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Abstract
Deterministic and stochastic bending and buckling characteristics of antisymmetric cross-ply and angle-ply laminated com-
posite plates are thoroughly examined. Partial differential equations for cross-ply and angle-ply laminates are derived using 
the three variable refined shear deformation theory based on the Hamilton principle. Deterministic Navier’s solutions are 
obtained for specific boundary conditions and numerical results are validated with the first-order and third-order shear 
deformation theories. Two stochastic sampling methods, namely Monte Carlo simulation and Latin hypercube sampling, are 
presented and analyzed to determine the optimal one based on convergence studies and criteria of sampling errors. Compre-
hensive probability characteristics of stochastic bending deflections and stochastic critical buckling loads of antisymmetric 
cross-ply and angle-ply laminated composite plates are investigated using the optimal sampling technique. Probability dis-
tribution functions of various stochastic cases provide good assessments for the effects of each inevitable source uncertainty 
on the bending and buckling behaviors of the laminated composites. This study presents a good alternative for the classical 
and expensive Monte Carlo simulations and provides a fundamental understanding of bending and buckling statistics of 
laminated composites.
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1  Introduction

Among different types of composites [1–8], composite lami-
nates are widely used and intensively studied due to their 
advanced characteristics such as high strength-to-weight 
ratios, thermal insulation, corrosion resistance, and the abil-
ity to be tailored in different working environments. The 
development of advanced manufacturing techniques makes 
it possible to use laminated composites in various engineer-
ing fields such as aerospace [9–13], automotive [14–17] 
industries, and marine structures [18] with more affordable 
costs. A comprehensive understanding of their behaviors 
under various working environments is crucial for utiliz-
ing the composites safely and effectively. Indeed, a speci-
fied structural configuration behaves in a specified manner, 

called deterministic behaviors [19–21], while the behaviors 
can deviate from deterministic states when uncertain factors 
exist in reality [22–25]. We initially performed deterministic 
bending and buckling analyses of antisymmetric cross-ply 
and angle-ply laminated composite plates before quantify-
ing their uncertainties for different sources of randomness in 
geometrical configurations and materials properties.

Deterministic studies on laminated composites have been 
conducted using different approaches. Köllner et al. [26] 
analyzed the delamination propagation of thin-film lami-
nated composites under the buckling mechanisms caused 
by anisotropic effects of the contact, mode-mixing, and sub-
laminates. Two analytical models to determine the energy 
release rate can be used together to characterize ranges of 
post-buckling stiffness of the laminated composites for 
accuracy and computational efficiency. Baucke and Mit-
telstedt [27] analytically investigated the buckling loads of 
thin rectangular laminated composite plates under uniaxial 
compressions using the classical plate theory and classical 
Rayleigh–Ritz method. Symmetric stacking sequences and 
the coupling between bending and twisting effects were con-
sidered. The degradation of the bend-twist coupling on the 

http://orcid.org/0000-0002-7108-1288
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01544-y&domain=pdf


1460	 Engineering with Computers (2023) 39:1459–1497

1 3

shear buckling phenomenon of laminated composite plates 
was investigated by Lee and York [28] by developing the 
concept of contour maps. In that study, ply contiguity con-
straints and ply percentages were also adopted, which pro-
vided practical design knowledge. Tran et al. [29] conducted 
an isogeometric finite element analysis (IGA) based on the 
higher-order shear deformation theory (HSDT) to examine 
the thermal buckling and bending behaviors of laminated 
composite plates. The study raised the importance of con-
sidering the transverse normal strain in the analysis of lami-
nated composites in thermal environments. Using the Galer-
kin method, Chen and Qiao [30] investigated the buckling 
and post-buckling behaviors of laminated composite plates 
under either pure shear or the coupling of shear and com-
pression. Rotationally restrained edges were modeled with 
a trigonometric series, and the semi-analytical results were 
validated with numerical results obtained from finite ele-
ment analyses in the commercial software ABAQUS. Using 
isogeometric analysis based on the PHT-splines, Qin et al. 
[31] studied the vibration and buckling phenomenon of lami-
nated composite plates reinforced by curvilinear stiffeners. 
The parameters of curvilinear stiffeners, namely, location, 
dimensions, curvature, and orientations, can be optimized 
to improve the fundamental frequency and buckling load 
of the composites. Manickam et al. [32] examined the ther-
mal buckling behaviors of laminated composite plates using 
the first-order shear deformation theory. The curvilinear 
variation of fiber angles enables the spatial variation of the 
composite stiffness and significantly affects the composite 
thermal buckling behaviors. Using the HSDT, Kharghani 
and Soares [33] investigated the delamination propagation 
around the boundary of the embedded delamination region 
on laminated composite plates subjected to bending loads. 
The bending stress–strain curves of the plates were char-
acterized and the initiation of delamination propagation 
was determined by evaluating the strain energy release rate. 
Theoretical, numerical, and experimental investigations on 
the buckling of rectangular laminated composite plates [34] 
were also conducted. Liu et al. [35] studied the nonlinear 
vibration characteristics of eccentric-rotating laminated 
shallow cylinders exposed to thermomechanical excitations. 
The chaotic dynamics and resonant response of the cylinders 
were obtained by solving nonlinear partial different methods 
with the Galerkin method.

Stochastic studies on laminated composites have received 
increasing interest from researchers. Dey et al. [36] stud-
ied the stochastic buckling loads and natural frequencies of 
laminated sandwich plates using a stochastic finite element 
model based on a higher-order zigzag theory and multivari-
able adaptive regression splines. The proposed surrogate 
model characterized the system sensitivity and uncertainty 
caused by randomness in ply angle, structure thickness, and 
material properties with more efficiency in comparison with 

the classical Monte Carlo simulation. Sepahvand and Mar-
burg [37] used the generalized polynomial chaos expansion 
to estimate Young’s moduli, shear moduli, and Poisson’s 
ratios of laminated composite plates from eigenfrequencies 
observed from experiments. The stochastic finite element 
procedure was used as the model within this non-sampling 
probability method for the inverse problem. Noh and Park 
[38] investigated the spatially random effects of Poisson’s 
ratio on the bending behaviors of laminated composite 
plates. The constitutive matrix was decomposed using the 
Taylor series to simplify the representation of Poisson’s 
ratio in the finite element formulation, which proved to be 
as efficient as the Monte Carlo simulation. Chen and Soares 
[39] incorporated the Karhunen–Loève expansion into the 
spatial discretization of the finite element procedure to study 
the stochastic bending of laminated composite plates with 
randomness in material properties and multi-layer effects. 
The proposed method produced a more reasonable probabil-
istic estimation than the Monte Carlo simulation due to the 
enhancement of its convergence due to the preconditioning 
conjugate gradient technique. Dodwell et al. [40] directly 
adopted a Monte Carlo simulation at a multilevel framework 
to characterize failure statistics of laminated composites. 
The proposed approach proved to be more simple and self-
adaptive and was hugely more computationally effective in 
comparison to the classical Monte Carlo simulation. Using 
the Karhunen–Loève theorem within the framework of the 
stochastic assumed mode method, Parviz and Fakoor [41] 
studied the stochastic free vibration of laminated composite 
plates with random fields in material properties as well as 
thermal distribution. This non-intrusive method was more 
computationally efficient than the intrusive finite element 
method for stochastic analysis. Gadade et al. [42] examined 
the buckling and progressive failure of a laminated compos-
ite plate with a polymer matrix and reinforced fibers exposed 
to hygro-thermo-mechanical loads. The statistics of the 
buckling load, first ply failure strength, and last ply failure 
strength of the composites whose constituents had random 
thermal and mechanical properties were predicted based on 
the mode of failure and the Pucks failure criteria. Chen et al. 
[43] quantified the uncertainty of elastic mechanical proper-
ties of laminated composite plates from initial experimental 
data whose errors were eliminated using the grey judgment 
criterion. Feasible intervals of last ply failure loads of the 
composite subjected to in-plane tensile loads and its struc-
tural reliability were evaluated with the obtained statistics 
of the feasible mechanical properties of laminae. Mahjudin 
et al. [44] proposed a non-intrusive framework to quantify 
the bending uncertainty of laminated composite shells. The 
generalized stresses were assumed to be independent of 
the randomness of input variability, and the Monte Carlo 
method was used to generate random parameters and evalu-
ate the deflection statistics. Besides, integrating stochastic 
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sampling techniques with the cell-based smoothed finite 
element methods [45], isogeometric analyses [46], or the 
generalized shell elements using the mixed interpolation of 
tensorial components (MITC) technique [47–50] shows high 
potential in stochastic analyses of laminated composites.

