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Abstract
Accurate and credible displacement prediction is essential to dam safety monitoring. However, due to the inherent uncer-
tainties involved in dam systems, errors of conventional deterministic point predictions are inevitable and sometimes large. 
In this paper, prediction intervals (PIs) are used instead of deterministic values to quantify the associated uncertainties and 
improve the reliability of dam displacement prediction. A hybrid modeling approach is proposed to synthetically evalu-
ate the aleatoric and epistemic uncertainties through PI construction, which integrates the non-parametric bootstrap, least 
squares support vector machine (LSSVM), and artificial neural network (ANN) algorithms. Specifically, the PIs of dam 
displacement are constructed in two stages. In the first stage, multiple bootstrap-based LSSVMs are utilized to estimate the 
true regression means of future displacements and the variance of model uncertainty. In the second stage, a modified ANN 
(MANN) is developed and applied to estimate the variance of data noise. The final PIs are calculated by combining the true 
regression means and the variances of model uncertainty and data noise. The performance of the bootstrap-LSSVM–MANN 
model is verified using monitoring data from a real concrete dam. The results show that the proposed method can generate 
computationally efficient high-quality PIs and can effectively deal with multiple uncertainties in data-driven modeling and 
prediction. The novel approach has great potential to support the decision-making activities in an environment characterized 
by uncertainties and risks.

Keywords Dam displacement prediction · Aleatoric and epistemic uncertainties · Prediction intervals · Non-parametric 
bootstrap · Least squares support vector machine · Modified artificial neural network

1 Introduction

At present, most of the dams in the world higher than 100 m, 
both already built or under construction, are made of con-
crete. Such concrete dams play a vital role in the socio-eco-
nomic development of any country by providing and facili-
tating flood control, power generation, navigation, etc. They 
not only have to cope with various dynamic and static cyclic 

loads and sudden disasters (e.g., floods and earthquakes), but 
are also affected by the ever-changing environmental loads 
(e.g., water level and air temperature) during their service 
life [1]. The local and overall structural performance of a 
dam gradually declines over its lifetime, which leads to an 
increase in the risk of failure. Water conservation projects 
using concrete dams as the main structure are mostly large-
scale reservoirs, which will cause huge losses to the national 
economy and people’s lives and property in case of dam 
failure. Fortunately, catastrophic failures often do not hap-
pen suddenly but rather gradually [2]; thus it is crucial to use 
reliable data-driven safety monitoring algorithms to detect 
their anomalous behavior well in advance [3]. There may be 
many specialized sensors placed inside and around a dam 
to monitor its structural responses (e.g., displacements and 
seepages) and environmental quantities. A large amount of 
recorded monitoring data makes it possible to model and 
predict dam behavior. Among all the responses, displace-
ments can conveniently represent the joint effect of various 
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factors on dam structural performance, and thus their evolu-
tion is an important basis for assessing the safety status of 
a dam [4, 5]. It is thus essential to develop an effective pre-
diction model for dam displacement based on in-situ moni-
toring data to estimate the trends and magnitudes of future 
behaviors, thereby identifying the potential safety hazards 
in time.

1.1  Related work on dam displacement modeling 
and prediction

In recent years, many researchers have carried out extensive 
studies on dam behavior modeling and established numerous 
data-driven displacement prediction models. These models 
can roughly be divided into two categories, namely numeri-
cal and mathematical models [6]. The former category 
mostly includes deterministic and mixed models based on 
the finite element method (FEM) or other numerical simu-
lation techniques. Deterministic models utilize the FEM to 
predict and analyze the dam responses under a given load 
combination using physics-based models of the dam and its 
foundation. This traditional approach is relatively easy to 
interpret and is suitable for analyzing early filling periods, 
when the amount of monitoring data is small. However, such 
models have shortcomings, such as cumbersome geomet-
ric modeling and inefficient iterative calibration [7]. In the 
mixed models, only the displacement component caused by 
hydrostatic pressure is obtained by FEM, and the remain-
ing components are calculated from statistical models. It 
has been proven that the prediction accuracy of the mixed 
models is higher than that of a single deterministic model 
and their calculation procedures are more convenient [8].

The long-term accumulation of monitoring data dur-
ing the normal operation period promotes the application 
of data-driven mathematical models [9]. Such models are 
regression formulas based on the causal relationship between 
the influencing factors (e.g., water level, temperature, and 
time effect) and dam displacements, which can be classi-
fied into two types, namely linear (with explicit expressions) 
and nonlinear (without explicit expressions) models [10]. 
Linear models are so-called statistical models and mainly 
include the hydrostatic-seasonal-time (HST) models [11], 
hydrostatic-temperature–time (HTT) models [12], and their 
various variants [13, 14]. The unknown model coefficients 
can be found by multiple linear regression [12], stepwise 
regression [15], or principle component regression [16]. The 
advantages of linear models are simplicity of formulation, 
efficiency of execution, and ease of determining the contri-
bution of each factor to the dam behavior [17]. Nevertheless, 
linear hypothesis-based models are not well-suited to char-
acterize the complex nonlinear interactions between inputs 
and output and have poor robustness to noise. Recently, 
benefitting from their powerful data mining capabilities, the 

machine learning-based nonlinear models have been widely 
used in dam displacement modeling and prediction, includ-
ing artificial neural networks (ANNs) [16–18], support vec-
tor machines (SVMs) [19–21], extreme learning machines 
(ELMs) [22–24], and random forest regression (RFR) [15, 
25]. Among them, the SVM-based models have attracted 
increasing attention owing to their complete theory, global 
optimum finding performance, and good generalization abil-
ity. For example, Su et al. [26] combined the wavelet-SVM 
algorithm with phase space reconstruction and meta-heuris-
tic optimization to establish a high-precision dam displace-
ment prediction model. Ren et al. [11] introduced quantita-
tive evaluation and hysteresis correction into the SVM-based 
dam behavior model, which improved its robustness and 
accuracy. Cheng and Zheng [19] used SVM to construct a 
dam monitoring model based on latent variables, and it was 
successfully applied to the displacement and seepage analy-
sis of a concrete dam. Su et al. [20] built the time-varying 
identification model for dam behavior after structural rein-
forcement based on SVM and Bayesian approach. They also 
proposed the performance improvement method of SVM-
based model monitoring dam safety [21]. Kang et al. [27] 
compared SVM and its variation, the least squares SVM 
(LSSVM), for separating the thermal effects from long-term 
measured air temperature and the results showed that both 
algorithms performed well in simulating dam behavior. The 
LSSVM algorithms have also been successfully applied in 
other fields, such as streamflow forecasting [28] and geo-
logical surveying [29]. These applications demonstrated that 
LSSVM is better fit to solve nonlinear regression problems 
with high dimensions and small sample sizes. Compared 
to the standard SVM, the improved LSSVM has a faster 
training speed without a significant loss in estimation accu-
racy [30] and thus it is adopted in this study. Last but not 
least, more and more excellent mathematical models such as 
ensemble learning and deep learning algorithms are being 
employed to monitor dam behavior. Due to limited space, 
the interested readers can refer to literature [9, 11] for com-
prehensive reviews of the advanced algorithms adopted for 
dam displacement modeling.

