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Abstract
In this paper, an attempt has been made to implement various robust techniques to predict rock fragmentation due to blasting 
in open pit mines using effective parameters. As rock fragmentation prediction is very complex and complicated, and due to 
that various artificial intelligence-based techniques, such as artificial neural network (ANN), classification and regression tree 
and support vector machines were selected for the modeling. To validate and compare the prediction results, conventional 
multivariate regression analysis was also utilized on the same data sets. Since accuracy and generality of the modeling is 
dependent on the number of inputs, it was tried to collect enough required information from four different open pit mines 
of Iran. According to the obtained results, it was revealed that ANN with a determination coefficient of 0.986 is the most 
precise method of modeling as compared to the other applied techniques. Also, based on the performed sensitivity analysis, 
it was observed that the most prevailing parameters on the rock fragmentation are rock quality designation, Schmidt hard-
ness value, mean in-situ block size and the minimum effective ones are hole diameter, burden and spacing. The advantage 
of back propagation neural network technique for using in this study compared to other soft computing methods is that they 
are able to describe complex and nonlinear multivariable problems in a transparent way. Furthermore, ANN can be used as 
a first approach, where much knowledge about the influencing parameters are missing.

Keywords Blasting · Rock fragmentation · Robust techniques · Open pit mine

1 Introduction

Blasting is still practiced for fragmenting rocks in surface 
and underground mining projects. A huge amount of energy 
is generated during the blasting process and only a small 
portion of this energy is effectively used to fragment and 
displace the rock mass and the rest of the energy is wasted 

in the form of undesirable events, such as air blast, fly rock, 
ground vibration, etc. [1–9]. Therefore, optimizing blast 
design parameters should be targeted to get the best possi-
ble rock fragmentation to be efficient for subsequent opera-
tions, including loading, hauling and crushing [10–12]. As 
a matter of fact, there are several influencing uncontrollable 
(rock mass properties) and controllable (blast geometry) fac-
tors affecting fragmentation quality making blast design a 
process with high complexity [13–15].

Investigating 432 blasting events, Mehrdanesh et  al. 
attempted to evaluate the effect of rock mass properties on 
fragmentation. They concluded that in comparison of con-
trollable parameters, uncontrollable parameters are more 
effective on rock fragmentation. Their study results showed 
that, from the rock mass properties group, point load index, 
uniaxial compressive strength, Poisson’s ratio, cohesion and 
rock quality designation, respectively, are the most impor-
tant parameters on rock fragmentation and from the blast 
geometry group, stemming, spacing and hole diameter are 
the least important parameters on the quality of rock frag-
mentation [13]. Numerous empirical Formulas have been 
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introduced to model rock fragmentation due to blasting. 
However, due to the complex nature of the fragmentation 
and limitation of effective variables in conventional models, 
these formulas are not adequately accurate. Consequently, 
they will not be capable to predict rock fragmentation suit-
ably. It seems that more precise techniques are needed to 
predict the rock fragmentation [16].

Nowadays, artificial intelligence (AI) is being applied 
in a range of geo-engineering projects and AI is a fruitful 
approach to cope with such types of problems [17–21]. In 

this regard, a number of research studies have been carried 
out to utilize various AI tools to improve blast design param-
eters obtained from conventional and empirical methods [13, 
22–24]. Table 1 briefly summarizes some researchers’ work 
in rock fragmentation, where they have used different AI 
tools and techniques. In this paper, for which four differ-
ent mines were adopted as case studies, various techniques 
including regression analysis, classification and regression 
tree, support vector regression and artificial neural network 

Table 1  Summary of researches 
regarding rock fragmentation 
prediction

ANFIS adaptive-network-based fuzzy inference system, BCA bee colony algorithm, MLR multivariate lin-
ear regression, RES rock engineering system, PSO particle swarm optimization, FFA fire fly algorithm, 
ICA imperialist competitive algorithm, B burden, S spacing, St stemming, L hole length, PF powder factor, 
D hole diameter, SHV Schmidt hardness value, J density of joint, MC maximum charge used per delay, S/B 
spacing to burden ratio, St/B stemming to burden ratio, H/B stiffness factor, N number of rows, INCL blast-
hole inclination, ET explosives amount and type, INI initiation mode, Q charge per hole, QL linear charge 
concentration, σc unconfined compressive strength, RQD rock quality designation, E modulus of elasticity, 
t delay timing, BI blastability index, P specific charge per delay, UCS uniaxial compressive strength, PL 
point load strength, UTS uniaxial tensile strength, BT brittleness, ρ density, Vp P wave velocity, υ Pois-
son’s ratio, C cohesion, ϕ friction angle, XB mean in situ block size, BS block size, Sub sub-drilling, GSI 
geological strength index, JP joint persistency, JS joint spacing, JPO joint plane orientation ratio to bench 
face, SD specific drilling