The literature clearly shows that different sampling and 
non-sampling techniques have been developed for stochas-
tic analyses of laminated composites in which Monte Carlo 
simulations play an important role either as the primary simu-
lation tool or the benchmark for other techniques. Despite 
its popularity, samples generated from Monte Carlo simula-
tions can be clustered and large unsampled regions may exist 
[51]. Thus, to have accurate simulation results with Monte 
Carlo simulations, large samples are often necessary, which 
makes the method computationally expensive. Among several 
endeavors being made to either improve or replace Monte 
Carlo simulations, the Latin hypercube sampling technique is 
believed to be a good alternative. In this paper, we quantita-
tively present the advantages of the Latin hypercube sampling 
technique over Monte Carlo simulations. Initially, we derived 
deterministic partial differential equations for the bending and 
buckling phenomena of antisymmetric cross-ply and angle-
ply laminated composite plates in the framework of the three 
variable refined shear deformation theory and Hamilton’s 
principle. We obtained the deterministic bending deflections 
and buckling loads and verified them with results from popu-
lar theories such as the first-order and third-order shear defor-
mation theories. Then, we compared the convergence charac-
teristics of Monte Carlo simulations and the Latin hypercube 
sampling technique in different stochastic environments. We 
used the optimal technique for a comprehensive investigation 
of the probability of bending deflections and buckling loads 
of different antisymmetric cross-ply and angle-ply laminated 
composite plates. The obtained results not only depict the 
advantages of the Latin hypercube sampling technique in sto-
chastic analysis but also provide a fundamental understanding 
of the statistics of static behaviors of laminated composites in 
stochastic environments.

2 � Lamina and laminate deterministic 
configurations

A general laminated composite plate is illustrated in Fig. 1 
with gross thickness h ; x-axis length a ; y-axis length b ; 
fiber orientations of laminae �1 , �2 , …, �N−1 , and �N ; lamina 
thicknesses h1 , h2 , …, hN−1 , and hN (see Fig. 1A). Figure 1B 
shows the cross-section of the laminated composite plate 
with vertical coordinates z1 , z2 , z3 , …, zN−1 , zN , and zN+1 . 
Figure 1C presents the configuration of a typical lamina 
that constitutes the laminated plate. The local coordinates (
x1, x2, x3

)
 with primary fiber orientations make an angle 

� with the problem coordinate systems (x, y, z) . In the local 

coordinate of the ith lamina, the plane stress-reduced stiff-
nesses C(i)

pq
 can be expressed in terms of engineering con-

stants as follows [52]:

These lamina stiffnesses are transformed to the laminate 
coordinates as follows:

3 � Deterministic solution procedure

3.1 � Displacement, strain, and stress fields

Displacement components of an arbitrary point in the lami-
nated composite plate were obtained using the three variable 
refined shear deformation theory (TRSDT) [53] as follows:

in which

and subscripts e , b , and s denote the extensional, bending, 
and shear effects, respectively. Subscript commas denote the 
spatial derivative. It is noted that the bending components of 
the in-plane displacements were assumed to take the form 
of the classical plate theory, while the shear components 
were assumed to have a cubic function that enables the shear 
stresses to vanish at the top and bottom surfaces. This elimi-
nates the use of the shear correction factor.
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(3)

u(x, y, z) = ue(x, y) − zwb,x − fzws,x,

v(x, y, z) = ve(x, y) − zwb,y − fzws,y,

w(x, y, z) = we(x, y) + wb(x, y) + ws(x, y).
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Von Karman strain components were derived from the 
displacement field as follows [52, 53]:

in which
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In the problem coordinate system, stress components in 
the ith lamina are written as

3.2 � Hamilton’s principle

From the continuum mechanics point of view, the gross 
energy of an elastic body is constituted by the elastic strain 
energy U , external virtual work V  , and kinetic energy K . 
Integrals of its variation over an arbitrary period should sat-
isfy Hamilton’s principle as follows:
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Fig. 1   Laminated composite plates. A Geometry parameters and 
layer-stacking sequence with arbitrary laminae, where �i represents 
the fiber orientation of each lamina, i = 1, ...,N with N is the number 

of layers. B Cross-section with vertical coordinates. C A lamina with 
local 

(
x1, x2, x3

)
 and global (x, y, z) coordinate systems
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in which

in which q is the transverse distributed force; N0
x
 , N0

y
 , and N0

xy
 

are in-plane distributed forces. Substituting Eqs. (3), (5), and 
(7) into Eq. (8) and applying the integration by part leads to 
the equations of motion for the laminated composite plates 
as follows:

in which

For antisymmetric cross-ply laminated plates, the force 
and moment resultants in Eqs. (12–16) were evaluated as 
follows:
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For antisymmetric angle-ply laminated plates, the force 
and moment resultants in Eqs. (12–16) were evaluated as 
follows:

Coefficients aij, bij, cij, dij are presented in the Appendix.
Substituting the strain components in Eqs. (5)–(6) into 

the force and moment resultants in Eqs. (18)–(19), then 
substituting the obtained results into Eqs. (12)–(16), we 
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obtained five differential equations for five primary variables (
u, v,we,wb,ws

)
 . Specifically, for antisymmetric cross-ply 

laminated plates, we have

For antisymmetric angle-ply laminated plates, we have:

3.3 � Navier solution

Navier solutions were achieved for cross-ply and angle-ply 
laminated composite plates with simply supported boundary 

(20)
a11ue,xx + a31ue,yy +

(
a12 + a31

)
ve,xy − a13wb,xxx − a14ws,xxx = 𝜌0üe,

(21)
a22ve,yy + a31ve,xx +

(
a12 + a31

)
ue,xy − a23wb,yyy − a24ws,yyy = 𝜌0v̈e,

(22)
d11we,xx + d21we,yy + d12ws,xx + d22ws,yy

+ N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ,

(23)

b11ue,xxx + b21ve,yyy − b12wb,xxxx

− 2
(
b13 + 2b31

)
wb,xxyy − b23wb,yyyy − b14ws,xxxx − 2

(
b15 + 2b32

)
ws,xxyy

− b25ws,yyyy + N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ − 𝜌1

(
ẅb,xx + ẅb,yy

)
,

(24)
c11ue,xxx + c21ve,yyy − c12wb,xxxx − 2

(
c13 + 2c31

)
wb,xxyy − c23wb,yyyy

− c14ws,xxxx − 2
(
c15 + 2c32

)
ws,xxyy − c25ws,yyyy + d12we,xx + d22we,yy + d13ws,xx + d23ws,yy

+ N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ − 𝜌2

(
ẅs,xx + ẅs,yy

)
.

(25)a11ue,xx + a31ue,yy +
(
a12 + a31

)
ve,xy − 3a15wb,xxy − a25wb,yyy − 3a16ws,xxy − a26ws,yyy = 𝜌0üe,

(26)a22ve,yy + a31ve,xx +
(
a12 + a31

)
ue,xy − a15wb,xxx − 3a25wb,xyy − a16ws,xxx − 3a26ws,xyy = 𝜌0v̈e,

(27)d11we,xx + d21we,yy + d12ws,xx + d22ws,yy + N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ,

(28)

3b16ue,xxy + b26ue,yyy + b16ve,xxx + 3b26ve,xyy − b12wb,xxxx

− 2
(
b13 + 2b31

)
wb,xxyy − b23wb,yyyy − b14ws,xxxx − 2

(
b15 + 2b32

)
ws,xxyy − b25ws,yyyy

+ N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ − 𝜌1

(
ẅb,xx + ẅb,yy

)
,

(29)
3c16ue,xxy + c26ue,yyy + c16ve,xxx + 3c26ve,xyy − c12wb,xxxx − 2

(
c13 + 2c31

)
wb,xxyy − c23wb,yyyy

− c14ws,xxxx − 2
(
c15 + 2c32

)
ws,xxyy − c25ws,yyyy + d12we,xx + d22we,yy + d13ws,xx + d23ws,yy

+ N0

x
w,xx + 2N0

xy
w,xy + N0

y
w,yy + q = 𝜌0ẅ − 𝜌2

(
ẅs,xx + ẅs,yy

)
.

Table 1   Simply supported boundary conditions for cross-ply and 
angle-ply laminated composite plates (listed parameters have zero 
values)

Edge Cross-ply laminates Angle-ply laminates

x = {0, a} ve, we, wb, ws

we,y, wb,y, ws,y

Nx, M
b
x
, Ms

x

ue, we, wb, ws

we,y, wb,y, ws,y

Nxy, M
b
x
, Ms

x

y = {0, b} ue, we, wb, ws

we,x, wb,x, ws,x

Ny, M
b
y
, Ms

y

ve, we, wb, ws

we,x, wb,x, ws,x

Nxy, M
b
y
, Ms

y

conditions as presented in Table 1. Satisfying the boundary 
conditions, the Navier generalized displacements were cor-
respondingly assumed.

