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Abstract
The multiscale finite volume method for discrete fracture modeling in highly heterogeneous porous media is developed. 
Multiscale methods are sensitive to the heterogeneity contrasts in both matrix and fracture networks. To resolve this, efficient 
algorithms for generating adaptive unstructured coarse grids are devised. First, primal coarse grids are independently con-
structed for the matrix and lower dimensional fractures. Then, flexible dual coarse grids are generated based on the fracture 
and matrix permeability features. Since the proposed algorithms employ the equivalent graph of unstructured grids, the same 
coarse grid generation strategy is applied for the fractures and matrix domains. Permeability-adapted coarse grids significantly 
improve the monotonicity behavior of MSFV method in highly heterogeneous fractured porous media. The performance of 
the method is assessed through several challenging test cases with highly heterogeneous permeability field in both fractures 
and matrix domain. Numerical results indicate that the extended MSFV method with adaptive unstructured coarse grids is 
a significant development for accurate flow simulation in heterogeneous fractured media using DFM approach.
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1  Introduction

Fractures in geological porous media usually occur at differ-
ent length scales with very complex geometry and treated as 
lower dimensional objects within the porous matrix. In addi-
tion to the complex geometry of the fracture network, high 
contrast in the physical properties and the scale discrepancy 
between the fractures and the matrix formation result in sig-
nificant challenges for flow simulation. Therefore, it is very 
important to develop efficient numerical solution strategies 
for fractured formations.

Lots of models have been proposed in the literature for 
simulating fluid flow in fractured reservoirs. Among them, 
the most widely used approach is discrete fracture modeling 
(DFM), in which the fractures are represented explicitly as 
low-dimensional objects embedded within the matrix forma-
tion [1–4]. The complex geometry of the discrete fracture 
network is captured accurately using unstructured grid. The 

grid is generated with the constraint that the fracture seg-
ments lie at the interface of matrix elements. Although DFM 
approach is considered one of the most accurate methods to 
describe fluid flow through fractured porous media; how-
ever, its application at the field scale leads to large, het-
erogeneous, and anisotropic linear systems that exceeds the 
computational capability of available reservoir simulators. 
These important challenges motivate the need for develop-
ment of efficient multiscale methods for flow simulation in 
heterogeneous fractured porous media.

Multiscale methods have been developed to provide a 
computationally efficient numerical solution for multiphase 
flow in large-scale heterogeneous porous media [5–8]. In 
the multiscale methods, the reduction in computational cost 
is achieved by dividing the global fine-scale problem into a 
set of smaller local problems which are solved separately. 
The approximate fine-scale solution is then constructed 
by assembling the solutions of small-size local problems. 
Among the proposed multiscale methods, the mixed multi-
scale finite-element (MMSFE) [9] and the multiscale finite 
volume (MSFV) [6, 10–12] methods provide locally con-
servative velocity fields, which is a crucial property for accu-
rately solving the transport equations.
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The first implementation of MSFV method in fractured 
porous media was developed for two-dimensional prob-
lems using a hierarchical fracture modeling approach, in 
which there exists one fracture basis function per network 
to add only one additional degree of freedom per connected 
fracture network in the matrix system [13]. The proposed 
method was efficient for highly conductive fractures. How-
ever, for test cases with high-pressure gradients inside frac-
tures, further improvement is required. Later, a multiscale 
approach was developed for 2D reservoirs which coarse 
nodes are assigned at fracture intersections and dual coarse 
edges coincide with the fractures [14]. This method did not 
allow for independent coarse grids for fracture and matrix 
domains. An algebraic multiscale method with embedded 
discrete fractures (F-AMS) was developed on structured 
grids [15]. The F-AMS relies on primal and dual coarse 
grids for both the matrix and fracture networks to construct 
the multiscale prolongation and restriction operators. After-
ward, a multiscale restricted smoothed basis method for frac-
tured media (F-MsRSB) was developed [16] on unstructured 
grids in which basis functions for matrix and fractures are 
constructed by restricted smoothing. This method employs 
an embedded fracture modeling approach, in which the 
matrix and fractures are represented on independent grids. 
The first multiscale finite volume method for discrete frac-
ture modeling on fully unstructured grids was developed in 
[17]. In this method, to enable error reduction, a convergent 
iterative strategy is extended, where MS-DFM is employed 
along with a fine-scale smoother to resolve low- and high-
frequency modes in the error.

Although promising progress has been made in recent 
years [18–20], the literature is lacking a multiscale method 
which allows for flexible unstructured coarse grids inside 
the matrix and fractured networks. It is well known that 
multiscale methods suffer from non-monotonicity at highly 
heterogeneous permeability fields, resulting in numerical 
spurious oscillations in the pressure field. Note that none 
of previous methods allow reducing errors by adapting the 
coarse grid geometry to follow the fracture and matrix per-
meability features. Recently, an unstructured grid adaptation 
technique for multiscale finite volume method have been 
introduced for highly heterogeneous, but non- fractured, 
porous media [21].

