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Abstract
Co-simulation is a widely used solution to enable global simulation of a modular system via the composition of black-boxed 
simulators. Among co-simulation methods, the IFOSMONDI implicit iterative algorithm, previously introduced by the 
authors, enables us to solve the non-linear coupling function while keeping the smoothness of interfaces without introducing a 
delay. Moreover, it automatically adapts the size of the steps between data exchanges among the subsystems according to the 
difficulty of solving the coupling constraint. The latter was solved by a fixed-point algorithm, whereas this paper introduces 
the Jacobian-Free Methods version. Most implementations of Newton-like methods require a jacobian matrix which, except 
in the Zero-Order-Hold case, can be difficult to compute in the co-simulation context. As IFOSMONDI coupling algorithm 
uses Hermite interpolation for smoothness enhancement, we propose hereafter a new formulation of the non-linear coupling 
function including both the values and the time-derivatives of the coupling variables. This formulation is well designed for 
solving the coupling through jacobian-free Newton-type methods. Consequently, successive function evaluations consist in 
multiple simulations of the systems on a co-simulation time-step using rollback. The orchestrator-workers structure of the 
algorithm enables us to combine the PETSc framework on the orchestrator side for the non-linear Newton-type solvers with 
the parallel integrations of the systems on the workers’ side thanks to MPI processes. Different non-linear methods will be 
compared to one another and to the original fixed-point implementation on a newly proposed 2-system academic test case with 
direct feedthrough on both sides. An industrial model will also be considered to investigate the performance of the method.

Keywords Co-simulation · Systems coupling · Coupling methods · Jacobian-free Newton · PETSc · Parallel integration · 
Strong coupling test case

1 Introduction

The use of co-simulation is increasing in the industry as it 
enables to connect and simulate systems with given inter-
faces (input and output variables) without disclosing the 

expertise inside. Hence, modellers can provide system archi-
tects with virtual systems as black-boxes since the systems 
are able to interact through their interfaces. Among these 
interactions, the minimal requirements are quite simple: a 
system should at least be able to read the inputs given by 
the other systems, to simulate its physics inside (most of the 
time thanks to an embedded solver), and to provide outputs 
of the simulation to the other systems.

Besides its black-box aspect protecting the know-how, 
co-simulation also enables physic-based decomposition (one 
system can represent the hydraulic part of a modular model, 
another the mechanical part, a third one the electrical part, 
and so on) and/or dynamics-based decomposition (some sys-
tems isolate the stiff state variables so that they do not con-
straint all the other states anymore during the simulation). 
In other words, the co-simulation opens many doors thanks 
to the modular aspect of the models handled.
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The co-simulation field of research nowadays focuses 
on the numerical methods and algorithms that can be used 
to process simulations of such modular models. From the 
simplest implementations (non-iterative Jacobi) to very 
advanced algorithms [4, 7, 11–13, 15], co-simulation meth-
ods have been developed in different fields, showing that the 
underlying problems to be tackled are not straightforward. 
Some arising problems could clearly be identified since the 
moment it has become a center of interest for researchers, 
such as the delay between the given inputs and the retrieved 
outputs of a system (corresponding to the so-called “co-sim-
ulation step” or “macro-step”), the instabilities that might 
occur as a consequence of this delay [16], the discontinui-
ties produced at each communication [5], the error estima-
tion (and the use of it to adapt the macro-step size) [13], 
the techniques to solve the so-called “constraint function” 
corresponding to the interface of the systems [9, 14], and 
so on. Moreover, performance issues usually arise when co-
simulation codes are implemented in practice, for instance: 
idling systems (in Gauss-Seidel-like methods systems are 
simulated sequentially, one at a time, and in Jacobi-like 
methods the time taken by a co-simulation step is the one 
of the slowest system due to synchronization points where 
faster systems have to wait for slower ones). Many of these 
problems have been addressed in papers, either proposing 
an analysis, a method to solve them, or both.

In our previous paper [6], an iterative method that sat-
isfies the interfaces’ consistency while avoiding disconti-
nuities at each macro-step was proposed and compared to 
well-established methods (non-iterative Jacobi, zero-order 
hold iterative co-simulation [9], and non-iterative algorithm 
enhancing variables’ smoothness [5]). This algorithm was 
based on a fixed-point iterative method. Its evolution, pre-
sented in this paper, is based on iterative methods that nor-
mally require jacobian matrix computation, yet we use their 
jacobian-free version. The name of this method is IFOS-
MONDI-JFM, standing for Iterative and Flexible Order, 
SMOoth and Non-Delayed Interfaces, based on Jacobian-
Free Methods. The enhancements it brings to the classical 
IFOSMONDI method enable to solve cases that could not 
be solved by this previous version. The integration of an eas-
ily modulable jacobian-free method to solve the constraint 
function will be presented. The software integration, in par-
ticular, was made possible thanks to the PETSc framework, 
a library that provides modulable numerical algorithms. The 
interfacing between PETSc and the co-simulation frame-
work dealing with the systems, interfaces and polynomial 
representations will be detailed.

2  Formalism and notations

2.1  A word on the JFM accronym

In the whole paper, the JFM abbreviation will denote jaco-
bian-free versions of iterative methods that are designed to 
bring a given function (the so-called callback) to zero and 
that normally require the computation of the jacobian matrix 
of the callback function. In particular, a fixed-point method 
does not meet these criteria: it is not a JFM, contrary to 
matrix-free versions of the Newton method, the Anderson 
method [1] or the non-linear GMRES method [10].

2.2  General notations

The set Ma,b(A) will represent the set of matrices of a rows 
and b columns with its coefficients in the set A.

In this paper, we will focus on explicit systems. In other 
words, we will consider that every system in the co-simula-
tion is a dynamical system corresponding to an ODE (Ordi-
nary Differential Equation). The time-domain of the ODEs 
considered will be written [tinit , tend[ , and the variable t will 
denote the time.

Let’s consider nsys ∈ ℕ∗ systems are involved: we will use 
the index k ∈ [[1, nsys]] to denote the kth system, and nst,k , 
nin,k , and nout,k will respectively denote the number of state 
variables, the number of inputs, and the number of outputs 
of system k.

The time-dependant vectors of states, inputs and 
outputs of system k will, respectively, be written 
xk ∈ L([tinit , tend[,ℝnst,k )  ,  uk ∈ L([tinit , tend[,ℝnin,k )  ,  a n d 
yk ∈ L([tinit , tend[,ℝnout,k ) where L(A, B) denotes the set of 
functions of domain A and co-domain B. We can write the 
ODE form of the system k:

Please note that co-simulation is mainly interesting on 0D 
systems. Indeed, CFD systems for instance can be split in 
term of physics, generating systems coupled on every point 
in space. This would generate a very high number of inter-
faces nin,k and nout,k for all k in [[1, nsys]] . Although co-simu-
lation can work on such cases, we will focus on 0D systems 
(such as the test-cases presented in Sect. 5) as co-simulation 
becomes relevant when the stiffness of the systems are local 
on each of them, and where the interface variables (inputs 
and outputs) are smooth and relatively few.

(1)
{

ẋk(t) = fk(t, xk(t), uk(t))

yk(t) = gk(t, xk(t), uk(t))
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Let nin,tot and nout,tot respectively be the total amount of 
inputs 

∑nsys

k=1
nin,k and the total amount of outputs 

∑nsys

k=1
nout,k.

The total input and the total output vectors are simply 
concatenations of input and output vectors of every system. 
They will be denoted by underlined vectors. The underline 
will denote a quantity “upon every subsystem”.

To illustrate the notations introduced above, an example is 
given further in this paper, in Fig. 3.

Finally, a tilde symbol ̃ will be added to a functional 
quantity to represent an element of its co-domain. exempli 
gratia, y ∈ L([t[N], t[N+1][,ℝ) , so we can use ỹ to represent 
an element of ℝnout,tot.

2.3  Extractors and rearrangement

To easily switch from global to local inputs, extractors are 
defined. For k ∈ [[1, nsys]] , the extractor Eu

k
 is the matrix 

defined by (3).

where ∀n ∈ ℕ, In denotes the identity matrix of size n by n.
The extractors enable to extract the inputs of a given sys-

tem from the global inputs vector with a relation of the form 
ũk = Eu

k
ũ . We have: ∀k ∈ [[1, nsys]], E

u
k
∈ Mnin,k ,nin,tot

({0, 1}).
A rearrangement operator will also be needed to han-

dle concatenations of outputs and output derivatives. 
For this purpose, we will use the rearrangement matrix 
Ry ∈ Mnout,tot ,nout,tot

({0, 1}) defined blockwise in (4).

The Ry operator makes it possible to rearrange the outputs 
and output derivatives with a relation of the form (5).