For the cross-ply laminated composite plates:
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For the angle-ply laminated composite plates:

The external pressure applied to the laminated composite 
plates is presented as

in which �m = m�∕a and �n = n�∕b . Substituting Eq. (30) 
and Eq. (32) into Eqs. (20)–(24), and substituting Eq. (31) 
and Eq. (32) into Eqs. (25)–(29), we have

(30)

ue =

∞∑
m=1

∞∑
n=1

Uemn cos�mx sin�ny,

ve =

∞∑
m=1

∞∑
n=1

Vemn sin�mx cos�ny,

we =

∞∑
m=1

∞∑
n=1

Wemn sin�mx sin�ny,

wb =

∞∑
m=1

∞∑
n=1

Wbmn sin�mx sin�ny,

ws =

∞∑
m=1

∞∑
n=1

Wsmn sin�mx sin�ny.

(31)

ue =

∞∑
m=1

∞∑
n=1

Uemn sin�mx cos�ny,

ve =

∞∑
m=1

∞∑
n=1

Vemn cos�mx sin�ny,

we =

∞∑
m=1

∞∑
n=1

Wemn sin�mx sin�ny,

wb =

∞∑
m=1

∞∑
n=1

Wbmn sin�mx sin�ny,

ws =

∞∑
m=1

∞∑
n=1

Wsmn sin�mx sin�ny.

(32)q =

∞∑
m=1

∞∑
n=1

Qmn sin�mx sin�ny,

(33)

⎡⎢⎢⎢⎢⎢⎣

g11 g12 g13 g14 0

g12 g22 g23 g24 0

g13 g23 g33 + 𝜑2
m
N0
x
+ 𝜑2

n
N0
y
g34 + 𝜑2

m
N0
x
+ 𝜑2

n
N0
y

𝜑2
m
N0
x
+ 𝜑2

n
N0
y

g14 g24 g34 + 𝜑2
m
N0
x
+ 𝜑2

n
N0
y
g44 + 𝜑2

m
N0
x
+ 𝜑2

n
N0
y
g45 + 𝜑2

m
N0
x
+ 𝜑2

n
N0
y

0 0 𝜑2
m
N0
x
+ 𝜑2

n
N0
y

g45 + 𝜑2
m
N0
x
+ 𝜑2

n
N0
y
g55 + 𝜑2

m
N0
x
+ 𝜑2

n
N0
y

⎤
⎥⎥⎥⎥⎥⎦

⎧
⎪⎪⎨⎪⎪⎩

Uemn

Vemn

Wbmn

Wsmn

Wemn

⎫⎪⎪⎬⎪⎪⎭

+

⎡⎢⎢⎢⎢⎢⎣

𝜌0 0 0 0 0

0 𝜌0 0 0 0

0 0 𝜌0 + 𝜌1
�
𝜑2
m
+ 𝜑2

n

�
𝜌0 𝜌0

0 0 𝜌0 𝜌0 + 𝜌2
�
𝜑2
m
+ 𝜑2

n

�
𝜌0

0 0 𝜌0 𝜌0 𝜌0

⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨⎪⎪⎩

Üemn

V̈emn

Ẅbmn

Ẅsmn

Ẅemn

⎫⎪⎪⎬⎪⎪⎭

=

⎧⎪⎪⎨⎪⎪⎩

0

0

Qmn

Qmn

Qmn

⎫⎪⎪⎬⎪⎪⎭

,

in which

for cross-ply laminated composite plates, and

for angle-ply laminated composite plates. Navier solutions 
for both cross-ply and angle-ply laminated composite plates 
were obtained from Eq. (33). Deterministic bending and 
buckling results and their verifications are thoroughly pre-
sented in upcoming subsections.

3.4 � Deterministic bending

In bending problems, cross-ply and angle-ply laminated 
composite plates were considered subjected to sinusoidal 
transverse loads with Qmn = q0 . The in-plane distributed 
loads were set to zero (i.e., N0

x
= N0

y
= N0

xy
= 0 ) and the time 

derivative terms in Eq. (33) were omitted, so the equation 

(34)

g11 = a11�
2

m
+ a31�

2

n
, g12 =

(
a12 + a31

)
�m�n, g13 = −a13�

3

m
,

g14 = −a14�
3

m
, g22 = a31�

2

m
+ a22�

2

n
, g23 = a23�

3

n
, g24 = a24�

3

n
,

g33 = b12�
4

m
+ 2

(
b13 + 2b31

)
�2

m
�2

n
+ b23�

4

n
,

g34 = b14�
4

m
+ 2

(
b15 + 2b32

)
�2

m
�2

n
+ b25�

4

n
,

g44 = c14�
4

m
+ 2

(
c15 + 2c32

)
�2

m
�2

n
+ c25�

4

n
+ d13�

2

m
+ d23�

2

n
,

g45 = d12�
2

m
+ d22�

2

n
, g55 = d11�

2

m
+ d21�

2

n
,

(35)

g11 = a11�
2

m
+ a31�

2

n
, g12 =

(
a12 + a31

)
�m�n,

g13 = −3a15�
2

m
�n − a25�

3

n
,

g14 = −3a16�
2

m
�n − a26�

3

n
, g22 = a31�

2

m
+ a22�

2

n
,

g23 = −a15�
3

m
− 3a25�m�

2

n
,

g24 = −a16�
3

m
− 3a26�m�

2

n
,

g33 = b12�
4

m
+ 2

(
b13 + 2b31

)
�2

m
�2

n
+ b23�

4

n
,

g34 = b14�
4

m
+ 2

(
b15 + 2b32

)
�2

m
�2

n
+ b25�

4

n
,

g44 = c14�
4

m
+ 2

(
c15 + 2c32

)
�2

m
�2

n
+ c25�

4

n
+ d13�

2

m
+ d23�

2

n
,

g45 = d12�
2

m
+ d22�

2

n
, g55 = d11�

2

m
+ d21�

2

n
,
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was solved easily. Obtained transverse deflections are pre-
sented in dimensionless form as the following:

Results obtained from the TRSDT were compared with 
results obtained by implementing the first-order shear defor-
mation theory (FSDT) and the third-order shear deformation 
theory (TSDT) presented in [52].

(36)w =
100E2h

3

q0a
4

w
(
a

2
,
b

2

)
.

Table 2 compares the dimensionless deflections of square 
and rectangular simply supported multi-layer antisym-
metric cross-ply laminated composite plates [0/90/…] 
denoted as [0/90]M subjected to sinusoidal transverse 
loads q0 = 1 . M = 1, 2, 3, and 4 were considered, corre-
sponding to the plate with 2, 4, 6, and 8 laminae. a = b 
for the square plate, b = 2a for the rectangular plate, and 
ratio a∕h = {5, 10, 20, 50, 100} indicating a wide range 
of the plate thickness. Each lamina was assumed to have 

Table 2   Comparison of 
dimensionless transverse 
deflections of square and 
rectangular simply supported 
antisymmetric cross-ply 
laminated composite plates 
[0/90]M with variable layups 
subjected to sinusoidal 
transverse loads

a∕h Method Dimensionless transverse deflection w

Square ( a = b) Rectangular ( b = 2a)

M = 1 M = 2 M = 3 M = 4 M = 1 M = 2 M = 3 M = 4

5 TRSDT 1.6852 1.2184 1.1591 1.1391 3.2115 2.1513 2.0340 1.9952
TSDT 1.6670 1.2184 1.1590 1.1387 3.2230 2.2206 2.1027 2.0632
FSDT 1.7584 1.2013 1.1565 1.1427 3.3877 2.1877 2.0954 2.0670

10 TRSDT 1.2197 0.6868 0.6383 0.6229 2.4713 1.2957 1.1968 1.1657
TSDT 1.2161 0.6865 0.6382 0.6229 2.4773 1.3184 1.2199 1.1888
FSDT 1.2373 0.6802 0.6354 0.6216 2.5168 1.3068 1.2146 1.1862

20 TRSDT 1.1027 0.5517 0.5060 0.4918 2.2855 1.0790 0.9848 0.9557
TSDT 1.1018 0.5517 0.5060 0.4918 2.2872 1.0852 0.9911 0.9619
FSDT 1.1070 0.5500 0.5052 0.4913 2.2970 1.0820 0.9895 0.9611

50 TRSDT 1.0698 0.5138 0.4688 0.4549 2.2335 1.0181 0.9252 0.8966
TSDT 1.0697 0.5138 0.4688 0.4549 2.2337 1.0191 0.9263 0.8977
FSDT 1.0705 0.5135 0.4687 0.4548 2.2353 1.0186 0.9260 0.8975

100 TRSDT 1.0651 0.5083 0.4635 0.4496 2.2260 1.0094 0.9167 0.8882
TSDT 1.0651 0.5083 0.4635 0.4496 2.2261 1.0097 0.9170 0.8884
FSDT 1.0653 0.5083 0.4635 0.4496 2.2265 1.0095 0.9169 0.8884

Table 3   Comparison of 
dimensionless transverse 
deflections of square and 
rectangular simply supported 
antisymmetric angle-ply 
laminated composite plates 
[α/−α/α/−α] with variable 
fiber orientations subjected to 
sinusoidal transverse loads

a∕h Method Dimensionless transverse deflection w

Square ( a = b) Rectangular ( b = 2a)

