449

1 3

as it is a block-triangular matrix. Indeed, the characteristic
polynomial of I6 − �J��

 is the product of the determinant
of the two 3 × 3 blocks on the diagonal of I6 − �J��

 . The
eigenvalues of J� are:

Hence, the following relation between the parameters
and the spectral radius can be shown (given DD > 0 and
DSD = 1 > 0):

We can thus expect that the fixed-point IFOSMONDI co-
simulation algorithm based on a fixed-point method [6] can-
not converge on this model when the damping ratio of the
component on the right of the model (see Fig. 8) is smaller
than the damping ratio of the spring-damper component.

We will process several simulations with different values
of DD leading to different values of �(J��

) . These values and
the expected movement of the body of the system is plotted
in Fig. 11.

5.1.3 Results

As the PETSc library enables to easily change the param-
eters of the JFM (as explained in Sect. 4.2), three methods
have been used in the simulations:

• NewtonLS: a Newton based non-linear solver that uses a
line search,

• Ngmres: the non-linear generalized minimum residual
method [10], and

• Anderson: the Anderson mixing method [1]

First of all, simulations have been processed with all these
JFMs (with parameters exhaustively defined in appendix A)
within IFOSMONDI-JFM, the fixed-point IFOSMONDI
algorithm (denoted hereafter as “Fixed-point”), and the
original explicit zero-order hold co-simulation method
(sometimes referred to as non-iterative Jacobi). The error is
defined as the mean of the normalized L2 errors on each state
variable of both systems on the whole [tinit , tend] domain. The
reference is the monolithic simulation (of the non-coupled
model) done with Simcenter Amesim. Such errors are pre-
sented for a contractant case (DD = 4 N, so �(J��

) = 0.5)
in Fig. 12. For a non-contractant case (DD = 0.64 N, so
�(J��

) = 1.25), analog plots are presented in Fig. 13.

As expected, the simulations failed (diverged) with fixed-
point method for the non-contractant case. Moreover, the

(34)

0, +1i

√
DSD

DD

, −1i

√
DSD

DD

(each with a multiplicity of 2)

(35)𝜚
(
J𝛹𝜏

){< 1 if DSD < DD

⩾ 1 if DSD ⩾ DD

values given to the system were too far from physically-
possible values with the explicit ZOH co-simulation algo-
rithm, so the internal solvers of systems (S1) and (S2) failed
to integrate. These are the reason why these two methods
lead to no curve on Fig. 13.

Nonetheless, the three versions of IFOSMONDI-JFM
algorithm keep producing reliable results with an accept-
able relative error (less than 1%) when �tref ⩾ 0.1 s.

On Figs. 12 and 13, IFOSMONDI-JFM method seems
to solve the problem with a good accuracy regardless of
the value of the damping ratio DD . To confirm that, several
other values have been tried: the ones for which the solu-
tion has been computed and plotted in Fig. 11. The error is
presented, but also the number of iterations and the number
of integrations (calls to �k , i.e. calls to �� for IFOSMONDI-
JFM or to �� for fixed-point IFOSMONDI). Although for the
fixed-point IFOSMONDI the number of iteration is the same
than the number of integration, for the IFOSMONDI-JFM
algorithm the number of iterations is the one of the underly-
ing non-linear solver (NewtonLS, Ngmres or Anderson), and
there might be a lot more integrations than iterations of the
non-linear method. These results are presented in Fig. 14.

As expected, the threshold of �(J��
) = 1 (id est

DD = DSD = 1) is critical for the fixed-point method. The
IFOSMONDI-JFM method not only can overpass this
threshold, but no significant extra difficulty appears to solve
the problem in the non-contractant cases, except for the
Ngmres non-linear solver (which failed to converge with
DD = 0.01 , so with �(J��

) = 10). However, regarding the
Ngmres method, the variant that uses line search converges
in all cases. Even though the latter requires more integra-
tions than other JFMs, it is more robust to high values of
�(J��

) . The parameters of this line search are detailed on
Table 9 in appendix A.

The NewtonLS and Anderson methods show a slightly
bigger error on this “extreme” case of �(J��

) = 10 , yet it
stays under 0.001% which is completely acceptable.