References Controllable variables Uncontrollable variables Method

Monjezi et al. 
2009 [12]

B, S, St, PF, L, B/S – Fuzzy logic

Bahrami et al. 
2011 [25]

B, S, St, SD, PF, L, MC, D, BI – ANN

Sayadi et al. 
2013 [16]

B, S, L, SD, PF – ANN

Karami and 
Afiuni-Zadeh 
2013 [26]

B, PF, S/B, N, St/B, MC UCS ANFIS

Shams et al. 
2015 [27]

B, S, D, PF, St SHV, J FIS

Bakhtavar et al. 
2015 [28]

B/S, St, t, P, N, D, L, BI E, UCS E, UCS

Ebrahimi et al. 
2016[29]

B, S, St, L, PF – ANN-BCA

Trivedi et al. 
2016 [30]

Q, QL, L, B, S, St, PF, D σc, RQD MLR

Singh et al. 
2016[31]

B/D, S/B, St, H/B, ET, INI, PF – Empirical

Hasanipanah 
et al. 2016 [32]

B, MC, PF, S/B, St/B, H/B, N, INCL, 
D, B/D

– RES

Hasanipanah 
et al. 2016 [32]

PF, B, St, S/D UCS, Jp, RQD, JS, ρ, JPO RES

Prasad et al. 
2017 [33]

B, L, St, PF – Empirical

Hasanipanah 
et al. 2018 [24]

PF, St, S, B, MC, – PSO-ANFIS

Mehrdanesh et al. 
2018 [13]

B, S, L, D, St, PF PL, UCS, UTS, BT, ρ, E, Vp, 
SHV, υ, RQD, C, ϕ, XB

ANN

Asl et al. 
2018 [34]

B, S, L, Sub, St, P, PF GSI ANN-FFA

Murlidhar et al. 
2018 [35]

P, PF, B/D, S/B, H/B, St/B BS, RQD ANN-ICA
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were applied to predict rock fragmentation in the open pits 
blasting operation.

2  Artificial neural network

Artificial neural network is a branch of artificial intelligence 
[36–38]. It is made of a multilayer topology in which the lay-
ers are connected to each other. The first layer is considered 
for placing inputs, whereas the last one is for output(s). In 
addition to the mentioned layers, there are one or more lay-
ers known as hidden (transitional) layers which are placed 
in between the first and last layer. In fact, the hidden lay-
ers’ components known as neurons are responsible for the 
required computations. Number of the neurons in each hid-
den layer is determined by a try and error mechanism. When 
facing very low correlation ANN would be the best possible 
solution as compared to the available conventional alterna-
tives [12, 13]. Amongst various advantages of ANN mod-
eling, function approximation and feature selection can be 
considered as a specific capability [39–41].

To start working with ANN, a reasonable number of data 
sets (a set of inputs and their respective outputs) should be 
collected and used for training various network architec-
tures from which the best combination would be selected. 
Artificial neural network (ANN) is increasingly being used 
to solve various nonlinear complex problems, such as rock 
fragmentation. However, it is not clear that what appropriate 
sample size should be there when using ANN in this context. 
The amount of data required for ANN learning depends on 
many factors, such as the complexity of the problem or the 
complexity of the learning algorithm. Till now, it is not clear 
that how much sample data should be there in a predictive 
modeling problem. However, there are some empirically 
established rule-of-thumb are there to estimate sample size 
requirements when using ANN. For example, one rule-of-
thumb is that the sample size needs to be at least a factor of 
ten times the number of features. During this process, first, 
the connections between the neurons should be assigned a 
random weight, thereafter the initial given weights would 
be updated in each modeling run to gain the best possible 
efficient network. The next important item which should be 
thought of is adopting a proper method of training such as a 
back propagation algorithm with many advantages as com-
pared to the other existing approaches [42–45].

A trained network can be examined by comparison of 
the model outputs with that of the measured outputs. To 
do this four statistical indices including determination coef-
ficient (R2), mean absolute error (MAE), root mean square 
of errors (RMSE), and variance account for (VAF) can be 
calculated [46–50]. The following formulae are the math-
ematical expressions of the aforesaid indices:

where O , O′ and Õ are the measured, predicted and mean of 
the O (output) values, respectively, and N is the total number 
of data.

3  Case study

In this paper, the required database is obtained from four 
different open pit mines [13]. All the mines are situated in 
Iran (Fig. 1) and considered to be the main sources of copper 
and iron ore in the country. Table 2 gives some descriptions 
about the mines.