α = 30 α = 45 α = 60 α = 30 α = 45 α = 60

5 TRSDT 0.6547 0.6315 0.6547 1.1716 1.2857 1.6055
TSDT 0.6909 0.6315 0.6909 1.1780 1.3275 1.8635
FSDT 0.6821 0.6228 0.6821 1.1587 1.3044 1.8336

10 TRSDT 0.3184 0.2958 0.3184 0.6146 0.7401 1.0717
TSDT 0.3291 0.2956 0.3291 0.6163 0.7523 1.1416
FSDT 0.3244 0.2912 0.3244 0.6088 0.7442 1.1315

20 TRSDT 0.2323 0.2096 0.2323 0.4726 0.6017 0.9370
TSDT 0.2351 0.2095 0.2351 0.4730 0.6049 0.9549
FSDT 0.2337 0.2083 0.2337 0.4710 0.6027 0.9522

50 TRSDT 0.2080 0.1853 0.2080 0.4326 0.5628 0.8992
TSDT 0.2084 0.1853 0.2084 0.4327 0.5633 0.9021
FSDT 0.2082 0.1851 0.2082 0.4324 0.5629 0.9017

100 TRSDT 0.2045 0.1818 0.2045 0.4269 0.5572 0.8938
TSDT 0.2046 0.1818 0.2046 0.4269 0.5573 0.8945
FSDT 0.2046 0.1818 0.2046 0.4268 0.5572 0.8944
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engineering constants as E1 = 25 , E2 = 1 , G12 = G13 = 0.5 , 
G23 = 0.2 , and �12 = 0.25 . It is clear that the TRSDT results 
are in good agreement with the FSDT and TSDT results for 
both square and rectangular plates. The thinner the lami-
nated composite plate, the closer the results obtained using 
the three theories. For both square and rectangular plates, 
the dimensionless deflections decreased when the number 
of lamina layers increased while the gross thickness was 
constant, which provided useful insight for the design and 
application of laminated composites. The comparison veri-
fied the reliability of the TRSDT in modeling the bending 
of cross-ply laminated composite plates with variable layups 
and thickness.

Table 3 compares the dimensionless deflections of square 
and rectangular simply supported four-layer antisymmetric 
angle-ply laminated composite plates [α/−α/α/−α] subjected 
to sinusoidal transverse loads q0 = 1 . α = 30, 45, and 60 were 
considered. Each lamina was assumed to have engineering 
constants as E1 = 40 , E2 = 1 , G12 = G13 = 0.5 , G23 = 0.6 , 
and �12 = 0.25 . We observed that the TRSDT results agreed 
well with the FSDT and TSDT results for both square and 
rectangular plates with variable fiber orientations, except 
the rectangular plate with a∕h = 5 and � = 60 . Minor differ-
ences among the results of the three theories vanished when 
a∕h decreased. The smallest dimensionless deflections of 
square plates existed at � = 45 , while the smallest dimen-
sionless deflections of rectangular plates existed at � = 30 . 
Thus, the optimal fiber directions in square and rectangular 
laminated plates were different. The dimensionless deflec-
tion of each rectangular plate approximately doubled that 
of the square plate with similar geometry parameters. The 

comparison verified the reliability of the TRSDT in mod-
eling the bending of angle-ply laminated composite plates 
with variable fiber orientations and thickness.

3.5 � Deterministic buckling

In buckling problems, we considered cross-ply and angle-ply 
laminated composite plates subjected to the uniaxial dis-
tributed force N0

x
= −N0 at edges x = {0, a} and other in-

plane distributed forces were N0
y
= N0

xy
= 0 . The sinusoidal 

transverse loads were set to zero (i.e., Qmn = 0 ) and the time 
derivative terms in Eq. (33) were omitted, so the equation 
was solved easily. The obtained uniaxial buckling loads are 
presented in dimensionless form as the following:

Table 4 compares the dimensionless uniaxial buckling 
loads of square and rectangular simply supported multi-
layer antisymmetric cross-ply laminated composite plates 
[0/90/…] denoted as [0/90]M subjected to sinusoidal trans-
verse loads. M = 1, 2, 3, and 4 were considered, correspond-
ing to the plate with 2, 4, 6, and 8 laminae. Each lamina had 
engineering constants as E1 = 25 , E2 = 1 , G12 = G13 = 0.5 , 
G23 = 0.2 , and �12 = 0.25 . It can be seen that the dimen-
sionless uniaxial buckling loads obtained using the TRSDT 
were in good agreement with the FSDT and TSDT results 
for both square and rectangular plates. These results con-
verged when the ratio a∕h increased. For both square and 
rectangular plates, the dimensionless uniaxial buckling loads 

(37)N0 =
a2

E2h
3
N0.

Table 4   Comparison of 
dimensionless uniaxial buckling 
loads of square and rectangular 
simply supported antisymmetric 
cross-ply laminated composite 
plates [0/90]M with variable 
layups subjected to uniaxial 
distributed forces

a∕h Method Dimensionless transverse deflection N0

Square ( a = b) Rectangular ( b = 2a)

M = 1 M = 2 M = 3 M = 4 M = 1 M = 2 M = 3 M = 4

5 TRSDT 6.0126 7.4568 7.7174 7.8179 3.1549 4.7098 4.9814 5.0782
TSDT 6.0782 7.2972 7.5756 7.6901 3.1437 4.5628 4.8185 4.9109
FSDT 5.7623 7.2368 7.3036 7.3053 2.9909 4.6314 4.8353 4.9019

10 TRSDT 8.3072 14.7533 15.8742 16.2667 4.0998 7.8198 8.4659 8.6917
TSDT 8.3315 14.7580 15.8750 16.2667 4.0900 7.6850 8.3059 8.5233
FSDT 8.1891 14.8952 15.9450 16.3005 4.0258 7.7535 8.3418 8.5414

20 TRSDT 9.1889 18.3637 20.0227 20.6027 4.4331 9.3902 10.2884 10.6023
TSDT 9.1958 18.3663 20.0235 20.6029 4.4299 9.3369 10.2232 10.5330
FSDT 9.1528 18.4234 20.0567 20.6225 4.4110 9.3641 10.2392 10.5425

50 TRSDT 9.4708 19.7209 21.611 22.2723 4.5365 9.9517 10.9508 11.3003
TSDT 9.4719 19.7214 21.6111 22.2724 4.5359 9.9419 10.9386 11.2873
FSDT 9.4646 19.7322 21.6176 22.2764 4.5328 9.9469 10.9416 11.2892

100 TRSDT 9.5125 19.9316 21.8589 22.5335 4.5517 10.0376 11.0525 11.4077
TSDT 9.5128 19.9317 21.8590 22.5335 4.5515 10.0351 11.0494 11.4044
FSDT 9.5109 19.9345 21.8607 22.5345 4.5507 10.0363 11.0502 11.4049
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increased with the number of lamina layers. This suggests 
good practice for designing laminated composites with high 
load-bearing capacity. The square plate had higher uniaxial 
buckling loads than the corresponding rectangular plate did 
at each a∕h value. The comparison verified the reliability of 
the TRSDT in modeling the buckling of cross-ply laminated 
composite plates with variable layups and thickness.

Table 5 compares the dimensionless uniaxial buckling 
loads of square and rectangular simply supported six-
layer antisymmetric angle-ply laminated composite plates 
[α/−α/α/−α/α/−α], denoted as [α/−α]3 for brevity. α = 30, 
45, and 60 were considered. Each lamina had engineering 
constants as E1 = 40 , E2 = 1 , G12 = G13 = 0.5 , G23 = 0.6 , 
and �12 = 0.25 . We observed that the TRSDT results agreed 
well with the FSDT and the TSDT results for both square 
and rectangular plates with variable fiber orientations, except 
for the square plate with a∕h = {5, 10, 20} and � = 60 , and 
the rectangular plate with a∕h = {5, 10} and � = 60 . The 
difference among results obtained from the three theories 
decreased with the increment of the ratio a∕h . For both 
square and rectangular plates, the dimensionless uniaxial 
buckling loads decreased with the increment of fiber orienta-
tion � . It should be noted that � is an angle formed between 
the fiber and the x-axis (i.e., the loading axis in the uni-
axial compression). The increment of � certainly decreased 
the contribution of fibers on the compression load-bearing 
capacity of the laminated composite, and the uniaxial buck-
ling loads of square plates were higher than that of the cor-
responding rectangular plates at each a∕h ratio.

The bending deflections and critical buckling loads presented 
in this section are deterministic results wherein the material, 

geometry, and loading configurations of the laminated compos-
ite plates were pre-specified. These deterministic results may 
become uncertain when disturbances are introduced into the sys-
tem configurations. As sources of these disturbances are usually 
unpredictable, an essential understanding of the possible effects 
of inevitable source uncertainties is helpful and of utmost impor-
tance. The upcoming section presents fundamental methods to 
quantify the uncertainty of a typical engineering system with 
randomness in its input parameters.

