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Abstract
An improved Chimps optimizer algorithm is proposed in this paper and is applied for the performance optimization of tun-
nel FET architectures for use in low power VLSI circuits. The steep subthreshold characteristics of TFET improves device 
performance and make it suitable for low power digital and memory applications. Classical Chimps optimizer has poor 
convergence and problem to stuck into local minima for high dimensional problems. This research focuses on mathematical 
model of divergent thinking and sensual movement of chimps in four different forms named attacker, barrier, chaser, and 
driver for simulation. The improved variant of Chimps optimizer has been proposed in this research and named as Imp-
Chimp. To validate the efficacy and feasibility of the suggested technique, it has been examined for standard benchmarks 
and multidisciplinary engineering design problems to solve non-convex, non-linear, and typical engineering design prob-
lems. The suggested technique variants have been evaluated for seven standard unimodal benchmark functions, six standard 
multi modal benchmark functions, ten standard fixed dimension benchmark functions and engineering design problems (i. 
e., TFET, BTBT). The outcomes of this method have been compared with other existing optimization methods considering 
convergence speed as well as for searching local and global optimal solutions. The testing results show the better performance 
of the proposed method. The paper also demonstrates the tunnel field effect transistor (TFET) as a promising device for low 
power electronic circuits and an engineering problem where the Imp-Chimp optimizer can be implemented for performance 
improvement. The TFET is based on the carrier generation using the quantum mechanical process of the band-to-band tun-
neling (BTBT). TFET can meet the requirements of a device that can perform on low supply voltage with reduced leakage 
currents and low sub-threshold swing. TFET can be optimized to give similar performance as MOSFET, but with much 
lower power consumption. 

Keywords Tunnel FET · Narrow bandgap material · BTBT tunnelling · Improved Chimp optimizer · Heterojunction · 
Junction less TFET

1 Introduction

Artificial intelligence as well as machine learning are rapidly 
increasing because it is easy to implement to solve real-life 
issues which are continuous or discontinuous, constrained 
or unconstrained [1. , 2. ]. For handling these characteristics 

using conventional approaches such as quasi-Newton 
method, sequential quadratic programming, fast steepest 
and conjugate gradient etc. faced difficulties to solve them 
[3. , 4. ]. In existing research, all these methods were tested 
experimentally and noticed they are not exactly sufficient 
to obtain effectual solutions to non-continuous, non- dif-
ferential problems and real life multi-model problems [5]. 
Thus, meta-heuristics algorithm came into picture which 
is very simple to understand and easily be implemented to 
handle several issues. Generally, in optimization, techniques 
depend on inhabitants to find out solution on optimal and 
sub optimal which is closer to exact optimal value, located 
at nearest point. In this algorithm the optimization process 
starts unless population set of the individuals are generated 
and then relaying on optimization method every individual 
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act for candidate solution for the problem. Thus, by updating 
present location with best position, the population will be up 
to date by reaching maximum iterations. In modern research 
the meta-heuristics algorithm which gives better efficiency, 
less expensive and successful in implementation is given 
prior importance to utilize. 

With such qualities embedded, a new hybrid meta-heuris-
tics optimization technique, Imp-Chimp-SHO algorithm pro-
posed in this paper relies on nature-lead and mathematical 
formulation of search functions were developed to give good 
competition to already existing meta-heuristics optimizers. 
The intention to design this optimization technique is moti-
vated by individual intelligence and sensual movement of 
social carnivores, named Chimps for their mass hunting 
mannerism in targeting the prey [6]. Hence, a stochastic and 
meta-heuristic mathematical model intended to handle vari-
ous optimization problems and is verified by testing experi-
mentally in this research work. 

It is a fact that Optimization technique is an extensive 
field of study and rapid progress in work is visualized as 
researchers are implementing new methods to give better 
solutions to various problems targeting challenges and can 
succeed in findings. In research, past methods ladder to new 
methods exhibiting their hybrid novel approach to reduce 
low efficient methods from present. A collection of research 
papers is presented in literature review to enlist the short-
comings of recent algorithms in this proposed study. 

Broadly speaking meta-heuristics are of two types, 
named single-solution based m-heuristics and population 
solution based meta-heuristics. Improved Chimp algorithm 
(ICHIMP) variant belongs to swarm intelligence-based 
algorithm of the categories of population meta-heuristics, 
which is combined along with newly introduced swarm 
intelligence-based algorithm called Spotted Hyena Opti-
mizer algorithm and named as Improved Chimp-Spotted 
Hyena Optimizer (ICHIMP-SHO) algorithm which is intro-
duced in this paper. Overall, this algorithm is simple to apply 
and involves very less operators than other population-based 
algorithms with minimum computational efforts. 

2  Literature review

Since few years meta-heuristics techniques came into usage 
widely because of its efficiency when compared to other 
existing techniques. These algorithms give better solution to 
real-life optimization issues. Hence, to solve these optimiza-
tion issues there is a need of new meta-heuristics algorithm 
to introduce. As well in ever increasing utilization of engi-
neering applications, meta-heuristics optimization algo-
rithms (MOAs) have its importance. Very rapidly the neces-
sity of latest MOAs is increasing because of solving 
complicated problems. It acquires distinct profits as: (i) Its 

plain algorithmic structure helps to implement it easily; (ii) 
This suits real-life problems in engineering as it is deriva-
tion-free mechanism; (iii) When compared to traditional 
optimization algorithms, this have better ability to minimize 
local optima; (iv)This is flexible to apply on different prob-
lems as its structure doesn’t need any particular changes; (v) 
Because of its simplicity and efficiency, this can be applied 
simultaneously in hardware applications as well as in com-
puting applications (like (FPGA)-field programmable gate 
array) [6]. To limit the drawbacks of classical methods, the 
meta-heuristics search algorithms were introduced. Few 
such algorithms are biography algorithm [7], artificial bee 
colony [8], differential evolution (DE) [9], genetic algorithm 
[10], cuckoo search algorithm [11], bacterial foraging algo-
rithm [12], flower pollination algorithm [13], chemical reac-
tion optimization [14], firefly algorithm [15], immune algo-
rithm [16], teaching learning algorithm [17], particle swarm 
optimization algorithm (PSO) [18], grey wolf optimization 
[19], social spider algorithm [20], gravitational search algo-
rithm [12], bat algorithm [21]. How meta-heuristics algo-
rithms are classified is explained in [22, 23], and with refer-
ence to this [24, 25], meta-heuristics algorithms are 
considered by natural behaviour and divided as single solu-
tion based for example variable neighbourhood search [26], 
Vortex search algorithm (VS) [27], Simulated Annealing 
(SA) [28], genetic algorithm (GA) [10], Tabu search (TS) 
[29] is an emerging way to find solution for combinatorial 
real world problems in covering and scheduling, and cuckoo 
search algorithm [11], gravitational search algorithm (GSA) 
[12] are population-based algorithms. Evolutionary pro-
gramming (EP) [30] is a fast and classical evolutionary pro-
gramming’s were performed on real world problems, gener-
ated a Gaussian random number rather than a Cauchy 
random number. Harmony search (HS) [31] is inspired by 
using music production cycle analogy. HS may not need the 
initial values of the variables for decision. Forest optimisa-
tion algorithm (FOA) [32] is for finding maximum value and 
minimal value with a real application, and found that the 
FOA can typically find solutions correctly and the reliability 
of the fruit fly swarm search route obviously has to do with 
the quantity of fruit fly. Grey wolf optimizer algorithm 
(GWO) [33] work was inspired by a Swarm intelligence 
optimization through the grey wolves and the suggested 
model imitated the grey wolves' social hierarchical and hunt-
ing behaviour. Moth flame optimizer (MFO) [34] here, key 
influence of this optimizer is the moth navigation system 
called transverse orientation in nature. Moths migrate in 
darkness by keeping a pre-set moon angle, a very effectual 
method for long distance flying in a straight line. But such 
fancy insects are stuck around artificial lights in a useless/
deadly spiralling course. Stochastic Fractal Search Algo-
rithm (SFS) [35] centred on random fractals to address 
global optimization problems with continuous variables, 
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both constrained and unconstrained. In the entire optimiza-
tion if only one solution carries then it is known as single 
solution-based algorithm and if there are many different 
solutions in the whole optimization phase then it is popula-
tion-based algorithm, and as such the solution may coincide 
to the optimum very nearly. Optimization problems can find 
solutions by nature inspired MOAs physical or biological 
behaviour implementation. They are classified into four main 
classes [24, 36]: swarm intelligence based algorithm, evolu-
tionary algorithms (EAs), human-based, physics-based algo-
rithms. Evolutionary algorithms replicate features of bio-
logical generation like recombining, mutation and selecting 
process [22]. The famous Evolutionary algorithms are dif-
ferential evolution (DE) [37] presented the minimization of 
potentially nonlinear and non-differentiable continuous 
space functions. It only requires some strong control varia-
bles, taken from a perfectly-defined number interval, evolu-
tionary strategy (ES), Biogeography-based optimization 
(BBO) [38] made analysis of biological species geographical 
distribution, can be used to deduce algorithms suitable for 
optimization. Evolutionary Programming (EP), and Genetic 
algorithm (GA) which is drawn from Darwinian theory. As 
per [36, 39] physics-based algorithms analogous natural 
physical laws. The famous algorithms are quantum mechan-
ics based (QMBA), gravitational search (GSA) [40] is influ-
enced by the Gravitational Law and the theory of mass inter-
action. GSA utilizes Newtonian mechanics theory, and its 
search agent is the set of masses, central force optimization 
(CFO), charged system search (CSS), electromagnetism like 
algorithms (ELA), lightning attachment procedure optimiza-
tion (LAPO). Big-Bang Big-Crunch (BBBC) [41], adaptive 
best-mass gravitational search algorithm (ABMGSA) [42]. 
Thirdly, MOAs are inspired by natural human behaviour. 
The best examples of them are teaching learning based opti-
mization (TLBO) [25] which comprises of 2 phases, teach-
ing phase and learner phase to interact with both is possible 
with only tuning and the problem must be rectified in a 
power system, imperialist competitive algorithm (ICA) [43], 
socio evolution and learning optimization (SELO) [44]. 
Fourthly, MOAs imitate social behaviour of organisms like 
swarms, shoals, flocks or herds [45]. For illustration particle 
swarm optimization (PSO), hybrid MLP and Salp swarm 
algorithm (MLP-SSA) [46], bat algorithm (BA), ant colony 
optimization (ACO), improved monarch butterfly optimiza-
tion (MBO) algorithm, cuckoo search algorithm (CSA), krill 
herd (KH) [47], grey wolf optimizer (GWO), Grasshopper 
optimization approaches, binary salp swarm algorithm 
(BSSA), ant lion optimizer (ALO) [48], hybrid binary, arti-
ficial bee colony (ABC), hybrid dragonfly optimization algo-
rithm and MLP (DOA-MLP) [49], improved whale trainer 
(IWT) [50]. Harris Hawks optimizer (HHO) [51] is being 
introduced to tackle different tasks of optimization. The 
strategy is influenced by nature's cooperative activities and 

by the patterns of predatory birds chasing, Harris' hawks. 
Henry gas solubility optimization algorithm (HGSO) [52] 
imitates the procedures of Henry’s rule. HGSO, aimed at 
matching the production and conservation capabilities of 
check room and stop optima local. Photon search algorithm 
(PSA) [40] Inspired by the properties of photons in the field 
of physics. Strong ability of global search and convergence. 
Chaotic krill herd algorithm (CKH) [53] combined chaos 
theory with Krill herd optimization procedure to speed up 
global convergence. Bird swarm algorithm (BSA) [54] 
depends on social interactions of swarm intelligence with 
bird swarm. Lightning search algorithm (LSA) [55] is a 
m-heuristic technique used to resolve problems on constraint 
optimization by following lightning phenomenon applying 
the concept of fast moving particles called projectiles. Multi-
verse optimizer (MVO) [56] a environment lead heuristic 
algorithm relays on 3 stages named: wormhole, black hole, 
white hole. Virus colony search (VCS) [57] is a environment 
inspired method that affects spreading and infection stages 
of the host cells followed by virus for its survival in the cell 
environment. To find solutions for real time problems, grass-
hopper optimization algorithm (GOA) [58] follows grass-
hopper swarms behaviour. Based on the thinking ability of 
chicken swarm, chicken swarm optimization algorithm 
(CSO) [59] came into existence. Grey wolf optimizer-sine 
cosine algorithm (GWO-SCA) [60] is a meta-heuristics opti-
mizer correlating the nature of wolf with mathematical sine 
cosine concepts. crow particle swarm optimization algo-
rithm (CPO) [61] is a hybrid combination of crow search 
algorithm and particle swarm optimization. Whale optimiza-
tion technique (WOA) [62] is a hybridized combinatorial 
meta-heuristics technique of Whale and swarm human based 
optimizers for finding perfect exploratory and convergence 
capabilities. Spotted hyena optimizer (SHO) [63] is a new 
meta-heuristic algorithm encouraged by the natural collabo-
rative behaviour of spotted hyenas in searching, encircling, 
attacking the prey. Multi-objective spotted hyena optimizer 
(MOSHO) [64] is developed to reduce multiple objective 
functions. Modified adaptive butterfly optimization algo-
rithm (BOA) [65] is developed based on butterfly observa-
tion that produces its own fragrance when travelling in 
search of food from one place to another place. Binary spot-
ted hyena optimizer (SHO) [66] is a meta-heuristic algo-
rithm introduced on the basis of hunting behaviour of spot-
ted hyena which deals with discrete optimization problems. 
Hybrid Harris Hawks pattern search algorithm (hHH-PS) 
[67] is a meta-heuristic optimizer developed to figure out 
newer version Harris Hawks for finding solution in local and 
global search. Hybrid Harris Hawks-sine cosine method 
(hHH-SCA) [68] is influenced by virtuous behaviour of Har-
ris Hawks which added up with mathematical concepts of 
sine and cosine to increase its ability in exploration and 
exploitation phases (Fig. 1). Bernstrain-search differential 