Among those two JFMs (NewtonLS and Anderson),
the trend that can be observed on Fig. 14 shows that New-
tonLS is always more accurate than Anderson, yet it always
requires a bigger amount of integrations. We can stand that
IFOSMONDI-JFM is more accuracy-oriented on this model
when it is based on the NewtonLS JFM, and more speed-
oriented on this model when it is based on the Anderson
JFM (for the same �tref and �). For high values of �(J��

) ,
accuracy-oriented simulations are achieved thanks to the
Ngmres JFM with line search more than the NewtonLS one.

Finally, smaller errors are obtained with IFOSMONDI-
JFM and with less iterations than fixed-point IFOSMONDI.
Yet, the time consumption is directly linked with the num-
ber of integrations, not with the number of iterations of
the underlying non-linear solver. The total number of inte-
grations does not increase across the problem difficulty

4442 Engineering with Computers (2022) 38:4423–4449

1 3

(increasing with �(J��
)), and the non-linear methods within

IFOSMONDI-JFM do not even require more integrations
that the fixed-point one for most of the values of DD for
which the fixed-point IFOSMONDI algorithm does not fail.

5.2 Industrial‑scale thermal‑electric model

Regarding industrial-scale test cases, it is not always pos-
sible to determine in advance if the fixed-point formulation

Fig. 16 Battery pack cooling
system modelled with Sim-
center Amesim (each module
contains 6 cells as shown on
Fig. 15)—Monolithical model

4443Engineering with Computers (2022) 38:4423–4449

1 3

is contractant or not. Indeed, the analytical analysis (as done
for the first test-case) is not always possible due to the model
dimensions and its potential non-linear behavior.

Fig. 17 Black-box system of module 2 only: sketch representation of a single system for co-simulation in Simcenter Amesim

Fig. 18 Battery load/unload signal

Fig. 19 Battery temperature distribution at t = tend = 5000 —Arrows
represent the air flow—Module 1 is on the left and module 10 is on
the right

Table 3 Results on the Battery pack cooling system with IFOS-
MONDI-JFM

IFOSMONDI-JFM (Anderson)

� = 10−8 � = 10−6 � = 10−4 � = 10−2

Error (in %) 0.001 0.0016 0.0017 0.0035
Elapse time 52′24′′ 12′46′′ 11′28′′ 5′27′′

#iterations 347 189 68 015 56 464 23 229

#integrations 366 702 83 107 71 536 38 301

Average step size (s) 0.831 0.994 0.995 0.995
#rejected steps 734 4 0 0

4444 Engineering with Computers (2022) 38:4423–4449

1 3

For this reason, this subsection introduces a large model
with 324 state variables across eleven systems, and 148
interface variables in total (meaning 148 inputs connected
to 148 outputs in a one-to-one way, making �T a square
matrix). As the variable of the JFM is the vector of all inputs
and their derivatives, the JFM solves a problem of size 296.

The problem is compliant with the fixed-point IFOS-
MONDI and the explicit ZOH methods, so that comparisons
in terms of time/accuracy trade-off can be conducted. This
analysis is namely possible thanks to the scale of the system,
making it run non-instantaneously.

5.2.1 Model presentation

The model in an industrial-scale thermal-electric system
representing a battery pack (represented on Fig. 16) with an
air cooling system. The battery pack is made of 10 modules
of 6 cells each (see Fig. 15), all modules being connected by
several moist airports (to represent airflow as different points
in space as the air is circulating), thermal connections (rep-
resenting thermal conduction) and electrical connections.

In practice, the need for a co-simulation for this kind of
model arises when an external tool (simulation and model-
ling platform) provides a black-box system for each module.
Indeed, in this case, doing a co-simulation is the only way to
test the battery pack made up of these modules (in a flexible
configuration regarding the number of modules) regarding
a given battery load/unload scenario.

In this paper, the monolithic system of Fig. 16 will only
act as a reference, and we will consider 11 black-box systems
respectively corresponding to the 10 modules and the exter-
nal load/unload scenario. The sketch of one of the black-box
module systems is given as example in Fig. 17, and the load/
unload scenario (in the 11th system) is presented in Fig. 18.