(2)
u(t) = (u1(t)

T ,… , unsys(t)
T )T ∈ L([tinit , tend[,ℝnin,tot )

y(t) = (y1(t)
T ,… , ynsys (t)

T )T ∈ L([tinit , tend[,ℝnout,tot )

(3)
Eu
k
=

�
0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

���
�
Inin,k

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

��� 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�

nin,k ×
∑k−1

l=1
nin,l nin,k × nin,k nin,k ×

∑nsys

l=k+1
nin,l

(4)

Ry =
�
R
y

K,L

�
K ∈ [[1, 2 nsys]]

L ∈ [[1, 2 nsys]]

where

R
y

K,L
=

⎧⎪⎨⎪⎩

Inout,K if K ⩽ nsys and L = 2K − 1

Inout,K−nsys
if K > nsys and L = 2(K − nsys)

0 otherwise

As explained in Sect.  2.2, a reduced number of inputs 
and outputs is advised. On the extractors and rearrange-

ment operators, a high number of interface variables will 
produce large matrices. However, the operations implying 
such matrices will not be strongly impacted as they are not 
explicitely constructed in practice. Indeed, these operators 
help to define the mathematical formalism (namely the call-
back function, further introduced in Sect. 3.2) yet in prac-
tice the application of the extractor operators can be done 
while communicating with a simple call to ���_�������� 
function, and the application of the rearrangement opera-
tor can be done while communicating with a simple call to 
���_������� function (such workflow will be presented 
further in this paper and illustrated in Fig. 7). Lastly, in the 
implementation, the Eu

k
 (for all k in [[1, nsys]] ) and Ry matrices 

will never be assembled.

2.4  Time discretization

In the context of co-simulation, the gk and fk functions in 
(1) are usually not available directly. Thus, several co-simu-
lation steps, the so-called “macro-steps”, are made between 
tinit and tend . Let’s introduce the notations of the discrete ver-
sion of the quantities introduced in Sect. 2.2.

A macro-step will be defined by its starting and ending 
times, respectively denoted as [t[N], t[N+1]] for the N th macro-
step. The subscript [N] will be written with square brackets to 

(5)

⎛
⎜⎜⎜⎜⎜⎜⎝

ỹ

̃̇y

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ỹ1
ỹ2
⋮

ỹnsys
̃̇y1
̃̇y2
⋮

̃̇ynsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Inout,1 0 0 0 ⋯ 0 0

0 0 Inout,2 0 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ Inout,nsys
0

0 Inout,1 0 0 ⋯ 0 0

0 0 0 Inout,2 ⋯ 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 ⋯ 0 Inout,nsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

���������������������������������������������������

Ry

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ỹ1
̃̇y1
ỹ2
̃̇y2
⋮

ỹnsys
̃̇ynsys

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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avoid confusion with power exponents (exempli gratia: t2 ). 
The macro-steps define a partition of the time-domain, as 
described in (6) and Fig. 1.

Let �t[N] denote the size of the Nth macro-step:

Let �  denote the set of possible macro-steps.

An element of this set is a macro-step: for instance � ∈ �  
with � = [t[N], t[N+1][.

On a given macro-step [t[N], t[N+1][ , N ∈ [0,Nmax] , for all 
systems, the restrictions of the piecewise equivalents of uk 
and yk will be denoted by u[N]

k
 and y[N]

k
 respectively. In case 

several iterations are made on the same step, we will refer 
to the functions by a left superscript index m. Finally, we 
will denote the coordinate of these vectors with an extra 
subscript index.

In (9), mmax(N) denotes the number of iterations (minus one) 
done on the N th macro-step. mmax(N) across N can be plotted 
in order to see where the method needs to proceed more or 
less iterations.

All derived notations introduced in this subsection can 
also be applied to the total input and output vectors.

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[tinit , tend[ =

Nmax−1�
N=0

[t[N], t[N+1][

t[0] = tinit

t[Nmax] = tend

∀N ∈ [[0,Nmax − 1]], t[N+1] > t[N]

(7)

⎧
⎪⎪⎨⎪⎪⎩

∀N ∈ [[0,Nmax − 1]], 𝛿t[N] = t[N+1] − t[N] > 0

Nmax−1�
N=0

𝛿t[N] = tend − tinit

(8)𝕋
𝛥
= {[a, b[ | tinit ⩽ a < b ⩽ tend}

(9)

∀k ∈ [[1, nsys]],∀N ∈ [[0,Nmax]], ∀m ∈ [0,mmax(N)],

∀j ∈ [[1, nin,k]],
[m] u

[N]

k,j
∈ L([t[N], t[N+1][,ℝ)

∀i ∈ [[1, nout,k]],
[m] y

[N]

k,i
∈ L([t[N], t[N+1][,ℝ)

Indices 𝚤 and 𝚥 in (10) will be called global indices in oppo-
sition to the local indices i and j in (9).

2.5  Step function

Let Sk, k ∈ [[1, nsys]] be the ideal step function of the kth sys-
tem, that is to say the function which takes the system to its 
future state one macro-step forward.

In practice, the state vector x̃ will not be explicited. Indeed, 
it will be embedded inside of the system k and successive 
calls will either be done:

• with � beginning where the � at the previous call of Sk 
ended (moving on),

• with � beginning where the � at the previous call of Sk 
started (step replay),

• with � of the shape [tinit , t[1][ with t[1] ∈]tinit , tend] (first 
step).

Moreover, the uk argument only needs to be defined on 
domain � (not necessarily on [tinit , tend[ ). Thus, Sk will not 
be considered in the method, but the Ŝk function (practical 
step function) defined hereafter will be considered instead. 
Despite Ŝk is not properly mathematically defined (the 
domain depends on the value of one of the arguments: � and 
some quantities are hidden: the states), it does not lead to 
any problem, considering the hypotheses above.

(10)

∀N ∈ [[0,Nmax]], ∀m ∈ [[0,mmax(N)]],

∀𝚥 ∈ nin,tot,
[m] u

[N]
𝚥

∈ L([t[N], t[N+1][,ℝ)

∀𝚤 ∈ nout,tot,
[m] y

[N]
𝚤

∈ L([t[N], t[N+1][,ℝ)

(11)

Sk ∶

{
𝕋 × L([tinit , tend[,ℝnin,k ) ×ℝnst,k → ℝnout,k ×ℝnst,k

(𝜏, uk, x̃) ↦ Sk(𝜏, uk, x̃)

(12)

Ŝk ∶

{
𝕋 × L(𝜏,ℝnin,k ) ↦ ℝnout,k

(𝜏, uk) ↦ Ŝk(𝜏, uk)

satisfying

Ŝk([t
[N], t[N+1][, [m]u

[N]

k
) = [m]y

[N]

k
(t[N+1])

Fig. 1  Partition of the time 
domain in macro-steps
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The Ŝk function is the one available in practice, namely in the 
FMI (Functional Mock-up Interface) standard.

2.6  Extended step function

The values of the output variables might not be sufficient for 
every co-simulation scheme. It is namely the case for both 
classical IFOSMONDI and IFOSMONDI-JFM. Indeed, the 
time-derivatives of the outputs are also needed.

Let ̂̂Sk be the extension of Ŝk returning both the output 
values and derivatives.

To evaluate ̂̂Sk , system k is integrated over the time-domain 
� (first argument) with inputs given by the second argument: 
vectorial function (of dimension nin,k ) of the time, and the 
values and derivatives of the outputs (vectorial function of 
the time, of dimension nout,k ) are returned, evaluated at the 
time corresponding to the end of the first argument ( sup(�) ). 
Figure 2 presents an example of this workflow.

2.7  Connections

The connections between the systems will be denoted by 
a matrix filled with zeros and ones, with nout,tot rows and 
nin,tot columns denoted by � . Please note that if each out-
put is connected to exactly one input, � is a square matrix. 
Moreover, it is a permutation matrix. Otherwise, if an output 
is connected to several inputs, more than one 1 appears at 
the corresponding row of � . Without loss of generality, let’s 

(13)

̂̂
Sk ∶

�
𝕋 × L(𝜏,ℝnin,k ) ↦ ℝnout,k ×ℝnout,k

(𝜏, uk) ↦
̂̂
Sk(𝜏, uk)

satisfying

̂̂
Sk([t

[N], t[N+1][, [m]u
[N]

k
) =

⎛
⎜⎜⎜⎝

[m]y
[N]

k
(t[N+1])

d [m]y
[N]

k

dt
(t[N+1])

⎞⎟⎟⎟⎠

consider that there can neither be more nor less than one 1 
on each column of � considering that an input can neither 
be connected to none nor several outputs. Indeed, a system 
with an input connected to nothing is not possible (a value 
has to be given), and a connection of several outputs in the 
same input can always be decomposed regarding a relation 
(sum, difference, ...) so that this situation is similar to dis-
tinct inputs connected to a single output each, with these 
inputs are combined (added, substracted, ...) inside of the 
system considered.

An example of a connection matrix is presented in Fig. 3.
The dispatching will denote the stage where the inputs are 

generated from their connected inputs, using the connections 
represented by �.