1418 Engineering with Computers (2023) 39:1415–1458

1 3

evolution algorithm (EBSD) [69] belongs to family of uni-
versal differential evolution algorithms, which is proposed 
based on mutation and crossover operators. Reliability based 
design optimization algorithm (RBDO) [70] deals with the 
uncertainty factors like global convergence, complicated 
design variables. Basically the two main components of 
meta-heuristics are exploitation and exploration [24]. Explo-
ration extends searching widely to produce many different 
solutions, whereas exploitation focuses searching in a speci-
fied area assuming that area is the best for present. It is very 
much important and necessary to balance these two compo-
nents exploitation and exploration in MOA to keep away the 
fluctuations in the rate of convergence, as well preventing 
local and global optimum [71, 72]. Exploitation indicates 
single solution based meta-heuristics and exploration indi-
cates populated solution based meta-heuristics. 

Spotted Hyena optimizer (SHO) is a new upcoming opti-
mizer influenced by the trapping behaviour of spotted hyena. 
This technique benefits upon other meta-heuristics as:

 (i) implementation of algorithm is easy because of its 
simplicity structure. 

 (ii) it makes smooth continuous solutions in local opti-
mum. 

 (iii) it has finer local and global search capability. 
 (iv) due to continued diminution of search space, SHO 

convergence rate ids faster. And this solves many 
types of engineering design problems [66]. 

Data mining feature selection and unit commitments are the 
major discrete optimization issues. To solve these problems 
SHO is used. Feature selection targets unnecessary features 
and removes them from data set and minimizes computation 
requirement, dimensionality and results in better accuracy. In 
practical, the real-time problems may have huge number of 
features with relevant and irrelevant features. At that time, it is 
difficult for finding solution. Then, the characteristic selection 
is treated as combinatorial optimization problem. To solve 
this selection feature problem binary meta-heuristics algo-
rithms are used. Few examples are binary gravitational search 
algorithm (BGSA) [73], binary gray wolf optimizer (BGWO) 
[74], binary bat algorithm (BBA) [75, 76], binary particle 
swarm optimization (BPSO) [77]. Hybrid particle swarm and 
spotted hyena optimizer algorithm (HPSSHO) [78] is a novel 
meta-heuristic algorithm developed to improve convergence 
speed. Chimp optimization algorithm (ChoA) [6] is designed 
based on intelligence ability of Chimps in group hunt. This 
algorithm is developed to solve slow convergence speed, trap-
ping in high-dimensional problems. 

A task towards identifying solutions throughout issues 
for optimization is a hot theme. Is if range of optimization 
parameters keeps increasing, its sophistication of the opti-
mization problems will be enormous. In addition, several 
deterministic proposed methods are subject to local optima 
trapping. The meta-heuristic (MA) nature-inspired optimi-
zation techniques are designed to overcome such problems 
(Table 1). The major elements with these methodologies are 

Fig. 1  Population based meta-
heuristics classifications with 
few algorithms
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population dependence and the absence of initial assump-
tions. Even so, there's really no optimization technique that 
can fix yet all optimization issues [79]. This thought initiated 
to propose a meta-heuristic hybrid variant optimizer named 
as improved chimp-spotted hyena optimizer (ICHIMP-
SHO). It is tested on seven standard unimodal benchmark 
functions, six standard multi model benchmark functions, 
ten standard fixed dimension benchmark functions and 
eleven types of multidisciplinary engineering design prob-
lems. The results noticed are excellent than other existing 
algorithms. 

The remaining part of present article contains concepts 
of improved chimp optimizer (IChimp) algorithm, spotted 
hyena optimizer (SHO) algorithm, proposed IChimp-SHO 
algorithm, standard benchmark functions, engineering-based 
optimization design problems, numerical results and discus-
sions, outcomes of proposed algorithm, conclusion. 

3  Proposed improved chimp optimizer

Chimps hunt very cleverly remembering the previous track 
of their attacks and are very closely related to swarm intel-
ligence strategy and based on this behaviour a innovative 
algorithm known as Chimp Optimization Algorithm (ChoA) 
is introduced. Chimps hunt in a group very intelligently 
based on two phases namely exploration and exploitation. 
Chimps are divided into four parties specifically named as 
driver, barrier, chaser, and attacker. They streamline them-
selves by chasing, driving, blocking, and attacking in trap-
ping the prey. 

The mathematical Eqs. (1) and (2) represents driving and 
chasing of the prey.

Here, A⃗ , � , and C⃗ is the coefficient vectors, t is the number 
of current iterations, Chimp location vector is the Y⃗Chimp , and 
Y⃗Prey is the vector of prey position. 

Coefficient vectors A⃗ , � , and C⃗ are found out using Eqs. 
(5)–(7).

In the improved chimp optimizer, the Eqs. (1) and (2) has 
been modified as follows:

where ran (1) and ran (5) represents the random integer 
values and can be given by the following mathematical 
equation:

(1)D⃗ =
|||C⃗Y⃗Prey(iteration) − 𝜉 ⋅ Y⃗Chimp(iteration)

|||,

(2)Y⃗Chimp(iteration + 1) = Q⃗k + Y⃗Prey(iteration) − A⃗ ⋅ D⃗.

(3)

Y⃗Chimp(iteration + 1) =

{
Y⃗Prey(iteration) − A⃗ ⋅ D⃗ if 𝜉 < 0.5

Chaotic_value if 𝜉 > 0.5
,

where SAN represents the search agent number.

||||

→

A
||||
 non-linearly decreases from 2.5 to 0 in both the phases 

iteratively. The vectors �1 and �2 are ranged [1. ]. � the cha-
otic vector serves chimps in the process of trapping. 

In this hunting process usually an attacker chimp leads 
this operation followed by driver, barrier, and chaser. 
Mathematically the actions of Chimps are imitated in the 
sequence initially starting from attacker, driver and then 
barrier; chaser will give better lead to notice the position 
of prey. Up till now the location of Chimps is to be updated 
immediately and store the best positions of Chimps. 

This process is reflected mathematically in the Eqs. 
(9)–(21). 

In the modify chimp algorithm, the D⃗Attacker has been 
selected with the help of following equation:

In the modify chimp algorithm, the D⃗Barrier has been 
selected with the help of following equation:

In the modify chimp algorithm, the D⃗Chaser has been 
selected with the help of following equation:

(4)ran(index) = randi([1, SAN], 1, 3),

(5)A⃗ = 2𝜂𝜈1 − 𝜂,

(6)C⃗ = 2𝜈2,

(7)� = chaotic vector,

(8)
xi+1 = 1.07xi(7.86xi − 23.31x2

i
+ 28.75x3

i
− 13.302875x4

i
).

(9)D⃗Attacker = abs
|||C⃗1Y⃗Attacker − Y⃗

|||.

(10)

D⃗Attacker =

⎧
⎪
⎨
⎪
⎩

���C⃗Y⃗Attacker(iteration) − 𝜉 ⋅ Y⃗(iteration)
��� ; �A� < 1

���C⃗Y⃗Attacker(ran(1),iteration) − 𝜉 ⋅ Y⃗(ran(3),iteration)
��� ; �A� > 1

,

(11)D⃗Barrier = abs
|||C⃗2Y⃗Barrier − Y⃗

|||.

(12)

D⃗Barrier =

⎧
⎪
⎨
⎪
⎩

���C⃗Y⃗Barrier(iteration) − 𝜉 ⋅ Y⃗(iteration)
��� ; �A� < 1

���C⃗Y⃗Barrier(ran(1),iteration) − 𝜉 ⋅ Y⃗(ran(3),iteration)
��� ; �A� > 1

,

(13)D⃗Chaser = abs
|||C⃗3Y⃗Chaser − Y⃗

|||.

(14)

D⃗Chaser =

⎧
⎪
⎨
⎪
⎩

���C⃗Y⃗Chaser(iteration) − 𝜉 ⋅ Y⃗(iteration)
��� ; �A� < 1

���C⃗Y⃗Chaser(ran(1), iteration) − 𝜉 ⋅ Y⃗(ran(3),iteration)
��� ; �A� > 1

,
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In the modify chimp algorithm, the D⃗Driver has been 
selected with the help of following equation:

The Eq. (2) mentioned above can be used to determine 
the spot of attacker, barrier, chaser and driver as per Eqs. 
(17)–(20) respectively. 

(15)D⃗Driver = abs
|||C⃗4Y⃗Driver − Y⃗

|||

(16)

D⃗Driver =

⎧
⎪
⎨
⎪
⎩

���C⃗Y⃗Driver(iteration) − 𝜉 ⋅ Y⃗(iteration)
��� ; �A� < 1

���C⃗Y⃗Driver(ran(1),iteration) − 𝜉 ⋅ Y⃗(ran(3),iteration)
��� ; �A� > 1

.

(17)Y⃗1 = Y⃗Attacker − A⃗1 ⋅ D⃗Attacker,

(18)Y⃗2 = Y⃗Barrier − A⃗2 ⋅ D⃗Barrier,

Fig. 2  a PSEUDO code for calculation of Y1 and Y2. b PSEUDO 
code for calculation of Y3 and Y4

Fig. 3  a 2D view for the position of prey and chimp. b 3D view for 
the position of prey and chimp. c Flow chart of proposed ICHIMP-
SHO algorithm
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The overall final positions of all the chimps can be 
obtained by taking the mean of the attacker, barrier, chaser 
and driver positions as per Eq. (21): 

The 2-dimensional and three-dimensional view for the 
position of chimp from the respective prey has been depicted 
in Fig. 3a, b, respectively. 

To generate the initial arbitrary position of search agents, 
the below mathematical equation can be adopted:

(19)Y⃗3 = Y⃗Chaser − A⃗3 ⋅ D⃗Chaser,

(20)Y⃗4 = Y⃗Driver − A⃗4 ⋅ D⃗Driver.

(21)Y⃗(iteration + 1) =
(Y⃗1 + Y⃗2 + Y⃗3 + Y⃗4)

4
.

The PSEUDO Code for calculations of Y1, Y2, Y3 and Y4 
are given in Fig. 2a, b.

This work extends an enhanced version of hunting 
behaviour of Improved Chimp optimizer by means of spot-
ted hyena as depicted in Fig. 3c. To experience this conse-
quence, the driving and chasing Eqs. (1) and (2) of I-Chimp 
along with hunting behaviour of spotted hyena in Eq. (19) 
are considered to modify into Eq. (23). The pseudo code 
for the suggested ICHIMP-SHO algorithm is discussed in 
Algorithm 1.

(22)Y⃗rand = LBi + 𝜉 × (UBi − LBi) ; i ∈ 1, 2, 3,… , Dim .

(23)Y⃗Chimp(iteration + 1) = Q⃗k + Y⃗Prey(iteration) − A⃗ ⋅ D⃗.
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(c) Flow Chart of proposed ICHIMP-SHO Algorithm

START

Log in the input 
factors for Chimp 

Algorithm i.e. search 
agent number, Dim, 
Attacker, Barrier, 

Chaser ,Driver 
position and Score 

etc.  