The battery pack is a 230 V, 10.4 kWh hybrid vehicle bat-
tery. The cells in each module are 3.84 V, 45 Ah Li-Ion cells.
The charge and discharge (smooth) steps that can be seen on
Fig. 18 simulate critical cses where the highest thermal load
occur (as the battery is submitted to high currents). The pack
in a 20◦C air environment. Air the airflow (cooling system)
comes from the bottom of module 1 and exits the pack at
the top of module 10, the temperature is distributed along
with the modules and cells like as shown in Fig. 19 at the

Table 4 Results on the Battery pack cooling system with fixed-point
IFOSMONDI

Classical IFOSMONDI (fixed-point)

� = 10−8 � = 10−6 � = 10−4 � = 10−2

Error (in %) 0.0017 0.0017 0.0046 0.07
Elapse time 17′10′′ 10′31′′ 5′00′′ 2′37′′

#integrations 103 951 65 350 30 176 17 433

Average step size (s) 0.986 0.995 0.995 0.995
#rejected steps 47 0 0 0

Table 5 Results on the Battery pack cooling system with Explicit
ZOH

Explicit ZOH

�t = 10−3 �t = 10−2 �t = 10−1 �t = 1 �t = 10

Error (in %) 0.0016 0.0154 0.154 1.806 15.047
Elapse time 10h23′03′′ 1h01′35′′ 9′05′′ 1′09′′ 12′′

#integrations 5 000 000 500 000 50 000 5 000 500
Average step size

(s)
10−3 10−2 10−1 1 10

Fig. 20 Graphical visualization
of results in Tables 3, 4 and 5

4445Engineering with Computers (2022) 38:4423–4449

1 3

end of the 5000 s scenario. This result is obtained with the
monolithical reference model.

5.2.2 Results

Results have been generated on a HPC cluster so that the
processes can run in parallel. Indeed, due to the 10 modules

of the model and the system containing the scenario, the bat-
tery load, and the reference potential, 11 workers are instan-
tiated for a co-simulation. In addition to the orchestrator
process (see architecture on Fig. 7), a total of 12 processes
run parallelly.

Due to the small number of integrations required by the
Anderson method (as it recombines the previously evaluated

Fig. 21 Two variables of interest in the Battery Pack Cooling model, results for different (co-)simulation methods

Fig. 22 Focus on t ∈ [3730, 3830] of the curves in Fig. 21

4446 Engineering with Computers (2022) 38:4423–4449

1 3

iterates, [1]), this JFM is chosen in IFOSMONDI-JFM.
The results are obtained with several values or � both with
IFOSMONDI-JFM and fixed-point IFOSMONDI methods.

A strong knowledge of the model is not required with
these methods, yet an idea of the order of magnitude of the

Fig. 23 Visualization of the connection between the co-simulation
step size (upper straight curve, right y-scale), the number of integra-
tions (lower straight curve, right y-scale) and a representative variable

of interest of the system (superimposed red curve with round mark-
ers) in the case of the IFOSMONDI-JFM method applied on the Bat-
tery Pack Cooling system

Fig. 24 Visualization of the connection between the co-simulation
step size (upper straight curve, right y-scale), the number of integra-
tions (lower straight curve, right y-scale) and a representative vari-

able of interest of the system (superimposed blue curve with triangle
markers) in the case of the fixed-point IFOSMONDI method applied
on the Battery Pack Cooling system

4447Engineering with Computers (2022) 38:4423–4449

1 3

co-simulation step size always helps. For this reason, we
used the following parameters:

• �tmin = 1 ms, to be able to catch the fast interfaces
dynamics, if any,

• �tmax = 1 s, to avoid missing events (peaks, slope
changes, etc...), and

• �tinit = 1 ms for safety reasons (catch high dynamics at
initialization).

In contrast, the explicit ZOH co-simulation method requires
the step size to be chosen at the beginning, which implies
that the user has a strong knowledge of the system. For this
reason, we ran co-simulations with different values of the
fixed co-simulation step size �t.

Please note that co-simulation with the explicit ZOH
method ran with the same architecture than the IFOS-
MONDI methods. In other words, each co-simulation
required 12 processes to run, regardless of the method. This
by-design parallelism will therefore not bias the results
below (Tables 3, 4).

Please note that, in the case of fixed-point IFOSMONDI,
one iteration corresponds to a single integration (Table 5).

Please note that, in the case of Explicit ZOH, one co-
simulation step corresponds to a single integration.

On the trade-off graph on Fig. 20, the more a co-simula-
tion is valuable, the more it is close to the bottom-left corner,
meaning that the run is accurate and fast. Every method fol-
lows a well-known phenomenon: the more a co-simulation is
accurate, the slower it is. Graphically, this means that point
corresponding to a given method goes on the right on the
x-axis when they go down on the y-axis.