1.2  Problem statement

From the above literature survey, it can be concluded that 
most studies on dam displacement modeling focused on 
deterministic point predictions without considering the 
random variability of displacements or the inherent uncer-
tainties involved in dam systems. In reality, however, there 
are different types of uncertainties in both the dam system 
itself and the modeling process, which challenge seriously 
the accurate estimation of future displacements [24]. Fur-
thermore, while obtaining point predictions, dam operators 
also want to know the reliability and credibility of prediction 
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results to make better-informed decisions, especially in risky 
situations [31, 32]. Therefore, the evaluation and quantifi-
cation of uncertainties in dam displacement prediction are 
urgent research problems.

In this study, the aleatoric and epistemic uncertainties 
associated with dam displacement predictions are consid-
ered. The aleatoric uncertainty (also referred to as data 
noise uncertainty) is present in noisy monitoring datasets. 
It originates from the following two main sources: (1) dam 
displacement is a dynamic evolution process influenced by 
environmental conditions and mechanical characteristics of 
structural materials, which is inherently stochastic and vari-
able. Also, the internal and external loads acting on the dam 
are time-varying, which further aggravates the uncertainty 
of modeling the dam and its foundation. (2) The imperfect 
monitoring instruments or techniques produce measure-
ment errors, while the erroneous instrument calibration and 
recording procedures bring in systematic errors. In short, the 
random noise in the monitoring data is unavoidable. As for 
the epistemic uncertainty (also referred to as model uncer-
tainty), it results from imperfect mathematical representa-
tions of nonlinear behavior due to the limited knowledge 
and simplified model conceptualization. This uncertainty 
mainly appears in two forms: (1) only the known or major 
influencing factors are included in model inputs, while the 
complex or less important factors are ignored, which greatly 
affects the model architecture. For example, some key fac-
tors, such as earthquakes and cracks, are often not added to 
the water level, temperature, and time effect as model inputs. 
(2) Both numerical and mathematical models are abstrac-
tions and simplifications of complex systems, i.e., they are 
based on various assumptions, which inevitably introduce 
model uncertainty. Moreover, any inconsistency of model 
parameters in each model run will intensify this uncer-
tainty. Therefore, model uncertainty caused by its architec-
ture and parameters accounts for the majority of epistemic 
uncertainty.

Because of these uncertainties, it is inevitable that errors, 
sometimes relatively large, will plague point predictions. 
In this work, instead of the traditional point prediction the 
interval prediction is used to quantify comprehensively the 
above two types of uncertainties. A prediction interval (PI) 
comprises an upper limit and a lower limit rather than a 
single value (usually expectation or median). PIs are more 
informative for dam operators as they allow preparing in 
advance for the worst and the best possible conditions. The 
future targets are expected to fall within the constructed 
PIs at a predefined PI nominal confidence level (PINC) 
(1 − �) × 100% , where � is the significance level. PIs have 
been successfully applied in various fields, such as evapora-
tion estimation [33], solar power generation [34], and pre-
cipitation and temperature modeling [35]. To the best of our 
knowledge, however, there are few reports on uncertainty 

quantification for dam displacement prediction using PIs, 
while in the field of dam safety monitoring there are cur-
rently no studies that consider both aleatoric and epistemic 
uncertainties.

1.3  Research contributions

In this paper, to quantify the aleatoric and epistemic uncer-
tainties and improve the reliability of displacement predic-
tions, a hybrid approach combining the non-parametric boot-
strap, LSSVM, and ANN algorithms is proposed to calculate 
the optimal PIs and regression means of future displace-
ments. The constructed PIs consider the uncertainties in both 
the data (i.e., aleatoric uncertainty) and the regression model 
(i.e., epistemic uncertainty), while being computationally 
efficient and of high quality. In the proposed approach, 
non-parametric bootstrap is used as a general resampling 
statistical method [36]. Unlike the parametric bootstrap, 
it does not need to postulate a sample distribution and the 
unknown distribution moments (e.g., mean and variance) 
can be inferred through random sampling with replacement. 
Bootstrap is frequently used for PI construction owing to 
its simplicity and flexibility [24, 33–35]. The PIs of dam 
displacement are constructed in three steps as follows: (1) 
a specified number of pseudo-datasets are generated based 
on the measured monitoring datasets through pairs bootstrap 
(PB) sampling. (2) The estimations of model uncertainty and 
true regression mean are obtained using multiple LSSVM 
models trained on the pseudo-datasets. (3) A modified ANN 
(MANN) algorithm is adopted for estimation of data noise 
uncertainty using the reconstructed residual dataset. In this 
way, the aleatoric and epistemic uncertainties are quantita-
tively evaluated in the form of PIs by combining the esti-
mations of both data noise and LSSVM-based predictive 
model. The performance of the proposed hybrid modeling 
approach is verified by using monitoring data collected from 
a real-world dam project. The obtained results suggest that 
the bootstrap-LSSVM–MANN (B-LSSVM–MANN) model 
performs well in quantifying the joint uncertainties associ-
ated with dam displacement modeling.

The main contributions of this paper can be summarized 
as follows:

1. The aleatoric and epistemic uncertainties involved in 
dam systems and monitoring models are quantified by 
PIs.

2. A hybrid approach for dam displacement interval predic-
tion is proposed to generate high-quality PIs and accu-
rate regression means of future displacements.

3. A real-life dam example is studied to verify the effective-
ness of the proposed modeling approach through com-
prehensive analyses and simulations.
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This paper is structured as follows: the fundamental theo-
ries of PI formulation and assessment are given in Sect. 2. Sec-
tion 3 describes the mathematical principles of the bootstrap, 
LSSVM, and MANN algorithms and the developed model for 
dam displacement interval prediction. In Sect. 4, the feasibil-
ity and performance of the proposed model are analyzed and 
discussed by using long-term monitoring data from a concrete 
gravity dam. Finally, the conclusions and future research direc-
tions are given in Sect. 5.

2  PI formulation and assessment

2.1  PI formulation

Given a set of prototype observation data, D =
{
(�i, ti)

}N

i=1
 , 

where xi is the vector or set of factors affecting the dam behav-
ior, and ti is the prediction target, namely the dam displace-
ment observation value at the i-th moment in time. If there 
is a nonlinear mapping relationship, y(x), between the output 
target, ti, and the input factor vector, xi, then target ti can be 
modeled as follows:

where y(�i) is the true regression value, and �(�i) is the ran-
dom noise, which is mainly derived from the aleatoric uncer-
tainty and assumed to obey the standard normal distribution 
with a zero mean and variance �2

�
(�i).

In practice, the output of a trained data-driven prediction 
model, ŷ(�i) , can be regarded as an estimate of the true regres-
sion value, y(�i) . Hence, the prediction error can be expressed 
as follows:

where ti − ŷ(�i) is the total prediction error, and y(�i) − ŷ(�i) 
is the error of model estimate with respect to the true regres-
sion, which primarily results from the epistemic uncertainty.