Place iteration counter = 0

Calculate the fitness value of each 
objective function while satisfying lower 
and upper boundaries of search space 

YES

YES

YES

NO

Set Barrier score = fitness and 
Barrier position = Best position of 

search agent 

Place Chaser score = fitness and 
Chaser position = Best position of 

search agent

      

Reduce  ξ value from 2.5 to 0 non-
linearly

Calculate A1 & C1 using equation (8.a) 
and (7.a) respectively 

Update DAttacker and Y1 using equation 
(6.a) and (7.a) respectively 

Calculate A2 & C2 using equation (7.b) 
and (6.b) respectively

Evaluate the new fitness value and 
compare it with previously obtained fitness 

to select the best one out of these two

Set AScore = fitness and Attacker 
position = Best position of search 

agent

Initialize the arbitrary position of every 
search agent using equation (10)

Do iteration=iteration+1

             Store Optimize fitness=AScore
         Best position= Attacker position

Publish the optimal value of fitness 
and position

STOP

If iteration counter = max 
iteration

Examine input data for every 
objective function i.e. Dim and Range

NO

         Update DBarrier and Y2 using eqns.(7.b) & (8.b)

Calculate A3 & C3 using 
equation (8.c) and (7.c) 

respectively 

Update DChaser , Y3,DDriver,Y4 using 
equation (7.c), (8.c),(7.d),(8.d) 

respectively 

Evaluate mean position, 
Y=(Y1+Y2+Y3+Y4)/4  and also 
update the mean position of 

Chimps

If fitness>AScore
& fitness> 

BScore
& fitness>CScore
& fitness<DScore

If fitness>AScore
& fitness> BScore
& fitness<CScore

If fitness>AScore
& 

fitness<BScore

If fitness<AScore

YES

NONONO

Modify the loctions of search agents by 
hunting strategy equations 

(1),(2),(20)&(21)

Fig. 3  (continued)
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4  Standard benchmark functions

A cluster of different benchmark functions [30, 83] is taken 
to test the efficacy of the proposed ICHIMP-SHO optimiza-
tion technique. Such benchmark collection is composed of 
three major benchmark feature classes, such as uni-modal 
(UM), multimodal (MM) and fixed dimensions (FD) stand-
ard benchmarks. UM, MM, FD mathematical formulations 
are shown in Tables 2, 3, 4, 5 and their characteristics are 
shown in outcomes and discussion section. For verifying 
standard benchmark functions performance 30 trail runs are 
considered. 

Thirty search agents are considered in the entire research 
analysis, and the suggested technique is simulated for maxi-
mum 500 iterations. The ICHIMP-SHO algorithm developed 
was verified on Intel ® Core TM, i7-5600 CPU@2.60 GHz. 

5  Results and discussions

In this research work, the introduced improved chimp-
spotted hyena optimizer algorithm is tested on three major 
classes of standard benchmark functions to verify the pres-
entation of the developed ICHIMP-SHO technique. The 
exploitation and convergence rate of ICHIMP-SHO is tested 
by unimodal benchmark functions which has single mini-
mum. As the name multimodal replicates which has more 
than one minimum, hence these functions are utilized to test 
for exploration and avoid local optimum. The design vari-
ables are obtained by the difference between multimodal and 
fixed dimension benchmark functions. The fixed dimension 
benchmark functions will store these design variables and 
maintain a chart of previous data of search space and com-
pares with multimodal benchmark functions. 

For comprehensive comparison analysis, a record of 
results of developed ICHIMP-SHO algorithm were framed 
which were tabulated in the criteria of mean value, standard 
deviation, median value, best value, worst value, and para-
metric tests by performing with 500 iterations and maximum 
runs of 30. 

5.1  Evaluation of (F1–F7) functions (exploitation)

The test results for unimodal (F1–F7) benchmark functions 
of suggested technique were illustrated in the Tables 6, 7. 
The mean value, standard deviation were considered for 
evaluation of the test results with few newly developed meta-
heuristic algorithms named LSA [55], BRO [84], OEGWO 
[85], PSA [40], hHHO-PS [67], SHO [63], HHO [51], ECSA 
[86], TSO [87] and presented in Table 8. Its characteris-
tic curves, trail runs, convergence comparative curves with 
other algorithms were depicted in Figs. 4, 5, 6. 

5.2  Evaluation of (F8–F13) functions (exploration)

The multimodal benchmark functions (F8–F13) show the 
design variables in desired number in the exploration phase. 
The test results were tabulated in Tables 9, 10. As well the 
comparison of results were done with respect of mean 
value and standard deviation with other algorithms LSA 
[55], BRO [84], OEGWO [85], PSA [40], hHHO-PS [67], 
SHO [63], HHO [51], ECSA [86], TSO [87] and recorded 
in Table 11. Also its characteristics curves, trail runs, con-
vergence comparative curves with other algorithms were 
depicted in Figs. 7, 8, 9. 

5.3  Evaluation of (F14–F23) functions

The fixed dimensional benchmark (F14–F23) functions do 
not manipulate the design variables but prepares the pre-
vious search space record of multimodal benchmark func-
tions. Tables 12, 13 are the test results of proposed algorithm 
and Table 14 showcases the comparative analysis of mean 
value and standard deviation with LSA [55], ECSA [86], 
TSO [87], PSA [40], hHHO-PS [67], SHO [63], HHO [51]. 
Figures 10, 11, 12 shows characteristics curves, trail runs, 
convergence comparative curves with other algorithms. 

Hence, the test results for UM, MM and FD benchmarks 
problems are tabled in Tables 6, 7, 8, 9, 10, 11, 12, 13, 14 
and the assessment of proposed optimizer with other meta-
heuristics search algorithms for UM, MM and FD bench-
marks problems has been given in Figs. 5, 8 and 11 and 
trail runs solutions for UM, MM and FD benchmarks prob-
lems has been shown in Figs. 6, 9, and 12. The above result 
clearly shows that proposed optimizer presents much better 
than other algorithms. In sub-sequent sections, the proposed 
optimizers have been applied to 11 engineering optimiza-
tions problems. 

6  Engineering design problem

As computing is having a paradigm shift from large desktop 
devices to battery operated, hand-held or implantable mobile 
devices the demand for low power electronics is growing 
more and more. Despite having many superior properties 
like high input impedance, voltage control, unipolarity, bet-
ter thermal stability, high switching speed, less noise etc., 
the most important reason for the widespread popularity 
of MOSFET, is its comparatively small dimensions and 
easy scalability. Reduction in the length of MOS devices 
has many benefits like increased number per chip or high 
packing density, smaller gate length means smaller gate 
capacitance and thus high switching speed. Length scaling 
also leads to voltage scaling of MOSFETs and which in turn 
results in minimization of power consumption, which makes 
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it a desirable device for low power electronics [88]. How-
ever, as the dimensions are scaled further and further, con-
trolling the OFF-state power consumption became a major 
challenge for MOS devices. The drain current in MOSFET 
flows due to the thermionic injection of charge carriers from 
source to channel. With the increase in gate voltage, the bar-
rier potential between the source and the channel reduces, 
which leads to an increase in the drain current and gives rise 
to a larger OFF-state current because of subthreshold con-
duction and an increase in subthreshold slope. For a MOS-
FET the subthreshold slope may be defined as the amount 
gate voltage VGS required to change the drain current ID ten 
folds. Subthreshold slope (SS) should be as small as possi-
ble because lower SS results in a higher difference between 
ON and OFF state currents, thus a larger ION/IOFF ratio and 
lesser power dissipation at the OFF state. Mathematically the 
subthreshold slope of MOSFET is represented as:

where CD and Cox are depletion and oxide capacitances of 
the device, respectively. From Eq. (24) the minimum pos-
sible value of SS for a MOSFET is kT

q
ln10 , which comes out 

to be 60 mV/dec at room temperature of 300 K. Therefore, 
to get an ION/IOFF ratio of  106, we must apply a gate voltage 
of 6 × 60 mV = 0. 36 V. Thus, it would not be possible to 
achieve a high ION/IOFF ratio without sacrificing the supply 
voltage scaling. These basic disadvantages of MOSFET of 
higher OFF state currents and high subthreshold slope limit 
their application in low power circuits. 

A device prone to these fundamental limitations of 
MOSFET is the prime requirement now. One such device 
is the tunnel field effect transistor or TFET. It can provide 
the solution by controlling the BTBT tunnelling phenom-
enon and making it the source of drive current in place of 
thermionic emissions in MOS devices. Structurally TFET is 
very similar to MOSFET, except that the source and drain 
here are having opposite doping. This similarity makes 
TFET very much compatible with MOSFET based circuits. 
TFETs are found to be immune to various short channel 
effects which is a major limitation for MOS devices [89]. 
TFETs are gate-controlled, reverse-biased P–I–N diodes in 
which the tunnelling current is controlled by the gate voltage 
[90]. In TFETs steep subthreshold slope lower than 60 mV/
dec can be achieved because they are not bound by kT/q, 
which is the fundamental limit for MOSFETs, which has 
also been experimentally proved [91]. The energy require-
ments of TFET to switch between states is also much lower 
than MOSFET making them better switches compared to 
MOSFET [92, 93]. TFETs also have very low OFF-state 
current and high stability to temperature variations because 
it relies on BTBT tunneling rather than thermionic emissions 

(24)SS =
dVg

d
(
logId

) =
kT

q
ln10

(
1 +

CD

Cox

)

for device conduction making it one of the finest candidates 
for low power electronic circuits. Due to low OFF-state cur-
rent, steep SS and high output resistance, SiGe source TFET 
can be used for making ultra-low-power cellular neural net-
work (CNN) based associative memory (AM) as well as 
low power SRAM cells [94–98]. The super-low off current, 
reduced temperature sensitivity and high transconductance 
per unit bias current of TFET is exploited in ultra-low power 
implantable bio-medical sensors employing TFET based 
Operational Transconductance Amplifier (OTA) and it is 
found to show sub-nW operating power [99]. TFETs due to 
its voltage scaling also find use in the development of SRAM 
memory cells for ultra-low power IoT applications [100]. 

The major drawback in TFET is the very low ON-state cur-
rent and ambipolar conduction. A huge amount of research has 
been done and is still going on to increase the drive current of 
TFET so that it may commercially be viable in MOS circuits. 
Embedding a low bandgap material layer (like SiGe) near-
source can increase the ON current but at the cost of a rise in 
OFF current which can be controlled by proper selection of gate 
metal work function [101, 102]. The use of double gate struc-
ture with high k gate dielectric replacing  SiO2, can enhance the 
drive current, give better control over the channel, reduce SS 
and generate very few variations in device parameters on scal-
ing of channel length [89, 103]. Insertion of dielectric pocket 
(DP) at the two junctions, i.e. the source-channel and channel-
drain junction has led to the improvement of BTBT increasing 
the efficiency of the device [104]. The use of silicon on insula-
tor (SOI) technology for the construction of TFET was found 
to be one of the major advances. The entire PIN structure over 
the buried oxide (BOX) layer can reduce the OFF-state cur-
rent by reducing the bipolar parasitic conduction [105, 106]. 
A modified approach to SOI technology is the use of selective 
buried oxide (SELBOX), which has a small gap in the buried 
oxide. The SELBOX TFET has the added advantage of the 
reduction of carriers during the OFF state which is trapped by 
the gap. It reduces OFF-state current and ambipolarity [107, 
108]. Introduction of dual gate dielectric with high k material 
like  HfO2 towards source end and low k dielectric like  SiO2 
towards drain end helps in reducing ambipolar behaviour, 
enhances on current and provides for abrupt switching [109]. 
Another approach to reduce the subthreshold slope and enhance 
the ON-state current is the use of Ferroelectric oxides as gate 
dielectric in place of  SiO2 [107, 108]. Research has also been 
carried out to use various geometrical modifications in TFETs 
structure to enhance its efficiency. Increasing the area of the 
tunnelling junction also provided enhanced  ION/IOFF ratio and 
steep SS [110]. Vertical TFET or V-TFET is another modified 
structure that enables the device to have BTBT along a direc-
tion perpendicular to the gate called line tunnelling which fur-
ther improves the on-state current [111]. Vertically grown low 
bandgap source over the channel with source pocket and hetero 
material also lead to a decrease in SS and increase of  ION due to 
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Table 1  A brief review on few of population meta-heuristics

Year No. of 
benchmark 
functions

Technique and reference number Name of authors Complication

2020 30 Chimp optimization algorithm (ChoA) 
[6] 

M. Khishe, M. R. Mosavi Standard benchmark functions

2019 13 Hybrid particle swarm and spot-
ted hyena optimizer algorithm 
(HPSSHO) [78] 

Gaurav Dhiman, Amandeep Kaur Standard benchmark functions and real-
life engineering design problem

2020 5 Reliability based design optimization 
algorithm (RBDO) [70] 