Nonetheless, both IFOSMONDI methods’ curves are
lower than the Explicit ZOH’s curve and more on the left.
This can be interpreted in two equivalent ways:

• at equivalent accuracy as Explicit ZOH, the IFOS-
MONDI methods (fixed-point and JFM) are faster

• at an equivalent computational time as Explicit ZOH, the
IFOSMONDI methods are more accurate.

In addition, the trade-off curve of IFOSMONDI-JFM is
lower and more on the right than the trade-off curve of
fixed-point IFOSMONDI. It means that, with the same �
convergence criterion, IFOSMONDI-JFM is more accuracy-
oriented than the fixed-point IFOSMONDI method.

Let’s focus on the � = 10−8 cases. The average step size
was 0.831 s for IFOSMONDI-JFM and 0.986 s for fixed-
point IFOSMONDI, so let’s compare the results with the
run with the explicit ZOH method with a fixed co-simulation
step size of 1 s. Two variables of interest are plotted on
Fig. 21. To see the differences of accuracy between the runs,
a focus on t ∈ [3730, 3830] is presented on Fig. 22. On the

latter, we can clearly see that both IFOSMONDI methods
visually match the monolithic reference solution whereas the
explicit ZOH has a delay and an overshoot.

Finally, the step size adaptation with the rule described
in 3.4 can be visualize in both IFOSMONDI fixed-point and
JFM methods with � = 10−8 together with the number of
integrations (including the rejected steps) and one of the
variable of interests of the system. Figures 23 and 24 show
that the methods focus on the one hand on the stiff parts of
the simulation by integrating more time and reducing the co-
simulation step size, and on the other hand they save time on
the non-stiff parts by increasing the co-simulation step size
and iterating a smaller amount of time. This phenomenon
can be explained by the fact that non-stiff models (or non-
stiff parts of a simulation of models with variable stiffness)
produce a version of the coupling constraint that is easier to
satisfy (at a given � tolerance) than stiff models (or stiff parts
of a simulation of models with variable stiffness).

6 Conclusion

The IFOSMONDI-JFM algorithm takes advantages from the
C1 smoothness of fixed-point IFOSMONDI algorithm [6]
without the delay that this smoothness implies in [5] (thanks
to its iterative aspect), the coupling constraint is satisfied
both at left and right of every communication time thanks to
the underlying non-linear solvers of PETSc [2]. The iterative
part does not need a finite differences estimation of the jaco-
bian matrix like in [14] or a reconstruction of it like in [15].

The resulting algorithm even solves co-simulation prob-
lems for which the fixed-point formulation would involve a
non-contractant coupling function ��.

Thanks to its algebraic loop, the test case introduced
in 5.1.1 shows this robustness as its difficulty can easily be
increased or decreased in a quantifiable way. It can be a
good candidate to benchmark the robustness of various co-
simulation methods.

On the test-cases considered in this paper, the IFOS-
MONDI-JFM method either requires less iterations to con-
verge when the parameterization enables both methods to
solve the problem, or has a better accuracy than the one
obtained with the fixed-point IFOSMONDI method. In the
end, the time/accuracy trade off is similar for both methods.

The matrix-free aspect of the underlying solvers used
with IFOSMONDI-JFM and their fast convergence are two
of the causes of the small amount of integrations per step.

As the contractance of the fixed-point function is not
always possible to analyze in the case of industrial cases
in practise, one cannot know in advance if the fixed-point
IFOSMONDI method will work or fail. The robustness of
the newly introduced IFOSMONDI-JFM method brings a
solution to this problem.

4448 Engineering with Computers (2022) 38:4423–4449

1 3

Appendix A Parameters of the PETSc
non‑linear solvers

The JFMs mentioned in this document (see definition
in Sect. 2.1) refer to PETSc non-linear solvers, so-called
’ ���� ’ in the PETSc framework.

The parameters of these methods where the default
one, except the explicitely mentioned ones. For the sake of
reproducibility, the following tables recaps these options
(Tables 6, 7, 8, 9). For further definition of their meaning,
see [1, 2, 10].