4 � Stochastic sampling methods

In a stochastic environment, parameters that define a system 
can have uncertain values that produce uncertain responses to 
the system output. We sampled sample points or observations 
from the statistical population of each uncertain input parameter. 
If the population was small, the entire population was used for 
analysis. However, when the population of each uncertain input 
parameter became very large, the census sampling of the whole 
population seemed to be impossible and was impractical. In this 
case, a subset to represent the characteristics of the population 
should be sampled and its statistics evaluated. From the statistical 
results of the subset, the characteristics of the whole population 
were obtained by performing interpolations and extrapolations.

In this study, the actual dispersions of uncertain input 
parameters were unknown, so it was reasonable to assume 
their normal distributions, which are the most popu-
lar type for random physical entities [54]. Input param-
e t e r s  s =

{
sj
}
=
(
E1,E2,G12,G13,G23, �12, h, a, b, �

)
 , 

j = 1, ...,Ds with Ds = 10 were considered as random 

Table 5   Comparison of 
dimensionless uniaxial buckling 
loads of square and rectangular 
simply supported antisymmetric 
angle-ply laminated composite 
plates [α/−α/α/−α/α/−α] with 
variable fiber orientations 
subjected to uniaxial distributed 
forces

a∕h Method Dimensionless transverse deflection N0

Square ( a = b) Rectangular ( b = 2a)

α = 30 α = 45 α = 60 α = 30 α = 45 α = 60

5 TRSDT 12.3946 12.0740 11.0814 9.1150 8.3590 6.7381
TSDT 12.9112 12.1463 9.4484 9.0690 8.0845 5.7516
FSDT 12.9894 11.2876 9.1340 9.0790 8.1148 5.7784

10 TRSDT 34.2717 33.4359 26.9525 17.8471 14.9071 10.3174
TSDT 33.0955 32.3379 23.0062 17.7879 14.6422 9.6310
FSDT 33.2953 32.4591 23.1025 17.8892 14.7185 9.6735

20 TRSDT 47.8919 53.1939 41.2695 23.6111 18.6048 11.9143
TSDT 47.2762 53.1975 38.5240 23.5839 18.4955 11.6691
FSDT 47.4159 53.3649 38.6938 23.6386 18.5313 11.6869

50 TRSDT 53.9348 60.7592 48.5611 25.9726 19.9996 12.4555
TSDT 53.8068 60.7603 47.9031 25.9673 19.9790 12.4116
FSDT 53.8379 60.7977 47.9519 25.9784 19.9860 12.4149

100 TRSDT 54.9266 62.0219 49.8218 26.3496 20.2164 12.5368
TSDT 54.8933 62.0221 49.6463 26.3483 20.2111 12.5257
FSDT 54.9015 62.0320 49.6597 26.3512 20.2129 12.5266
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sources and assumed to be independent of each other. The 
standard deviation �j of the population of each input param-
eter was assumed to correlate with its population mean as 
�j = �j × rj , where rj is the coefficient of variation or the 
degree of stochasticity of the input parameter. Fiber angles 
were an exception due to their wide range of values (i.e., 
� = {0, 30, 45, 60, 90} is presented in this study) such that 
the standard deviation �� of each fiber angle was assumed to 
be equal to ��=45 . This helped to eliminate privileges towards 
any fiber angle and treat all uncertain angles equally.

Two sampling techniques, namely, Monte Carlo sam-
pling and Latin Hypercube sampling, were used to gener-
ate observations and evaluate the statistics of the output of 
interest (i.e., bending deflections w(s) and critical buckling 
loads N0(s) ). The optimal technique should have the low-
est computational cost and fast converged statistical results. 
The computational cost came mainly from re-executing the 
deterministic procedure at certain times until its convergence 
was reached. The stopping point of iterations depended on 
the characteristics of sampling techniques.

4.1 � Monte Carlo sampling

The Monte Carlo simulation (MCS) is the most widely 
used sampling technique and its results are often con-
sidered as benchmarks for other sampling techniques 

[55–58]. The MCS can be executed either randomly or 
according to a specific density function. In this study, 
we assumed the pseudorandom samples had normal 
distributions. If Ns is the number of sampling points 
si =

(
Ei
1
,Ei

2
,Gi

12
,Gi

13
,Gi

23
, �i

12
, hi, ai, bi, �i

)
 ,  i = 1, ...,Ns  , 

where the subscript s denotes ‘stochastic’, then the out-
put �(O(s)) (i.e., w(s) and N0(s) ) was evaluated as the 
mean of Ns estimations O

(
si
)
 (i.e., w

(
si
)
 and N0

(
si
)
 ) as 

follows:

where s in parenthesis represents a whole set of sampling 
points si , i = 1, ...,Ns . Each component in a sampling point 
si is denoted as si

j
 with j = 1, ..., Ds pointing to random input 

parameters. The standard deviation of Ns estimations O
(
si
)
 , 

i = 1, ...,Ns was evaluated as follows:

in which 
{
O
(
si
)}

 is a set of Ns estimations O
(
si
)
 , i = 1, ...,Ns . 

The convergence of the MCS is characterized as follows:

(38)�(O(s)) =
1

Ns

Ns∑
i=1

O
(
si
)
,

(39)�(O(s)) =

√
Var

({
O
(
si
)})

Ns

,

Fig. 2   Convergence characteris-
tics of Monte Carlo simulation 
(MCS) and Latin hypercube 
sampling (LHS) in stochastic 
bending behaviors w(s) of 
square cross-ply laminated 
composite plates [0/90]M (a = b) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to compound random-
ness with r0 = 0.1
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Fig. 4   Convergence characteris-
tics of Monte Carlo simulation 
(MCS) and Latin hypercube 
sampling (LHS) in stochastic 
bending behaviors w(s) of 
square angle-ply laminated 
composite plates [α/−α/α/−α] 
(a = b) with a∕h = 50 , A α = 30, 
B α = 45, and C α = 60 exposed 
to compound randomness with 
r0 = 0.1

Fig. 3   Convergence char-
acteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic bending behaviors 
w(s) of rectangular cross-ply 
laminated composite plates 
[0/90]M (b = 2a) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness with r0 = 0.1
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Fig. 5   Convergence characteris-
tics of Monte Carlo simulation 
(MCS) and Latin hypercube 
sampling (LHS) in stochastic 
bending behaviors w(s) of 
rectangular angle-ply laminated 
composite plates [α/−α/α/−α] 
(b = 2a) with a∕h = 50 , A 
α = 30, B α = 45, and C α = 60 
exposed to compound random-
ness with r0 = 0.1

Fig. 6   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic bending behaviors 
w(s) of square cross-ply lami-
nated composite plates [0/90]M 
(a = b) with a∕h = 50 , A M = 1, 
B M = 2, C M = 3, and D M = 4 
exposed to compound random-
ness
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in which Θ denotes the order notation. It can be seen that the 
higher the number of sampling points, the lower the simu-
lation error of the MCS method. The convergence of the 
MCS is independent of the number of random parameters, 
that is, the stochastic dimensions 

(
Ds

)
 [57]. Thus, the MCS 

can retain its convergence characteristics even for problems 
with many random input parameters. In this paper Ds = 10 . 
However, the MCS has poor space-filling properties such 
as clustering effects (i.e., too close points exist) and large 
unsampled regions (i.e., non-informative sampling regions) 
[51].

(40)Error = Θ

�
�(O(s))√

Ns

�
,

4.2 � Latin hypercube sampling

Since its first introduction by McKay et al. [59] in 1979, 
Latin hypercube sampling (LHS) has been considered to be 
a good alternative for the MCS because it ensures that sam-
pled points represent a full range of each input variable and 
avoids unnecessarily dense sampling regions. Different from 
the MCS, sampling domains of input parameters are equally 
divided into many sub-regions, and within each sub-region, 
only one random point can be sampled. This guarantees that 
the entire space of random input parameters can be sampled 
independently and equiprobably.

The output O(s) (i.e., w(s) and N0(s) ) using the LHS was 
similar to the MCS as in Eq. (38). Using the LHS standard 
deviation of Ns estimations O

(
si
)
 , i = 1, ...,Ns was evaluated 

as follows [59]:

(41)�(O(s)) =

√√√√√Var
({

O
(
si
)})

Ns

+
Ns − 1

NsN
Ds

s

(
Ns − 1

)Ds

Ns∑
1, p≠q

(O(sp) − �(O(s)))(O(sq) − �(O(s))).