Zeng Meng et al Engineering problems

2020 4 Bernstrain-search differential evolution 
algorithm (EBSD) [69] 

Hoda zamani, Mohammad H. Nadimi-
Shahraki, Shokooh Taghian, Mahdis 
Banaie-Dezfouli

Engineering design problems

2020 23 Hybrid Harris Hawks-sine cosine 
algorithm (hHH-SCA) [68] 

Vikram Kumar Kamboj, Ayani Nandi, 
Ashutosh Bhadoria, Shivani Sehgal

Standard functions, multidisciplinary 
engineering problems

2021 32 Hybrid Harris Hawks pattern search 
algorithm (hHH-PS) [67] 

Ardhala Balakrishna, Sohbit Saxena, 
Vikram Kumar Kamboj

Standard functions, multidisciplinary 
engineering problems

2020 29 Binary spotted hyena optimizer (SHO) 
[66] 

Vijay Kumar, Avneet Kaur Standard benchmark functions

2020 14 Modified adaptive butterfly optimiza-
tion algorithm (BOA) [65] 

Kun Hu, Hao Jiang, Chen-Gaung Ji, 
Ze Pan

Standard benchmark functions

2018 30 Multi-objective spotted hyena opti-
mizer (MOSHO) [64] 

Gaurav Dhiman, Vijay Kumar Standard benchmark functions

2017 29 Spotted hyena optimizer (SHO) [63] Gaurav Dhiman, Vijay Kumar Standard benchmark functions
2021 29 Whale optimization algorithm (WOA) 

[62] 
Vamshi Krishna Reddy, Venkata Lak-

shmi Narayana
Standard functions, multidisciplinary 

engineering problems
2018 6 Crow particle swarm optimization 

(CPO) algorithm [61] 
Ko-Wei Huang et al Standard benchmark functions

2020 20 Chicken Swarm Optimization algo-
rithm (CSO) [59] 

Sanchari Deb et al Standard functions, multidisciplinary 
engineering problems

2017 22 Grey wolf optimizer-sine cosine algo-
rithm (GWO-SCA) [60] 

N. Singh, S. B. Singh Benchmark functions and real-life 
optimization

2017 19 Grosshopper optimization algorithm 
(GOA) [58] 

Shahrzad Saremi, Seyedali Mirjali, 
Andrew Lewis

Multidisciplinary engineering problems

2016 30 Virus colony search (VCS) [57] Mu Dong Li et al Benchmark functions, engineering 
problems

2016 24 Multi-verse optimizer (MVO) [56] Seyedali Mirjali, Seyed Mohammad 
Mirjalili, Abdolreza Hatamlou

Standard benchmark functions, engi-
neering problems

2015 24 Lightning search algorithm (LSA) [55] Hussain Shareef et al Standard benchmark functions
2014 22 Binary optimization using hybrid 

particle swarm optimization and 
gravitational search algorithm 
(PSOGSA) [80] 

Seyedali Mirjalili et al Standard benchmark functions

2016 18 Bird swarm algorithm (BSA) [54] Xiang-Bing Meng et al Standard benchmark functions
2014 14 Chaotic krill herd algorithm (CKH) 

[53] 
Gai-Ge Wang et al Standard benchmark functions

2019 47 Henry gas solubility optimization algo-
rithm (HGSO) [52]

F. A Hashim et al Standard benchmark functions

2020 23 Photon search algorithm (PSA) [40] Y. Liu and R. Li Standard benchmark functions
2009 23 Gravitational search (GSA) [81] E. Rashedi et al Standard benchmark functions
1997 30 Differential evolution (DE) [37] R. Storn and K. Price Standard benchmark functions
2008 14 Biogeography-based optimization 

(BBO) [38] 
D. Simon Standard benchmark functions

2015 23 Stochastic fractal search algorithm 
(SFS) [35] 

H. Salimi Standard benchmark functions

1999 23 Evolutionary programming (EP) [30] Xin Yao, Yong Liu, Guangming lin Standard benchmark functions
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both line and point tunnelling [112]. Another geometrical modi-
fication of the conventional TFET includes a broken gate (BG) 
structure which reportedly reduces ambipolar current drasti-
cally resulting in lower OFF current and reduced power [113]. 
Use of three dimensional structures like gate-all-around (GAA) 
gives higher control of the drain current by the gate voltage and 

leads to superior performance [114]. There are also prospects of 
increasing the ON current by utilising III-V hetero materials for 
making TFET [115–117]. Newer materials like graphene [118] 
and Carbon nano tubes (CNT) [119] also showed promising 
results for implementing TFET devices in modern high density 
ultra-low power circuits and systems.

Table 1  (continued)

Year No. of 
benchmark 
functions

Technique and reference number Name of authors Complication

1989 NA Tabu search (TS) [82] Fred Glover Real world problems
2012 13 Teaching learning based optimization 

algorithm (TLBO) [25] 
R. V. Rao et al Standard benchmark functions

2001 NA Harmony search (HS) [31] Z. W. Geem et al Musical variables
2019 29 Harris Hawks optimizer (HHO) [51] A. A. Heidari et al Standard benchmark functions, engi-

neering problems
2015 36 Moth flame optimizer (MFO) [34] S. Mirjalili Standard benchmark functions, engi-

neering problems
2014 4 Forest optimisation algorithm (FOA) 

[32] 
M. Ghaemi et al NA

2014 32 Grey wolf optimizer algorithm (GWO) 
[33] 

S. Mirjalili et al Standard benchmark functions, engi-
neering problems

Table 2  Uni-modal (UM) 
standard benchmark functions

Functions Dimensions Range fmin

F1(U) =
∑z

.
m=1

U2
m

30 [− 100, 100] 0
F2(U) =

∑z
.
m=1

�Um� + 
∏z

m=1
�Um� 30 [− 10, 10] 0

F3(U) =
∑z

.
m=1

(
∑m

n−1
Un)

2 30 [− 100, 100] 0

F4(U) = maxm{||Um
||, 1 ≤ m ≤ z} 30 [− 100, 100] 0

F5(U) =
∑z−1

.
m=1

[100(Um+1-U2
m
)2 +  ( Um − 1)2] 30 [− 38, 38] 0

F6(U) =
∑z

.
m=1

([Um + 0.5])2 30 [− 100, 100] 0
F7(U) =

∑z
.
m=1

mU4
m
 + random [0, 1] 30 [− 1.28, 1.28] 0

Table 3  Multi-modal (MM) standard functions

Multi-modal (F8–F13) benchmark functions Dim Range fmin

F8(U) =
∑z

.
m=1

−Umsin (
√
�Um�) 30  [− 500, 500] − 418.98295

F9(U) =
∑z

.
m=1

[U2

m
− 10cos(2πU

m
) + 10] 30  [− 5.12, 5.12] 0

F10(U) = −20exp

�

−0.2

��
1

z

∑z
.
m=1

U2
m

��

− exp
�
1

z

∑z
.
m=1

cos (2πU
m

�
+ 20 + d

30  [− 32, 32] 0

F11(U) = 1 +
∑z

.
m=1

U2
m

4000
− Πz

m=1
cos

Um√
m

30  [− 600, 600] 0

F12(U) =
�

z

�
10sin

�
πτ1

�
+
∑z−1

.
m=1

(τ
m
− 1)2

�
1 + 10sin2

�
πτ

m+1

��
+ (τ

z
− 1)2

�
+
∑z

.
m=1

g(U
m
, 10, 100, 4)

τm = 1 +
Um+1

4

g(Um, b, x, i) =

⎧
⎪
⎨
⎪
⎩

x(Um − b)iUm > b

0 − b < Um < b

x(−Um − b)iUm < −b

30  [− 50, 50] 0

F13(U) = 0.1

�
sin2

�
3�U

m

�
+
∑z

.
m=1

(U
m
− 1)2

�
1 + sin2

�
3πU

m
+ 1

��
+ (x

z
− 1)2

�
1 + sin2

��
30  [− 50, 50] 0
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The present paper discusses various recent optimization 
techniques to obtain a suitable range of dimension and per-
formance parameters of different TFET architectures meeting 
ITRS standards. Further, different transistors presented are 
mainly aimed at designing novel TFET models using various 
techniques like geometrical modifications, dielectric engi-
neering, gate work function engineering, using asymmetric 
hetero materials for source and drain, playing with doping 
concentrations, varying the gate length for source/channel/
drain underlap and overlap etc. to eliminate the fundamental 

limitations. Some new techniques like charge plasma-based 
junction less TFETs which greatly reduce fabrication com-
plexity and leakage are also described. Further application 
of TFETs in biomolecule sensors and various digital circuits 
are also discussed. 

The rest of the paper is arranged in the following order, 
the first section compares different optimization techniques 
to obtain an optimum design of TFET with improved 

Table 4  Fixed-dimension (FD) standard functions

Fixed modal (FD) (F14–F23) standard benchmark functions Dimension Range fmin

F14(U) =

�
1

500
+
∑2

.
n=1

5
1

n+
∑z

.
m=1

(U
m
−b

mn
)6

�−1 2  [− 65.536, 65.536] 1

F15(U) =
∑11

.
m=1

�
b
m
−

U1(a
2
m
+a

m
�2)

a2
m
+a

m
�3+�4

�2 4  [− 5, 5] 0.00030

F16(U) = 4U2

1
− 2.1U4

1
+

1

3
U6

1
+ U1U2 − 4U2

2
+ 4U4

2
2  [− 5, 5] − 1.0316

F17(U) = (U2 −
5.1

4π2
U2

1
+

5

�
U1 − 6) 2 + 10 (1 − 1

8�
) cos U1 + 10 2  [− 5, 5] 0.398

F18 (U) = [1+ (U1+ U2+1)2 (19–14 U1+3U2
1− 14 U2+6U1U2+3 U2

2)] 
× [30+ (2U1− 3U2)2 × (18− 32U1+12 U2

1+48U2− 36U1U2+27 U2
2)] 

2  [− 2, 2] 3

F19(U) = −
∑4

.
m=1

dm exp (−
∑3

.
n=1

Umn(Um − qmn) 2) 3  [1, 3] − 3.32

F20(U) = −
∑4

.
m=1

dm exp (−
∑6

.
n=1

Umn(Um − qmn) 2) 6  [0, 1] − 3.32

F21(U) = −
∑5

.
m=1

[(U − bm)(U − bm) T + dm ] −1 4  [0, 10] − 10.1532

F22(U) = −
∑7

.
m=1

[(U − bm)(U − bm) T + dm ] −1 4  [0, 10] − 10.4028

F23(U) = −
∑7

.
m=1

[(U − bm)(U − bm) T + dm ] −1 4  [0, 10] − 10.5363

Table 5  Algorithm parameters for imp-chimp optimizer algorithm

Parameters name Value Parameter name Value

Search agents 30 No. of population for SHO 30
Maximum iterations for 

benchmark functions
500 Maximum iterations for 

engineering design 
problems

1000

Table 6  Test observations of (F1–F7) Functions using ICHIMP-SHOAlgorithm

Function Mean St. deviation Best fitness value Worst fitness value Median Wilcoxon rank sum 
test

t test

P value P value h value

F1 3.91443E−28 1.07214E−27 2.2954E−30 5.6993E−27 7.16499E−29 1.7344E−06 0.054971323 0
F2 4.70089E−17 3.86924E−17 7.04913E−18 1.59728E−16 4.01121E−17 1.7344E−06 2.69095E−07 1
F3 8.48976E−07 2.54158E−06 1.11728E−09 1.38683E−05 1.50394E−07 1.7344E−06 0.077611649 0
F4 3.64228E−08 3.08114E−08 2.77549E−09 1.26518E−07 3.2531E−08 1.7344E−06 4.36866E−07 1
F5 28.38318363 0.671703255 26.23392716 28.89070125 28.65306199 1.7344E−06 6.30357E−49 1
F6 1.481698857 0.405138911 0.742524222 2.257134021 1.732292069 1.7344E−06 1.57295E−18 1
F7 0.001127419 0.00056314 0.000275088 0.00238846 0.001036141 1.7344E−06 7.83249E−12 1

Table 7  Execution time for unimodal benchmark problems using 
ICHIMP-SHO algorithm

 Function Best time Average time Worst time

F1 1.4375 1.795833333 2.328125
F2 1.390625 1.759895833 1.9375
F3 1.859375 2.118229167 2.296875
F4 1.3125 1.472395833 1.671875
F5 1.34375 1.519270833 1.75
F6 1.34375 1.480729167 1.703125
F7 1.4375 1.60625 1.8125
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subthreshold performances. The next section gives the read-
ers a basic idea about the layout and structure of TFET and 
compares it with the structure of MOSFET. The following 
section familiarises with the various performance parameters 
of TFET like subthreshold parameters and analog/RF perfor-
mance parameters. The next section discusses some of the 
popular existing TFET architectures and classifies them. The 
following section presents a comparative study of various 
TFET architectures introduced in the previous section based 
on the performance parameters discussed earlier. The last 
section concludes our article based on comparative analysis. 
A glossary is presented at the end of the article to familiarise 
the readers with abbreviations used in the paper specifically 
for different TFET architectures. 