Suppose that the estimation error, y(�i) − ŷ(�i) , and the data 
noise, �(�i) , are statistically independent, the variance of the 
total prediction error, �2

t
(�i) , can be calculated as follows [37]:

where 𝜎2
ŷ
(�i) and �2

�
(�i) are the variances of model uncer-

tainty and of data noise, respectively.
When the significance level is set to � , PIs with the corre-

sponding PINC of (1 − �) × 100% (usually 95%) for the output 
target, ti, can be formulated as follows:

(1)ti = y(�i) + �(�i),

(2)ti − ŷ(�i) =
[
y(�i) − ŷ(�i)

]
+ 𝜀(�i),

(3)𝜎2
t
(�i) = 𝜎2

ŷ
(�i) + 𝜎2

𝜀
(�i),

(4)I�
ti
(�i) =

[
L�
ti
(�i),U

�
ti
(�i)

]
,

where U�
ti
(�i) and L�

ti
(�i) are the upper and lower limits of the 

constructed PIs, respectively. The upper and lower limits are 
obtained by the following formulas:

where z1−�∕2 is the 1 − �∕2 percentile of the standard nor-
mal distribution, which depends on the prescribed PINC 
(1 − �) × 100% . The schematic diagram of PI construction 
is shown in Fig. 1.

It can be seen from Eqs. (5) and (6) that the variance of the 
total prediction error, �2

t
 , is the key to PI construction. Accord-

ing to Eq. (3), we first have to calculate the variances of model 
uncertainty and data noise, 𝜎2

ŷ
 and �2

�
 , so as to obtain �2

t
 . In 

Sect. 3, 𝜎2
ŷ
 and �2

�
 are computed by bootstrap-based LSSVM 

and MANN algorithms, respectively.

2.2  PI quality assessment measures

In order to assess the overall quality of the constructed PIs, 
two evaluation indices are introduced for their reliability and 
sharpness. The reliability and sharpness are measured by PI 
coverage probability (PICP) and mean PI width (MPIW) [24, 
37], respectively, which are defined as follows:

(5)L𝛼
ti
(�i) = ŷ(�i) − z1−𝛼∕2

√
𝜎2
ti
(�i),

(6)U𝛼
ti
(�i) = ŷ(�i) + z1−𝛼∕2

√
𝜎2
ti
(�i),

(7)PICP =
1

Nv

Nv�
i=1

ci, ci =

⎧⎪⎨⎪⎩

1, ti ∈
�
L�
ti
(�i),U

�
ti
(�i)

�

0, ti ∉
�
L�
ti
(�i),U

�
ti
(�i)

� ,

(8)MPIW =
1

Nv

Nv∑
i=1

[
U�

ti
(�i) − L�

ti
(�i)

]
,

xi

y PI

y(xi) - true value

- model estimate

y(x)

- upper limit
- lower limit

ˆ( )iy x

( )iLα x
( )iU α x

Fig. 1  Schematic diagram of PI construction
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where Nv is the number of validation samples. Variable ci is 
Boolean: if the target value falls within the PIs ci = 1 ; oth-
erwise, ci = 0 . Variables L�

ti
(�i) and U�

ti
(�i) used in Eq. (8) 

were defined previously in Eq. (4).
Generally speaking, a larger coverage probability 

(i.e., PICP) and a smaller interval width (i.e., MPIW) are 
expected, and PICP should be quite close or greater than 
PINC related to the PIs. In brief, high-quality PIs cor-
respond to relatively large PICP values and small MPIW 
values. However, large PICP values can easily be achieved 
by widening PIs. With the conflicting nature of the two 
goals, a synthetic coverage width-based criterion (CWC) 
[33, 34, 37] is applied herein, which is expected to be 
smaller for better PIs:

where �(PICP) is a control factor, and � is a penalty param-
eter. When PICP is greater or equal to PINC (1 − �) × 100% , 
�(PICP) eliminates the exponential term and thus the quality 
of PIs is only measured by MPIW. Conversely, if PICP is 
less than PINC (1 − �) × 100% , then it needs to be penalized. 
Parameter � is set to a relatively large value, e. g., � = 50 is 
used in this study [24, 37].

3  Methodology

The aim of this study is to develop a hybrid framework 
based on the bootstrap algorithm for constructing the PIs 
of dam displacements. The variances of model uncertainty 
and data noise are estimated by the LSSVM and MANN 
algorithms, respectively. The principles of these algo-
rithms are explained in this section.

(9)CWC = MPIW
[
1 + 𝛾(PICP)e−𝜂(PICP−PINC)

]
, 𝛾(PICP) =

{
0, PICP ≥ PINC

1, PICP < PINC
,

3.1  Non‑parametric PB method

Dam displacement prediction is a regression analysis prob-
lem, i.e., the input factor vector, xi, and the output target, 
ti, always appear in pairs. Among the non-parametric boot-
strap methods, PB, proposed by Freedman [38], is used in 
the present study because it works well for resampling the 
predictor and response variables together from the original 
dataset. The prototype observation dataset, D =

{
(�i, ti)

}N

i=1
 , 

whose overall distribution, F, is unknown, contains N data 
pairs, (�i, ti) . The following scheme is used to estimate the 
unknown parameters (e.g., mean and variance):

Step 1: Resampling. The paired pseudo-samples (inputs 
and output) with the sample size N are generated N times 

with equal-probability (i.e., sampling probability of 1/N) 
by random sampling of the original dataset D with replace-
ment. This is repeated B times and B pseudo-datasets, 
D∗ =

{
D∗

b

}B

b=1
 , are obtained, as shown in Fig. 2.

Step 2: Parameter estimation. Every time a pseudo-data-
set D∗

b
 is generated, F∗

b
 can be calculated using statistical 

expressions [39]. A dataset consisting of F∗
b
 is then con-

structed to simulate the overall distribution F. In this way, 
the unknown parameters, including mean and variance, can 
be estimated based on the simulated distribution, F̂ . A more 
detailed scheme and discussion can be found in literature 
[38].

3.2  Least squares support vector machine

Suppose 
{
(�i, yi)

}N

i=1
 denotes a given dataset, where �i ∈ �n 

represents the input vector, and yi ∈ � is the corresponding 
output. The basic idea of LSSVM is to map the data samples 
from the input space, �n , to a high-dimensional feature space, 

Fig. 2  PB sampling scheme
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� , by a nonlinear function, �(⋅) , which can be considered as a 
convex optimization problem [27, 40]. The nonlinear estima-
tion function is transformed into a linear estimation function 
in � by the optimal decision function:

where � is the weight vector, �(⋅) denotes the nonlinear 
mapping function, and b is the bias term.