Analogously to the extractor and rearrangement operators 
introduced in Sect. 2.3, the � matrix does not need to be 
explicitly constructed in practice. Indeed, the implementa-
tion only needs to know the connections to proceed with the 
dispatching (15).

The coupling function (16) will denote the absolute dif-
ference between corresponding connected variables in a 
total input vector and a total output vector. In other words, 
it represents the absolute error between a total input vector 
and the dispatching of a total output vector. The � subscript 
does not correspond to a quantity, it is a simple notation 
inherited from a “Lagrange multipliers” approach of system 
coupling [14].

(14)
∀𝚤 ∈ nout,tot, ∀𝚥 ∈ nin,tot,

𝛷𝚤,𝚥 =

{
1 if output 𝚤 is connected to input 𝚥

0 otherwise

(15)ũ = 𝛷T ỹ

(16)g𝜆 ∶

{
ℝnin,tot ×ℝnout,tot → ℝnin,tot

(ũ, ỹ) ↦ |ũ −𝛷T ỹ|

Fig. 2  Extended step function’s 
workflow visualization on an 
example where system k has 2 
inputs ( nin,k = 2 ), 2 states, and 2 
outputs ( nout,k = 2)
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The coupling condition (17) is the situation where every 
output of the total output vector corresponds to its connected 
input in the total input vector.

3  IFOSMONDI‑JFM method

3.1  Modified extended step function

As in classical IFOSMONDI [6], the IFOSMONDI-JFM 
method preserves the C1 smoothness of the interface vari-
ables at the communication times (t[N])N∈[[1,Nmax−1]]

 . Thus, 
when a time t[N] has been reached, the input functions for 
every system will all satisfy the property (18) illustrated in 
Fig. 4.

(17)g𝜆(ũ, ỹ) = 0ℝnin,tot

The IFOSMONDI-JFM method also represents the inputs 
as 3rd order polynomial (maximum) to satisfy the smooth-
ness condition (18) and to respect imposed values and deriv-
atives at t[N+1] for every macro-step.

Knowing these constraints, it is possible to write a speci-
fication of the practical step function ̂̂Sk in the IFOSMONDI-
JFM case (also applicable in the classical IFOSMONDI 
method):

where the three cases discussed in Sect. 2.5 have to be 
considered.

Once each of these cases has been detailed, Figs. 5 and 6 
will show the succession of such cases.

3.1.1  Case 1: Moving on

In this case, the last call to �k was done with a � ∈ �  ending 
at current t[N] . In other words, the system k “reached” time 
t[N] . The inputs were, at this last call: [mmax(N−1)]u

[N−1]

k
.

To reproduce a behavior analog to that of the classical 
IFOSMONDI method, the inputs [0]u[N]

k
 will be defined as 

the 2nd order polynomial (or less) satisfying the three fol-
lowing constraints:

(18)

∀k ∈ [[1, nsys]], ∀m ∈ [[0,mmax(N)]],

⎧
⎪⎨⎪⎩

[m]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N])

d [m]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N])

(19)𝜁k ∶

{
𝕋 ×ℝnin,k ×ℝnin,k ↦ ℝnout,k ×ℝnout,k

(𝜏, ũk, ̃̇uk) ↦ 𝜁k(𝜏, ũk, ̃̇uk)

Fig. 3  Example of a 3-system 
co-simulation model with its 
interfaces and its � matrix

Fig. 4  C1 smoothness constraints at the left of � for jth input of system 
k 
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The two first constraints guarantee the smoothness property 
(18), and the third one minimizes the risk of out-of-range 
values (as in the classical IFOSMONDI method).

In this case, �k in (19) is defined by the specification (21).

2nd and 3rd arguments of �k are unused.

(20)

[0]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N])

d [0]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N])

[0]u
[N]

k
(t[N+1]) = [mmax(N−1)]u

[N−1]

k
(t[N])

(21)
𝜁k([t

[N], t[N+1][, ⋅, ⋅) = ̂̂
Sk([t

[N], t[N+1][, [0]u
[N]

k
���

)

computed with (20)

3.1.2  Case 2: Step replay

In this case, the last call to �k was done with a � ∈ �  starting 
at current t[N] . In other words, the system did not manage 
to reach the ending time of the previous � (either because 
the method did not converge, or because the step has been 
rejected, or another reason).

Two particular subcases have to be considered here: either 
the step we are computing is following the previous one in 
the iterative method detailed after this section, or the pre-
vious iteration has been rejected and we are trying to re-
integrate the step starting from � with a smaller size �t[N].

3.1.2.1 Subcase 2.1: Following a previous classical step In 
this subcase, the last call of �k was not only done with the 
same starting time, but also with the same step ending time 
t[N+1] . The inputs were, at this last call: [m−1]u[N]

k
 with m ⩾ 1 , 

and satisfied the two conditions at t[N] of (21).

Fig. 5  Workflow of the calibra-
tion of the inputs, visualization 
on a single given jth input of a 
given system k, and algorithm’s 
tasks in transitions between 
cases. This figure does not rep-
resent the whole method: it only 
focuses on the inputs calibration

Fig. 6  Focus on a single input 
j of system k: on the co-simu-
lation step � , it can be seen that 
the constraints at the beginning 
of the steps come from the 
last iteration of the previous 
co-simulation step, and the con-
straints at the end of the steps 
come from the method, or are 
artificial (for the first iteration)
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The jacobian-free iterative method will ask for given 
input values ũk and time-derivatives ̃̇uk that will be used as 
constraints at t[N+1] , thus [m]u[N]

k
 will be defined as the 3rd 

order polynomial (or less) satisfying the four constraints 
depicted in (22).

The two firsts constraints ensure the (18) smoothness prop-
erty, and the third and fourth one will enable the iterative 
method to find the best values and derivatives to satisfy the 
coupling condition.

In this subcase, �k in (19) is defined by the specification 
(23).

3.1.2.2 Subcase 2.2: Re‑integrate a  step starting from   t[N] 
but with different ıt[N] than at the previous call of �k In this 
subcase, current t[N+1] is different from sup (�) with � being 
the one used at the last call of �k.

As it shows that a step rejection just occurred, we will 
simply do the same than in case 1, as if we were moving on 
from t[N] . In other words, all calls to �k with � starting at t[N] 
are “forgotten”.

P l e a s e  n o t e  t h a t  [mmax(N−1)]u
[N−1]

k
(t[N])  a n d 

d [mmax(N−1)]u
[N−1]

k

dt
(t[N]) can be retrieved using the values and 

derivatives constraints at t[N] of the inputs at the last call of 
�k thanks to the smoothness constraint (18).

3.1.3  Case 3: First step

In this particular case, we will do the same as in the other 
cases, except that we would not impose any constraint for 
the time-derivative at tinit . That is to say:

• at the first call of �k , we have N = m = 0 , we will only 
impose [0]u[0]

k
(tinit ) = [0]u

[0]

k
(t[1]) = uinit

k
 to have a zero 

order polynomial satisfying the initial conditions uinit
k

 
(supposed given),

• at the other calls, case 2 will be used without considering 
the constraints for the derivatives at tinit (this will lower 
the polynomial’s degrees). For (22), the first condition 
becomes [m]u[N]

k
(tinit ) = uinit

k
 , the second one vanishes, and 

(22)

[m]u
[N]

k
(t[N]) = [mmax(N−1)]u

[N−1]

k
(t[N]) = [m−1]u

[N]

k
(t[N])

d [m]u
[N]

k

dt
(t[N]) =

d [mmax(N−1)]u
[N−1]

k

dt
(t[N]) =

d [m−1]u
[N]

k

dt
(t[N])

[m]u
[N]

k
(t[N+1]) = ũk

d [m]u
[N]

k

dt
(t[N+1]) = ̃̇uk

(23)
𝜁k([t

[N], t[N+1][, ũk, ̃̇uk) =
̂̂
Sk([t

[N], t[N+1][, [m]u
[N]

k
���

)

computed with (22)

the third ans fourth ones remain unchanged. For the sub-
c a s e  2 . 2 ,  i t  c a n  b e  c o n s i d e r e d  t h a t 
[mmax(−1)]u

[−1]

k
(tinit ) = uinit

k
 , and 

d [mmax(−1)]u
[−1]

k

dt
(tinit ) will not 

be needed as it is a time-derivative in tinit.

Finally, we have �k defined in every case, wrapping both the 
computation of the polynomial inputs and the integration 
done with ̂̂Sk.

The workflow consisting in the succession of the cases 
detailed above can be visualized in Fig. 5. An example on 
a given single input of a given single system is presented in 
Fig. 6 on 2 successive co-simulation steps. Squared number 
1 to 6 denote the order of the successive input computations.