7  Basic structure of TFET

Let us examine the basic structure of a tunnelling FET now. 
Section 6 will elaborate on many variations of this structure, 
but the working principle of the TFET is based on this basic 
arrangement of regions, doping and terminals. Figure 13a–c 
shows the basic structure of an n-channel and p-channel 
TFET respectively. 

8  Performance parameters

8.1  Threshold voltage

The threshold voltage  (VT) may be defined as the minimum 
gate to source voltage required for the initiation of current 
conduction through the channel of a FET. For conventional 
MOS it is defined as the voltage required at the gate terminal 
to form an inversion layer at the channel so that a path for the 
flow of charge carriers is built between source and drain. But 

Table 8  Evaluation for (F1–F7) problems

Algorithm Parameters (F1–F7) uni-modal benchmark functions

F1 F2 F3 F4 F5 F6 F7

Lightning search 
algorithm (LSA) 
[55] 

Mean 4.81067E − 08 3.340000000 0.024079674 0.036806544 43.24080402 1.493275733 64.28160301
St. deviation 3.40126E − 07 2.086007800 0.005726198 0.156233023 29.92194448 1.302827039 43.75576111

Battle royale optimi-
zation algorithm 
(BRO) [84] 

Avg 3.0353E−09 0.000046 54.865255 0.518757 99.936848 2.8731E−08 0.000368
St. deviation 4.1348E−09 0.000024 16.117329 0.403657 82.862958 1.8423E−08 0.000094

Opposition based 
enhanced grey wolf 
optimization algo-
rithm (OEGWO)

 [85] 

Avg 2.49 ×  10–34 4.90 ×  10–25 1.01 ×  10–1 1.90 ×  10–5 2.72 ×  101 1.40 ×  1000 3.63 ×  10–4

St. deviation 7.90 ×  10–34 6.63 ×  10–25 3.21 ×  10–1 2.43 ×  10–5 7.85 ×  101 4.91 ×  10–1 2.68 ×  10–4

Photon Search Algo-
rithm (PSA) [40] 

Mean 15.3222 2.2314 3978.0837 1.1947 332.6410 19.8667 0.0237
St. deviation 27.3389 1.5088 3718.9156 1.0316 705.1589 33.4589 0.0170

Hybrid Harris 
Hawks Optimizer-
Pattern Search 
algorithm (hHHO-
PS) [67] 

Avg 9.2 ×  10–017 8.31E 5.03 ×  10–20 6.20 ×  10–54 2.18 ×  10–9 3.95 ×  10–14 0.002289
St. deviation 5E−106 4.46 ×  10–53 1.12 ×  10–19 1.75 ×  10–53 6.38 ×  10–10 3.61 ×  10–14 0.001193

Spotted Hyena Opti-
mizer (SHO) [63] 

Avg 0 0 0 7.78 ×  10–12 8.59E + 00 2.46 ×  10–1 3.29 ×  10–5

St. deviation 0 0 0 8.96 ×  10–12 5.53E−01 1.78 ×  10–1 2.43 ×  10–5

Harris Hawks Opti-
mizer (HHO) [51] 

Mean 1.06 ×  10–90 6.92 ×  10–51 1.25 ×  10–80 4.46 ×  10–48 0.015002 0.000115 0.000158
St.Deviation 5.82 ×  10–90 2.47 ×  10–50 6.63 ×  10–80 1.70 ×  10–47 0.023473 0.000154 0.000225

Enhanced Crow 
search algorithm 
(ECSA) [86] 

Mean 7.4323E−119 5.22838E−59 3.194E−102 3.04708E−52 7.996457081 0.400119079 1.30621E−05
St. deviation 4.2695E−118 2.86361E−58 1.7494E−101 1.66895E−51 0.661378213 0.193939866 8.39859E−06

Transient search 
optimization (TSO)

 [87] 

Avg 1.18 ×  10–99 8.44 ×  10–59 3.45 ×  1041 1.28E−53 8.10 ×  10–2 3.35 ×  10–3 3.03 ×  10–4

St. deviation 6.44 ×  10–99 3.93 ×  10–58 1.26 ×  10–41 6.58 ×  10–53 11 6.82 ×  10–3 3.00 ×  10–4

ICHIMP-SHO (pro-
posed algorithm)

Mean 3.91443E−28 4.70089E−17 8.48976E−07 3.64228E−08 28.38318363 1.481698857 0.001127419
St. deviation 1.07214E−27 3.86924E−17 2.54158E−06 3.08114E−08 0.671703255 0.405138911 0.00056314
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for TFET it may be defined as the minimum gate to source 
voltage required to align the valence band of the source and 
conduction band of the channel in such a way that that band 
to band (BTB) tunnelling between them may be initiated. 
For TFET threshold voltage is independent of temperature. 

8.2  Subthreshold slope

The subthreshold slope may be defined as the amount of gate 
voltage required to produce a unit decade change in drain 
current [89] in the subthreshold region. Mathematically it 
may be given as the ratio of change in gate voltage to change 
in the log of drain current as

For conventional MOSFET devices, it is found to be inde-
pendent of gate to source voltage and given as [101] 

(25)S =
dVg

d
(
log Id

) mV∕dec.

where CD and Cox are depletion and oxide capacitances of 
the device and kT∕q represents the thermal limit of MOS 
devices which restricts them to have a minimum subthresh-
old slope of 60 mV/dec at T = 300 K (room temperature).

But TFET devices are not restricted by the thermal bar-
rier, rather they depend on the tunnelling barrier at the 
source-channel junction. The subthreshold slope for TFET 
is given as [102] 

Therefore, unlike MOSFET subthreshold slope of TFET 
is highly dependent on the gate voltage and lightly depend-
ent upon bandgap at the tunnelling junction (source-channel 

(26)SMOSFET =
kT

q
ln10

(
1 +

CD

Cox

)

(27)STFET =
V2
GS

2VGS + BkaneW
3∕2
g ∕D
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junction). So, clearly sub 60  mV/dec S value may be 
obtained for TFET by using low VGS. 

8.3  ON state current

For TFET, the ON state current ION is a very important per-
formance evaluating parameter, it must be as high as possi-
ble for better performance. It is defined as the drain to source 
current IDS which flows through the device when the gate to 
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Fig. 6  Trail runs of ICHIMP 
and ICHIMP-SHO for UM 
standard benchmark functions
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source voltage is greater than VT. In other words, it is the 
drain current when the device is ON. The major contributor 
to ION is BTBT of electrons at the source-channel junction. 

8.4  OFF state current

It is represented as IOFF. It may be defined as the amount 
of current which flows between drain and source when the 
gate to source voltage is below threshold voltage or when 
then the device is considered OFF. Ideally, IOFF should be 
tending to zero but practically it has some non-zero value 
due to the presence of finite subthreshold slope. IOFF has 

some finite value due to various leakage phenomena and 
ambipolar behaviour of TFET, but it must be maintained as 
small as possible for good performance. 

The ratio between ON-state current and OFF-state current 
is another important performance parameter. For efficient per-
formance of the TFET ION∕IOFF should be as high as possible. 

8.5  Drain induced barrier lowering (DIBL)

The drain induced barrier lowering (DIBL) is a type of 
short channel effects (SCE) it is responsible for lowering of 
threshold voltage at high drain biases. It must be as small as 
possible for better performance of the TFET. The high value 
of DIBL makes the ON-state current highly dependent on 
drain voltage rather than gate. It destroys the gate control-
lability of the device and renders it useless. Mathematically 
it is defined as the ratio between the difference of threshold 
voltages measured at high and low drain voltages to the dif-
ference between the high and low drain voltages [120].

(28)DIBL = −
V
high

Th
− V low

Th

V
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D
− V low

D
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Table 9  Test results of multimodal benchmark functions using IChimp-SHO algorithm

Function Mean value St. deviation Best fitness value Worst fitness value Median value Wilcoxon rank sum 
test

t test

P value P value h value

F8 − 5231.965502 755.2916365 − 6835.710117 − 3547.406759 − 5099.515588 1.7344E−E−06 2.85762E−26 1
F9 7.95808E−14 5.29885E−14 0 2.27374E−13 5.68434E−14 2.89814E−06 4.53821E−09 1
F10 9.52719E−14 1.69917E−14 6.83897E−14 1.35891E−13 9.50351E−14 1.67736E−06 1.13726E−23 1
F11 0.001725278 0.004532246 0 0.015441836 0 0.125 0.045981511 1
F12 0.088180059 0.097309399 0.011803437 0.567716636 0.074592218 1.7344E−06 2.80855E−05 1
F13 1.911006715 0.317196258 1.325094518 2.527060925 1.866111264 1.7344E−06 1.49706E−24 1

Table 10  Execution time for unimodal benchmark problems using 
IChimp-SHO algorithm

Function Best time Average time Worst time

F8 1.359375 1.510416667 1.734375
F9 1.328125 1.479166667 1.703125
F10 1.34375 1.521875 1.8125
F11 1.40625 1.5203125 1.6875
F12 1.71875 1.8515625 2.015625
F13 1.65625 1.805729167 1.921875
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The value of DIBL is always positive which is ensured by 
the negative sign in front of the formula as threshold volt-
age measured at high drain voltage is always lower than that 
measured at low drain voltage. The unit for DIBL is mV/V 
and it should be as low as possible. 

8.6  Analog/RF performance parameters

The ultra-low-power TFET devices must have good switch-
ing speeds to be compatible with modern high-speed pro-
cessors. The most important high-frequency performance 
parameters which decide the efficient functioning of TFETs 
are transconductance (gm), cut-off frequency (fT), gain band-
width product (GBP) and transit time (τ) [121]. 

8.7  Transconductance

The transconductance (gm) of a TFET is defined as the rate 
of change of drain current to change its gate to source volt-
age when the drain to source voltage is kept constant. Math-
ematically it is given as, 

(29)gm =
�IDS

�VGS

||||VDS=constant

It can be obtained graphically as the slope of transfer 
characteristic of TFET.

8.8  Cut‑off frequency

Cut-off frequency (fT) is one of the crucial performance 
parameters for analog/RF operations. It is defined as the 
frequency at which the small signal, short circuit current 
gain reduces to one [121]. It is given as

where Cgs is gate to source capacitance and Cgd is the gate 
to drain capacitance. The value cut-off frequency should be 
high for better performance. 