Table 6 Parameters of the NewtonLS method

PETSc argument:
−����_����������_ < ... >

Description Value

���� Select line search type ��

����� Selects the order of the line search for bt 3
����� Turns on/off computation of the norms for basic line search ����

����� Sets alpha used in determining if reduction in function norm is sufficient 0.0001
������� Sets the maximum stepsize the line search will use 108

��������� Sets the minimum lambda the line search will tolerate 10−12

������� Damping factor used for basic line search 1
���� Relative tolerance for iterative line search 10−8

���� Absolute tolerance for iterative line search 10−15

���� Change in lambda tolerance for iterative line search 10−8

���_�� Maximum iterations for iterative line searches 40
���������� Use previous lambda as damping �����

��������_������ Use a correction that sometimes improves convergence of Picard iteration �����

Table 7 Parameters of the
Anderson method

PETSc argument:
−����_��������_ < ... >

Description Value

� Number of stored previous solutions and residuals 30
���� Anderson mixing parameter 1
�������_���� Type of restart ����

�������_�� Number of iterations of restart conditions before restart 2
������� Number of iterations before periodic restart 30

Table 8 Parameters of the Ngmres method (not Ngmres with line search)

PETSc argument:
−����_������_ < ... >

Description Value

������_���� Choose the select between candidate and combined solution ����������

�������_���� Choose the restart conditions ����������

��������� Use NGMRES variant which combines candidate solutions instead of actual solutions �����

���������� Linearly approximate the function �����

� Number of stored previous solutions and residuals 30
�������_�� Number of iterations the restart conditions hold before restart 2
������ Residual tolerance for solution select between the candidate and combination 2
������ Residual tolerance for restart 2
�������� Difference tolerance between subsequent solutions triggering restart 0.1
������ Difference tolerance between residuals triggering restart 0.9
������_��������� Aggregate reductions �����

�������_��_���� Restart on residual rise from x_M step �����

4449Engineering with Computers (2022) 38:4423–4449

1 3

References

 1. Anderson DGM (1965) Iterative procedures for nonlinear integral
equations. J ACM 12:547–560

 2. Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman
K, Dalcin L, Dener A, Eijkhout V, Gropp WD, Karpeyev D, Kau-
shik D, Knepley MG, May DA, McInnes LC, Mills R.T, Munson
T, Rupp K, Sanan P, Smith BF, Zampini S, Zhang H, Zhang H
(2019) PETSc Web page. https:// www. mcs. anl. gov/ petsc

 3. Balay S, Gropp WD, McInnes LC, Smith BF (1997) Efficient
management of parallelism in object oriented numerical software
libraries. In: Arge E, Bruaset AM, Langtangen HP (eds) Mod-
ern software tools in scientific computing. Birkhäuser Press, pp
163–202

 4. Benedikt M, Watzenig D, Zehetner J, Hofer A (2013) NEPCE—
A nearly energy-preserving coupling element for weak-coupled
problems and co-simulation. In: Proceedings of the International
Conference on Computational Methods for Coupled Problems in
Science and Engineering. pp 1–12

 5. Busch M (2017) Performance improvement of explicit co-sim-
ulation methods through continuous extrapolation. In: IUTAM
Symposium on solver-coupling and co-simulation. IUTAM Book-
series, vol 35, pp 57–80. IUTAM (2019). https:// doi. org/ 10. 1007/
978-3- 030- 14883-6_4, iUTAM Symposium on Solver-Coupling
and Co-Simulation, Darmstadt, Germany, September 18–20

 6. Éguillon Y, Lacabanne B, Tromeur-Dervout D (2019) IFOS-
MONDI: a generic co-simulation approach combining iterative
methods for coupling constraints and polynomial interpolation for
interfaces smoothness. In: 9th International Conference on Simu-
lation and Modeling Methodologies, Technologies and Applica-
tions. pp 176–186. SCITEPRESS - Science and Technology Pub-
lications, Prague, Czech Republic, https:// doi. org/ 10. 5220/ 00079
77701 760186

 7. Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2018)
Co-simulation: a survey. ACM Comput Surv (CSUR) 51(3):1–33

 8. Gu B, Asada HH (2004) Co-simulation of algebraically coupled
dynamic subsystems without disclosure of proprietary subsystem
models. J Dyn Syst Meas Contr 126(1):1–13. https:// doi. org/ 10.
1115/1. 16483 07

 9. Kübler R, Schiehlen W (2000) Two methods of simulator cou-
pling. Math Comput Model Dyn Syst 6(2):93–113. https:// doi.
org/ 10. 1076/ 1387- 3954(200006) 6:2; 1-M. FT093

 10. Oosterlee CW, Washio T (2000) Krylov subspace acceleration of
nonlinear multigrid with application to recirculating flows. SIAM
J Sci Comput 21(5):1670–1690. https:// doi. org/ 10. 1137/ S1064
82759 83380 93