The slack variable, �i , is introduced to determine � and b , 
and the regression is expressed as an optimization problem 
with equality constraints based on the structural risk minimiza-
tion principle as follows:

where C ≥ 0 is a regularization parameter, which trades 
off the model error and model complexity. The Lagrangian 
function is adopted to incorporate the constraint conditions 
into the objective function asfollows:

where �i ≥ 0, i = 1, 2,… ,N  are the Lagrangian multipli-
ers. According to the Karush–Kuhn–Tucker conditions, the 
partial derivatives of � , b , �i , and �i can be obtained from 
L(�, b, �i, �i) . Subsequently, � and �i are eliminated and the 
following system of linear equations can be obtained in the 
dual space:

where � = [1, 1,… , 1]T , � is the kernel function matrix, 
� is the N-order unit matrix, � =

[
�1, �2,… , �N

]T , and 
� =

[
y1, y2,… , yN

]T . The kernel function is defined 
a s  � = K(�i, �j) = �(�i)

T�(�j), i, j = 1, 2,… ,N  i n 

(10)y(�) = �T�(�) + b,

(11)

⎧⎪⎨⎪⎩

min J(�, �) =
1

2
‖�‖2 + 1

2
C

N�
i=1

�2
i

s.t. yi = �T�(�i) + b + �i, i = 1, 2,⋯ ,N

,

(12)

L(�, b, �i, �i) = J(�, �i) −

N∑
i=1

�i(�
T�(�i) + b + �i − yi),

(13)
[
0 �T

� � + C−1�

][
b

�

]
=

[
0

�

]
,

terms of Mercer’s theorem. The decision function, 
y(�) =

∑N

i=1
�iK(�, �i) + b , is eventually obtained when � 

and b in Eq. (13) are solved in the least squares sense [40, 
41].

Several common kernel functions are available, such 
as linear, polynomial, and radial basis function (RBF). 
In this study, the RBF is selected as the kernel func-
tion because it has a stronger nonlinear mapping ability 
and fewer hyperparameters. The expression for RBF is 
K(�, �i) = exp(−‖‖� − �i

‖‖2∕2�2) , where � is the width of 
RBF. An equivalent parameter, 𝛾 = (2𝜎2)−1, 𝛾 > 0 is defined 
for convenience. As such, the prediction performance 
of LSSVM with RBF kernel mainly depends on two key 
hyperparameters, i.e., the regularization parameter, C , and 
the kernel parameter, � . The schematic diagram of LSSVM 
architecture is illustrated in Fig. 3.

3.3  Standard artificial neural network

The ANNs are a class of universal approximators that are 
inspired by biological neural networks. Among many differ-
ent types of ANN, the multilayer perceptron (MLP) with the 
error backpropagation mechanism is by far the most popu-
lar feedforward neural network learning model owing to its 
simplicity and efficacy [16]. The topology of MLP consists 
of an input layer, at least one hidden layer, and an output 
layer, which form a simple yet competitive regressor. In each 
layer of MLP, the neuron is the basic processing element. 
The neurons in each layer connect to the neurons in the next 
layer, while the neurons in the same layer or across layers 
do not connect to one another.

Theoretically, the output of MLP network depends on the 
connection weight, w, threshold, θ, and activation function, 
f (⋅) , of the functional neuron. The activation functions, f (⋅) , 
can be specified as required and are usually nonlinear (e.g., 
sigmoid or tanh) for complex regression tasks. By contrast, 
the connection weights, w, and thresholds, θ, cannot be 
solved for directly, but have to be learned from a given train-
ing dataset. A general optimization problem is formulated 
to adjust the values of w and θ in each layer. Specifically, 

Fig. 3  General architecture of 
LSSVM network [42]
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in order to make the approximated outputs approach the 
expected ones, the gradient descent method [16] is utilized 
to minimize the mean square error (MSE)-based cost func-
tion, CMSE(�i,�, �) [18]:

where the sample size of the dataset is N, and ye(�i) and 
ya(�i) are the expected and approximated outputs of the input 
factor vector, xi, respectively.

3.4  Proposed hybrid bootstrap‑LSSVM–MANN 
model for dam displacement interval prediction

Using the above theoretical background, a hybrid mod-
eling approach for dam displacement interval prediction 
considering both aleatoric and epistemic uncertainties is 
described in this section. The overall procedure of model 
implementation is shown in Fig. 4. Specifically, the proposed 
B-LSSVM–MANN model mainly includes the following 
four main steps:

Step 1: Generate pseudo-datasets and train LSSVM mod-
els using PB method

 (1.1) The original dataset, D, with inputs and output (sam-
ple size N) is first min–max normalized and then 
divided into a training dataset, Dt, (sample size Nt) 
and a validation dataset, Dv, (sample size Nv).

 (1.2) According to the PB sampling scheme described in 
Sect.  3.1, the B  pseudo-training datasets, 
D∗

t
=
{
D∗

t,b

}B

b=1
 , are uniformly resampled from Dt 

(14)CMSE(�i,�, �) =
1

2N

N∑
i=1

‖‖ye(�i) − ya(�i,�, �)
‖‖2,

with replacement. Note that the number of bootstrap 
replicates is equal to Nt in this study.

 (1.3) A total of B LSSVM models are trained on the B 
pseudo training datasets generated. For optimization 
purpose, the modified fruit fly optimization algorithm 
(MFOA), proposed in our previous work [11], and 
fivefold cross validation are combined to tune the 
LSSVM hyperparameters, C and � , based on Dt.

Step 2: Estimate the regression mean, ŷ(�i) , and the vari-
ance of model uncertainty, 𝜎2

ŷ
(�i) , using LSSVMs

 (2.1) The B trained LSSVMs are tested on Dv in parallel. 
The ensemble models allow obtaining a less biased 
estimate of the true regression of the future targets 
[37, 43], thus, the true regression mean, ŷ(�i) , is 
approximated by averaging the outputs of B trained 
LSSVMs as follows:

   where ŷb(�i) is the predicted value of the i-th input 
sample generated by the b-th LSSVM model.

 (2.2) The variance of model uncertainty, 𝜎2
ŷ
(�i) , can be esti-

mated from the variance of the outputs of the B 
trained LSSVMs:

Step 3: Estimate the variance of data noise, �2
�
(�i) , using 

MANN

(15)ŷ(�i) =
1

B

B∑
b=1

ŷb(�i),

(16)𝜎2
ŷ
(�i) =

1

B − 1

B∑
b=1

[
ŷb(�i) − ŷ(�i)

]2

Fig. 4  Implementation procedure of PI construction for dam displacement based on proposed hybrid B-LSSVM–MANN model
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 (3.1) After determining the variance of model uncertainty, 
we also need to estimate the variance of data noise, 
�2
�
(�i) , to construct the PIs. From Eq. (3), �2

�
(�i) can 

be obtained as follows:

 (3.2) According to Eq.  (17), a set of squared residuals, 
r2(�i) , is calculated to form a model to fit the remain-
ing residuals:

   where ŷ(�i) and 𝜎2
ŷ
(�i) are obtained from Eqs. (15) 

and (16), respectively. Subsequently, a new dataset, 
Dr2 =

{
(�i, r

2(�i))
}Nt

i=1
 , is generated by linking the 

residuals to the set of corresponding inputs.
 (3.3) In order to estimate the unknown noise variance, 

�2
�
(�i) , an ANN-based model is developed using the 

residual dataset, Dr2 , which is required to maximize 
the probability of observing the samples in Dr2 . How-
ever, the standard ANN with MSE (see Eq.  (14)) 
as the cost function cannot achieve this goal. To 
this end, the MANN model developed in this study 
uses an improved cost function. Generally, the data 
noise, �(�i) , is normally distributed with zero mean 
(see Eq. (1)), and its conditional distribution can be 
expressed as follows:

   The maximum likelihood estimation method is used 
in training of the MANN for noise variance approxi-
mation. The natural logarithm of the likelihood func-
tion, L� , is derived from Eq. (19) as follows:

   Our goal is to maximize L� of Eq. (20), but the ANN 
cost function has to be minimized, which requires a 
negative sign transformation. Furthermore, the con-
stant terms in Eq. (20) can be ignored. As such, the 
improved cost function for training the MANN model 
is defined as follows:

(17)𝜎2
𝜀
(�i) ≃ E

{[
ti − ŷ(�i)

]2}
− 𝜎2

ŷ
(�i),

(18)r2(�i) = max
([
ti − ŷ(�i)

]2
− 𝜎2

ŷ
(�i), 0

)

(19)

P
(
r2(�i);�

2
�
(�i)

)
=

1√
2��2

�
(�i)

exp

(
−

r2(�i)

2�2
�
(�i)

)

(20)L� =

Nt�
i=1

ln

⎡⎢⎢⎢⎣
1�

2��2
�
(�i)

exp

�
−

r2(�i)

2�2
�
(�i)

�⎤⎥⎥⎥⎦
.

(21)C� =
1

2

Nt∑
i=1

[
r2(�i)

�2
�
(�i)

+ ln(�2
�
(�i))

]
.

   To ensure that the estimated noise variance, �2
�
(�i) , 

is always positive, the sigmoid function is selected 
as the activation function of neurons in the MANN 
output layer. The minimization of C� can be reached 
by combining the MFOA with the gradient descent 
method.

Step 4: Construct the optimal PIs for dam displacements
Using the B + 1 models (i.e., B LSSVMs and a single 

MANN) derived above, the dam displacement PIs can be 
constructed. The true regression mean, ŷ(�i) , and the vari-
ance of model uncertainty, 𝜎2

ŷ
(�i) , are estimated in Step 2 

through the ensemble of B LSSVM models. The variance of 
data noise, �2

�
(�i) , is estimated using the MANN model from 

Step 3. Consequently, PIs with PINC (1 − �) × 100% can be 
calculated using Eqs. (3), (5), and (6). Furthermore, in order 
to improve the reliability and robustness of the constructed 
PIs, the entire process is repeated ten times and the final PI 
of each target is the average of the ten PIs. The final regres-
sion mean is also obtained by averaging the ten estimates.

4  Engineering example and application

In the following subsections, a real concrete gravity dam is 
studied as a practical example to demonstrate the validity 
and performance of the proposed interval prediction model 
in quantifying both aleatoric and epistemic uncertainties. 
Also, the reliability and rationality of the PIs obtained from 
the B-LSSVM–MANN model are further explored through 
comprehensive analyses and simulation tests.

4.1  Project overview and data preparation

The analyzed dam is located on the Second Songhua River 
in Jilin Province, northeast China. While it is mainly used 
for hydropower generation, it also has other purposes, 
such as flood control and water supply. The construction 
of the dam began in 1937 and was completed in 1953. The 
maximum dam height is 91.7 m and the dam crest length 
is 1080 m. Figure 5 shows the upstream and downstream 
views of the dam. The dam comprises 60 sections along 
its axis and each section is 18 m long, as shown in Fig. 6. 
Dam sections 9–19 are crest overflow sections and the rest 
are non-overflow sections. Since the 1980s, an automatic 
safety monitoring system has been deployed to assess the 
operating status of the dam in real time. The system consists 
of numerous instruments and pieces of equipment that can 
measure and store data such as reservoir water level, ambient 
temperatures, displacements, stresses, strains, and others. 
Displacements are measured one to three times every month 
by a vacuum laser collimation system, while the water level 
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and air temperature are recorded every day and stored in the 
monitoring database, which makes the interval prediction of 
dam displacements possible.

The horizontal displacements of the fourth and 36-th dam 
sections marked in orange in Fig. 6, which are denoted as 
D4 and D36, are investigated hereinafter. The fourth dam 
section is located on the bank slope, while the 36th section 
is almost in the middle of the dam. As illustrated in Fig. 7, 
the displacement time series of the two dam sections present 
different evolution patterns (e.g., amplitudes and fluctua-
tions), which is helpful to test the generalization ability of 
the predictive models. Positive values indicate displace-
ments in the downstream direction, while negative values 
indicate displacements in the upstream direction. The time 
series of the upstream water level and air temperature are 
also shown in Fig. 7. It should be noted that in Fig. 7 the 
water level and displacement time series are plotted with the 
same frequency, while the air temperature is plotted daily. 
All data used for modeling have been confirmed as reliable 
by the dam operators.

The dataset extracted from the monitoring database for 
this study spans a 12-year period from January 1997 to 
December 2008 and contains 155 groups of data in total. A 
total of 126 observations between January 1997 and Decem-
ber 2006 were used for model training, whereas 29 observa-
tions between January 2007 and December 2008 for model 

validation. In order to reduce the dimensional effect, the 
raw data were normalized to the range [0, 1] before being 
fed into the LSSVM model, and the outputs of LSSVMs are 
denormalized to yield the original values.

4.2  Input factors and model parameters

In general, the input factors of the dam displacement predic-
tion model can be selected using statistical models, among 
which the HST and HTT are the most commonly used ones 
[6, 9, 11]. In the statistical models, the horizontal displace-
ment, � , at any measuring point is considered as the sum of 
components corresponding to the hydrostatic pressure, �H , 
temperature, �T , and time effect, ��[2, 15]. For a concrete 
gravity dam, �H can be expressed as a cubic polynomial 
function in the upstream water level, H. Component �� is 
usually represented as a combination of a linear function and 
a logarithmic function of time, t. The expression for �T is the 
main difference between the HST and the HTT. In the HST, 
�T is described by the multiperiodic harmonics, while in the 
HTT it is computed from the measured temperature [12]. 
More recently, Kang et al. [17, 27] confirmed that using the 
long-term air temperature data, T, can lead to better predic-
tion results of dam displacement. Therefore, the input factor 
set of the interval prediction model, SHTT , is selected using 
HTT as follows:

Fig. 5  Analyzed concrete gravity dam: a upstream view, and b downstream view

Fig. 6  Dam section layout (A denotes retaining dam sections, B denotes crest overflow sections, and C denotes taking dam sections. Also, the 
number in the circle indicates the serial number of dam section)
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where T0 denotes the air temperature on the day of displace-
ment monitoring, Tp−q denotes the mean air temperatures 
between p and q days before the monitoring date, t denotes 
the cumulative number of days since the initial monitoring 
date, and � = t∕100 [26].