The purpose of this paper is to develop an efficient 
method for generating multiscale unstructured grids that 
are tailored to the characteristics of heterogeneous frac-
tured porous media. To this end, the MSFV method for 
the discrete fracture modeling approach is employed with 
adaptive unstructured coarse grids, such that the coarse 
grid geometries are optimized based on local variations of 
permeability in both matrix and fracture networks. Given 
two independent partitions of the fine-scale cells into pri-
mal coarse cells for the matrix and fractures, adaptive dual 

coarse grids are constructed based on local changes in per-
meability in each domain (matrix and fracture networks). 
Permeability-adapted coarse grids notably modify basis 
functions for challenging problems which is here shown to 
improve the monotonicity behavior of the MSFV method.

The accuracy of the proposed method is assessed 
through several challenging test cases including highly 
heterogeneous permeability field in both fractures and 
matrix domain. Numerical results show that the proposed 
method for generating flexible and adaptive unstructured 
coarse grids significantly improves the accuracy of the 
MSFV method for multiphase flow simulation in highly 
heterogeneous fractured porous media.

The paper is structured as follows. First, the DFM 
fine-scale discrete system is explained in Sect. 2. Then, 
algebraic description of the MSFV method for DFM is 
described in Sect. 3, along with adaptive unstructured grid 
generation technique. Numerical results are presented in 
Sect. 4. Finally, the paper is concluded in Sect. 5.

2 � Discrete fracture modeling approach

The pressure equation for incompressible flow in fractured 
porous media, using Darcy's law, can be written as

where p , � , and q represent pressure, mobility, and source 
term, respectively. This equation is solved for matrix and 
fracture pressures, pm and pf  , using discrete fracture mod-
eling approach in which fractures are represented as low-
dimensional objects embedded at the interfaces of matrix 
cells (Fig. 1).

The control volume finite-difference method is applied 
with two-point flux approximation based on the cell-center 
pressures for evaluation of the face fluxes

(1)−∇ ∙ (� ∙ ∇p) = q,

2D matrix element

1D fracture element

Fig. 1   Matrix and fracture cells in discrete fracture model
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where pi and pj are the pressures in the neighboring cells 
and Tij is the face transmissibility, and is computed by the 
harmonic average of the half transmissibilities correspond-
ing to the adjacent cells

The half transmissibility of cell i is defined as [1]

Here, Ai is the face area, ki is the permeability assigned 
to the cell i  , Di is the distance from cell center to the face 
centroid, �i is unit normal vector of the face, and �i is the unit 
vector along the direction of the line joining the cell center 
to the face centroid.

Fracture cells are lower dimensional in the geometric 
grid, expanded by the aperture size in the computational 
domain. Therefore, the transmissibility between matrix and 
fracture cells can also be obtained by the general transmis-
sibility formula in Eq. (3).

Small control volumes at fracture intersections adversely 
impact numerical stability. As shown in Fig. 2, the well-
known star-delta transformation is used to eliminate inter-
mediate cells at fracture intersections [1]. Then, the trans-
missibility between fracture cells with n connections can be 
calculated as

The discretized form of the Eq. (1) for matrix and frac-
tures is finally obtained as

where super-indices m and f  are intended for the 
matrix and the fracture, respectively. The diagonal 
blocks indicate the matrix–matrix and fracture-fracture 

(2)uij = Tij
(
pi − pj

)
,

(3)Tij =
�i�j

�i + �j
.

(4)�i =
Aiki

Di

�i ∙ �i.

(5)Tij =
�i�j∑n

k=1
�k

.

(6)
[
Amm Amf

Afm Aff

][
pm

pf

]
=

[
qm

qf

]
,

transmissibilities and off-diagonal blocks indicate matrix-
fracture transmissibilities.

Solving the system of Eq. (6) for large-scale heterogeneous 
formations with complex fracture network is quite challeng-
ing. It is therefore of interest to develop more efficient solu-
tion strategies such as multiscale methods. In this paper, the 
multiscale finite volume method is applied with permeability-
adapted unstructured grids to provide an efficient and accurate 
approximation of the flow in highly heterogeneous fractured 
porous media.

3 � MSFV method for DFM with adaptive 
unstructured grids

The MSFV method aims to efficiently compute an approxi-
mate fine-scale solution while reducing the number of degrees 
of freedom. The method relies on a set of numerically com-
puted functions which are local solutions of the flow problem 
computed on a coarse grid. Superposition of the local solutions 
is used to construct a coarse-scale system, which is computa-
tionally inexpensive to solve. The approximate fine-scale solu-
tion is then reconstructed based on the coarse-scale solution. 
In this section, first algebraic multiscale finite volume formu-
lation extended for discrete fracture modeling is described. 
Then, efficient algorithms for generating adaptive unstructured 
coarse grids are presented.