Until here, the polynomial inputs computation stage dur-
ing an evaluation of �k for k ∈ [[1, nsys]] has been detailed 
among all the possible cases. However, the constraints at 
the end of the co-simulation steps have been described as 
“coming from the method”. Indeed, the JFM will decide of 
the constraints to use as they will exactly be the variables of 
the function to zero (the aforementioned callback function, 
see Sect. 3.2).

3.2  Iterative method’s callback function

The aim is to solve the co-simulation problem by using a 
jacobian-free version of an iterative method that usually 
requires a jacobian computation (see Sect. 2.1). Modern 
matrix-free versions of such algorithms make it possible to 
avoid perturbating the systems and re-integrating them for 
every input, as done in [14], to compute a finite-differences 
jacobian matrix. This saves a lot of integrations over each 
macro-step and saves time.

Nevertheless, on every considered macro-step � , a func-
tion to be brought to zero has to be defined. This so-called 
JFM’s callback (standing for Jacobian-Free Method’s call-
back) presented hereafter will be denoted by �� . In zero-
order hold co-simulation, this function if often ũ −𝛷T ỹ (or 
equivalent) where ỹ are the output at t[N+1] generated by con-
stant inputs ũ over [t[N], t[N+1][.

In IFOSMONDI-JFM, we will only enable to change the 
inputs at t[N+1] , the smoothness condition at t[N] guarantee-
ing that the coupling condition (17) remains satisfied at t[N] 
if it was satisfied before moving on to the step [t[N], t[N+1][ . 
The time-derivatives will also be considered to maintain 
C1 smoothness, so the coupling condition (17) will also be 
applied to these time-derivatives.

Finally, the formulation of the JFM’s callback for IFOS-
MONDI-JFM is given in (24).
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3.2.1  Link with the fixed‑point implementation

The formulation (24) can be used to represent the expression 
of the fixed-point �� function. The latter has been introduced 
in classical IFOSMONDI algorithm [6] where a fixed-point 
method was used instead of a JFM one.

We can now rewrite a proper expression of �� including 
the time-derivatives.

�� was referred as �  in [6] and did not include the deriva-
tives in its formulation, yet the smoothness enhancement 
done by the Hermite interpolation led to an underlying use 
of these derivatives.

When the result of the mth iteration is available, a fixed-
point iteration on macro-step � = [t[N], t[N+1][ is simply done 
by:

3.3  First and last integrations of a step

The first iteration of a given macro-step � ∈ �  is a particular 
case to be taken into account. Considering the breakdown 
presented in Sect. 2.5, this corresponds to case 1, case 2 
subcase 2.2, case 3 first bullet point, and case 3 second bullet 
point when falling into subcase 2.2.

All these cases have something in common: they denote 
calls to �k using a � argument that has never been used in 
a previous call of �k . In these cases, the latter function is 
defined by (21).

For this reason, the first call of �� for a given macro-step 
� will be completed before applying the JFM. Then, every 
time the JFM will call �� , the (�k)k∈[[1,nsys]] functions called by 
�� will behave the same way.

Once the JFM method ends, if it converged, a last call to 
�� is made with the solution 

(
([mmax(N)]ũ[N])T , ([mmax(N)] ̃̇u[N])T

)T 

(24)𝛾𝜏 ∶

⎧
⎪⎪⎨⎪⎪⎩

ℝnin,tot ×ℝnin,tot → ℝnin,tot ×ℝnin,tot

�
ũ
̃̇u

�
↦

�
ũ
̃̇u

�
−

�
𝛷T 0

0 𝛷T

�
Ry

⎛
⎜⎜⎜⎝

𝜁1
�
𝜏,Eu

1
ũ,Eu

1
̃̇u
�

⋮

𝜁nsys

�
𝜏,Eu

nsys
ũ,Eu

nsys
̃̇u
�
⎞
⎟⎟⎟⎠

(25)

𝛹𝜏 ∶

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

ℝnin,tot ×ℝnin,tot → ℝnin,tot ×ℝnin,tot�
ũ
̃̇u

�
↦

�
ũ
̃̇u

�
− 𝛾𝜏

��
ũ
̃̇u

��

=

�
𝛷T 0

0 𝛷T

�
Ry

⎛
⎜⎜⎜⎝

𝜁1
�
𝜏,Eu

1
ũ,Eu

1
̃̇u
�

⋮

𝜁nsys

�
𝜏,Eu

nsys
ũ,Eu

nsys
̃̇u
�
⎞⎟⎟⎟⎠

(26)
(

[m+1]ũ
[m+1] ̃̇u

)
∶= 𝛹𝜏

((
[m]ũ
[m] ̃̇u

))

for the systems to be in a good state for the next step (as 
explained in Sect. 2.5, the state of a system is hidden but 
affected at each call to a step function).

3.4  Step size control

The step size control is defined with the same rule-of-thumbs 
than the one used in [6]. The adaptation is not done on an 
error-based criterion such as in [13], but instead with a 
predefined rule based on the convergence of the iterative 
method (yes/no).

A minimal step size �tmin ∈ ℝ+
∗
 , a maximal step size 

�tmax ∈ ℝ+
∗
 and an initial step size �tinit ∈ [�tmin, �tmax] are 

defined for any simulation with IFOSMONDI-JFM method. 
At certain times (the communication times), the method will 
be allowed to reduce this step to help the convergence of 
the JFM.

The convergence criterion for the iterative method is 
defined by the rule (27).

When the iterative method does not converge on the step 
[t[N], t[N+1][ , either because a maximum number of iterations 
is reached or for any other reason (linear search does not 
converge, a Krylov internal method finds a singular matrix, 
...), the step will be rejected and retried on the half (28) with-
out subceeding �tmin . Otherwise, once the method converged 
on [t[N], t[N+1][ , the next integration step � tries to increase 
the size of 30% , without exceeding �tmax.

Once the iterative method exits on �old , the next step �new 
is defined by expression (28).

When �abs = �rel , these values will be denoted by �.
When �tmax = �tinit , these values will be denoted by �tref.

(27)

Given (𝜀abs, 𝜀rel) ∈ (ℝ∗
+
)2,

convergence is reached when

�����
𝛾𝜏

�
ũ
̃̇u

������
<
�����

�
ũ
̃̇u

������
𝜀rel +

�������

⎛⎜⎜⎝

1

⋮

1

⎞⎟⎟⎠

�������
𝜀abs

(28)�new =

⎧
⎪⎪⎨⎪⎪⎩

�
sup(�old), min

�
tend, sup(�old) +min

�
�tmax, 1.3

�
sup(�old) − inf(�old)

����
if convergence (27) was reached

�
inf(�old), inf(�old) +max

�
�tmin,

sup(�old) − inf(�old)

2

��
otherwise (divergence)
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When the step size cannot be reduced as �tmin is reached, 
the co-simulation stops with an error. One can retry with a 
smaller �tmin , or with �tmin = 0.

4  Note on the implementation

Our implementation is based on an orchestrator-worker 
architecture, where nsys + 1 processes are involved. One of 
them is dedicated to global manipulations: the orchestrator. 
It is not responsible of any system and only deals with global 
quantities (such as the time, the step � , the ũ and ỹ vectors 
and the corresponding time-derivatives, and so on). The nsys 
remaining processes, the workers, are responsible for one 
system each. They only deal with local quantities related to 
the system they are responsible for.

4.1  Parallel evaluation of � using MPI

An evaluation of �� consists in evaluations of the nsys func-
tions (�k)k∈[[1,nsys]] , plus some manipulations of vectors and 
matrices (24). An evaluation of a single �k for a given 
k ∈ [[1, nsys]] consists in polynomial computations and an 
integration (21) (23) through a call of the corresponding ̂̂Sk 
function (13).

A single call to �� can be evaluated parallelly by nsys pro-
cesses, each of them carrying out the integration of one of 
the systems. To achieve this, the MPI standard (standing 
for Message Passing Interface has been used, as the latter 
provides a routine to handle multi-process communications 
of data.

As the kth system only needs Eu
k
ũ and Eu

k
̃̇u (see (3)) 

among ũ and ̃̇u , the data can be send in an optimized man-
ner from the orchestrator process to nsys workers by using the 
���_�������� routine.

Analogously, each worker process will have to communi-
cate their contribution both to the outputs and their deriva-
tives (assembling the block vector at the right of the expres-
sion (24)). This can be done by using the ���_������� 
routine.

Finally, the communication of global quantities such as � , 
m, the notifications of statuses and so on, can be done easily 
thanks to the ���_��������� routine.

In all cases, the communications are organized in a “bus” 
architecture (all workers communicate with the orchestrator, 
but not to one another). Synchronization points before and 
after each evaluation of all �k functions for all k in [[1, nsys]] 
(in a single call of �� ) would generate, in the worst case 
(when every system has connection with every other sys-
tem), nsys(nsys − 1) communications for every input/output 
dispatching or gathering in a point-to-point architecture, 
whereas only 2 nsys communications are needed for a bus 

architecture, with the same total amount of exchanged data. 
Thus, our code uses the bus architecture.