Fig. 7   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic bending behaviors 
w(s) of rectangular cross-ply 
laminated composite plates 
[0/90]M (b = 2a) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness
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Fig. 8   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) 
in stochastic bending behav-
iors w(s) of square angle-ply 
laminated composite plates 
[α/−α/α/−α] (a = b) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness

Fig. 9   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic bending behaviors 
w(s) of rectangular angle-ply 
laminated composite plates 
[α/−α/α/−α] (b = 2a) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness



1474	 Engineering with Computers (2023) 39:1459–1497

1 3

Fig. 10   Convergence character-
istics of Monte Carlo simulation 
(MCS) and Latin hypercube 
sampling (LHS) in stochastic 
buckling behaviors N0(s) of 
square cross-ply laminated 
composite plates [0/90]M (a = b) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to compound random-
ness with r0 = 0.1

Fig. 11   Convergence char-
acteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic buckling behaviors 
N0(s) of rectangular cross-ply 
laminated composite plates 
[0/90]M (b = 2a) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness with r0 = 0.1
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Fig. 12   Convergence char-
acteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) 
in stochastic buckling behav-
iors N0(s) of square angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (a = b) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness with r0 = 0.1

Fig. 13   Convergence char-
acteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic buckling behaviors 
N0(s) of rectangular angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (b = 2a) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness with r0 = 0.1
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For a sufficiently large number of pseudorandom samples, 
the LHS always has a lower variance than the MCS in view 
of the central limit theorem [60]. Thus, the LHS is appropri-
ate for sampling in high-dimensional problems.

5 � Stochastic bending and buckling 
of laminated composite plates

To determine the optimal sampling method, we compared 
the statistical modeling performances of the MCS and LHS. 
The statistical converged results can be compared with the 
corresponding deterministic values presented in Sects. 3.4 
and 3.5 to evaluate the stochastic effects of random sources. 
We also conducted sensitivity analyses to determine the pro-
found sources of randomness. We then analyzed the statisti-
cal characteristics of the stochastic bending and buckling 
phenomena, which yielded notable observations.

In this study, we considered eleven cases of randomness 
as follows:

Case 1: Individual randomness in the elastic modulus E1.
Case 2: Individual randomness in the elastic modulus E2.
Case 3: Individual randomness in the shear modulus G12.
Case 4: Individual randomness in the shear modulus G13.

Case 5: Individual randomness in the shear modulus G23.
Case 6: Individual randomness in Poisson’s ratio �12.
Case 7: Individual randomness in the thickness h.
Case 8: Individual randomness in the x-axis dimension a.
Case 9: Individual randomness in the y-axis dimension b.
Case 10: Individual randomness in the fiber angle �.
C a s e  1 1 :  C o m p o u n d  r a n d o m n e s s  i n (

E1,E2,G12,G13,G23, �12, h, a, b, �
)
.

Inevitably, many different partially compound cases with 
randomness in two or more parameters can exist in reality. 
However, it seemed to be impossible to evaluate all par-
tially compound cases, so we analyzed only the individual 
and fully compound cases of randomness. Considering the 
superposition principle, the random effect of any partially 
compound case can be evaluated as the sum of the random 
effects of each case involved.

5.1 � Convergence of sampling methods

In each iteration, Ns = 100 sampling points are generated 
and the mean of their outputs are recorded as the output of 
the iteration. The standard deviation of the sample means 
after certain iterations can be evaluated and considered as 
the convergence rate or the sampling error. The optimal 

Fig. 14   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) 
in stochastic buckling behav-
iors N0(s) of square cross-ply 
laminated composite plates 
[0/90]M (a = b) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness
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sampling method should have the lowest sampling error in 
the convergence results. In this study, we did 10,000 itera-
tions to examine the sampling errors and computational 
cost of each sampling method. In the convergence studies, 
we examined composite plates with a∕h = 50 exposed to 
a stochastic environment of compound randomness with 
rj = r0 = 0.1.

5.1.1 � Bending convergence

This subsection presents the convergence characteristics of 
the MCS and LHS on the stochastic bending deflection w(s) 
of cross-ply laminated composite plates [0/90]M (see Fig. 2 
for square (a = b) and Fig. 3 for rectangular (b = 2a) plates) 
and angle-ply laminated composite plates [α/−α/α/−α] (see 
Fig. 4 for square (a = b) and Fig. 5 for rectangular (b = 2a) 
plates). Different layer-schemes (i.e., M = 1, 2, 3, and 4) and 
fiber angles (i.e., α = 30, α = 45, and α = 60) were considered 
for cross-ply and angle-ply laminated composite plates.

We observed that the bending deflections evaluated by 
the LHS and MCS converged and agreed well with each 
other, and their converged values were different from the 
corresponding deterministic values although input param-
eters were randomized around their deterministic states. In 

terms of mean values, the LHS converged quickly within 
500 iterations, while the MCS required 2000–4000 itera-
tions to converge. The same trend held for the convergence 
of standard deviations (i.e., sampling errors), which were 
obtained when the LHS converged to much lower values 
than standard deviations obtained from the MCS in all con-
vergence plots.

To further analyze the performance of the MCS and 
LHS in different stochastic environments, the means and 
standard deviations of stochastic bending deflections w(s) 
of cross-ply laminated composite plates [0/90]M (see Fig. 6 
for square (a = b) and Fig. 7 for rectangular (b = 2a) plates) 
and angle-ply laminated composite plates [α/−α/α/−α] (see 
Fig. 8 for square (a = b) and Fig. 9 for rectangular (b = 2a) 
plates) were evaluated for a range of degrees of stochasticity 
r0 = 0 − 0.2 . Different layer-schemes (i.e., M = 1, 2, 3, and 4) 
in cross-ply laminates and different fiber angles (i.e., α = 30, 
α = 45, and α = 60) in angle-ply laminates were considered.

We observed that the trend lines of the means and stand-
ard deviations obtained from the LHS and MCS agreed well 
with each other. Generally, the increment of the degree of 
stochasticity r0 widens the fluctuations of both means and 
standard deviations of the stochastic bending deflection. In 
terms of mean values, the MCS curves started to fluctuate 

Fig. 15   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic buckling behaviors 
N0(s) of rectangular cross-ply 
laminated composite plates 
[0/90]M (b = 2a) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness
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Fig. 16   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) 
in stochastic buckling behav-
iors N0(s) of square angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (a = b) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness

Fig. 17   Effects of stochastic 
environments on convergence 
characteristics of Monte Carlo 
simulation (MCS) and Latin 
hypercube sampling (LHS) in 
stochastic buckling behaviors 
N0(s) of rectangular angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (b = 2a) with 
a∕h = 50 , A α = 30, B α = 45, 
and C α = 60 exposed to com-
pound randomness
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Fig. 18   Stochastic sensitivity of 
bending deflection w of square 
cross-ply laminated compos-
ite plates [0/90]M (a = b) with 
a∕h = 50 exposed to different 
cases of randomness with A 
r0 = 0.05 , B r0 = 0.10 , and C 
r0 = 0.15

Fig. 19   Stochastic sensitiv-
ity of bending deflection w of 
rectangular cross-ply laminated 
composite plates [0/90]M 
(b = 2a) with a∕h = 50 exposed 
to different cases of randomness 
with A r0 = 0.05 , B r0 = 0.10 , 
and C r0 = 0.15
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Fig. 20   Stochastic sensitivity of 
bending deflection w of square 
angle-ply laminated composite 
plates [α/−α/α/−α] (a = b) with 
a∕h = 50 exposed to different 
cases of randomness with A 
r0 = 0.05 , B r0 = 0.10 , and C 
r0 = 0.15

Fig. 21   Stochastic sensitiv-
ity of bending deflection w of 
rectangular angle-ply laminated 
composite plates [α/−α/α/−α] 
(b = 2a) with a∕h = 50 exposed 
to different cases of randomness 
with A r0 = 0.05 , B r0 = 0.10 , 
and C r0 = 0.15
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considerably at r0 = 0.05 in most cases, or even at lower r0 
values in Fig. 6A–C. On the other side, the fluctuations of 
LHS curves were insignificant as long as r0 ≤ 0.15 . In terms 
of standard deviations, although the MCS curves started to 
deviate at a higher r0 value, the performance of the LHS was 
still more stable than the MCS.

5.1.2 � Buckling convergence

Convergence characteristics of the MCS and LHS on the 
stochastic buckling load N0(s) of cross-ply laminated com-
posite plates [0/90]M (see Fig. 10 for square (a = b) and 
Fig. 11 for rectangular (b = 2a) plates) and angle-ply lami-
nated composite plates [α/−α/α/−α/α/−α] (see Fig. 12 for 
square (a = b) and Fig. 13 for rectangular (b = 2a) plates) are 
presented in this subsection. Different layer-schemes (i.e., 
M = 1, 2, 3, and 4) and fiber angles (i.e., α = 30, α = 45, and 
α = 60) were considered for cross-ply and angle-ply lami-
nated composite plates.