3.1 � MSFV formulation for fractured media

The multiscale finite volume method to approximate the solu-
tion of Eq. (6) employs a prolongation operator � that maps 
the solution from coarse scale to fine scale. The approximate 
fine-scale solution pms is obtained from the coarse-scale solu-
tion pc as

where prolongation operator � is constructed from locally 
computed basis functions. Note that pms contains multi-
scale pressure approximations for the matrix and fractures 
at fine-scale,pms =

[
pm
ms

p
f
ms

]T  , and pc contains coarse pres-
sure solution for the matrix and fractures, pc =

[
pm
c
p
f
c

]T 

(7)p ≈ pms = �pc,

Fig. 2   Star-delta transformation 
for transmissibility calculation
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[16]. To compute pc , the following coarse-scale system is 
constructed and solved

where � is the restriction operator which maps the fine-scale 
system to the coarse scale, and can be obtained based on a 
finite volume scheme as integration over the coarse control 
volumes

The prolongation operator � is a matrix constructed by the 
basis function values, Φ, which are computed by solving local-
ized flow problems on a dual coarse grid. The dual coarse grid 
is constructed in each domain (matrix and fracture) based on 
the wirebasket ordering [22, 23]. For 2D problem, the dual 
coarse grid divides the fine-scale matrix cells into three cat-
egories (interior, edge, and vertex) and the fine-scale fracture 
cells into two categories (edge and vertex). Vertices are the 
coarse grid nodes, the edge cells are the boundaries of the dual 
cells, and internal cells are those that lie inside dual coarse 
cells. To compute basis functions, first, the reduced problems 
along dual coarse cell boundaries (edge cells) are solved sub-
ject to Dirichlet condition at the coarse nodes. Then, the solu-
tions of the reduced problems at the boundaries are used as 
Dirichlet condition for the interior cells of local problems.

The basis functions obtained from the above procedure 
are assembled in the columns of the prolongation operator 
� , with the column size of Nc and the row size of Nf  , where 
Nc =

(
Ncm + Ncf

)
 and Nf =

(
Nfm + Nff

)
 are the total number 

of coarse and fine cells (including both matrix and fractures), 
respectively [14]. The prolongation operator can be written as

where the sub-block �m which corresponds to the matrix 
fine cells defined as

and the prolongation operator for fracture fine cells can be 
written as

(8)
(�A�)pc
⏟⏞⏟⏞⏟

Ac

= �q
⏟⏟⏟

qc

,

(9)�(i, j) =

{
1, if fine cell j belongs to coarse cell i

0, otherwise
.

(10)� =

[
�
m

�
f

]
=

[
�
mm

�
mf

�
fm

�
ff

]
,

(11)�
m =

⎡⎢⎢⎣

⋮ ⋯ ⋮

Φmm
1

⋯ Φmm
Ncm

⋮ ⋯ ⋮

�������

⋮ ⋯ ⋮

Φ
mf

1
⋯ Φ

mf

Ncf

⋮ ⋯ ⋮

⎤⎥⎥⎦
,

(12)�
f =

⎡⎢⎢⎣

⋮ ⋯ ⋮

Φ
fm

1
⋯ Φ

fm

Ncm

⋮ ⋯ ⋮

�������

⋮ ⋯ ⋮

Φ
ff

1
⋯ Φ

ff

Ncf

⋮ ⋯ ⋮

⎤⎥⎥⎦
.

Here, Φmm and Φmf  represent matrix–matrix and matrix-
fracture coupling. Similarly, Φff  and Φfm represent frac-
ture–fracture and fracture–matrix coupling.

Note that the prolongation operator described in Eq. (10) 
considers the two-way coupling between matrix and frac-
tures that leads to more accurate solution. However, it can 
result in much denser prolongation operator and hence 
additional computational cost. In this paper, the effect of 
matrix coarse pressure in the fracture pressure interpola-
tion is eliminated ( �fm = 0 ), resulting in a sparser prolonga-
tion operator. Therefore, the fracture basis functions Φff  are 
computed subject to no-flow conditions at their connections 
with the matrix domain. Then, the multiscale pressure for 
the fractures at fine scale is obtained from the coarse-scale 
solution (pfc) via superposition of the computed fracture basis 
functions (Φff ) , that is

Since the present approach considers one-way coupling 
between matrix and fractures, the effect of matrix–fracture 
transmissibility (Amf

) is taken into account. Once fracture 
basis functions computed, the obtained values imposed 
as Dirichlet boundary conditions while solving Φmf  basis 
functions. To account for the matrix basis functions Φmm , 
Φfm = 0 is used as Dirichlet boundary conditions. This leads 
to the following multiscale superposition expression in the 
matrix domain:

Illustration of fracture and matrix basis functions is pre-
sented in the following subsection, after describing adaptive 
unstructured coarse grid generation algorithms.

(13)pf
ms

=

Ncf∑
i=1

Φ
ff

i
p
f

c,i
.

(14)pm
ms

=

Ncm∑
i=1

Φmm
i

pm
c,i
+

Ncf∑
i=1

Φ
mf

i
p
f

c,i
.