8.9  Gain bandwidth product

GBP is another important RF performance parameter; it is 
a trade-off parameter between gain and bandwidth of the 
device. It is responsible for determining the selectivity of 
a circuit. GBP is generally used to determine the device 
performance at DC gain of 10 [122] and is mathematically 
given as

(30)fT =
gm

2�
(
Cgs + Cgd

)

Table 11  Comparison for multimodal benchmark functions

Algorithm Factors (F8–F13) Multi-modal benchmark functions

F8 F9 F10 F11 F12 F13

Lightning search algorithm (LSA) 
[55] 

Avg − 8001.3887 62.7618960 1.077446947 0.397887358 2.686199995 0.007241875
St. deviation 669.159310 14.9153021 0.337979509 1.68224E−16 0.910802774 0.006753356

Battle Royale Optimization algo-
rithm (BRO) [84] 

Mean − 7035.2107 48.275350 0.350724 0.001373 0.369497 0.000004
St. deviation 712.33269 14.094585 0.688702 0.010796 0.601450 0.000020

Opposition based enhanced grey 
wolf optimization algorithm 
(OEGWO) [85] 

Avg − 3.36 ×  103 8.48 ×  10–1 9.41 ×  10–15 7.50 ×  10–13 9.36 ×  10–02 1.24E + 00
St. deviation 3.53 ×  102 4.65E + 00 3.56 ×  10–15 4.11 ×  10–12 3.95 ×  10–02 2.09 ×  10–1

Photon search algorithm (PSA) 
[40] 

Mean 11, 648.5512 7.3763 1.6766 0.5294 0.1716 1.5458
St. deviation 1230.4314 9.1989 0.9929 0.6102 0.2706 3.3136

Hybrid Harris Hawks optimizer-
pattern search algorithm (hHHO-
PS) [67] 

Avg − 12, 332 00 8.88 ×  10–6 00 2.94 ×  10–15 1.16 ×  10–13

St. deviation 335.7988 0 0 0 3.52E−15 1.15E−13

Spotted hyena optimizer (SHO) 
[63] 

Mean − 1.16E ×  103 0.00E + 00 2.48E + 000 00 3.68 ×  10–2 9.29 ×  10–1

St. deviation 2.72E ×  102 0.00E + 00 1.41E + 000 00 1.15 ×  10–2 9.52 ×  10–2

Harris Hawks optimizer (HHO) 
[51] 

Mean − 12, 561.38 0 8.88 ×  10–16 0 8.92 ×  10–6 0.000101
St. deviation 40.82419 0 0 0 1.16 ×  10–5 0.000132

Enhanced crow search algorithm 
(ECSA) [86] 

Mean − 2332.3867 0 8.88178E−16 0 0.11738407 0.444690657
St. deviation 223.93995 0 0 0 0.2849633 0.199081675

Transient search optimization 
(TSO) [87] 

Avg − 12, 569.5 00 8.88 ×  10–16 0 1.30 ×  10–4 7.55 ×  10–4

St. deviation 1.81 ×  10–2 00 0 0 1.67 ×  10–4 1.74 ×  10–3

ICHIMP-SHO (proposed algo-
rithm)

Mean − 5231.965502 7.95808E−14 9.52719E−14 0.001725278 0.088180059 1.911006715
St. deviation 755.2916365 5.29885E−14 1.69917E−14 0.004532246 0.097309399 0.317196258
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8.10  Transit time

Another important parameter that determines the analog/
RF performance of TFET devices is the transit time denoted 
by τ. Transit time specifies the time required for the charge 
carriers to travel from source of the device to the drain [121]. 
It is a measure of how fast the device functions. Mathemati-
cally it is proportional to the inverse of cut-off frequency, 
given as

(31)GBP =
gm

20�Cgd

(32)� =
1

2�fT

9  Existing TFET architectures 
and dimensions

Researchers focused on various structural and geometrical 
modifications along with use of newer and advanced materi-
als for the construction and modification of the basic tunnel 
FET structure. Some of these structures are classified and 
briefly explained here along with there dimensional features. 
Few of them focused on the use hetero dielectric structure 
for gate dielectric having a combination of low k and high 
k materials and use of low band gap material for source. 
Madan and Chaujar [123] suggested a TFET having gate 
to drain overlap, hetero gate dielectric and gate wrapped all 
around the channel structure called GDO HD GAA TFET 
(Fig. 14). The gate drain overlap suppresses the ambipolar 
current while hetero material for gate dielectric enhances 
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Fig. 8  Comparative curve of ICHIMP-SHO with GWO, DA, ALO, 
MVO, SSA and PSO for MM standard benchmark functions
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Fig. 9  Trail runs of ICHIMP 
and ICHIMP-SHO for MM 
standard benchmark functions
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ION. Further, the gate all around structure improves the gate 
control over the tunnelling current. Dimensions: channel 
length, Lg = 50 nm, R = 10 nm, Tox = 2 nm, gate metal Ф = 4. 

3 eV, ε2 = 21  (HfO2, high k), ε1 = 3. 9  (SiO2, low k), length 
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(p−), Drain (n+) doping are 1 ×  1020  cm−3, 1 ×  1016  cm−3, 
1 ×  1018  cm−3 respectively are used. 

In their paper Wang et al. [119] proposed a carbon nano 
tube-based TFET having low doping and heterogeneous gate 
dielectric termed as LD-HTFET (Fig. 15) and compared 
its performance with CNT based TFET with high k mate-
rial as gate dielectric (HK-TFET) and only heterogeneous 
gate dielectric based TFET (HTFET). The quantum kinetic 
model is used at the device level for the analysis of switch-
ing behaviour and HF figure of merits in presence of light 
doping and modulation of gate dielectric. The LD-HTFET is 
found to have better HF and switching figures. Circuit simu-
lations with HSPICE suggested good improvements in terms 
of static noise margin, delay energy and power delay prod-
uct. The device dimensions of the LD-HTFET include gate 
length of 20 nm, thickness of gate oxide of 2 nm, source/
drain expansion length Lsd = 20 nm, and gate oxide of ε = 3.9 
and 16 for low and high k respectively.

Patel et al. [121] proposed a nanowire TFET having het-
erogeneous gate dielectric and source made of low bandgap 

SiGe material called SiGe S NW TFET (Fig. 16) and eval-
uated its performance to common Si nanowire TFET for 
implementation of analog circuits like operational ampli-
fiers. Due to construction source using SiGe having nar-
row bandgap and use of  HfO2 (having high value of k) as 
gate oxide towards the source-channel junction, there is 640 
times increase in ON current and subthreshold swing of 
6.54 mV/dec obtained as compared to 36.24 mV/dec for the 
conventional device. Improvement in ON current resulted 
in increased transconductance which resulted in better RF/
analog performance. Change in diameter of the device 
impacts SS but variation in channel length is insignificant. 
Device dimensions are, length of drain/source/gate = 20 nm, 
diameter of nano wire = 20 nm, tox = 2 nm, substrate dop-
ing = 1 ×  1017  cm−3, drain doping = 1 ×  1018  cm−3 and source 
doping = 1 ×  1020  cm−3.

Few researchers used muliple combination of gate met-
als having varring work functions. For example Raad et al. 
[124] proposed a hetero gate dielectric based dual-gate metal 
work function TFET (HGD DW TFET) which suppresses 
ambipolar behaviour and enhances RF figure of merits. Its 
structure (Fig. 17) has three gate metals having different 
work functions, Ф1 = Ф3 = 4.0 eV and Ф2 = 4.6 eV. Low Ф 
on the drain side reduces ambipolarity and enhances ON 
current towards the source.  SiO2 having a lower value of k 
is used towards the drain end to reduce ambipolar leakage 
and enhance RF performance while high k  (HfO2) on the 
source side helps in enhancing drive current by reducing tun-
nelling width of the source to channel interface. The device 
dimensions used by them are, LD = LS = 100 nm, LG = 50 nm 
which includes th = 2 nm of high-density layer, tox = 2 nm, 
tSi = 10 nm, length of Ф1 and Ф3 = 10 nm and drain/source 
doping of 1 ×  1020  cm−3.

Bagga and Dasgupta [125] proposed Si nanowire-
based triple metal gate all around TFET (TM GAA TFET) 
(Fig. 18). The gate wrapped around the structure with three 

Table 12  Test observations for fixed dimensions functions using IChimp-SHO algorithm

Function Mean STD Best fitness Worst fitness Median Wilcoxon rank 
sum test

t test

P value P value h value

F14 5.923306745 4.529146785 0.998003838 12.67050581 2.982105157 1.7344E−06 2.85762E−26 1
F15 0.003199196 0.006885586 0.000307505 0.020678817 0.000509082 1.7344E−06 0.016514745 1
F16 − 1.031628421 2.91482E−08 − 1.031628453 − 1.031628341 − 1.031628427 1.7344E−06 1.0841E−220 1
F17 0.397889119 3.73497E−06 0.397887373 0.397907788 0.397888221 1.7344E−06 1.4346E−147 1
F18 3.000056878 7.82165E−05 3.000000224 3.000253679 3.000022152 1.7344E−06 1.053E−134 1
F19 − 3.861720787 0.002004746 − 3.862779317 − 3.855118521 − 3.862617975 1.7344E−06 4.9726E−97 1
F20 − 3.266961533 0.070877244 − 3.321992205 − 3.114124068 − 3.32196637 1.7344E−06 5.07294E−50 1
F21 − 9.054114924 2.269865564 − 10.15311737 − 2.630423301 − 10.15104629 1.7344E−06 1.47747E−19 1
F22 − 9.791774335 1.890396917 − 10.4026378 − 2.765188383 − 10.40030086 1.7344E−06 1.05403E−22 1
F23 − 10.1738343 1.371487294 − 10.53611947 − 5.128445026 − 10.53438125 1.7344E−06 4.06341E−27 1

Table 13  Execution time for fixed dimensions benchmark problems 
using Imp-Chimp-SHO algorithm

Function Best time Average time Worst time

F14 1.359375 1.510416667 1.734375
F15 0.25 0.288541667 0.5
F16 0.140625 0.209375 0.359375
F17 0.140625 0.222395833 0.40625
F18 0.140625 0.195833333 0.40625
F19 0.265625 0.2953125 0.515625
F20 0.375 0.428125 0.625
F21 0.375 0.4484375 0.703125
F22 0.4375 0.509375 0.640625
F23 0.546875 0.609375 0.78125
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metals having distinct work functions helps create a barrier 
to suppress backward tunnelling current from drain and it 
also bends the energy band near-source which increases the 
driving current. The device is verified using Poisson’s equa-
tion and Kane’s model-based analytical model. In cylindrical 
coordinates, Poisson’s equation may be written as:

The device dimensions are, length of the channel 
L = L1 + L2 + L3 = 60 nm where metal  M1 length L1 = 10 nm, 
metal  M2 length L2 = 30 nm, metal  M3 length L3 = 20 nm, 
work functions ФM1 = 4. 4 eV, ФM2 = 4. 8 eV, ФM3 = 4. 6 eV, 
Gate Oxide thickness tox = 2 nm and Si nano wire radius 
R = 10 nm. 

Many work is done on geometrical modification of the 
channel to make it stand vertical so that both line and point 
tunneling can be incorporated. Shih et al. [126] proposed 
a U-shaped gate heterojunction (InGaAs/GaAsSb) vertical 
tunnelling field effect transistor (U HJ VTFET) (Fig. 19). 
The structure shows BTBT normal to the Gate surface which 
improves the ON current. This device has a provision for 
independent and separate control of ON and OFF currents 
by insertion of a layer of spacer material at the interface of 
channel and drain. The Heterojunction of (InGaAs/GaAsSb) 
provides a very small bandgap of 0.02 eV. Performance-
wise the device can achieve 520 µA/µm of drive current, an 
ION/IOFF ratio of  107. The dimensions of the structure are 
Lg = 100 nm, Ld = 50 nm on both sides of gate, gate oxide 
 (HfO2) thickness of 2 nm, Gate metal work function 4.7 eV, 
Source (GaAsSb)-p + doping of 3 ×  1019   cm−3 and drain 
(InGaAs)-n + doping of 2 ×  1018  cm−3. The device does not 
require any complex fabrication steps and is compatible with 
VLSI technology. 

Kim et al. [127] proposed a TFET called VS-TFET hav-
ing a vertical structure of the drain, channel and source stack 
with two gates on either side along with lightly doped Si to 
sandwich the stack from both sides (Fig. 20). The vertical 
channel in the device empowers it to have BTBT perpen-
dicular to the gate field and great control over the tunnelling 
current. The device has a gradual doping profile for suppres-
sion of ambipolar conduction and  NH3 plasma treatment 
was done to have a better quality of gate dielectric. Very 
low SS of 17 mV/dec and high ION/IOFF =  104 is obtained in 
the device. Further it was suggested that the device can be 
modified for higher performance by constructing the tun-
nelling junction by narrow band gap materials like SiGe or 
Ge. The device dimensions include, source height = 100 nm 
with p-type doping = 5 ×  1019  cm−3, channel height = 175 nm 
with p-type doping = 1 ×  1017  cm−3 and drain height = 50 nm 
with n-type doping = 1 ×  1020  cm−3. Uddin Shaikh and Loan 
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[128] proposed a drain-engineered TFET having four gates 
and a T shaped channel, called DE-QG-TFET as illustrated 
in Fig. 21. The device has a novel construction having two 
sources in the lateral direction and a vertically extended 
drain above the channel which is T shaped and is controlled 
by four gates. The unique construction highly suppresses 
ambipolar leakage compared to lateral double gate TFET. 
The device has double the ON current of a conventional 

DG TFET and ION/IOFF ratio five orders higher. Fur-
ther the analog/RF figure of merits are also considerably 
improved. The device dimensions are, p type source doping 
of 1 ×  1020  cm−1, n type channel doping of 1 ×  1017  cm−1, n 
type drain doping of 5 ×  1018  cm−1, tSi = 10 nm, gate oxide 
 SiO2 thickness of 3 nm and gate metal work function of 
4.5 eV. 
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Kumar et al. [129] proposed a-Si nanotube-based TFET 
having two gates one running through the centre of the chan-
nel as a core and another wrapped around outside the chan-
nel as a shell (Fig. 22). The device with both inner core gate 
as well as outer shell based wrapped all-around gate gives 
better control over the channel and improves drive capac-
ity. It is compared with conventional nanowire TFET for 
analog and RF performance and found to be much superior. 