4.2  Using PETSc for the JFM

PETSc [2, 3] is a library used for parallel numerical com-
putations. For this paper, the several matrix-free ver-
sions of the Newton method and variants implemented in 
PETSc were very attractive. Indeed, the flexibility of this 
library at runtime enables the use of command-line argu-
ments to control the resolution: −����_�� orders the use 
of a matrix-free non-linear solver, −����_������������ , 
�������� [1] and ������ [10] are various usable solv-
ing methods that can be used as JFMs, −����_���� , 
−����_���� and −����_���_�� control the convergence 
criterion, −����_���������_������ , −����_������� 
and −���_���� produce information and statistics about 
the run, ...

This subsection proposes a solution to use these PETSc 
implementations in a manner that is compliant with the par-
allel evaluation of the JFM’s callback (24). This implemen-
tation has been used to generate the results of Sect. 5.

First of all, PETSc needs a view on the environment of 
the running code: the processes, and their relationships. In 
our case, the nsys + 1 processes of the orchestrator-worker 
architecture are not dedicated to the JFM. Thus, PETSc 
runs on the orchestrator process only. In terms of code, 
this can be done by creating PETSc objects referring to 
�����_����_���� communicator on the orchestrator pro-
cess, and creating no PETSc object on the workers.

The callback �� implements internally the communica-
tions with the workers, and is given to the PETSc ���� 
object. The ���� non-linear solver will call this callback 
blindly, and the workers will be triggered behind the scene 
for integrations, preceded by the communications of the (
([mmax(N)]ũ[N])T , ([mmax(N)] ̃̇u[N])T

)T values asked by the ���� 
and followed by the gathering of the outputs and related 
derivatives. The latters are finally returned to PETSc by the 
callback on the orchestrator side, after reordering and dis-
patching them as in (24).

4.3  JFM’s callback implementation

In this section, a suggestion of implementation is proposed 
for the �� function, both on the orchestrator side and on the 
workers side. Precisions about variables in the snippets are 
given below them.

By convention, the process of rank 0 is the orchestra-
tor, and any process of rank k ∈ [[1, nsys]] is responsible of 
system k.
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Snippet 1. JFM’s callback on the orchestrator side (γτ )
PetscErrorCode JFM_callback(SNES /* snes */, Vec u_and_du , Vec res , void *

ctx_as_void)
{

MyCtxType *ctx = (MyCtxType *) ctx_as_void;
const int order = DO_A_STEP;
PetscScalar const * pscalar_u_and_du;
PetscScalar * pscalar_res;
size_t k;

// conversion PetscScalar -> C double
VecGetArrayRead(u_and_du , &pscalar_u_and_du);
for (k = 0; k < ctx ->n_in_tot * 2; k++)

ctx ->double_u_and_du[k] = (double)(pswork_x[k]);
VecRestoreArrayRead(u_and_du , &pscalar_u_and_du);

// Notify workers that we want them to run ,
// and telling them what tau is
MPI_Bcast (&order , 1, MPI_INT , 0, MPI_COMM_WORLD);
MPI_Bcast (&(ctx ->t_N), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Bcast (&(ctx ->t_Np1), 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

// Apply extractors and communicate at the same time:
// values , then derivatives
MPI_Scatterv(ctx ->double_u_and_du , ctx ->in_sizes , ctx ->in_offsets ,

MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Scatterv(ctx ->double_u_and_du + ctx ->n_in_tot , ctx ->in_sizes , ctx ->

in_offsets , MPI_DOUBLE , NULL , 0, MPI_DOUBLE , 0, MPI_COMM_WORLD);

/* Workers proceed integration here */

// Assemble vector R^{\ bar{y}} * (\ zeta_1^T, ... \zeta_2^T)^T directly
// while communicating values and derivatives
MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work1_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Gatherv_outputs(MPI_IN_PLACE , 0, MPI_DOUBLE , ctx ->work2_n_out_tot , ctx

->out_sizes , ctx ->out_offsets , MPI_DOUBLE , 0, MPI_COMM_WORLD);

// Dispatching ( equivalent of [[ Phi^T, 0], [0, Phi^T]])
dispatch(ctx ->work1_n_out , ctx ->out_sizes , ctx ->n_sys ,

ctx ->double_res , ctx ->in_sizes , ctx ->connections);
dispatch(ctx ->work2_n_out , ctx ->out_sizes , ctx ->n_sys ,

ctx ->double_res + ctx ->n_in_tot , ctx ->in_sizes , ctx ->connections);

// Difference between original entries and permuted outputs
for (k = 0; k < ctx ->n_in_tot * 2; k++)

ctx ->double_res[k] = ctx ->double_u_and_du[k] - ctx ->double_res;

// conversion C double -> PetscScalar
VecGetArray(res , &pscalar_res);
for (k = 0; k < ctx ->n_in_tot * 2; k++)

pswork_f[k] = (PetscScalar)(ctx ->double_res[k]);
VecRestoreArray(res , &pscalar_res);

return 0;
}

On the worker’s side, the corresponding running code 
section is the one in Snippet 2.
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Snippet 2. JFM’s callback on the worker side (ζk and communications)
/* ... */

while (1)
{

MPI_Bcast (&order , 1, MPI_INT , 0, me__ ->comm);
if (order != DO_A_STEP)

break;

// get tau
MPI_Bcast (&t_N , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Bcast (&t_Np1 , 1, MPI_DOUBLE , 0, MPI_COMM_WORLD);

// receive relevant inputs and derivatives for this system
MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,

sys_inputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);
MPI_Scatterv(NULL , ctx ->in_sizes , ctx ->in_offsets , MPI_DOUBLE ,

sys_dinputs , sys_n_in , MPI_DOUBLE , 0, me__ ->comm);

/* integration : */
zeta_do_a_step(t_N , t_Np1 , inputs , sys_dinputs , // [in]

sys_outputs , sys_doutputs); // [out]

// send the outputs and derivatives (results of zeta)
MPI_Gatherv_outputs(sys_outputs , sys_n_out , MPI_DOUBLE ,

NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
MPI_Gatherv_outputs(sys_doutputs , sys_n_out , MPI_DOUBLE ,

NULL , NULL , NULL , MPI_DOUBLE , 0, MPI_COMM_WORLD);
}

/* ... */

The aim is not to show the code that has been used to gen-
erate the results of Sect. 5, but to figure out how to combine 
the PETSc and MPI standard (PETSc being based on MPI) 
to implement a parallel evaluation of ��.

In the code snippet  1, the function ���_�������� 
is the one that is given to the PETSc ���� object with 
��������������� . The context pointer ��� can be anything 
that can be used to have access to extra data inside of this 
callback. The principle is: when ��������� is called, the 
callback function which has been given to the ���� object 
will be called an unknown number of times. For this exam-
ple, we suggested a context structure ��������� at least 
containing:

• �_� , �_��� the boundary times of � , id est t[N] and t[N+1] 
(as ������ each),

• �_��_��� the total number of inputs nin,tot (as ����_�),
• ������_�_���_�� an array dedicated to the storage of 

(ũT , ̃̇uT )T (as ������ ∗),
• ��_����� the array containing the number of inputs for 

each process (nin,k)k∈[[0,nsys]] including process 0 (with the 
convention nin,0 = 0 ) (as ��� ∗),

• ��_�������  t h e  m e m o r y  d i s p l a c e m e n t s �∑k

l=1
nin,l

�
k∈[[0,nsys]]

 for inputs scattering for each process 

(as ��� ∗),

• �����_�_���_��� and �����_�_���_��� two arrays of 
size nout,tot for temporary storage (as ������ ∗),

• ���_����� and ���_������� two arrays analogous to 
��_����� and ��_������� respectively, considering the 
outputs,

• �_��� tot number of systems nsys (as ����_�),
• ������_��� an array of size 2 nin,tot dedicated to the stor-

age of the result of �� (as ������ ∗ ), and
• ����������� any structure to represent the connections 

between the systems �T (a full matrix might be a bad 
idea as � is expected to be very sparse).

The function �������� is expected to process the dispatch-
ing (15) of the values given in its first argument into the 
array pointed by its fourth argument.

Please note that the orchestrator process has to explicitly 
send an order different from ��_�_���� (with ���_����� ) 
to notify the workers that the callback will not be called any-
more. Nonetheless, this order might not be sent right after 
the call to ��������� on the orchestrator side. Indeed, if the 
procedure converged, a last call has to be made explicitly in 
the orchestrator (see Sect. 3.3).

Another explicit call to ���_�������� should also be 
explicitly made on the orchestrator side before the call of 
��������� (as also explained in Sect. 3.3).
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Figure 7 presents a schematic view of these two snippets 
running parallelly.