Note that although the buckling loads evaluated by 
the LHS and MCS converged to approximately the same 

values, the number of iterations required by the MCS was 
much larger than that required by the LHS. Indeed, the LHS 
required less than 500 iterations while the MCS required 
between 2000 and 4000 iterations to have converged results 
in both means and standard deviation. The converged values 
of buckling loads deviated from their deterministic values 
due to the effects of uncertainties. The sampling error is 
indicated by the converged value of standard deviations. In 
these plots, the converged standard deviation obtained by the 
LHS was much lower than that obtained by the MCS, which 
indicated that the LHS had lower sampling errors.

To further analyze the performance of the MCS and 
LHS in different stochastic environments, the means and 
standard deviations of stochastic buckling loads N0(s) of 
cross-ply laminated composite plates [0/90]M (see Fig. 14 
for square (a = b) and Fig. 15 for rectangular (b = 2a) plates) 
and angle-ply laminated composite plates [α/−α/α/−α] (see 
Fig. 16 for square (a = b) and Fig. 17 for rectangular (b = 2a) 
plates) were evaluated for a range of degrees of stochasticity 
r0 = 0 − 0.2 . Different layer-schemes (i.e., M = 1, 2, 3, and 4) 

Fig. 22   Probability of stochastic 
bending deflection w of square 
cross-ply laminated compos-
ite plates [0/90]M (a = b) with 
a∕h = 50 , A M = 1, B M = 2, C 
M = 3, and D M = 4 exposed to 
profound cases of randomness 
( r0 = 0.1)
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in cross-ply laminates and different fiber angles (i.e., α = 30, 
α = 45, and α = 60) in angle-ply laminates were considered.

Although the trend lines of both the means and standard 
deviations obtained from the LHS and MCS agreed well 
with each other, the MCS curves fluctuated wider than LHS 
curves do when the degree of stochasticity r0 increases. In 
terms of mean values, the MCS curves started to fluctu-
ate considerably at r0 = 0.05 while the LHS curves started 
to fluctuate when r0 > 0.15 . In terms of standard devia-
tions, both the MCS and LHS curves were stable as long as 
r0 ≤ 0.15 . As r0 > 0.15 , the LHS curves performed better 
than the MCS curves.

For both bending and buckling convergence studies, the 
LHS outperformed the MCS in either computational costs 
(i.e., fewer iteration to be converged) or accuracy as it pro-
duced stable results even in highly stochastic environments, 
which created lower sampling errors. Thus, for subsequent 
analyses, we used the LHS for stochastic bending and sto-
chastic buckling analyses.

5.2 � Stochastic bending analysis

The sensitivity of the bending deflection w of cross-
ply laminated composite plates [0/90]M (see Fig. 18 for 
square (a = b) and Fig. 19 for rectangular (b = 2a) plates) 
and angle-ply laminated composite plates [α/−α/α/−α] 
(see Fig. 20 for square (a = b) and Fig. 21 for rectangu-
lar (b = 2a) plates) towards each case of uncertainty with 
r0 = {0.05, 0.10, 0.15} is defined as �w

/
�w or �∕� for brev-

ity. We investigated different layer-schemes M = {1, 2, 3, 4} 
and different fiber angles α = {30, 45, 50}.

The bending deflections are inevitably most sensitive 
towards the compound randomness. Among cases of indi-
vidual randomness, case 7 (h) , case 8 (a) , case 9 (b) , and 
case 1 

(
E1

)
 in descending order had profound effects on the 

output of both cross-ply and angle-ply laminated composite 
plates. The individual randomness in the y-axis dimension 
b (case 9) strongly affected the stochastic bending deflection 
of square cross-ply laminated composite plates (a = b) but 

Fig. 23   Probability of stochastic 
bending deflection w of rectan-
gular cross-ply laminated com-
posite plates [0/90]M (b = 2a) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to profound cases of 
randomness ( r0 = 0.1)
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had little effect on rectangular cross-ply laminated compos-
ite plates (b = 2a) . The individual randomness in the fiber 
angle � (case 10) had a considerable effect on the angle-ply 
plates but a negligible effect on the cross-ply laminated com-
posite plates. The higher the degree of stochasticity r0 , the 
higher the sensitivity of the bending deflection. It is clear 
that, while only Young’s modulus E1 among six different 
material parameters had a profound stochastic effect on the 
bending of the laminated composite plates, all geometrical 
parameters mattered. We further analyzed these profound 
parameters to provide comprehensive probability charac-
teristics of the bending behavior of cross-ply and angle-ply 
laminated composite plates in stochastic environments.

We investigated the probability characteristics of the sto-
chastic bending deflection w of cross-ply laminated compos-
ite plates [0/90]M (see Fig. 22 for square (a = b) and Fig. 23 
for rectangular (b = 2a) plates) and angle-ply laminated 
composite plates [α/−α/α/−α] (see Fig. 24 for square (a = b) 
and Fig. 25 for rectangular (b = 2a) plates) in profound cases 
of uncertainty 

(
r0 = 0.10

)
 as defined previously. We ana-

lyzed the correlative stochastic effects of each profound case 
of randomness from the distribution of these probability 

density functions. The most concentrated distributions for 
square (a = b) and rectangular (b = 2a) cross-ply laminated 
composite plates came from case 1 

(
E1

)
 (see Fig. 22) and 

case 9 (b) (see Fig. 23), respectively. The most concentrated 
distributions for both square (a = b) and rectangular (b = 2a) 
angle-ply laminated composite plates came from case 10 (�) 
(see Figs. 24, 25). For both cross-ply and angle-ply lami-
nates, case 11 of compound randomness had the widest dis-
tribution followed by case 7 (h) . Thus, plate thickness was 
the strongest randomness source among individual cases.

The distributions of case 8 (a) and case 9 (b) were unique 
for square cross-ply laminates (see Fig. 22), while the dis-
tribution of case 8 (a) was wider than the distribution of 
case 9 (b) for rectangular cross-ply laminates (see Fig. 23). 
Thus, the smaller dimension had a stronger stochastic effect 
on the bending of the cross-ply laminated composites. This 
observation was held for rectangular angle-ply laminated 
composite plates (see Fig. 25) regardless of the effect of 
fiber angles � . The effect of � can be observed in Fig. 24 for 
square angle-ply laminated composite plates. The distribu-
tions of case 8 (a) and case (b) were unique and similar to 

Fig. 24   Probability of stochastic 
bending deflection w of square 
angle-ply laminated compos-
ite plates [α/−α/α/−α] (a = b) 
with a∕h = 50 , A α = 30, B 
α = 45, and C α = 60 exposed to 
profound cases of randomness 
( r0 = 0.1)
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Fig. 22 as � = 45 (see Fig. 24B), but different from each 
other as � = 30 (see Fig. 24A) and � = 60 (see Fig. 24C).

The effect of fiber angles � on the probability of sto-
chastic bending deflection w for square and rectangular 
laminated composites exposed to compound randomness 
with r0 = 0.10 were further investigated in Figs. 26 and 
27, respectively. Different fiber angles [0/90]M, [15/− 15]M, 
[30/− 30]M, [45/− 45]M, [60/− 60]M and [75/− 75]M and dif-
ferent layer-schemes M = {1, 2, 3, 4} were considered. For 
square laminated composite plates (see Fig. 26), [45/− 45]M 
plates had the lowest mean value and the most concentrated 
distribution. In the contrast, [0/90]M plates had the high-
est mean value and the most scattering distribution. Pairs 

of plates with symmetric fiber angles about � = 45 such as 
[15/− 15]M and [75/− 75]M or [30/− 30]M and [60/− 60]M had 
unique distributions. Thus, the [45/− 45]M plates had the best 
bending performance among considered square laminated 
composite plates. For rectangular laminated composite 
plates (see Fig. 27), the increment of fiber angles � created 
a widening of probability distribution curves, except for 
[0/90]M plates. Thus, [75/− 75]M plates had the highest mean 
value and largest probability distributions. The best bend-
ing performance among considered rectangular laminated 
composite plates was the [15/− 15]M plate, which had the 
lowest mean values and smallest probability distributions.

Fig. 25   Probability of stochas-
tic bending deflection w of 
rectangular angle-ply laminated 
composite plates [α/−α/α/−α] 
(b = 2a) with a∕h = 50 , A 
α = 30, B α = 45, and C α = 60 
exposed to profound cases of 
randomness ( r0 = 0.1)
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5.3 � Stochastic buckling analysis

Now we present the sensitivity of the critical buckling 
load N0 of cross-ply laminated composite plates [0/90]M 
(see Fig. 28 for square (a = b) and Fig. 29 for rectangular 
(b = 2a) plates) and angle-ply laminated composite plates 
[α/−α/α/−α/α/−α] (see Fig. 30 for square (a = b) and Fig. 31 
for rectangular (b = 2a) plates) for each case of random-
ness with r0 = {0.05, 0.10, 0.15} . Different layer-schemes 
M = {1, 2, 3, 4} and different fiber angles α = {30, 45, 60} 
were investigated.