Its vertical device geometry helps in enhancing the ON-state 
current to a great extent. The dimensions used are channel 
thickness = 50 nm, tox = 1 nm, radius = 5 nm, source dop-
ing = 1 ×  1020  cm−3, drain doping = 5 ×  1018  cm−3, channel 
doping = 1 ×  1017  cm−3 and gate work function = 4.4 eV. 

Research is also done to include the charge plasma based 
junction less technology to reduce various leakages and min-
imise fabrication complexity and cost. Nigam et al. [130] 
designed a TFET based on charge plasma technology having 
a control gate of dual metals, termed as DMCG-CPTFET 
(Fig. 23). The device is junction less and based on charge 
plasma-based electrical doping to reduce the fabrication 
complexity. The p + source is formed by the deposition of 
platinum (Ф = 5.93 eV) and the n + drain is formed by the 
deposition of hafnium (Ф = 3.9 eV) over Si. The gate is made 
of three metals with different work functions. Metal  M1 (Ф1) 
called tunnelling gate on the source side,  M3 (Ф3) called aux-
iliary gate on the drain side and  M2 (Ф2) called control gate 
at the centre. φ1 = φ3 < φ2 is taken for best performance. The 
tunnelling gate improves ON state performance while the 
auxiliary gate suppresses ambipolarity. The device dimen-
sions are, length of gate Lg = 50 nm, thickness of Silicon 
layer tSi = 10 nm, thickness of oxide layer tox = 1 nm, tunnel-
ling gate length L1 = 10 nm, control gate length L2 = 25 nm 
and auxiliary gate length L3 = 15 nm. 

Yadav et al. [122] proposed doping less TFET having 
heterogeneous gate dielectric and work function engineer-
ing at both gate and drain called HGD DE DMG DL TFET 
(Fig. 24). The device is doping less based on the charge 
plasma technology which has large ease in fabrication. 
Here dual work function is used at two places; over drain 
it reduces ambipolarity and a gate terminal, works for the 
enhancement of ON-state current. Again, there is a hetero 
gate dielectric whose combined effect along with work 
function modulation both at gate as well as drain results 
in a reduction in subthreshold slope, threshold voltage and 
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Fig. 13  a Basic structure of 
n-TFET. b Basic structure of 
p-TFET. c Basic structure of 
n-MOSFET

(a) Basic structure of n-TFET (b)  Basic structure of p-TFET

(c)  Basic structure of n-MOSFET
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improved high-frequency responses. The device dimensions 
are the length of drain metal LD = 40 nm with Φ = 3.9 eV, 
length of the extended portion of drain metal LB = 10 nm 
with Φ = 4.3  eV, length gate metal LG = 40  nm with 
Φ = 4.6 eV, length of extended portion gate metal LC = 10 nm 
with Φ = 4.0 eV, length of source metal LS = 50 nm with 
Φ = 5.93 eV, the thickness of silicon body tSi = 10 nm and 
thickness of oxide layer tox = 1 nm. 

Yadav et al. [131] proposed a TFET having electrical dop-
ing, gate underlapping and heterogeneous body with low 
bandgap SiGe at source and Si at drain and channel. The 
device called HM-GUL-ED-TFET is shown in Fig. 25. The 
gate under-lap helps in suppressing the ambipolarity and 
gate leakage current (Ig). The  Si0. 5Ge material having nar-
row bandgap at the source helps in improving DC and RF 
figures of merit. Further the device uses charge plasma-based 
electrical doping which eases fabrication drastically. The 
device dimensions include length of electrical drain/source 
LED = LES = 50 nm with work function = 4.5 eV, tSi = 10 nm, 
tox = 1.5 nm, control gate length LCG = 30 nm, gate underlap 
LGUL = 20 nm and substrate doping = 1 ×  1015  cm−3.

Devi and Bhowmick [132] proposed a junctionless 
TFET with a SiGe n + pocket doping near source end called 

JL-TFET (Fig. 26) which can be applied for the construc-
tion of efficient inverter circuits. The device has two metal 
gates, a fixed gate and a control gate having different work 
functions. It uses junction less technology, through which its 
N + -N + -N + structure is converted into PIN using suitable 
voltage variations at the two gates. A SiGe N + pocket is 
used near the source end which generates a path for tunnel-
ling current transverse to the gate oxide in addition to the 
usual lateral path and drastically increases ON state current 
to about 5.7 ×  10−4 A. By varying the fixed gate and control 
gate work functions to 5 and 4.5 eV respectively, close to 
43.6 mV/dec of subthreshold swing value may be attained. 
Further, RF evaluation also shows superior performance 
concerning conventional JL-TFET. Dimensions of the device 
are, doping for source, channel and drain is 1 ×  1017  cm−3, 
gate oxide thickness Tox = 2 nm, channel length Lg = 35 nm, 
Si thickness TSi = 30 nm, pocket length 20 nm and thickness 
10 nm. 

Tripathi et al. [133] proposed a junction less TFET hav-
ing a single gate and a SiGe based pocket near source called 
JLSGTFET (Fig. 27). The device utilizes junction-less tech-
nology for ease of fabrication. Low bandgap SiGe pocket 
between source and channel reduces the switching capaci-
tance of the device. Ge mole fraction x = 0.3 is used, which 
improves various electrical parameters like transconduct-
ance, junction capacitance and leakage current. 

The device attains ION/IOFF ratio of 2 ×  108, steep sub-
threshold slope of 52.3 mV/dec and DIBL = 2.1 mV/V at 
300 K. Furthermore, the device parameters are investigated 
for a wide temperature range from 250 to 400 K and the 
variations are found to be very low, which makes it ideal 
for sub 20 nm, ultra-low power, digital applications. The 
device dimensions are, gate length Lg = 15 nm, SiGe pocket 
length of 5 nm, channel length of 15 nm, drain/source height 
of 20 nm and source/drain doping of 1 ×  1020  cm−3. Kumar 
and Raman [134] proposed a charge plasma-based TFET 
using cylindrical Si nanowire. It uses drain, source and 
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gate electrodes having specific work functions wrapped all 
around the intrinsic nanowire for inducing the vertical PIN 
structure. The 2D view of the proposed structure is shown in 
Fig. 28. The device is investigated for the effects of interface 
trap charges (ITC) at the channel dielectric interface and the 
associated noise behaviour is studied. It is found that the 
ITCs of all polarities degrade ION/IOFF ratio however posi-
tive ITCs improve drive current as well as noise behaviour. 
The device dimensions are, length of source/drain 100 nm, 
channel length of 50 nm, radius of NW = 5 nm, TOX = 2 nm, 
gate, source and drain work functions of 4. 5, 5. 93 and 3. 
9 eV, respectively. 

Buried Oxide (BOX) and Selective Buried Oxide 
(SELBOX) technology has been incorporated in few 
researches to enhance the performance of the TFETs. Bhat-
tacharjee et al. [135] proposed a new TFET having a single 
gate and broken or splitted drain called SD-SG TFET as 
shown in Fig. 29. In the device drain doping engineering is 
used to create a splitted or parted drain in which one por-
tion is highly doped and the other lightly, they are arranged 
in descending order of doping. The parted drain structure 
greatly reduces ambipolar conduction. Four devices with 
different relative positioning of the splitted drain (SD) 

are analysed and evaluated for performance. One has the 
entire drain bisected into high and low doping called SD 
SG TFET and the others have either SD at the top called 
TSD SG, SD at the bottom called BSD SG or SD at the 
middle, called MSD SG TFET. The BSD-SG TFET showed 
a maximum  ION/IOFF ratio among all structures. All the 
structures showed better performance compared to con-
ventional TFETs. The dimensions include source doping 
NS = 1 ×  1020   cm−3, channel doping Nch = 1 ×  1017   cm−3, 
drain doping ND1 = 5 ×  1018  cm−3 and ND2 = 1 ×  1017  cm−3, 
drain length Xd = 100 nm, source width Ys = 60 nm, channel 
width W = 60 nm, Tsi = 60 nm and Tox = 1 nm. 

Mitra and Bhowmick [120] designed buried oxide (BOX) 
based TFET having the presence of gate on some portions of 
both source as well as channel called GOSC TFET (Fig. 30) 
and compared its performance with conventional FG SOI 
TFET and GOS SOI TFET when traps are there at all the 
Si to Oxide interfaces. The effects of trap charges present 
at the interface of gate oxide and Si and BOX & Si on sub-
threshold swing, drive current, ambipolarity, Cg and fT is 
evaluated for all three devices. The traps at the interface of 
BOX to Si increases ambipolar conduction while traps at the 
interface of gate oxide to Si reduces ON-state current, the 
effect of the former is observed to be much more severe. It 
is found that GOS SOI TFET is most immune to the adverse 
effects of interface traps. For the GOS TFET performances 
are observed to be much better with SS of 61. 5 mV/V, VT of 
0. 6 V and ION of 37. 5 μm/μA. The device dimensions are, 
source/drain length = 30 nm, p + source  (1021  cm−3), p chan-
nel  (1016  cm−3), n + drain (5 ×  1019  cm−3), Gate work func-
tion = 4. 2 eV,  Tox = 2 nm, gate channel overlap L = 10 nm 
and LUN = 30 nm. 

Vanlalawpuia and Bhowmick [136] proposed a TFET 
with L shaped buried oxide layer (BOX) with Ge source 
region having a very thin δ-doped layer within it (Fig. 31). 
The use of low bandgap Ge material for source enhances 
the drive current and the use of δ-doped layer reduces OFF 
state leakage and ambipolarity. Further the source is posi-
tioned vertically below the gate channel stack which results 
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in vertical tunnelling current or BTBT perpendicular to the 
gate oxide, this results in very high ON current. The sizes 
and dimensions of each region are fixed after optimization 
using simulation software. The dimensions include the thick-
ness of δ layer = 1 nm, LUC = 15 nm, Ge source thickness 
of 16 nm, tOX = 2 nm, source length of 15 nm, drain length 
of 10 nm and gate length of 30 nm. The source, channel, 
drain and δ layer doping are 1 ×  1020  cm−3, 1 ×  1016  cm−3, 
5 ×  1018  cm−3 and 5 ×  1016  cm−3, respectively. 

Ahn et al. [137] proposed an InGaAs based planer TFET 
structure having Zn diffused source and W/ZrO2/Al2O3 
gate stack (Fig. 32). Narrow and direct bandgap, group 
III–V material InGaAs is used for the channel to enhance 

BTBT and hence the ON current. The mole fraction for In 
is optimised in such a way that a quantum well (QW) is 
formed which simultaneously suppresses OFF current while 
maintaining high  ION. Zn is diffused in the source region to 
achieve an abrupt doping profile for high BTBT.  ZrO2/Al2O3 
gate stack is used to have optimum gate control over the 
tunnelling current while maintaining low equivalent oxide 
thickness (EOT). The device dimensions are optimised for 
high performance in low power digital circuits. 

Ghosh and Bhowmick [138] proposed a TFET device 
mounted on a selective buried oxide (SELBOX) and hav-
ing a heterogeneous junction with the presence of a thin 
δp+ layer of SiGe at the interface of source and channel 
(Fig. 33). The device is analysed with encouraging results 
for the impact of flicker noise due to the presence of Gauss-
ian as well as uniform traps, which are a major concern for 
most TFET devices. The device uses selective BOX hav-
ing a gap in place of fully depleted (FD) BOX because it 
reduces OFF current. It uses a low bandgap δ layer of SiGe 
which enhances BTBT and high k gate dielectric which 
improves  ION. The mole fraction of the δ layer, its position 
as well as the position of the SELBOX gap are all optimised 
through simulations. The device dimensions include chan-
nel length of 30 nm, δ layer thickness of 3 nm, source/drain 
length of 35 nm, SELBOX thickness of 10 nm with gap 
length of 2 nm. The source, channel, drain and δp+ layer 
doping of 1 ×  1020  cm−3, 1 ×  1016  cm−3, 5 ×  1018  cm−3 and 
1 ×  1018  cm−3, respectively. 

Singh et al. [139] proposed a TFET on SELBOX with the 
partial ground plane (PGP) having a gate dielectric stack of 
 HfO2 over  SiO2 and low bandgap Ge as the source material, 
termed as GSHJ-PGP-STFET (Fig. 34). The device uses nar-
row bandgap Ge material for source to enhance BTB tunnel-
ling. The  HfO2/SiO2 stack provides for optimum gate control 
of the tunnelling phenomena and its combined effect with 
Ge source enhances ON-state current. The SELBOX struc-
ture with PGP suppresses OFF state leakage and maintains 
a good ION/IOFF ratio. The device is found to be much supe-
rior to conventional SELBOX TFET and FD BOX TFET in 
terms of average SS, ION and ION/IOFF ratio. 