In the modeling process, the PB, LSSVM, and MANN 
algorithms used in the proposed hybrid approach have own 
parameters that need to be determined. In the bootstrap 
method, the number of replicates, B, is a critical parameter 
that trades off the prediction performance and computational 
efficiency of the model. As suggested in literature [44], B 
can be taken as equal to the number of training samples used. 
As mentioned in Sect. 3.4, the MFOA is adopted to tune the 
parameters of LSSVM and MANN using the training sam-
ples. The maximum iteration number and population size 
of MFOA are set to 100 and 20, respectively [11]. For the 
LSSVM, the search space of the hyperparameter combina-
tion, (C, �) , is defined as [0.01, 100] ⊂ � × [0.01, 100] ⊂ � . 
The MANN used is a single-hidden-layer architecture, and 
the number of hidden neurons is obtained by trial and error 
[45]. The search ranges of the connection weights and 
thresholds between the input and hidden layers (hidden 
and output layers) are all set to [−1, 1] . As the number of 

(22)
SHTT =

{
x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14

}

=
{
H,H2,H3, T0, T1−2, T3−7, T8−15, T16−30, T31−60, T61−90, T91−120, T121−180, �, ln �

}
,

MFOA iterations increases, the model parameters gradu-
ally approach the ideal solutions. In both the LSSVM and 
MANN, the parameter values at the end of MFOA search 
are regarded as the final choice. The parameters of all algo-
rithms involved in the prediction models for D4 and D36 
after model training are given in Table 1. According to the 
implementation steps described in Sect. 3.4, the optimized 
B-LSSVM–MANN models with these parameters can be 
used for interval prediction of future displacements.

4.3  Interval prediction results

The goal of the B-LSSVM–MANN model is to construct 
the dam displacement PIs with a certain PINC, thereby pro-
viding a basis for risk-based decision-making and control. 
In practice, high-confidence information is usually used for 
referencing decisions to ensure the accurate understanding 
of dam behavior. Therefore, PIs with three high PINCs of 
90%, 95%, and 99%, respectively, are selected for compre-
hensive analyses in this section.

Figure 8 shows the dam displacement PIs with different 
PINCs for the validation samples of D4 and D36 obtained 
by the B-LSSVM–MANN models trained as explained in 
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Sect. 4.2. Table 2 summarizes the evaluation results of the 
constructed PIs with three PINCs using the assessment 
measures defined in Sect. 2.2. From Fig. 8, it can be seen 

that the PI width (PIW) is relatively uniform and increases 
with the increase in confidence level, which is in accordance 
with previous studies [36, 43]. Taking D4 as an example, the 

Table 1  Parameters of 
algorithms used for interval 
prediction models for D4 and 
D36

Algorithms Algorithm parameters Parameter choices of different models

Prediction model for D4 Prediction model for D36

PB Number of replicates (B) 126 126
LSSVM Regularization parameter (C) 4.7682 6.4348

Kernel parameter (γ) 0.1449 2.7363
Fitness function MSE MSE

MANN Training method Gradient descent Gradient descent
Number of hidden layers 1 1
Number of hidden neurons 9 12
Activation function Sigmoid Sigmoid
Cost function Cε (Eq. (21)) Cε (Eq. (21))

Fig. 8  PIs with different PINCs 
for validation samples obtained 
by proposed B-LSSVM–MANN 
model: a 90% PI for D4, b 90% 
PI for D36, c 95% PI for D4, d 
95% PI for D36, e 99% PI for 
D4, and f 99% PI for D36
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Table 2  Quantitative evaluation of constructed PIs with different PINCs for D4 and D36

Dam section PINC 90% PINC 95% PINC 99%

PICP (%) MPIW (mm) CWC (mm) PICP (%) MPIW (mm) CWC (mm) PICP (%) MPIW (mm) CWC (mm)

D4 100 1.25 1.25 100 1.43 1.43 100 1.84 1.84
D36 93.10 4.00 4.00 96.55 4.72 4.72 100 6.40 6.40
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MPIWs corresponding to the obtained PIs with PINCs of 
90%, 95%, and 99% are 1.25 mm, 1.43 mm, and 1.84 mm, 
respectively. Also, Fig. 8 shows that regardless whether the 
PINC is 90%, 95%, or 99%, the constructed PIs for D4 and 
D36 can cover most of the measured samples. Table 2 fur-
ther reveals that at the three high confidence levels, the PICP 
is about 1–10% larger than the specified PINC, which indi-
cates that the obtained PIs for both D4 and D36 are reliable. 
In this case, the CWC value is relatively small and equal to 
MPIW. These results demonstrate that the proposed hybrid 
B-LSSVM–MANN approach has satisfactory performance, 
i.e., the model appropriately quantifies the joint uncertain-
ties through PIs.

The variation in PIW can describe the effect of dynamic 
change in the input factors on displacement predictions. For 
instance, Fig. 7 shows that the peaks and troughs of the dam 
displacement time series correspond exactly to those of the 
water level and temperature time series. The water level and 
temperature change more drastically at the peak and trough 
positions [17], which causes greater variability in the dam 
displacement predictions. As seen in the PIW bar charts of 
Fig. 8, the PIs are wider near the peaks and valleys, which 
is a good reflection of the variability. In addition to being 
affected by external factors, the PIW is also influenced by 
the magnitude of the displacement itself. Generally, the 
uncertainty involved in the displacement of larger magni-
tude is more significant. In Fig. 7c, the range for D36 is 
larger than that for D4 and thus the MPIW of D36 PIs is 
greater than that of D4 PIs (see Table 2). In summary, the 
extrinsic and intrinsic effects are well characterized by PIs 
and reflected in their widths.

The proposed B-LSSVM–MANN model can not only 
construct the PIs, but also provide point prediction results, 
namely the true regression means (see Fig. 8). The com-
mon performance measures, i.e., the coefficient of deter-
mination (R2), mean absolute error (MAE), and root mean 
square error (RMSE), are used to evaluate the quality of the 
regression mean [4, 11]. The closer the R2 is to 100%, the 
smaller the MAE and RMSE are, and the better the point 
prediction performance of the model is. Table 3 lists the 
evaluation results of the regression mean for D4 and D36. 
It can be observed that at the three confidence levels, the 
indices of the regression mean are excellent ( R2 ≥ 95% ) 
and close ( ΔR2 ≤ 1.5% ), indicating that the point prediction 

performance of the model is stable. By contrast, the width of 
the constructed PIs varies with the PINC, which differs from 
the regression mean. Moreover, Fig. 8 shows that the point 
prediction errors at the peak and trough positions are larger 
than elsewhere, which correlates with the wider PIs near 
the peaks and troughs mentioned earlier. This consistency 
reconfirms that the calculated PIs are rational.

4.4  Simulation and comparison analysis

As demonstrated in Sects.  2.1 and 3.4, both aleatoric 
and epistemic uncertainties are considered in the hybrid 
B-LSSVM–MANN model. The former is mainly caused 
by data noise, while the latter results primarily from the 
misspecification of model architecture and abstraction. In 
Sect. 4.3, we have demonstrated that the joint uncertain-
ties can be well quantified by the constructed PIs with three 
different PINCs. In this section, taking PINC 95% as an 
example, it is further verified that the proposed model can 
properly respond to the individual uncertainty through PIs. 
To that end, three types of simulations are set up, including 
adding data noise, changing input factor set and prediction 
algorithm.