 11. Sadjina S, Pedersen E (2020) Energy conservation and coupling
error reduction in non-iterative co-simulations. Eng Comput
36:1579–1587

 12. Sadjina S, Kyllingstad LT, Skjong S, Pedersen E (2017) Energy
conservation and power bonds in co-simulations: non-iterative
adaptive step size control and error estimation. Eng Comput
33(3):607–620

 13. Schierz T, Arnold M, Clauß C (2012) Co-simulation with commu-
nication step size control in an FMI compatible master algorithm.
pp 205–214. https:// doi. org/ 10. 3384/ ecp12 076205

 14. Schweizer B, Lu D (2015) Predictor/corrector co-simulation
approaches for solver coupling with algebraic constraints. ZAMM
Zeitschrift fur Angewandte Mathematik und Mechanik 95(9):911–
938. https:// doi. org/ 10. 1002/ zamm. 20130 0191

 15. Sicklinger S, Belsky V, Engelman B, Elmqvist H, Olsson H,
Wüchner R, Bletzinger KU (2014) Interface Jacobian-based co-
simulation. Ph.D. thesis. 10.1002/nme

 16. Viel A (2014) Implementing stabilized co-simulation of strongly
coupled systems using the functional mock-up interface 2.0. In:
Proceedings of the 10 th International Modelica Conference. pp
213–223. Linköping University Electronic Press. March 10 –
March 12, Lund, Sweden

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Table 9 Parameters of the Ngmres with linsearch method

PETSc argument: −����_������_ < ... > Description Value

������_���� Choose the select between candidate and combined solution ����������

⋮

All other options of table 8 are the same
⋮

PETSc argument:
−����_����������_ < ... >

Description Value

���� Select line search type �����

����� Selects the order of the line search for bt 0
����� Turns on/off computation of the norms for basic linesearch ����

������� Sets the maximum stepsize the line search will use 108

��������� Sets the minimum lambda the line search will tolerate 10−12

������� Damping factor used for basic line search 1
���� Relative tolerance for iterative line search 10−8

���� Absolute tolerance for iterative line search 10−15

���� Change in lambda tolerance for iterative line search 10−8

���_�� Maximum iterations for iterative line searches 1
���������� Use previous lambda as damping �����

��������_������ Use a correction that sometimes improves convergence of Picard iteration �����

https://www.mcs.anl.gov/petsc
https://doi.org/10.1007/978-3-030-14883-6_4
https://doi.org/10.1007/978-3-030-14883-6_4
https://doi.org/10.5220/0007977701760186
https://doi.org/10.5220/0007977701760186
https://doi.org/10.1115/1.1648307
https://doi.org/10.1115/1.1648307
https://doi.org/10.1076/1387-3954(200006)6:2;1-M.FT093
https://doi.org/10.1076/1387-3954(200006)6:2;1-M.FT093
https://doi.org/10.1137/S1064827598338093
https://doi.org/10.1137/S1064827598338093
https://doi.org/10.3384/ecp12076205
https://doi.org/10.1002/zamm.201300191

	IFOSMONDI Co-simulation Algorithm with Jacobian-Free Methods in PETSc
	Abstract
	1 Introduction
	2 Formalism and notations
	2.1 A word on the JFM accronym
	2.2 General notations
	2.3 Extractors and rearrangement
	2.4 Time discretization
	2.5 Step function
	2.6 Extended step function
	2.7 Connections

	3 IFOSMONDI-JFM method
	3.1 Modified extended step function
	3.1.1 Case 1: Moving on
	3.1.2 Case 2: Step replay
	3.1.2.1 Subcase 2.1: Following a previous classical step
	3.1.2.2 Subcase 2.2: Re-integrate a step starting from but with different than at the previous call of

	3.1.3 Case 3: First step

	3.2 Iterative method’s callback function
	3.2.1 Link with the fixed-point implementation

	3.3 First and last integrations of a step
	3.4 Step size control

	4 Note on the implementation
	4.1 Parallel evaluation of using MPI
	4.2 Using PETSc for the JFM
	4.3 JFM’s callback implementation

	5 Results on test cases
	5.1 Mechanical model with multiple feed-through
	5.1.1 Test case presentation
	5.1.2 Equations and eigenvalues of the fixed-point callback
	5.1.3 Results

	5.2 Industrial-scale thermal-electric model
	5.2.1 Model presentation
	5.2.2 Results

	6 Conclusion
	References