The device dimensions include channel length of 40 nm, 
source/drain length of 30 nm, SELBOX thickness of 10 nm 
with a gap width of 4 nm, high and low k gate oxide thick-
nesses of 2 and 1 nm, respectively. The doping concentra-
tions of source, channel, drain, and PGP region are  1020, 
 1016, 5 ×  1018 and 5 ×  1018  cm−3, respectively. 

Research is also done to apply the properties of a TFET 
to make a biosensor. In this direction Verma et al. [140] pro-
posed a TFET based label-free bio-molecule sensor which 
utilizes vertical dielectric modulation termed as V DMT-
FET (Fig. 35). The previously established lateral DMTFET 
(L-DMTFET) is compared with performance. A heavily 
doped n + pocket is introduced in the device for vertical 
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tunnelling along with lateral tunnelling which increases the 
ON-state current greatly and reduces subthreshold swing. 
A gate to source overlap is also there for improving sensi-
tivity. There are two nanocavities in the device the larger 
one Lc2 = 15 nm below the front gate and Lc1 = 10 nm below 
the back gate for sensing biomolecules. Filled cavities give 
higher sensitivities, gate metal  M1 (ФM1 = 4. 3 eV) is used 
near drain end and  M2 (ФM2 = 3.8 eV) near source end to 
enhance the sensitivities. The device dimensions are, length 
of channel Lch = 42 nm, lengths of the source and drain 
Ls = Ld = 20 nm, body thickness tSi = 10 nm, oxide tox = 6 nm 
and cavity thickness tcavity = 5 nm. Doping of source, channel 
and drain is 5 ×  1019, 1 ×  1012, and 5 ×  1018  cm−3 respectively 
and n + pocket doping is 5 ×  1019  cm−3. 

10  Comparison of existing TFET 
architectures

A detailed parametric analysis along with applications of 
promising TFET configurations are presented in Table 15. 
The SD-SG TFET [135] shows the highest ON state current 
due to its drain doping engineering and splitted drain archi-
tecture. Its drain consists of a stack of highly doped region 
above a lightly doped region, which increases the tunnelling 
width of the drain channel interface and increases the drive 
current and reduces ambipolar leakage. Further when the 
relative position of the splitted drain is varied for channel 
maximum ON-current and ION/IOFF ratio is found when it 
is at the bottom. The VS-TFET [127] promises to show the 
minimum sub-threshold slope of 17 mV/dec but its feature 
size is very large which will hamper the packing density. It 
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has a vertical structure with channel above and on the sides 
of the source and a dual gate which controls both lateral and 
transverse tunnelling, which reduces the SS, but the structure 
has the drawback of least ION/IOFF ratio. The HM-GUL-ED-
TFET [131] has an SS of 19.13 mV/dec and ION/IOFF ratio 
of 2.73 ×  1011 at 30 nm technology node. It is found to be 
one of the promising candidates for ultra-low power port-
able devices for analog/RF applications. The device uses 
gate underlap towards drain side to suppress the ambipolar 
leakage, gate leakage and low bandgap material for source 
which enhances band to band tunnelling (BTBT) and hence 
ON current. Thus, as a combined effect the  ION/IOFF ratio 

is boasted, and SS made steeper. Further the device uses 
charge plasma-based electrical doping which reduces fab-
rication complexity and junction leakage. The V-DMTFET 
[140] shows good results as TFET based label-free biomol-
ecule sensor which senses specific biomolecules based on 
the relative change in the dielectric constant of the sensing 
cavities due to the presence of target biomolecules (known 
dielectric constant). It shows SS of 47 mV/dec and good 
ION/IOFF ratio. The JLSGTFET [133] has the lowest value 
of drain induced barrier lowering (DIBL) of only 2.1 mV/V 
and reasonable other performance parameters like SS,  ION 
and ION/IOFF at 15 nm technology node. It uses junction less 
technology with a p +  Si0. 7Ge0. 3 pocket between the n+ 
source and n− channel which drastically improves the per-
formance parameters. 

A comparison of analog/RF performance parameters 
of some of the most efficient devices is represented in 
Table 16. The SiGe-S-NW-TFET [121] shows the high-
est cut-off frequency and GBP of 950 GHz and 549 GHz 
respectively. It uses Si nanowire technology with narrow 
bandgap SiGe material for source and hetero gate dielec-
tric with high-k  HfO2 near source end for performance 
improvement. It also exhibits the lowest transit time of 
0.9 ps. The GDO– HD–GAA-TFET [123] with gate-drain 
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overlap, heterogenous gate dielectric and cylindrical gate all 
around structure has the highest value of transconductance 
of 0.53 mS.

The device offers high ON current and good gate con-
trol along with reduced ambipolarity, but it has low cut-
off frequency and poor transit time response. The JL-TFET 
[132] using junction less technology along with low bandgap 
SiGe pocket near source exhibits moderate transconduct-
ance of 0.1mS and fT of 100 GHz. Cut of the frequency of 
130 GHz is obtained by D GAA CS NT TFET [129] with 
its cylindrical core–shell dual-gate all around structure, but 
its transconductance is not up to the mark, further its com-
plex structure and fabrication complexity does not justify the 
performance improvement. The HM-GUL-ED-TFET [131] 
also shows good fT and moderate gain-bandwidth product. 
It uses charge plasma-based electrical doping which eases 
fabrication and reduces leakage. 

11  Conclusion

In the proposed research, the hybrid variants of chimp opti-
mizer has been successfully developed, which are based on 
wholesome attitude roused by amazing thinking and hunt-
ing ability with sensual movement for finding optimal solu-
tion in global search region. The newly developed improved 
variant of Chimp optimizer has been successfully tested for 
various engineering design and standard benchmark optimi-
zation problems, which includes unimodal, multi-modal and 
fixed dimensions benchmark problems. After validating the 

efficiency of the proposed optimizers for standard benchmarks 
and engineering design problems, it has been experimentally 
observed that both the variants are competitive foe finding the 
solution within the global search space. Based on experimen-
tal results and comparative analysis with other methodologies, 
it has been recommended that the proposed hybrid variants 
can be universally accepted to solve any of the hard engi-
neering design challenges in global search space. The chimp 
optimizer is found most suitable to optimize TFET structure 
in terms of dimension and performance parameters that can 
be a worthiest replacement candidate of MOSFET in ultra-
low power, highly scaled down (high packing density) VLSI 
circuits. The paper also gives a comprehensive review of the 
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recent advances in TFET technology employing geometrical 
modifications, gate metal work function engineering, hetero 
source/channel/drain material with bandgap engineering, mul-
tigate, gate dielectric engineering, junction-less techniques 
etc. for improvement of performance parameters like steep 
SS, low ambipolarity, high drive current and ION/IOFF ratio. 
It also analyses the devices based on different analog/RF 
performance parameters like transconductance, cut-off fre-
quency, GBP, and transit time to suggest the most promising 

device configuration. Further, it investigates the devices from 
an application point of view like low power battery operated 
devices, digital, analog/RF circuits, and biomolecule sensors. 
The VS-TFET has least SS but low ION/IOFF ratio and large 
feature size which restricts its applications. At 50 nm node, 
the SD SG TFET shows the highest ON current and ION/IOFF 
ratio due to its splitted drain and relative positioning of drain, 
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which enhances high BTBT and low leakage. The HM-GUL-
ED-TFET has the best performance features at 30 nm node 
and boasts electrical doping for ease of manufacture. The 
JLSGTFET has the least DIBL and good overall performance 
at 15 nm. In RF analysis, the SiGe-S-NW-TFET exhibits the 
most superior ac performance with highest fT and GBP of 
950 and 549 GHz respectively and with a low transit time 
of only 0. 9 ps. The GDO-HD-GAA-TFET shows the high-
est value for gm of 0.53 mS. So, a narrow band-gap vertical 
TFET with junction less properties for sub 20 nm technology 
is found to be the most promising TFET configuration for 
future low power analog/RF and some digital applications. 
Also, a V-DMTFET is found to be good as a biosensor with 
a low SS of 47 mV/dec at 42 nm feature size. 

Glossary

GOSC TFET   Gate on source channel tunnel 
field effect transistor [120]

SiGe-S-NW-TFET  SiGe source nano wire tunnel 
field effect transistor [121]

HGD DE DMG DL TFET  Hetero gate dielectric drain engi-
neered dual metal gate tunnel 
field effect transistor [122]

HGD DW TFET   Hetero gate dielectric dual gate-
metal work function tunnel field 
effect transistor [124]

GDO– HD–GAA-TFET  Gate drain overlapped hetero gate 
dielectric gate all around tunnel 
field effect transistor [123]

Table 15  Performance comparison of TFET architectures for DC parameters and applications

Device ION (A/μm) IOFF (A/μm) ION/IOFF SS (mV/dec) DIBL (mV/V) Channel 
length 
(nm)

Application

HGD DW TFET [124] 1.21 ×  10−4 1.23 ×  10−16 9.83 ×  1011 – – 50 Analog/RF
U HJ VTFET [126] 5.2 ×  10–4 5.2 ×  10–11 1 ×  107 – – 100 Digital circuit
DMCG-CPTFET [130] 6 ×  10–5 1 ×  10–17 6 ×  1012 – – 50 Analog/RF
V-DMTFET [140] 2.71 ×  10–6 2.71 ×  10–14 1 ×  108 47 – 42 Biosensor
HGD DE DMG DL TFET [122] 1 ×  10–6 1 ×  10–17 1 ×  1011 – – 50 Analog/digital circuits
HM-GUL-ED-TFET [131] 8.40 ×  10−6 3.07 ×  10−17 2.73 ×  1011 19.13 – 30 Analog/RF
D GAA CS NT TFET [129] – – – 58.3 175.29 50 Analog/RF
JL-TFET [132] 5.71 ×  10−4 1.32 ×  10−10 4.32 ×  106 43.6 – 35 Digital circuits
SD-SG TFET [135] 1 ×  10−3 1 ×  10−17 1 ×  1014 – – 50 Analog/RF
SiGe-S-NW-TFET [121] 1.16 ×  10−5 8.63 ×  10−17 1.35 ×  1011 23.75 – 20 Analog circuit
VS-TFET [127] – – 1 ×  104 17 – 175 Digital circuit
GOSC TFET [120] 3.75 ×  10–5 – – 61.5 – 40 Digital circuit
JLSGTFET [133] 9.91 ×  10–4 2.80 ×  10–13 2 ×  108 52.3 2.1 15 Analog/digital circuits

Table 16  Comparison of TFET 
architectures for analog/RF 
performance parameters

Device Transconduct-
ance (gm) (mS)

Cut off fre-
quency (fT) 
(GHz)

Gain bandwidth 
product (GBP) 
(GHz)

Transit 
time (τ) 
(ps)

HGD DW TFET [124] 0.29 59.6 9.97 2.67
GDO-HD-GAA-TFET [123] 0.53 38 – 20
DMCG-CPTFET [130] – 28 – –
HGD DE DMG DL TFET [122] 0.0052 0.22 0.069 –
HM-GUL-ED-TFET [131] 0.0554 100.6 10.8 –
D GAA CS NT TFET [129] 0.0111 130 – –
JL-TFET [132] 0.1 100 – –
SiGe-S-NW-TFET [121] 0.045 950 549 0.9
DE-QG-TFET [128] 0.261 34 3.9 –
JLSGTFET [133] 0.016 – – –
GSHJ-PGP-STFET [139] 0.029 4.7 – –
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U HJ VTFET    U-shaped gate hetero junction 
vertical tunnel field effect tran-
sistor [126]

DMCG-CPTFET   Dual metal control gate charge 
plasma tunnel field effect tran-
sistor [130]

V-DMTFET   Vertical dielectric modulated tun-
nel field effect transistor [140]

HM-GUL-ED-TFET  Hetero material gate underlapped 
electrically doped tunnel field 
effect transistor [131]

D GAA CS NT TFET  Dual gate all around core shell 
nano tube tunnel field effect tran-
sistor [129]

JL-TFET    Junction less tunnel field effect 
transistor [132]

SD-SG TFET   Splitted drain single gate tunnel 
field effect transistor [135]

VS-TFET    Vertical sandwiched channel tun-
nel field effect transistor [127]

DE-QG-TFET   Drain engineered quadruple 
gate tunnel field effect transistor 
[128]

JLSGTFET   Junction less single gate tunnel 
field effect transistor [133]

GSHJ-PGP-STFET  Ge source hetero junction par-
tial ground plane base SELBOX 
(selective buried oxide) tunnel 
field effect transistor [139]
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