4.4.1  Exploration of aleatoric uncertainty through adding 
data noise

According to Eq. (22), the HTT-based factors related to air 
temperature are processed by the moving average method, 
which reduces noise. In this section, Gaussian noise is added 
to the training data of measured upstream water level and 
horizontal displacements of D4 and D36 to produce training 
data with an increased level of noise. A comparison of the 
noiseless (i.e., measured data without additional noise) and 
noisy data is shown in Fig. 9. In the simulation, the meas-
ured data are replaced with noisy training data and fed into 
the model, however, only the water level data or displace-
ment data are replaced each time, but not both concurrently. 
Following the procedure described in Sect. 3.4 and the 
parameter settings from Sect. 4.2, the B-LSSVM–MANN 
models trained using the noisy water level or noisy displace-
ment data are obtained and then used for interval prediction 
of dam displacement.

Table 3  Quantitative evaluation of regression means for D4 and D36

Dam section PINC 90% PINC 95% PINC 99%

R2 MAE (mm) RMSE (mm) R2 MAE (mm) RMSE (mm) R2 MAE (mm) RMSE (mm)

D4 97.20 0.21 0.24 97.66 0.20 0.24 97.26 0.22 0.26
D36 96.08 1.03 1.17 96.41 0.94 1.09 95.00 1.30 1.45
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The displacement PIs with PINC 95% for D4 and D36 
obtained using noisy data are shown in Figs. 10 and 11, 
respectively. Figure 12 compares the PIs and regression 
means of D4 and D36 obtained using noiseless and noisy 
data through evaluation indices. Notably, after adding 
Gaussian noise, the width of the PIs increases and the pre-
cision of the regression mean decreases. The added noise 

increases the aleatoric uncertainty to dam behavior mod-
eling, thereby reducing the credibility and accuracy of the 
prediction results. Moreover, the added low noise can be 
identified by the interval predictions, which demonstrates 
that it is feasible to use a MANN to estimate the variance of 
data noise as explained in Sect. 3.4.
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Fig. 10  PIs with PINC 95% 
for D4 obtained using: a noisy 
upstream water level, and b 
noisy D4
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Fig. 11  PIs with PINC 95% for 
D36 obtained using: a noisy 
upstream water level, and b 
noisy D36
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The PIs offer more information than the point prediction 
of the regression mean. For example, the 36-th dam section 
is close to the middle of the dam (see Fig. 6), and thus it is 
more sensitive to the changes in water level. In Fig. 12c, 
the PICP of the PIs with PINC 95% for D36 obtained using 
noisy water level is only 92% ( < 95% ), which suggests a 
lower prediction reliability. Also, the corresponding CWC 
value is as high as 21.88 mm, which is far larger than the 
CWC value of 4.72 mm in the absence of noise. In contrast, 
there is no significant change in the evaluation indices of 
regression mean irrespective whether the water level data 
used is noisy or not (see Fig. 12d). In short, the point pre-
diction fails to reflect the negative effect of the additional 
noise in the water level data on the displacement prediction, 
whereas the PIs do.

4.4.2  Exploration of epistemic uncertainty of model 
architecture through changing input factor set

The changes in the number and magnitude of input factors 
would directly affect the model architecture, thus chang-
ing the resulting epistemic uncertainty. In this simulation, 
the only change is to replace the HTT-based factors with 
the HST-based factors. For the difference between the two, 
see Sect. 4.2. The HST-based input factor set, SHST , can be 
expressed as follows [11, 15]:

After the B-LSSVM–MANN model is retrained, the dis-
placement PIs with PINC 95% for D4 and D36 obtained 
using input factor set SHST are shown in Fig. 13. Table 4 
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Fig. 13  PIs with PINC 95% 
obtained using SHST: a D4, and 
b D36
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evaluates quantitatively the PIs and regression mean of D4 
and D36 obtained using input factor sets SHTT and SHST. 
Combining the interval prediction results shown in Fig. 8c, 
d, it can be observed that the overall performance of the 
proposed model established using the HTT-based input fac-
tors is better, which is also consistent with the findings of 
Kang et al. [12, 17, 27]. From Table 4, the MPIW of the 
constructed PIs is nearly the same after changing the input 
factors, but the PICP is greatly reduced, even lower than 
PINC 95%. Some of the data points falling outside the 95% 
PI bands are marked in Fig. 13. This is because the mul-
tiperiodic harmonics in HST do not simulate the thermal 
responses of dam concrete accurately, while the long-term 
measured temperature effect modelling used in the HTT is 
closer to reality [27]. We also notice that in Fig. 13, the 
measured samples falling outside the 95% PI bands have 
a large deviation with the point prediction (i.e., regression 
mean), but are close to the lower limit of the PIs. Therefore, 
in the case of extreme uncertainty the upper or lower limit 
of the PIs could be regarded as an alternative estimate of 
future displacements.

4.4.3  Exploration of epistemic uncertainty of model 
abstraction through changing prediction algorithm

The dam monitoring instruments are properly maintained 
and thus the noise contained in the recorded data is generally 
low. In this simulation, the MANN algorithm for estimat-
ing the variance of data noise remains unchanged, but the 
LSSVM algorithm for estimating the regression mean and 
the variance of epistemic (or model) uncertainty is replaced 
with alternative algorithms. The LSSVM is essentially 
an abstraction of the real functional relationship between 

dam displacement and its influencing factors. The common 
prediction algorithms (e.g., LSSVM, ELM [22], and RFR 
[15]) have different levels of approximation to the function, 
resulting in the differences in the epistemic uncertainty of 
model abstraction. In order to investigate the impact of dif-
ferent prediction algorithms on uncertainty quantification, 
the LSSVM is replaced with the ELM or RFR to form the 
B-ELM–MANN and B-RFR–MANN models, respectively, 
to compare them with the proposed B-LSSVM–MANN 
model. In all three models, the HTT-based factor set 
(Eq. (22)) is used as model inputs. The LSSVM parameters 
are shown in Table 1, and the parameter settings of ELM 
and RFR are listed in Table 5. Following the steps outlined 
in Sect. 3.4, the three models are trained and verified using 
the same data samples.

Figure 14 shows the displacement PIs with PINC 95% 
for D4 and D36 obtained using B-ELM–MANN and 
B-RFR–MANN models, while the corresponding PIs 
obtained using B-LSSVM–MANN are illustrated in Fig. 8c, 
d. The evaluation results of both PIs and regression means 
obtained from the three models are shown in Fig. 15. The 
PICP of the three models is greater than PINC 95%, which 
indicates that the PIs constructed via them are all effec-
tive. The MPIW of B-ELM–MANN is larger than the other 
two, and the MPIW of B-LSSVM–MANN is the smallest 
of the three. The prediction results of LSSVM achieved by 
separate runs are relatively uniform so that the proposed 
B-LSSVM–MANN model can yield the narrower PIs. On 
the other hand, the connection weights and thresholds of 
ELM are randomly initialized and thus the variability of its 
prediction results is quite significant [22]. As for the point 
prediction performance, it can be seen from Fig. 15b, d that 
the three evaluation indices of the regression mean obtained 

Table 4  Quantitative evaluation 
of interval prediction results 
for D4 and D36 obtained using 
SHTT and SHST

Dam section Input factor set Interval prediction Regression mean

PICP (%) MPIW (mm) CWC (mm) R2 MAE (mm) RMSE (mm)

D4 SHTT (Eq. (22)) 100 1.43 1.43 97.66 0.20 0.24
SHST (Eq. (23)) 89.66 1.43 22.17 85.13 0.36 0.43

D36 SHTT (Eq. (22)) 96.55 4.72 4.72 96.41 0.94 1.09
SHST (Eq. (23)) 93.10 4.77 17.08 86.70 1.01 1.34

Table 5  Parameters of ELM 
and RFR algorithms for interval 
prediction models for D4 and 
D36

Prediction algorithms Algorithm parameters Parameter choices of different 
models

Prediction model 
for D4

Prediction 
model for 
D36

ELM [22] Number of hidden neurons 16 18
RFR [15] Number of trees 100 100

Number of variables in each split 3 3
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using the B-LSSVM–MANN model are all optimal. Nota-
bly, its  R2 value is up to about 95% for both D4 and D36. In 
summary, there are differences in the uncertainty quantiza-
tion with different prediction algorithms, but the proposed 
B-LSSVM–MANN model has an excellent performance in 
terms of both interval prediction and point prediction.