5  Results on test cases

Two test cases will be treated here. The first one is a simple 
case that enables to understand the kind of configurations 
that really benefit from the IFOSMONDI-JFM method (id 
estwhen the function of the fixed-point formulation is not 
contractant), and the second one is an industrial-scale model 

with 148 interface variables that allows the comparison of 
classical IFOSMONDI (based on the fixed-point method), 
IFOSMONDI-JFM and the natural explicit ZOH co-simula-
tion method in terms of time/accuracy trade-off.

5.1  Mechanical model with multiple feed‑through

Difficulties may appear in a co-simulation problem when the 
coupling is not straightforward. Some of the most difficult 
cases to solve are the algebraic coupling (addressed in [8]) 
arising from causal conflicts, and the multiple feed-through, 

Fig. 7  Workflow of the callback function called by SNESSolve: example with nsys = 2 (external first call to the callback is supposed to be 
already made before ��������� is called)
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id estthe case where outputs of a system linearly depend 
on its inputs, and the connected system(s) have the same 
behavior. In some case, this may lead to a non-contractant 
�� function.

This section presents a test case we designed, belonging 
to this second category. The fixed-point convergence can be 
accurately analyzed so that its limitations are highlighted.

Please note that this test case is intentionally simple in 
order to easily enlight the enhancements brought by the 
IFOSMONDI-JFM method compared to the fixed-point 
IFOSMONDI method. Although very simple, this example 
enables to understand the convergence properties of the pro-
posed JFM, as the latter is not objected by the non-contract-
ance of �� (contrary to a fixed-point underlying method like 
in classical IFOSMONDI).

5.1.1  Test case presentation

The test case has been modeled, parameterized and simu-
lated with Simcenter Amesim software, a 0D modeling 
and simulation software developed by Siemens Industry 
Software. The co-simulations have been run with our code 
(implementing fixed-point IFOSMONDI and IFOSMONDI-
JFM algorithms), coupled with the systems modeled in Sim-
center Amesim for underlying ̂̂Sk evaluations (see Fig. 2) 
in �k evaluation (polynomial input computations stage in �k 
happens in our code).

Figure 8 represents a 1-mass test case with a classical 
mechanical coupling on force, velocity and position. These 
coupling quantities are respectively denoted by fc , vc and 
xc . The component on the right represents a damper with a 
massless plate, computing a velocity (and integrating it to 
compute a displacement) by reaction to a force input.

We propose the parameters values in Table 1.
All variables will be denoted by either f, v or x (corre-

sponding to forces, velocities and positions, respectively) 
with an index specifying its role in the model (see Fig. 8).

The predefined force fL is a C∞ function starting from 5 
N and definitely reaching 0 N at t = 2 s. The expression of 
fL is (29) and the visualization of it is presented on Fig. 9.

The expected behavior of the model is presented in 
Table 2 referring to conventionnal directions of Fig. 10.

(29)fL ∶

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

[0, 10] → [0, 5]

t ↦

⎧⎪⎪⎨⎪⎪⎩

5

e−1
e

�� t

2

�2

− 1

�−1

if t < 2

0 if t ⩾ 2

Fig. 8  Mass spring damper with 
damping reaction modelled with 
Simcenter Amesim - Parameters 
are above, variables are below

Table 1  Parameters and initial values of the test case model

Notation Description Value

ML Mass of the body in (S1) 1 kg
KSD Spring rate of the spring in (S1) 1 N/m
DSD Viscosity coefficient in the damper in (S1) 1 N/(m/s)
DD Viscosity coefficient in the damper in (S2) ∈ [0.01, 4]

xL(0) Initial position of the body in (S1) 0 m
vL(0) Initial velocity of the body in (S1) 0 m/s
xD(0) Initial position of the plate in (S2) 0 m
tinit Initial time 0 s
tend Final time 10 s

Fig. 9  Predefined force fL
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The behavior presented in Table 2 might slightly change 
while parameter DD changes (all other parameters being 
fixed, see Table 1).

5.1.2  Equations and eigenvalues of the fixed‑point callback 
��

The displacement of the mass ML is due to the difference 
of the forces applied on its left side ( fL , generated from a 
force source, cf. Fig. 9) and on its right side ( fSD , resulting 
from spring compression/dilatation and damper effect). This 
movement can be computed using the acceleration of the 
mass. Indeed, second Newton’s law gives:

and the spring and damper forces can be expressed the fol-
lowing way:

(30)
v̇L = (fL + fSD)M

−1
L

ẋL = vL

Fig. 10  Test model visualized 
with Simcenter Amesim

Table 2  Main stages of a 
simulation of the test case 
model

Stage Body displacement Plate displacement Description

1 Front Front Positive fL pushes everything
2 Back Front The spring pushes the body

backward as it is close to the plate
3 Back Back The spring pulls the plate backwards as

the body is moving backward with inertia
4 Front Back The spring pulls the body forward as the

inertia made it go too far in the backward
direction

5 Front Front The body is still moving frontward with
inertia, so the compressed spring pushes the
plate forward

Fig. 11  Displacement of the mass ( xL ) for different damping ratios 
of the right damper ( DD ) simulated on a monolithic model (without 
co-simulation). Associated spectral radii of J� are recalled for further 
coupled formulations
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Fig. 12  Error accross �tref with different methods on a contractant 
case ( DD = 4.0 , �(JPsi) = 0.5)—NewtonLS, Ngmres and Anderson 
are matrix-free iterative methods used with the IFOSMONDI-JFM 

algorithm, Fixed-point is the fixed-point IFOSMONDI algorithm, 
and Explicit ZOH is the non-iterative zero-order hold fixed-step co-
simulation
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leading to the expression (32) of the coupled systems.

(31)

fSD = KSD(xC − xL) + DSD(vC − vL)

fC = −fSD
fD = −DD(0 − vC)

fC = fD
vC = fC∕DD

(32)

(S1) ∶

⎧
⎪⎪⎨⎪⎪⎩

�
v̇L
ẋL

�
=

�
−DSD

ML

−KSD

ML

1 0

��
vL
xL

�
+

�
DSD

ML

KSD

ML

0 0

��
vC
xC

�
+

�
fL

ML

0

�

fC =
�
DSD KSD

�� vL
xL

�
+
�
−DSD − KSD

�� vC
xC

�

(S2) ∶

⎧
⎪⎨⎪⎩

ẋD = 0 xD +
1

DD

fC�
vC
xC

�
=

�
0

1

�
xD +

�
1

DD

0

�
fC

.

At a given time t, we can state the jacobian of �� introduced 
in (25) using the expressions of the coupling quantities (32). 

Indeed, the output variables got at a call are at the same time 
than the one at which the imposed inputs are reached (end of 
the macro-step) thanks to the definitions of �k.
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Fig. 13  Error accross �tref with different methods on a non-contractant case ( DD = 0.64 , �(JPsi) = 1.25)—NewtonLS, Ngmres and Anderson are 
matrix-free iterative methods used with the IFOSMONDI-JFM algorithm
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(33)

The framed zeros are “by-design” zeros: indeed, systems 
never produce outputs depending on inputs given to other 
systems. The block called “Block” in (33) depends on the 
methods used to retrieve the time-derivatives of the coupling 
quantities (see (13) and its finite differences version). Nev-
ertheless, this block does not change the eigenvalues of J��
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Fig. 14  Total number of iterations, integrations, and error across 
spectral radius of J� for different methods (Fixed-point corresponds 
to classical IFOSMONDI algorithms, and all other methods are used 

with the IFOSMONDI-JFM version). All co-simulation ran with 
� = 10−4 and �tref = 10−2

Fig. 15  Subsketch inside of a single module of the battery pack: the 6 cells can be seen
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as it is a block-triangular matrix. Indeed, the characteristic 
polynomial of I6 − �J��

 is the product of the determinant 
of the two 3 × 3 blocks on the diagonal of I6 − �J��

 . The 
eigenvalues of J� are:

Hence, the following relation between the parameters 
and the spectral radius can be shown (given DD > 0 and 
DSD = 1 > 0):

We can thus expect that the fixed-point IFOSMONDI co-
simulation algorithm based on a fixed-point method [6] can-
not converge on this model when the damping ratio of the 
component on the right of the model (see Fig. 8) is smaller 
than the damping ratio of the spring-damper component.

We will process several simulations with different values 
of DD leading to different values of �(J��

) . These values and 
the expected movement of the body of the system is plotted 
in Fig. 11.