The strongest stochastic effects came from the compound 
randomness (case 11) followed by the individual randomness 
in the thickness h (case 7). In other words, the individual 

randomness in the thickness was the strongest among indi-
vidual cases for both cross-ply and angle-ply laminated com-
posite plates. The randomness in b (case 9) was stronger 
than the randomness in a (case 8) for square cross-ply and 
angle-ply laminates, while the reverse occurred for rectangu-
lar cross-ply laminates. In rectangular angle-ply laminates, 
the correlative effects of a (case 8) and b (case 9) depended 
on fiber angles � . The individual randomness in fiber angles 
� (case 10) had a considerable effect on angle-ply laminated 
composite plates but not on cross-ply laminated composite 
plates. Both cross-ply and angle-ply laminates were con-
siderably sensitive to the randomness of Young’s modulus 
E1 (case 1) and not sensitive to the randomness in Young’s 
modulus E2 (case 2), shear moduli G12 (case 3), G13 (case 

Fig. 26   Effects of fiber angles 
on the probability of bending 
deflection w of square laminated 
composite plates [0/90]M and 
[α/−α]M (a = b) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to compound 
randomness ( r0 = 0.1)
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4), G23 (case 5), and Poisson’s ratio �12 (case 6). The com-
prehensive probability characteristics of stochastic critical 
buckling loads N0 of the laminated composite plates in pro-
found cases of randomness were then investigated.

We investigated the probability characteristics of the 
stochastic critical buckling load N0 of cross-ply laminated 
composite plates (see Fig. 32 for square (a = b) and Fig. 33 
for rectangular (b = 2a) plates) and angle-ply laminated 
composite plates (see Fig. 34 for square (a = b) and Fig. 35 
for rectangular (b = 2a) plates) in profound cases of uncer-
tainty 

(
r0 = 0.10

)
 . The most concentrated distributions for 

the square and rectangular cross-ply laminated composite 

plates came from case 8 (a) (see Fig. 32) and case 9 (b) (see 
Fig. 33), respectively. The most concentrated distributions 
for the square and rectangular angle-ply laminated compos-
ite plates came from case 8 (a) (see Fig. 34) and case 10 (�) 
(see Fig. 35), respectively. As expected, the widest distribu-
tion came from the compound randomness (case 11) fol-
lowed by the individual randomness in the thickness (case 
7).

For square cross-ply and angle-ply laminated composite 
plates (see Figs. 32, and 34), the distributions of case 9 (b) 
spread wider than the distributions of case 8 (a) . The reverse 
occurred for rectangular cross-ply laminated composite 

Fig. 27   Effects of fiber angles 
on the probability of bending 
deflection w of rectangular 
laminated composite plates 
[0/90]M and [α/−α]M (b = 2a) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to profound cases of 
randomness ( r0 = 0.1)
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Fig. 28   Stochastic sensitivity 
of critical buckling load N0 
of square cross-ply laminated 
composite plates [0/90]M (a = b) 
with a∕h = 50 exposed to dif-
ferent cases of randomness with 
A r0 = 0.05 , B r0 = 0.10 , and C 
r0 = 0.15

Fig. 29   Stochastic sensitivity 
of critical buckling load N0 of 
rectangular cross-ply lami-
nated composite plates [0/90]M 
(b = 2a) with a∕h = 50 exposed 
to different cases of randomness 
with A r0 = 0.05 , B r0 = 0.10 , 
and C r0 = 0.15
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Fig. 30   Stochastic sensi-
tivity of critical buckling 
load N0 of square angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (a = b) with 
a∕h = 50 exposed to different 
cases of randomness with A 
r0 = 0.05 , B r0 = 0.10 , and C 
r0 = 0.15

Fig. 31   Stochastic sensitiv-
ity of critical buckling load 
N0 of rectangular angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (b = 2a) with 
a∕h = 50 exposed to different 
cases of randomness with A 
r0 = 0.05 , B r0 = 0.10 , and C 
r0 = 0.15
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plates as shown in Fig. 33. It should be noted that the plates 
were subjected to uniaxial compressions at x = 0 and x = a 
edges. For rectangular angle-ply laminated composite plates 
(see Fig. 35), the comparative distributions of case 8 (a) and 
case 9 (b) depend on the fiber angles � . The curves of case 9 
(b) were distributed wider than the curves of case 8 (a) when 

� = 45 and � = 60 , but did not at � = 30 . There was no case 
of unique distribution between case 8 (a) and case 9 (b) as in 
the probability distribution of bending flections due to the 
un-symmetry of the uniaxial buckling analyses.

The effects of fiber angles � on the probability of 
stochastic critical buckling loads N0 for square and 

Fig. 32   Probability of stochas-
tic critical buckling load N0 
of square cross-ply laminated 
composite plates [0/90]M (a = b) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to profound cases of 
randomness ( r0 = 0.1)
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rectangular laminated composites were further investigated 
in Figs. 36 and 37. We considered different fiber angles 
[0/90]M, [15/− 15]M, [30/− 30]M, [45/− 45]M, [60/− 60]M 
and [75/− 75]M and different layer-schemes M = {1, 2, 3, 
4}. For square laminated composite plates (see Fig. 36), 
[75/− 75]M plates had the lowest mean value and most 
concentrated distribution followed by the distributions 
of [0/90]M plates. In the contrast, [45/45]M plates had the 
highest mean value (i.e., the best buckling resistance) and 

the widest probability distribution (i.e., the most sensi-
tive case) among square laminated composite plates. For 
rectangular laminated composite plates (see Fig. 37), the 
smaller the fiber angles � , the higher the mean values 
and the wider the probability distribution, except for the 
[0/90]M plates whose curves were close to the curves of 
[45/45]M plates. Among different rectangular laminated 
composite plates, [15/− 15]M plates had the highest mean 
value and largest probability distributions.

Fig. 33   Probability of sto-
chastic critical buckling load 
N0 of rectangular cross-ply 
laminated composite plates 
[0/90]M (b = 2a) with a∕h = 50 , 
A M = 1, B M = 2, C M = 3, and 
D M = 4 exposed to profound 
cases of randomness ( r0 = 0.1)
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6 � Conclusion

In this study, we thoroughly investigated the determinis-
tic and stochastic bending and buckling behaviors of the 
antisymmetric cross-ply and angle-ply laminated compos-
ite plates. Deterministic partial differential equations were 
derived using the three variable refined shear deformation 
theory based on Hamilton’s principle. Numerical Navier’s 
solutions were validated with the first-order and third-order 

shear deformation theories. Monte Carlo simulation and 
Latin hypercube sampling were studied to determine the 
optimal sampling technique for stochastic analyses. We 
considered eleven scenarios of individual and compound 
randomness. Convergence studies, sensitivity analyses, and 
comprehensive probability characteristics of the bending 
and the buckling phenomenon of laminated composite plates 
were conducted. We analyzed the detailed results and made 
several notable observations as follows:

Fig. 34   Probability of sto-
chastic critical buckling 
load N0 of square angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (a = b) 
with a∕h = 50 , A α = 30, B 
α = 45, and C α = 60 exposed to 
profound cases of randomness 
( r0 = 0.1)
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–	 Among cross-ply laminated plates with the same thick-
ness, plates with more laminae had better bending and 
buckling performance.

–	 Square laminated plates had lower bending deflections 
and higher critical buckling loads in comparison with 
rectangular laminated plates.

–	 The Latin hypercube sampling outperformed the con-
ventional Monte Carlo simulation in both computational 
efficiency and numerical accuracy, even in strongly sto-
chastic environments.

–	 Most material properties had few stochastic effects on the 
bending and buckling behaviors of laminated composite 
plates.

–	 All geometry parameters had strong stochastic effects on 
the bending and buckling behaviors of laminated com-
posite plates.

This study provides an efficient approach for understand-
ing deterministic and stochastic structural behaviors, which 
is crucially important for good practices in the real analysis, 
design, and utilization of structures.

Fig. 35   Probability of sto-
chastic critical buckling load 
N0 of rectangular angle-ply 
laminated composite plates 
[α/−α/α/−α/α/−α] (b = 2a) 
with a∕h = 50 , A α = 30, B 
α = 45, and C α = 60 exposed to 
profound cases of randomness 
( r0 = 0.1)
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Fig. 36   Effects of fiber angles 
on the probability of critical 
buckling load N0 of square 
laminated composite plates 
[0/90]M and [α/−α]M (a = b) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to compound random-
ness ( r0 = 0.1)
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Fig. 37   Effects of fiber angles 
on the probability of critical 
buckling load N0 of rectangular 
laminated composite plates 
[0/90]M and [α/−α]M (b = 2a) 
with a∕h = 50 , A M = 1, B 
M = 2, C M = 3, and D M = 4 
exposed to profound cases of 
randomness ( r0 = 0.1)
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