4  Collection of data sets

In this research, the database has been collected by per-
forming 353 blasting operations in 4 mines mentioned in 
chapter 3. Descriptive information of the data sets is given 
in Table 3. Controllable parameters including burden, spac-
ing, stemming, bench height, hole diameter, powder factor 
and uncontrollable rock characteristics comprising universal 
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Fig. 1  Location map of studied mines
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compressive strength (UCS), uniaxial tensile strength (UTS), 
Is50, density, Young’s modulus, P-wave velocity, Schmidt 
hardness value, Poisson’s ratio, rock quality designation 
(RQD), cohesion and friction angle were considered to the 
inputs.

In this research, image analysis techniques were applied 
to calculate size distribution using Split-Desktop software. 
Fragmentation has been calculated on the basis of 50% of 
passing size (X50). Finally mean-blasted particle size (X50) 
was selected as output in the modeling process.

Table 2  Various mines and rock 
formation of case studies

Row Case studies Location Latitude Longitude Rock type

1 Chadormalou Iran-Yazd 32.31 55.53 Magnetite, hematite, rhyolite
2 Gol-e-gohar Iran-Sirjan 29.28 55.83 Magnetite
3 Sarcheshme Iran-Kerman 29.95 55.86 Porphyry sarcheshmeh, andesite
4 Songun Iran-Tabriz 38.69 46.71 Monzonite

Table 3  Variables used for developing models

Variables Controllability Number Symbol Mean Min Max Std. dev

Burden (m) Controllable
inputs

353 B 4.98 1.90 7.50 1.27
Spacing (m) 353 S 6.02 2.30 10.00 1.62
Height of Bench (m) 353 H 13.25 5.00 17.90 2.41
Hole Diameter (mm) 353 D 181.97 76.00 250.80 60.35
Stemming (m) 353 T 5.10 1.80 8.00 1.55
Powder factor (kg/m3) 353 PF 0.59 0.23 1.48 0.30
Point Load Strength Uncontrollable

inputs
353 Is50 5.47 2.00 8.00 1.71

Uniaxial compressive strength (MPa) 353 UCS 118.83 35.00 200.00 44.53
Uniaxial tensile strength (MPa) 353 UTS 11.69 2.80 23.00 5.91
Density (t/m3) 353 ρ 3.47 2.50 4.80 0.71
Young`s modulus (GPa) 353 E 47.81 20.00 70.00 14.40
P-Wave velocity (km/s) 353 Vp 4.03 3.00 4.80 0.40
Schmidt hardness value 353 SHV 43.65 20.00 57.00 8.54
Poisson's ratio 353 υ 0.22 0.20 0.27 0.02
Rock quality designation 353 RQD 77.59 45.00 95.00 12.34
Cohesion (MPa) 353 C 0.29 0.15 0.38 0.05
Friction angle 353 φ 36.16 28.00 46.00 5.89
Mean in-situ block size (m) 353 XB 0.58 0.36 1.00 0.09
Mean blasted particle size (m) Output 353 X50 0.29 0.04 0.51 0.10

Table 4  Comparison of different neural network structures

No. Architecture Hidden 
activation

Output activation Train Test

MAE RMSE VAF (%) R2 MAE RMSE VAF (%) R2

1 18-14-1 Sine Tanh 0.080 0.095 17.3 0.213 0.077 0.093 15.0 0.190
2 18-14-1 Sine Tanh 0.070 0.085 32.8 0.560 0.068 0.085 27.5 0.491
3 18-8-1 Sine Tanh 0.050 0.063 62.7 0.630 0.050 0.065 57.4 0.627
4 18-17-1 Sine Exp 0.036 0.050 81.1 0.814 0.034 0.048 78.8 0.790
5 18-17-1 Sine Tanh 0.033 0.043 83.1 0.832 0.035 0.044 80.4 0.809
6 18-9-1 Sine Exp 0.030 0.039 85.9 0.861 0.033 0.041 82.7 0.830
7 18-8-1 Sine Tanh 0.027 0.035 88.4 0.885 0.027 0.034 88.5 0.890
8 18-10-1 Exp Sine 0.018 0.023 95.1 0.951 0.023 0.029 91.7 0.919
9 18-12-1 Exp Sine 0.021 0.026 93.7 0.937 0.020 0.025 93.4 0.939
10 18-14-1 Tanh Tanh 0.006 0.008 99.5 0.995 0.007 0.009 98.6 0.986