Partition 1

Partition 2 Partition 3

Partition 4

Fig. 3   An example graph that is partitioned into four subsets. High-
lighted vertex in partition 2 can move to partition 3 with the gain 
value of 1
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3.2 � Adaptive unstructured coarse grids for DFM

The MSFV method employs two sets of overlapping coarse grids. 
The first one is the primal coarse grid where conservative coarse-
scale system is constructed (restriction operator construction), and 
the second one is the dual coarse grid over which the basis func-
tions are computed (prolongation operator construction). Imple-
mentation of MSFV method on unstructured grids requires more 
sophisticated strategies to construct primal and dual coarse grids. 
Although a limited amount of literature extended the MSFV on 
unstructured grids [17, 24, 25], they however have restrictions on 
intelligent generation of coarse grids which allows error reduction 
and quality improvement. It is known that multiscale methods are 
sensitive to heterogeneity contrasts. Previous studies shown that 
an iterative procedure is required to reduce error for highly het-
erogeneous porous media [26, 27]. Moreover, the high contrast in 
the physical properties of fractures and their complex geometries 
add more computational challenges. This motivated to develop an 
efficient method to construct adaptive unstructured coarse grids 
inside matrix and fracture domains, such that the accuracy of 
MSFV method can be significantly improved for flow simulation 
in highly heterogeneous fractured porous media. The following 
paragraphs describe the proposed procedure for construction of 
primal and dual coarse grids in a fracture porous media.

The primal coarse grid represents a coarse partitioning of the 
fine-scale grid which is constructed for the matrix and fracture 
domains independently. In this work, a grid partitioning method 
based on a multilevel tabu search algorithm is used to construct 
unstructured primal coarse grid [28]. The algorithm employs the 
equivalent graph of the unstructured grid in which vertices and 
edges of the graph refer to grid elements and their connectivity, 
respectively. The aim is to divide the set of vertices of the graph 
into a given number of partitions, such that each partition contains 
the same number of vertices and also the number of edges with 
endpoints in different partitions (cutting edges) is minimized.

The multilevel graph partitioning framework is used to 
handle large-scale graphs. In this framework, the original 
graph is recursively coarsened into a smaller graph by clus-
tering vertices (coarsening phase). The next step is to par-
tition the coarsest graph (initial partitioning phase). This 
step is followed by uncoarsening back to the original graph 
successively (uncoarsening phase). At each step of uncoars-
ening, tabu search algorithm is employed to improve the 
partitioning. Tabu search is a local search strategy with a 
flexible memory which uses a tabu list to prevent cycling 
and getting stuck in local optimum.

Given an initial partitioning of the graph into k subsets {
S1, S2,… , Sk

}
 . At each iteration of the algorithm, the subset 

with the maximum vertex weight is selected. Then, the vertex 
with the maximum gain is chosen for migration to the preferred 
subset (the subset with the highest gain vertex). The gain g(v, n) 
of vertex v for migration to the neighboring subset Sn is defined 
as

where ED[v]n is the sum of common edge weights between 
vertex v and its neighboring vertices located in the subset 
Sn , and ID[v] is the sum of common edge weights between 
vertex v and its neighboring vertices in the same subset. To 
further explain the gain concept, a sample graph is illustrated 
in Fig. 3 which is partitioned into four subsets. The high-
lighted vertex in partition 2 has one internal neighbor and 
two external neighbors in partition 3. Therefore, the gain of 
moving this vertex to partition 3 is one. After moving each 
vertex, the gain of the vertex and its neighbors are updated. 
Also, information of the immigrated vertex is stored in the 
tabu list to avoid solution cycling. The algorithm contin-
ues until stopping criteria are met. The general scheme of 
the grid partitioning algorithm is presented in Alg. 1. More 
detailed explanations can be found in [29].

(15)g(v, n) = ED[v]n − ID[v],
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Fig. 4   Primal coarse grids 
for (a) matrix domain and (b) 
fracture networks

(a)                                                                 (b)

Fig. 5   Dual coarse grids defined 
on matrix (left) and fracture 
(right) domains

Interior Edge Node Edge Node

Figure 4 shows an example of primal coarse grids con-
structed by the proposed algorithm for the matrix and frac-
tures domains. The fine-scale grid contains 10180 matrix 
and 196 fracture cells and the coarse-scale grid contains 10 
matrix and 4 fracture primal coarse cells.

The dual coarse grid is constructed by connecting the 
coarse nodes which are defined corresponding to each of the 
primal coarse cells. By connecting the coarse nodes belong-
ing to adjacent primal coarse cells, dual edge cells are gener-
ated. Fine-scale cells that are located inside dual coarse cells 
are considered as interior cells. Given that in DFM approach, 
fractures are considered as low-dimensional objects within 
the matrix domain, dual coarse cells in fracture domain do 
not include interior cells. Hence, fracture fine-scale cells are 
classified into coarse node and edge cells (for 2D problem). 

Figure 5 depicts dual coarse grids in matrix and fracture 
domains corresponding to the partitioning of Fig. 4.

Previous studies have used grid connectivity data and 
geometrical information to construct dual coarse grids in 
fractured porous media, and therefore, there is no ability to 
optimize coarse grid geometry to reduce errors and improve 
multiscale solution results. In this work, dual coarse grids in 
fracture and matrix domains are constructed based on physical 
properties that significantly improve the accuracy of MSFV 
method. The proposed algorithm is described as follows.