5.1.3  Results

As the PETSc library enables to easily change the param-
eters of the JFM (as explained in Sect. 4.2), three methods 
have been used in the simulations:

• NewtonLS: a Newton based non-linear solver that uses a 
line search,

• Ngmres: the non-linear generalized minimum residual 
method [10], and

• Anderson: the Anderson mixing method [1]

First of all, simulations have been processed with all these 
JFMs (with parameters exhaustively defined in appendix A) 
within IFOSMONDI-JFM, the fixed-point IFOSMONDI 
algorithm (denoted hereafter as “Fixed-point”), and the 
original explicit zero-order hold co-simulation method 
(sometimes referred to as non-iterative Jacobi). The error is 
defined as the mean of the normalized L2 errors on each state 
variable of both systems on the whole [tinit , tend] domain. The 
reference is the monolithic simulation (of the non-coupled 
model) done with Simcenter Amesim. Such errors are pre-
sented for a contractant case ( DD = 4 N, so �(J��

) = 0.5 ) 
in Fig. 12. For a non-contractant case ( DD = 0.64 N, so 
�(J��

) = 1.25 ), analog plots are presented in Fig. 13.

As expected, the simulations failed (diverged) with fixed-
point method for the non-contractant case. Moreover, the 

(34)

0, +1i

√
DSD

DD

, −1i

√
DSD

DD

(each with a multiplicity of 2)

(35)𝜚
(
J𝛹𝜏

){< 1 if DSD < DD

⩾ 1 if DSD ⩾ DD

values given to the system were too far from physically-
possible values with the explicit ZOH co-simulation algo-
rithm, so the internal solvers of systems (S1) and (S2) failed 
to integrate. These are the reason why these two methods 
lead to no curve on Fig. 13.

Nonetheless, the three versions of IFOSMONDI-JFM 
algorithm keep producing reliable results with an accept-
able relative error (less than 1% ) when �tref ⩾ 0.1 s.

On Figs. 12 and 13, IFOSMONDI-JFM method seems 
to solve the problem with a good accuracy regardless of 
the value of the damping ratio DD . To confirm that, several 
other values have been tried: the ones for which the solu-
tion has been computed and plotted in Fig. 11. The error is 
presented, but also the number of iterations and the number 
of integrations (calls to �k , i.e. calls to �� for IFOSMONDI-
JFM or to �� for fixed-point IFOSMONDI). Although for the 
fixed-point IFOSMONDI the number of iteration is the same 
than the number of integration, for the IFOSMONDI-JFM 
algorithm the number of iterations is the one of the underly-
ing non-linear solver (NewtonLS, Ngmres or Anderson), and 
there might be a lot more integrations than iterations of the 
non-linear method. These results are presented in Fig. 14.

As expected, the threshold of �(J��
) = 1 (id est 

DD = DSD = 1 ) is critical for the fixed-point method. The 
IFOSMONDI-JFM method not only can overpass this 
threshold, but no significant extra difficulty appears to solve 
the problem in the non-contractant cases, except for the 
Ngmres non-linear solver (which failed to converge with 
DD = 0.01 , so with �(J��

) = 10 ). However, regarding the 
Ngmres method, the variant that uses line search converges 
in all cases. Even though the latter requires more integra-
tions than other JFMs, it is more robust to high values of 
�(J��

) . The parameters of this line search are detailed on 
Table 9 in appendix A.

The NewtonLS and Anderson methods show a slightly 
bigger error on this “extreme” case of �(J��

) = 10 , yet it 
stays under 0.001% which is completely acceptable.

Among those two JFMs (NewtonLS and Anderson), 
the trend that can be observed on Fig. 14 shows that New-
tonLS is always more accurate than Anderson, yet it always 
requires a bigger amount of integrations. We can stand that 
IFOSMONDI-JFM is more accuracy-oriented on this model 
when it is based on the NewtonLS JFM, and more speed-
oriented on this model when it is based on the Anderson 
JFM (for the same �tref and � ). For high values of �(J��

) , 
accuracy-oriented simulations are achieved thanks to the 
Ngmres JFM with line search more than the NewtonLS one.

Finally, smaller errors are obtained with IFOSMONDI-
JFM and with less iterations than fixed-point IFOSMONDI. 
Yet, the time consumption is directly linked with the num-
ber of integrations, not with the number of iterations of 
the underlying non-linear solver. The total number of inte-
grations does not increase across the problem difficulty 
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(increasing with �(J��
) ), and the non-linear methods within 

IFOSMONDI-JFM do not even require more integrations 
that the fixed-point one for most of the values of DD for 
which the fixed-point IFOSMONDI algorithm does not fail.

5.2  Industrial‑scale thermal‑electric model

Regarding industrial-scale test cases, it is not always pos-
sible to determine in advance if the fixed-point formulation 

Fig. 16  Battery pack cooling 
system modelled with Sim-
center Amesim (each module 
contains 6 cells as shown on 
Fig. 15)—Monolithical model
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is contractant or not. Indeed, the analytical analysis (as done 
for the first test-case) is not always possible due to the model 
dimensions and its potential non-linear behavior.

Fig. 17  Black-box system of module 2 only: sketch representation of a single system for co-simulation in Simcenter Amesim

Fig. 18  Battery load/unload signal

Fig. 19  Battery temperature distribution at t = tend = 5000 —Arrows 
represent the air flow—Module 1 is on the left and module 10 is on 
the right

Table 3  Results on the Battery pack cooling system with IFOS-
MONDI-JFM

IFOSMONDI-JFM (Anderson)

� = 10−8 � = 10−6 � = 10−4 � = 10−2

Error (in %) 0.001 0.0016 0.0017 0.0035
Elapse time 52′24′′ 12′46′′ 11′28′′ 5′27′′

#iterations 347 189 68 015 56 464 23 229

#integrations 366 702 83 107 71 536 38 301

Average step size (s) 0.831 0.994 0.995 0.995
#rejected steps 734 4 0 0
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For this reason, this subsection introduces a large model 
with 324 state variables across eleven systems, and 148 
interface variables in total (meaning 148 inputs connected 
to 148 outputs in a one-to-one way, making �T a square 
matrix). As the variable of the JFM is the vector of all inputs 
and their derivatives, the JFM solves a problem of size 296.

The problem is compliant with the fixed-point IFOS-
MONDI and the explicit ZOH methods, so that comparisons 
in terms of time/accuracy trade-off can be conducted. This 
analysis is namely possible thanks to the scale of the system, 
making it run non-instantaneously.

5.2.1  Model presentation

The model in an industrial-scale thermal-electric system 
representing a battery pack (represented on Fig. 16) with an 
air cooling system. The battery pack is made of 10 modules 
of 6 cells each (see Fig. 15), all modules being connected by 
several moist airports (to represent airflow as different points 
in space as the air is circulating), thermal connections (rep-
resenting thermal conduction) and electrical connections.

In practice, the need for a co-simulation for this kind of 
model arises when an external tool (simulation and model-
ling platform) provides a black-box system for each module. 
Indeed, in this case, doing a co-simulation is the only way to 
test the battery pack made up of these modules (in a flexible 
configuration regarding the number of modules) regarding 
a given battery load/unload scenario.

In this paper, the monolithic system of Fig. 16 will only 
act as a reference, and we will consider 11 black-box systems 
respectively corresponding to the 10 modules and the exter-
nal load/unload scenario. The sketch of one of the black-box 
module systems is given as example in Fig. 17, and the load/
unload scenario (in the 11th system) is presented in Fig. 18.

The battery pack is a 230 V, 10.4 kWh hybrid vehicle bat-
tery. The cells in each module are 3.84 V, 45 Ah Li-Ion cells. 
The charge and discharge (smooth) steps that can be seen on 
Fig. 18 simulate critical cses where the highest thermal load 
occur (as the battery is submitted to high currents). The pack 
in a 20◦C air environment. Air the airflow (cooling system) 
comes from the bottom of module 1 and exits the pack at 
the top of module 10, the temperature is distributed along 
with the modules and cells like as shown in Fig. 19 at the 

Table 4  Results on the Battery pack cooling system with fixed-point 
IFOSMONDI

Classical IFOSMONDI (fixed-point)

� = 10−8 � = 10−6 � = 10−4 � = 10−2

Error (in %) 0.0017 0.0017 0.0046 0.07
Elapse time 17′10′′ 10′31′′ 5′00′′ 2′37′′

#integrations 103 951 65 350 30 176 17 433

Average step size (s) 0.986 0.995 0.995 0.995
#rejected steps 47 0 0 0

Table 5  Results on the Battery pack cooling system with Explicit 
ZOH

Explicit ZOH

�t = 10−3 �t = 10−2 �t = 10−1 �t = 1 �t = 10

Error (in %) 0.0016 0.0154 0.154 1.806 15.047
Elapse time 10h23′03′′ 1h01′35′′ 9′05′′ 1′09′′ 12′′

#integrations 5 000 000 500 000 50 000 5 000 500
Average step size 

(s)
10−3 10−2 10−1 1 10

Fig. 20  Graphical visualization 
of results in Tables 3, 4 and 5
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end of the 5000 s scenario. This result is obtained with the 
monolithical reference model.

5.2.2  Results

Results have been generated on a HPC cluster so that the 
processes can run in parallel. Indeed, due to the 10 modules 

of the model and the system containing the scenario, the bat-
tery load, and the reference potential, 11 workers are instan-
tiated for a co-simulation. In addition to the orchestrator 
process (see architecture on Fig. 7), a total of 12 processes 
run parallelly.