1321Engineering with Computers (2023) 39:1317–1327 

1 3

5  ANN architecture

In this study, a total number of 353 data sets were used for 
training and testing groups. Back propagation approach 
was implemented for the model training. To have an 
applicable database and to improve efficiency of the 
training process, the whole data sets were normalized 
between values of − 1 and 1 [51]. After preprocessing 
of the data sets, to find out the best possible model with 
maximum accuracy and minimum error, numerous net-
works were created by varying pertinent elements, such 
as number of hidden layers and their respective neurons 
[52]. MAE, RMSE, VAF and R2 were determined for the 
various network topologies (Table 4). As it is seen in this 
table, the best model is a back propagation network with 
an architecture 18-14-1 and a hyperbolic-tangent transfer 
function in both the hidden and output layers (no.10). 
From Fig. 2, an optimum architecture of the ANN model 
is depicted. The determination coefficient was computed 
0.9947, which is adequate to show competency of the 
developed ANN model.

6  Multivariate regression analysis (MRA)

Multivariate regression analysis was used to evaluate the 
relationship between the inputs and output. MRA is con-
sidered as a conventional method of trend analysis in scien-
tific tasks [53–55]. Using Statistica 12.0 software [56–58], 
regression analysis was performed to develop a mathemati-
cal function for predicting mean size of the fragment size 
(X50) (Eq. 5). As it is deduced from this equation, burden, 
spacing mean in-situ block size, uniaxial compressive 
strength, Schmidt hardness value, cohesion, Young’s mod-
ulus and density have a direct relevance with X50, whereas 
bench height, hole diameter, stemming, powder factor, 
Poisson’s ratio, UTS,  Is50, friction angle, P-wave velocity 
and RQD are indirectly effective in the X50 magnitude. The 
determination coefficient and RMSE were computed 0.8863 
and 0.026, respectively, which indicates the relatively lower 

performance of the developed MRA model compared to the 
ANN model:

7  Classification and regression tree

Decision tree (DT) is fundamentally a branch of hierarchi-
cal approach which is used worldwide due to its capability 
to cope with classification-based problems. Structure of a 
tree contains different parts including, root, branches, leaves 
and nodes. DT is an ascending way of solution in which the 
root is placed at the topmost of the tree. In this technique, 
solution process is started with selecting a random node as 
a potential root for the tree. Each node represents a variable 
of the problem in hand and is divided into two branches. 
Division of the nodes is done with help of one of the inde-
pendent variables. It is noted that a range has to be selected 
during the division process using a try and error mechanism. 
The selected range should be such a way that model perfor-
mance indices such as root mean square error (RMSE) be 
minimized for each and every node [59, 60].

This method is also employed for regression analysis 
[61–65]. Due to various merits of classification and regres-
sion tree (CART) over other decision tree algorithms, it 
is normally preferred to be applied by many researchers 
[66–68]. In this paper, Matlab software was used to pre-
dict rock fragmentation incorporating the CART method. 
Developed decision tree for predicting X50 is shown in 
Fig. 3.

(5)

X50 =0.01(B) + 0.009(S) − 0.003(H) − 0.0005(D)

− 0.001(ST) − 0.33(PF) − 0.001(Is50)

+ 0.002(UCS) − 0.005(UTS) + 0.022(�)

+ 0.002(E) − 0.1(Vp) + 0.007(SHV)

− 0.524(�) − 0.001(RQD) + 0.515(C) − 0.004(�)

+ 0.4
(
XB

)
+ 0.233

Fig. 2  Architecture of the opti-
mum ANN model

B   S   H      D      T     PF    Is50 UCS UTS ρ   E Vp   SHV υ  RQD S      C    φ

X50

Hidden Layer
(14 nodes)
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8  Support vector regression

Support vector machine is applicable for solving both the 
classification and regression problems. In machine learn-
ing, support vector machines (SVM), which is well-known 
to handle structural risk minimization, is widely used in 
different fields of investigation [69–71]. Support vector 
regression (SVR), a subdivision of SVM, is suitable for 
dealing with interpolative and extrapolative problems 
using a specific predictive model. In this SVR technique, 
Vapnik–Chervonenkis (VC) theory is considered as the 
base for formulization [72–74]. Reasonable generaliza-
tion reaches when VC dimension is quite low which in 
turn causes the error probability to be definitely low [75, 
76]. Also, in this technique, a “loss function” is applied 
for regression estimation and function approximation. The 
function is defined as the difference between predicted 
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Fig. 3  Developed CART model for predicting X50

Fig. 4  Graphic description of 
the SVR model
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(test)
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value and tube radius (ε). Figure 4 shows the idea of the 
ε-insensitive loss function. As it is seen in this figure, sam-
ples situated out of the ± ε margin, would be considered 
non-zero slack variables and are kept apart from computa-
tions. It is obvious that the amount of loss function would 

be zero within ε-insensitive tube. It is noted that further 
details about SVM and SVR can be found out in the lit-
erature [77].