The proposed algorithm to construct dual coarse grid 
employs the equivalent graph of fine-scale unstructured grid. 
Therefore, this algorithm is applicable for any grid-type ele-
ment as well as 3D problems. The first step in generation of 
dual coarse grid is to specify the coarse node inside each primal 
coarse cell. In the standard methods, the fine cell whose centroid 



4967Engineering with Computers (2022) 38:4961–4977	

1 3

Fig. 6   Comparison of matrix 
basis function for two matrix 
coarse node positions: (a) 
matrix coarse node coincides 
with the fracture element 
and (b) matrix coarse node is 
located away from the fracture 
element

(a)                                                                     (b)

First-layer neighbours

Second-layer neighbours

Third-layer neighbours

Coarse node

Fig. 7   Three layers of neighbors for a coarse node in an equivalent 
graph

10000
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1
0.1
0.01
0.001

Fig. 8   A fracture network with heterogeneous permeability field

is closest to the mean centroid of all cells in the primal coarse 
block is chosen as the coarse node. Previous research shows 
that the placement of coarse nodes in a low-permeability region 
causes non-physical oscillations. Therefore, the placement of 
coarse nodes in low-permeability region should be avoided, 
while standard methods have no control to move coarse node 
based on permeability field. On the other hand, since the frac-
ture–matrix transmissibilities (Afm

)  are not taken into account 
when constructing basis functions, if the matrix coarse node 
interface coincides with a fracture element or located close to it, 
the corresponding primal coarse cell is poorly influence by the 
matrix basis function. Figure 6 shows a comparison of matrix 
basis function for the case that matrix coarse node coincides 
with the fracture element (Fig. 6a) and the case that matrix 
coarse node is located away from the fracture element (Fig. 6b).

In the proposed algorithm, first, the mean centroid of all 
cells within the primal coarse block is calculated. Then, the 
fine cell closest to the mean centroid is chosen and its perme-
ability value is checked. Also, a specific set of its neighbors is 
chosen and their permeability values are checked, as well. If the 
selected cell or one of its neighbors is located in a low-permea-
bility region, it will be removed from the list of candidate cells. 
Then, the algorithm searches for the next fine cell that is closer 
to the mean centroid. This process continues until the closest 
cell to the mean centroid with acceptable permeability value 
is identified. Another criterion to be considered in fractured 
porous media is that fracture elements should not be placed at 
the matrix coarse node interface and its neighbors interface as 
well (due to one-way coupling between matrix and fractures). 
The set of neighbors is selected based on the number of neigh-
bors layers considered around the coarse node. The number of 
neighbor layers for each coarse node is chosen based on the 
required accuracy and also, physical and geometrical limita-
tions. The number of fine cells, permeability distribution, and 
the map of fractures inside each primal coarse block restrict the 
number of layers of neighbors. For example, for a primal coarse 

block with high density of fractures and high contrast in local 
permeability (the most challenging case), the number of neigh-
bors is limited to satisfy both criteria, although these limited 
neighboring cells also have a significant effect on improving 
the solution. A coarse node with its three layers of neighbors 
in an equivalent graph is illustrated in Fig. 7.

It should be noted that the location of coarse node in 
heterogeneous fracture media has a great impact on the 
accuracy of multiscale solution. To demonstrate the effect 
of coarse node location on the fracture basis function 
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distribution, a heterogeneous fracture network is illustrated 
in Fig. 8. The position of coarse nodes based on standard 
method (geometric center) corresponding to six primal 
coarse cells is shown in Fig. 9a. As can be seen, coarse 
node 3 and coarse node 4 are located in low-permeability 
region. The fracture basis function resulting from coarse 
node 3 and coarse node 4 is shown in Fig. 9c, e, respec-
tively. Note that fracture basis functions are restricted in 
low-permeability region. The position of coarse nodes 
3 and 4 based on criteria described above is depicted in 
Fig. 9b. It can be observed that they are no longer located 
in low-permeability region, and therefore, their resulting 
fracture basis functions (Fig. 9d, f) are better distributed. 
Note that the fracture aperture is magnified for clarity.

As the coarse nodes are identified, the next step is to 
specify the edge cells (dual coarse cell boundaries). Since 
reduced dimensional boundary conditions are imposed 
at dual cell boundaries (localization assumption [6]), the 
transmissibilities in direction normal to the boundaries (from 
edge to interior cells) are neglected, which is the source 
of error in the MSFV approximation. If there exist strong 

permeability contrasts along edge cells, the reduced problem 
boundary conditions lead to significant errors. To reduce 
the localization error in heterogeneous porous media, there 
should be no strong permeability contrast along edge cells. 
The presented algorithm identifies the edge cells based on 
local changes in permeability field.

The path of edge cells (dual cell boundaries) is con-
structed for each pair of neighboring primal coarse cells. 
To this end, first, for each vertex of the equivalent graph, 
the permeability value of the fine-scale cell corresponding 
to the vertex is defined. Then, a high threshold and a low 
threshold are considered for permeability and the vertices 
whose permeability values do not lie in threshold range are 
removed from the graph. To determine the path of edge cell 
between two neighboring coarse node, one of them is con-
sidered as the origin and the other as the target. Then, the 
distance between each two vertices i and j in the graph is 
calculated and assigned to the edges of the graph, T(i, j) . 
Also, the distance of each vertex i to the origin is stored in 
its label, D(i) , which initialize with infinity at first. All verti-
ces of the graph marked as unvisited. The iteration starts by 