Due to the small number of integrations required by the 
Anderson method (as it recombines the previously evaluated 

Fig. 21  Two variables of interest in the Battery Pack Cooling model, results for different (co-)simulation methods

Fig. 22  Focus on t ∈ [3730, 3830] of the curves in Fig. 21
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iterates, [1]), this JFM is chosen in IFOSMONDI-JFM. 
The results are obtained with several values or � both with 
IFOSMONDI-JFM and fixed-point IFOSMONDI methods. 

A strong knowledge of the model is not required with 
these methods, yet an idea of the order of magnitude of the 

Fig. 23  Visualization of the connection between the co-simulation 
step size (upper straight curve, right y-scale), the number of integra-
tions (lower straight curve, right y-scale) and a representative variable 

of interest of the system (superimposed red curve with round mark-
ers) in the case of the IFOSMONDI-JFM method applied on the Bat-
tery Pack Cooling system

Fig. 24  Visualization of the connection between the co-simulation 
step size (upper straight curve, right y-scale), the number of integra-
tions (lower straight curve, right y-scale) and a representative vari-

able of interest of the system (superimposed blue curve with triangle 
markers) in the case of the fixed-point IFOSMONDI method applied 
on the Battery Pack Cooling system
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co-simulation step size always helps. For this reason, we 
used the following parameters:

• �tmin = 1 ms, to be able to catch the fast interfaces 
dynamics, if any,

• �tmax = 1 s, to avoid missing events (peaks, slope 
changes, etc...), and

• �tinit = 1 ms for safety reasons (catch high dynamics at 
initialization).

In contrast, the explicit ZOH co-simulation method requires 
the step size to be chosen at the beginning, which implies 
that the user has a strong knowledge of the system. For this 
reason, we ran co-simulations with different values of the 
fixed co-simulation step size �t.

Please note that co-simulation with the explicit ZOH 
method ran with the same architecture than the IFOS-
MONDI methods. In other words, each co-simulation 
required 12 processes to run, regardless of the method. This 
by-design parallelism will therefore not bias the results 
below (Tables 3, 4).

Please note that, in the case of fixed-point IFOSMONDI, 
one iteration corresponds to a single integration (Table 5).

Please note that, in the case of Explicit ZOH, one co-
simulation step corresponds to a single integration.

On the trade-off graph on Fig. 20, the more a co-simula-
tion is valuable, the more it is close to the bottom-left corner, 
meaning that the run is accurate and fast. Every method fol-
lows a well-known phenomenon: the more a co-simulation is 
accurate, the slower it is. Graphically, this means that point 
corresponding to a given method goes on the right on the 
x-axis when they go down on the y-axis.

Nonetheless, both IFOSMONDI methods’ curves are 
lower than the Explicit ZOH’s curve and more on the left. 
This can be interpreted in two equivalent ways:

• at equivalent accuracy as Explicit ZOH, the IFOS-
MONDI methods (fixed-point and JFM) are faster

• at an equivalent computational time as Explicit ZOH, the 
IFOSMONDI methods are more accurate.

In addition, the trade-off curve of IFOSMONDI-JFM is 
lower and more on the right than the trade-off curve of 
fixed-point IFOSMONDI. It means that, with the same � 
convergence criterion, IFOSMONDI-JFM is more accuracy-
oriented than the fixed-point IFOSMONDI method.

Let’s focus on the � = 10−8 cases. The average step size 
was 0.831 s for IFOSMONDI-JFM and 0.986 s for fixed-
point IFOSMONDI, so let’s compare the results with the 
run with the explicit ZOH method with a fixed co-simulation 
step size of 1 s. Two variables of interest are plotted on 
Fig. 21. To see the differences of accuracy between the runs, 
a focus on t ∈ [3730, 3830] is presented on Fig. 22. On the 

latter, we can clearly see that both IFOSMONDI methods 
visually match the monolithic reference solution whereas the 
explicit ZOH has a delay and an overshoot.

Finally, the step size adaptation with the rule described 
in 3.4 can be visualize in both IFOSMONDI fixed-point and 
JFM methods with � = 10−8 together with the number of 
integrations (including the rejected steps) and one of the 
variable of interests of the system. Figures 23 and 24 show 
that the methods focus on the one hand on the stiff parts of 
the simulation by integrating more time and reducing the co-
simulation step size, and on the other hand they save time on 
the non-stiff parts by increasing the co-simulation step size 
and iterating a smaller amount of time. This phenomenon 
can be explained by the fact that non-stiff models (or non-
stiff parts of a simulation of models with variable stiffness) 
produce a version of the coupling constraint that is easier to 
satisfy (at a given � tolerance) than stiff models (or stiff parts 
of a simulation of models with variable stiffness).

6  Conclusion

The IFOSMONDI-JFM algorithm takes advantages from the 
C1 smoothness of fixed-point IFOSMONDI algorithm [6] 
without the delay that this smoothness implies in [5] (thanks 
to its iterative aspect), the coupling constraint is satisfied 
both at left and right of every communication time thanks to 
the underlying non-linear solvers of PETSc [2]. The iterative 
part does not need a finite differences estimation of the jaco-
bian matrix like in [14] or a reconstruction of it like in [15].

The resulting algorithm even solves co-simulation prob-
lems for which the fixed-point formulation would involve a 
non-contractant coupling function ��.

Thanks to its algebraic loop, the test case introduced 
in 5.1.1 shows this robustness as its difficulty can easily be 
increased or decreased in a quantifiable way. It can be a 
good candidate to benchmark the robustness of various co-
simulation methods.

On the test-cases considered in this paper, the IFOS-
MONDI-JFM method either requires less iterations to con-
verge when the parameterization enables both methods to 
solve the problem, or has a better accuracy than the one 
obtained with the fixed-point IFOSMONDI method. In the 
end, the time/accuracy trade off is similar for both methods.

The matrix-free aspect of the underlying solvers used 
with IFOSMONDI-JFM and their fast convergence are two 
of the causes of the small amount of integrations per step.

As the contractance of the fixed-point function is not 
always possible to analyze in the case of industrial cases 
in practise, one cannot know in advance if the fixed-point 
IFOSMONDI method will work or fail. The robustness of 
the newly introduced IFOSMONDI-JFM method brings a 
solution to this problem.
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Appendix A Parameters of the PETSc 
non‑linear solvers

The JFMs mentioned in this document (see definition 
in Sect. 2.1) refer to PETSc non-linear solvers, so-called 
’ ���� ’ in the PETSc framework.

The parameters of these methods where the default 
one, except the explicitely mentioned ones. For the sake of 
reproducibility, the following tables recaps these options  
(Tables 6, 7, 8, 9). For further definition of their meaning, 
see [1, 2, 10].

Table 6  Parameters of the NewtonLS method

PETSc argument: 
−����_����������_ < ... >

Description Value

���� Select line search type ��

����� Selects the order of the line search for bt 3
����� Turns on/off computation of the norms for basic line search ����

����� Sets alpha used in determining if reduction in function norm is sufficient 0.0001
������� Sets the maximum stepsize the line search will use 108

��������� Sets the minimum lambda the line search will tolerate 10−12

������� Damping factor used for basic line search 1
���� Relative tolerance for iterative line search 10−8

���� Absolute tolerance for iterative line search 10−15

���� Change in lambda tolerance for iterative line search 10−8

���_�� Maximum iterations for iterative line searches 40
���������� Use previous lambda as damping �����

��������_������ Use a correction that sometimes improves convergence of Picard iteration �����

Table 7  Parameters of the 
Anderson method

PETSc argument: 
−����_��������_ < ... >

Description Value

� Number of stored previous solutions and residuals 30
���� Anderson mixing parameter 1
�������_���� Type of restart ����

�������_�� Number of iterations of restart conditions before restart 2
������� Number of iterations before periodic restart 30

Table 8  Parameters of the Ngmres method (not Ngmres with line search)

PETSc argument: 
−����_������_ < ... >

Description Value

������_���� Choose the select between candidate and combined solution ����������

�������_���� Choose the restart conditions ����������

��������� Use NGMRES variant which combines candidate solutions instead of actual solutions �����

���������� Linearly approximate the function �����

� Number of stored previous solutions and residuals 30
�������_�� Number of iterations the restart conditions hold before restart 2
������ Residual tolerance for solution select between the candidate and combination 2
������ Residual tolerance for restart 2
�������� Difference tolerance between subsequent solutions triggering restart 0.1
������ Difference tolerance between residuals triggering restart 0.9
������_��������� Aggregate reductions �����

�������_��_���� Restart on residual rise from x_M step �����
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⋮
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������� Damping factor used for basic line search 1
���� Relative tolerance for iterative line search 10−8

���� Absolute tolerance for iterative line search 10−15

���� Change in lambda tolerance for iterative line search 10−8
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