0.1
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X5

0 
(m

)

Number of test data set
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Fig. 6  Comparison of predicted and measured outputs for the MRA 
model
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Fig. 7  Scatter plot of the predicted vs. actual X50 for the CART model 
(test)

Fig. 8  Comparison of predicted and measured outputs for the CART 
model

Fig. 9  Scatter plot of the predicted vs. actual X50 for the ANN model 
(test)

Fig. 10  Comparison of predicted and measured outputs for the ANN 
model

Fig. 11  Scatter plot of the predicted vs. actual X50 for the SVR model 
(test)
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9  Performance evaluation of the models

Model evaluation of the developed MRA, CART, SVR 
and ANN models was performed with the 70 unused data 
sets in development process of the aforesaid models. The 
correlation between predicted and measured X50 for all 
the four models are shown in Figs. 5, 6, 7, 8, 9, 10, 11 
and 12. Table 5 shows the calculated values of valida-
tion indexes. According to this table, performance of the 
ANN model with the highest accuracy and lowest is bet-
ter as compared to the other employed models. On the 

contrary, efficiency of the conventional MRA is very low 
amongst the other utilized models. The MRA is bound 
to follow some valid statistical relations, whereas ANN 
is unbiased and can make its own relationship based on 
the sample data sets and due to that it has been found 
that ANN gives much better results compared to MRA 
in complex engineering problems. Rock fragmentation 
is also a very complex and complicated problem, influ-
enced by several controllable and uncontrollable factors. 
Furthermore, results showed that facing problems with 
high complexity and nonlinearity such as fragmentation 
modeling, non-linear methods with high flexibility such 
as ANN have higher capabilities compared to classical 
linear methods such as MRA.

10  Sensitivity analysis

Normally, sensitivity analysis is performed to evaluate the 
effect of input variation on the relevant outputs. There are 
various methods of sensitivity analysis. One of the most 
frequently used methods is relevancy factor (RF) which is 
calculated by Eq. 6 [13, 78]:

Fig. 12  Comparison of predicted and measured outputs for the SVR 
model

Table 5  Calculated validation 
indices for the ANN, MRA, 
SVR and CART models

Model MAE RMSE VAF (%) R2 MAE RMSE VAF (%) R2

Train Test

MRA 0.021 0.027 93.262 0.933 0.021 0.026 87.896 0.886

CART 0.020 0.028 93.204 0.932 0.014 0.019 93.586 0.937
SVR 0.018 0.022 95.597 0.956 0.018 0.023 90.477 0.907
ANN 0.005 0.008 99.463 0.995 0.007 0.009 98.612 0.986

Fig. 13  Sensitivity analysis of 
the input variables on fragmen-
tation
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where xl,i and xl are the ith value and the average value of 
the lth input variable, respectively, yi and y are the ith value 
and the average value of the predicted output, respectively.

As it is seen in Fig. 13, uncontrollable parameters are 
more effective on fragmentation quality as compared to con-
trollable parameters. From the uncontrollable parameters, 
rock quality designation, Schmidt hardness value, mean 
in-situ block size and point load index are more effective 
on rock fragmentation. Accordingly, from the controllable 
parameters, hole diameter, burden and spacing are the least 
effective on the fragmentation quality.

11  Conclusions

In this paper, artificial neural network, support vector 
regression, decision tree and regression analysis were 
implemented to investigate the effect of uncontrollable and 
controllable parameters on fragmentation quality in blast-
ing operation of open pit mines. For this study, a database 
was prepared from four mines situated in different parts 
of Iran. In the first step superiority of the different models 
was inspected from which competence of the neural net-
work modeling was approved. The values of MAE, RMSE, 
VAF and R2 for ANN model were 0.007, 0.009, 98.612% 
and 0.986, respectively. In this regard, MRA modelling 
with the obtained values of 0.021, 0.026, 87.896% and 
0.886 in the validation phase for MAE, RMSE, VAF 
and R2, respectively, displayed the poorest performance. 
According to outcomes of the application of the network 
modeling, as a whole, it was concluded that in fragmenta-
tion quality uncontrollable parameters are more influential 
as compared to controllable parameters. Rock quality des-
ignation, Schmidt hardness value, mean in-situ block size 
and point load index from the former group play a vital 
role in the fragmentation quality and from the latter one, 
hole diameter, burden and spacing are the least effective 
parameters in this regard.
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