Fig. 9   Primal coarse cells and 
their corresponding coarse 
nodes for fracture network con-
structed based on (a) standard 
method (geometric center) 
and (b) adaptation rules. The 
fracture basis function resulting 
from coarse node 3 and coarse 
node 4 using standard and 
adapted grids (c–f)

(a) standard coarse nodes (b) adapted coarse nodes

(c) basis function of coarse node 3 (d) basis function of coarse node 3

(e) basis function of coarse node 4 (f) basis function of coarse node 4
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choosing the origin as the current vertex and the distance to 
it is set to zero. For the current vertex, the distances to all of 
its unvisited neighbors are calculated. This is done by deter-
mining the sum of the distance between an unvisited neigh-
bor j and the value of the current vertex (D(i) + T(i, j)) and 
comparing to the current assigned value, D(j) . If the newly 
calculated distance is less than the unvisited neighbor's cur-
rent value, the neighbor is relabeled with the smaller one 
( D(j)=D(i) + T(i, j) ). After updating the distances to each 

neighboring vertex, the current vertex is marked as visited 
and a neighbor with minimal distance (lowest label value) 
is selected as the current vertex. Also, the previous current 
vertex is considered as the current vertex's parents. Vertices 
which marked as visited are labeled with edge cells. The 
process continues until the target vertex is marked as visited. 
The path of edge cells is determined by following the ver-
tex's parents from the target vertex up to the origin vertex. 
The process is summarized in Alg. 2.
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For the primal coarse blocks coincide with the domain 
boundaries, the fine cell closest to the mean centroid of 
the boundary cells is considered as the target. Then, the 
described algorithm is implemented to construct addi-
tional edge cell paths that touch the boundary.

The proposed algorithm considers the conditions, such 
that the crossing of edge cell paths is avoided completely, 
and overlapping of edge cell paths is avoided as much as 
possible. After determining the path of edge cells between 
two neighboring coarse cells, the fine cells as second-layer 
and third-layer neighbors of edge cells are removed from the 
list of candidate fine cells to determine other edge cell paths. 
In this way, edge cell paths will not cross with each other. 
In unstructured grids, given that the number of neighboring 
primal coarse cells is greater than the number of coarse node 
interfaces, overlapping the paths around the coarse node is 
inevitable. Therefore, the fine cells around the coarse node 
are always considered as the candidate cells to determine 
edge cell paths.

Another important issue is that some of edge cells inter-
sected by fracture elements are not influenced by any matrix 
coarse node basis functions. Especially for the case that all 
the edge cell paths of a dual coarse block are not influenced 
by matrix coarse nodes that results in basis functions have 
zero values in this area. It is clear that it is not possible to 
prevent intersection of fracture elements with the path of 
edge cells. However, in some cases which the path of edge 
cells intersected by fractures borders, edge cell paths can be 
moved away from fracture elements. This is applied in the 
presented algorithm by removing fine cells coincide with 
fracture borders from the list of candidate cells to determine 
edge cell paths. Figure 10 illustrates the sum of three matrix 
coarse node basis function for the case that all the edge cell 
paths of corresponding dual coarse block intersected by 
fractures that lead to zero-value basis functions in this area 
(Fig. 10a). The resulting basis functions after moving the 
path of edge cells are shown in Fig. 10b.

Finally, the interior cells are identified. All cells that do 
not belong to the edge and node (and face for 3D case) cat-
egories are obviously interior cells. However, to compute 
basis functions locally, the interior cells should be ordered 

according to the dual coarse blocks. A flood-fill algorithm 
is implemented to classify the interior cells based on dual 
coarse blocks. For each dual coarse block, the mean centroid 
of its coarse nodes is computed. Then, a fine cell that is clos-
est to this point is identified and labeled as an interior cell of 
the dual block. All neighbors of this interior cell, which is 
not already categorized as edge cell, are labeled as the inte-
rior cells of the dual block. The neighbors to these interior 
cells are similarly checked until all the fine cells that belong 
to the dual coarse block are identified.

4 � Numerical results

The aim of this section is to investigate the performance of 
the extended MSFV method with the proposed algorithms 
for challenging cases. Three test cases are considered: (1) 
a 2D reservoir with homogeneous permeability field for 
matrix and heterogeneous permeability field for fracture 
network, (2) a 2D reservoir with heterogeneous permeabil-
ity field for matrix and homogeneous permeability field for 
fracture network, and (3) a 2D reservoir with heterogeneous 
permeability field for matrix and heterogeneous permeability 
field for fracture network. The reason for choosing these 
cases is that the MSFV method using standard coarse grids 
fails to predict their fine-scale solution accurately and effi-
ciency of optimized unstructured coarse grids for these chal-
lenging problems is investigated. The MSFV solutions are 
compared with the fine-scale reference solutions computed 
by a fine-scale solver based on the preconditioned conjugate-
gradient method.