The proposed hybrid modeling approach is based on 
bootstrap resampling. In practical applications, the compu-
tational efficiency is another important issue that should be 
considered in addition to prediction performance. Table 6 
compares the average computation time of three predictive 
models for D4 and D36 in a single run. The B-ELM–MANN 
model takes the least time, followed by the proposed 

Fig. 14  PIs with PINC 95% 
obtained using different models: 
a B-ELM–MANN model for 
D4, b B-ELM–MANN model 
for D36, c B-RFR–MANN 
model for D4, and d B-RFR–
MANN model for D36
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Fig. 15  Quantitative evaluation 
of interval prediction results 
for D4 and D36 obtained using 
different models
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B-LSSVM–MANN model. Both these models are compu-
tationally efficient and only require less than 1.0 s to train 
126 ELMs or LSSVMs and a single MANN for PIs construc-
tion. The ELM is a single-hidden-layer neural network [22], 
while the LSSVM applies linear least squares criteria for the 
loss function and works with equality instead of inequality 
constraints [27], so that their training is fast. In contrast, the 
RFR is a tree-based ensemble learning algorithm [15] and 
thus its training is time-consuming. From Table 6, its time 
cost is about 70–100 times that of the other two models. 
Among the three comparison models, therefore, only the 
proposed B-LSSVM–MANN model achieves a satisfactory 
balance between prediction performance and computational 
efficiency.

4.5  Discussion: interval prediction versus point 
prediction

The traditional methods of point prediction produce only the 
deterministic values as the final predictions. In this study, the 
PIs constructed by the interval prediction model are used as 
the uncertain representation of future displacements, and the 
regression mean values serve as the deterministic point pre-
diction results. Accordingly, the point prediction and interval 
prediction are both interrelated but different.

• Due to the complexity of dam systems and the inade-
quacy of cognitive level, dam displacement prediction is 
inherently uncertain. In contrast to the point prediction, 
the interval prediction is more realistic and informative, 
because it can reflect the associated uncertainties through 
PIs.

• The interval prediction can be used as a substitute of tra-
ditional point prediction to assist in risk decision-making. 
The variation in the width of PIs provides dam operators 
with additional information about the variability and 
credibility of displacement predictions. Wide PIs indi-
cate a high degree of uncertainty of the predicted values 
and the need for more attention and precautionary meas-
ures before risk mitigation action are undertaken. On the 

other hand, narrow PIs suggest that the uncertainty of the 
predicted results is relatively low, and the appropriate 
decisions can be made more confidently based on point 
predictions. Therefore, interval prediction can provide a 
valuable reference for making better-informed decisions, 
thereby improving the efficacy and reliability of dam risk 
management.

• Although interval prediction has obvious advantages 
over point prediction, it is still less than perfect in some 
aspects. For instance, the computational efficiency of the 
proposed B-LSSVM–MANN model is better than that of 
the other two interval prediction approaches compared 
(see Sect. 4.4.3), but is not as good as the simple point 
prediction. Especially when face with large amounts 
of data, the computational cost of the model becomes 
extremely expensive, which will challenge the online 
monitoring capability. Fortunately, with the progress in 
computer technology and improvement in artificial intel-
ligence algorithms, this issue will gradually be resolved.

5  Conclusions and future research 
directions

Compared to the deterministic point prediction, the proposed 
interval prediction can be used to quantify the aleatoric and 
epistemic uncertainties associated with dam displacement 
predictions through PI construction. A hybrid approach for 
interval prediction that combines the non-parametric boot-
strap, LSSVM, and MANN algorithms is proposed to con-
struct the PIs of future displacements. The effectiveness of 
the proposed B-LSSVM–MANN model is verified using the 
monitoring data of a concrete gravity dam located in north-
east China. The comprehensive analyses and simulation tests 
are further conducted to substantiate the claim to superiority 
of the proposed model. The main conclusions of this work 
are as follows:

1. The hybrid B-LSSVM–MANN model can not only 
quantify the uncertainties related to the predicted val-
ues in the form of PIs, but also provide the point pre-
diction of regression mean. The constructed PIs with 
different confidence levels are high-quality and can 
encompass the majority of the measured samples (i.e., 
PICP ≥ PINC ) with a smaller MPIW. The accuracy of 
the regression mean is also excellent, with the  R2 value 
of over 95% for both D4 and D36.

2. The variation in PIW can describe the effect of the 
dynamic change in input factors on dam displacement 
predictions. The PIW is also influenced by the magni-
tude of the displacement itself. Generally, the variability 
or uncertainty involved in the displacement data with 

Table 6  Average computation time of three predictive models for D4 
and D36 in a single run

Dam section Interval prediction model Average 
computation 
time (s)

D4 B-LSSVM–MANN 0.41
B-ELM–MANN 0.35
B-RFR–MANN 32.19

D36 B-LSSVM–MANN 0.42
B-ELM–MANN 0.34
B-RFR–MANN 32.27
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larger magnitude is more significant. Therefore, the 
extrinsic and intrinsic effects are well characterized by 
the constructed PIs and reflected in their widths.

3. Through three types of simulation tests, we found that 
the displacement PIs obtained using the proposed model 
can appropriately account separately for the aleatoric 
or epistemic uncertainty. Additional artificial data 
noise increases aleatoric uncertainty of dam displace-
ment modeling, while changing the input factor set or 
the prediction algorithm changes the inherent epistemic 
uncertainty. Nevertheless, the increased level of alea-
toric or epistemic uncertainty can be identified by the 
interval prediction results.

4. The computation of the proposed B-LSSVM–MANN 
model is efficient owing to the rapid training of the 
LSSVM algorithm. The results demonstrate that for D4 
and D36, the average time of running this model once is 
less than 1.0 s.

In future work, we first plan to investigate other sources 
of uncertainties associated with dam systems and predictive 
models (e.g., dam aging and model parameters) in addition 
to data noise and model misspecification discussed in this 
paper. Secondly, other advanced mathematical techniques 
(e.g., reinforcement learning and Bayesian optimization) 
can be introduced for further enhancement of the prediction 
performance and computational efficiency of the proposed 
hybrid approach for interval prediction of dam displace-
ments. Finally, the applicability of the B-LSSVM–MANN 
model to other phenomena and data (e.g., seepage, stress, 
and strain) deserves further studies.
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