4.1 � Homogeneous matrix and heterogeneous 
fracture network

A 2D reservoir model in an 18 × 9 m2 domain is consid-
ered. The fracture network of this test case is depicted 
in Fig. 11. The matrix domain is homogeneous and is 
assigned km = 1 , while the fracture network is heteroge-
neous (Fig. 12). Dirichlet boundary conditions are applied 
on the left and right boundaries with normalized pressures 

Fig. 10   Comparison of the sum 
of three matrix coarse node 
basis functions for the case that 
(a) edge cell paths intersected 
by fracture elements, (b) edge 
cell paths moved away from 
fracture elements

(a)                                                               (b)
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of Pl = 1 and Pr = 0 , respectively, and no-flow boundary 
conditions are specified on the top and bottom bounda-
ries. The fine-scale grid contains 10,244 matrix and 352 
fracture cells and the coarse-scale grid contains 12 matrix 

and 7 fracture primal coarse cells. Figures 13 and 14 pre-
sent the primal and dual coarse grids in matrix and frac-
ture domains, respectively, that are generated based on 
standard method in which only geometrical information 
is considered.

The pressure contour plots obtained by the fine-scale 
and MSFV method in both of the matrix and the fracture 
domains are depicted in Fig. 15a, b, respectively. Here, 
the MSFV approximation based on standard coarse grids 
contains non-physical peaks. As can be seen in Fig. 14b, 
coarse node 1 and coarse node 5 in the fracture network 
are located in a low-permeability region. Also, some of the 
matrix coarse nodes are located close to the fracture ele-
ments (Fig. 13b). As a result, fracture and matrix basis func-
tions are not computed properly. The discrete L2-norm of the 
pressure error is ep = 0.46.

An adapted dual coarse grid in the matrix domain based 
on the proposed algorithm is illustrated in Fig. 16. As can 

Fig. 11   Illustration of the frac-
ture network in a homogeneous 
matrix rock

10000
1000
100
10
1
0.1
0.01
0.001

Fig. 12   Fracture permeability

(a) Matrix primal coarse grid

(b) Matrix dual coarse grid

Fig. 13   Primal and dual coarse grids for the matrix domain generated 
by the standard method (only geometrical information is considered)

(a) Fracture primal coarse grid

(b) Fracture dual coarse grid
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Fig. 14   Primal and dual coarse grids for the fracture network gener-
ated by standard method (only geometrical information is considered)
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be seen, matrix coarse nodes are located away from the 
fracture elements. Figure 17 shows the adapted dual coarse 
grid in the fracture domain. Dual coarse nodes 1 and 5 are 
moved to a higher permeability region. Figure 15c presents 
the MSFV solution using adapted coarse grids. The pres-
sure error is ep = 5.65 × 10−2 . It is clear that the MSFV 

method using adapted coarse grids in the matrix and frac-
ture domain accurately captures the fine-scale reference 
solution. Figure 18 presents a comparison of the basis 
function of fracture critical coarse node 5 in the matrix 
domain for the case that the fracture coarse node position 
is specified based on the standard coarse grid (Fig. 18a) 
and adapted coarse grid (Fig. 18b). As can be seen, the 

(a) Fine-scale solution in the matrix and fracture domain

(b) MSFV solution with standard grids ( = 0.46)

(c) MSFV solution using adapted coarse grids ( = 5.65 × 10 )
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Fig. 15   Comparison of pressure contour plots obtained by the (a) fine-scale solution and (b) MSFV with standard grids and (c) MSFV with 
adapted coarse grids

Fig. 16   Comparison of the standard and adapted dual grids for the 
matrix domain (standard  and adapted )

Fig. 17   Adapted dual coarse grid for fracture network
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placement of fracture coarse node in low-permeability 
region results in restricted basis functions in the matrix 
domain.

4.2 � Heterogeneous matrix and homogeneous 
fracture network

As the second test case, a channelized permeability field 
with high contrast is considered in the matrix domain. 
Figure 19 depicts the matrix permeability field that is 
extracted from the SPE10 bottom layer [30]. The frac-
ture domain is homogeneous ( kf = 10000 ). The fine-scale 

grid and boundary conditions are the same as in case 4.1. 
The coarse-scale grid contains 12 matrix and 7 fracture 
primal coarse cells. Figures 20, 21,  and 23a present the 
standard primal and dual coarse grids in the matrix and 

(a) (b)
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Fig. 18   The basis function of fracture coarse node 5 in the matrix domain, Φmf

5

 , calculated based on (a) standard coarse grid and (b) adapted 
coarse grid
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Fig. 19   Natural logarithm of matrix permeability field sampled from 
bottom layer of the Tarbet formation in the SPE10 dataset

Fig. 20   Primal coarse grid for the matrix domain generated using 
geometrical information
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Fig. 21   Primal and dual coarse grids for the fracture network gener-
ated using geometrical data
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Fig. 22   Fine-scale reference solution
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fracture domains, respectively, that are generated based 
on geometrical data.

As can be seen in Fig. 23a, some of matrix coarse nodes 
lie in low-permeability regions. Also, strong permeability 
contrasts exist along some of matrix edge cell paths (dual 
coarse cell boundaries). Furthermore, some of the matrix 
coarse nodes are located close to the fracture elements. The 
pressure contour plots obtained by the fine-scale and MSFV 
method are illustrated in Figs. 22 and 23b, respectively. 
Similar to the previous test case, the MSFV approximation 
based on standard coarse grids fails to correctly capture the 
fine-scale reference solution ( ep = 0.52).

Figure 23c shows the dual coarse grid in the matrix 
domain adapted based on local changes in fine-scale perme-
ability field. As can be seen in the figure, the matrix coarse 
nodes are no longer located in low-permeability regions. 
They are also located away from the fracture elements. Also, 
high permeability contrasts along edge cells are prevented 
as much as possible. The MSFV method using adapted 
coarse grids predicts the pressure solution with relative error 
ep = 7.31 × 10−2 . The pressure contour plot obtained by the 
MSFV method is shown in Fig. 23d. The result shows that 
the pressure solution obtained by the MSFV method with 
adaptive coarse grids is in good agreement with those of 
fine-scale reference solution.

4.3 � Heterogeneous matrix and heterogeneous 
fracture network

Finally, the performance of the presented algorithms is 
investigated for the most challenging test case, in which 
both matrix and fracture domains are heterogeneous. The 
matrix permeability field is the same as case 4.2, and the 
permeability of fracture network is considered as in case 
4.1. The fine-scale grid and boundary conditions are same 
to the two previous cases. Also, the standard primal and dual 
coarse grids in the matrix and fracture domains are the same 
as Figs. 20, 21 and 23a. The pressure solution obtained by 
the fine-scale reference method and MSFV method based 
on standard coarse grids are depicted in Figs. 24 and 25a, 
respectively. It is clear that the MSFV solution based on 
standard coarse grids fails to capture the fine-scale refer-
ence solution for the reasons mentioned earlier: placement of 

Fig. 23   Comparison of the matrix dual coarse grid and the resulting pressure field for the standard and adaptive methods

Fig. 24   Fine-scale reference solution
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matrix coarse nodes in low-permeability regions or close to 
fracture elements, strong permeability contrast along matrix 
edge cell paths, and placement of fracture coarse nodes in 
low-permeability regions. All these cases result in poor cal-
culation of basis functions.

The fine-scale reference solution can be recovered by 
adapting the coarse geometry based on local changes in 
permeability field in both matrix and fracture domains. The 
adapted dual coarse grid in the matrix domain is shown in 
Fig. 23c, and Fig. 26 depicts the adapted dual coarse grid in 
the fracture domain. The MSFV method using adapted coarse 
grids in the matrix and fracture domains predicts the pressure 
solution with relative error ep = 6.29 × 10−2 (Fig. 25b) which 

is in good agreement with the fine-scale reference solution. 
Figure 27 presents a comparison of the matrix basis func-
tion for the case that the coarse node position is specified 
based on the standard coarse grid (Fig. 27a) and adapted 
coarse grid (Fig. 27b). As can be seen, in the case where 
the matrix basis function is calculated based on the standard 
coarse grid, some of the edge cell paths are not influenced by 
the corresponding coarse node, while they are influenced by 
matrix coarse nodes in the adapted coarse grid. Furthermore, 
the basis function of the fracture coarse node 4 in the matrix 
domain for the case that the fracture coarse node position 
is specified based on the standard coarse grid and adapted 
coarse grid is shown in Figs. 28a, b, respectively. In the case 
that the fracture coarse node is located in a low-permeability 
region (standard coarse grid), the matrix domain is not influ-
enced properly by the fracture basis function.

5 � Conclusion

In this paper, the dual-coarse-grid-based multiscale finite 
volume method for discrete fracture modeling on unstruc-
tured grids was developed. Efficient algorithms for gener-
ating adaptive multiscale unstructured grids were devised 
for accurate flow simulation through highly heterogene-
ous fractured porous media. Flexible unstructured coarse 

Fig. 25   MSFV pressure solution with (a) standard grids and (b) adapted coarse grids

Fig. 26   Adapted dual coarse grid in fracture domain
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Fig. 27   Basis function of a matrix coarse node calculated based on (a) standard coarse grid and (b) adapted coarse grid
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grids are constructed based on permeability features in 
both matrix and fracture networks. Permeability-adapted 
coarse grids can significantly modify basis functions for 
challenging problems, and as a result, the monotonicity 
behavior of the MSFV method is improved. The accuracy 
of the proposed algorithms for fractured porous media 
was assessed for several challenging test cases with highly 
heterogeneous permeability field in both fractures and 
matrix domain. Numerical results demonstrate that opti-
mizing unstructured coarse grids based on characteristics 
of heterogeneous fractured porous media considerably 
reduced the MSFV errors induced by strong permeability 
contrasts in matrix and fracture networks. The proposed 
algorithms for generation of primal coarse grid and adap-
tive dual coarse grid are extensible to three-dimensional 
grids. The multilevel tabu search algorithm which is used 
to generate primal coarse grid employs the equivalent 
graph of unstructured grids. Adaptive dual coarse grid is 
generated based on Dijkstra’s routing algorithm which also 
employs the equivalent graph of fine-scale grid. Therefore, 
these algorithms are not affected by grid-type elements 
and grid dimensions. A more detailed discussion on the 
three-dimensional realistic models will be addressed in 
future research. Finally, it is concluded that the extended 
MSFV method with adapted unstructured coarse grids is 
an efficient and accurate approach for flow simulation in 
heterogeneous fractured porous media.
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