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Abstract
Three-phase bidirectional functionally graded sandwich (BFGSW) beams are particular type of composite beams whose 
properties are tailored to vary continuously in both the longitudinal and transverse directions, depending on the constituent 
composition distribution. These beams are known to provide superior mechanical performance and to overcome the draw-
backs of the traditional sandwich beams. In this paper, a beam element is formulated for modelling free and forced vibration 
of a three-phase BFGSW beam carrying a moving mass. The core of the sandwich beam is homogeneous, while the two 
face sheets are made from power-law bidirectional functionally graded material. In addition to the Voigt micromechanical 
model, the Maxwell formula is used for the first time to evaluate the effective elastic moduli of the three-phase functionally 
graded material. The beam element based on the sinusoidal shear deformation theory is derived using hierarchical func-
tions to enrich the conventional Lagrange and Hermite shape functions. Using the derived element, differential equations of 
motion for the beams are solved to obtain natural frequencies and dynamic response of the beam. The numerical result shows 
that the derived element is efficient, and it can yield accurate vibration characteristics with small number of elements. An 
extensive parametric study is carried out to highlight the effects of the material gradation, the beam geometry and velocity 
of the moving mass on the vibration behaviour of the beam. The influence of the micromechanical model on the vibration 
of the beam is also examined and discussed.

Keywords Three-phase BFGSW beam · Sinusoidal shear deformation theory · Enriched beam element · Moving mass · 
Dynamic analysis

1 Introduction

Sandwich structures with high specific stiffness and 
strength-to-weight ratios have wide applications in practice, 
especially in aerospace and automobile industries. Recently, 
sandwich construction becomes even more attractive due 
to the introduction of functionally graded materials for the 
faces and the core. Understanding vibration behaviour of 
functionally graded (FG) sandwich structures under dynamic 
loads is crucial for appropriately using these structures. 
Many investigations on vibration of FG structures, by both 
analytical and numerical methods, have been reported in the 
last two decades.

Regarding to the numerical analysis of FG and FG 
sandwich beams, the topic discussed in the present work, 
Chakraborty et al. [1] derived a first-order shear deform-
able beam element for thermoelastic analysis of a sandwich 
beam with a FG core. The convergence of the element was 
improved using the solution of the equilibrium equations 
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of a beam segment to interpolate the displacement field. 
Bhangale and Ganesan [2] investigated the thermal effects 
on bucking and vibration of FG sandwich beams with a 
viscoelastic core using a two-node FG sandwich beam ele-
ment. Shahba et al. [3] considered exact variations of the 
beam cross-sectional profile in derivation of a finite element 
formulation for vibration and stability analyses of axially 
FG tapered Timoshenko beams. Finite element method 
was also used by Alshorbagy et al. [4], Eltaher et al. [5, 6] 
in free vibration study of FG beams and FG nanobeams, 
respectively. Taeprasartsit [7] solved the nonlinear equilib-
rium equations of Timoshenko beam element and used the 
solution to interpolate the displacement field in derivation 
of stiffness matrix for buckling analysis of FG Timoshenko 
beams. Nguyen [8, 9], Nguyen and Gan [10] derived the 
co-rotational beam elements for large displacement analysis 
of FG tapered beams with material properties varying in 
the thickness or longitudinal direction. It was shown by the 
authors that the large displacement behaviour of the beams 
is significantly influenced by the material gradation. Using 
the differential quadrature rule, Jin and Wang [11] derived 
a beam element for vibration analysis of FG Euler-Bernoulli 
beams. Numerical investigation by the authors showed that 
the element is accurate, and it can yield accurate frequen-
cies with small number of nodal points. Based on the first-
order shear deformation theory and Lagrange interpolations, 
Kahya and Turan [12] derived a five-node beam element for 
vibration and buckling analysis of FG beams. The element 
with ten degrees of freedom can accurately predict frequen-
cies of buckling loads of the beams.

To avoid the use of a shear correction factor which 
requires by the first-order shear deformation theory, higher-
order beam theories were employed in formulating beam ele-
ments for analyzing the FG beams. Kadoli et al. [13] studied 
bending behaviour of FG beams using a third-order shear 
deformable finite element formulation. The formulation is 
derived using the cross-sectional rotation or the shear rota-
tion as an independent variable. The numerical tests by the 
authors show that convergence of the shear rotation element 
is faster than that of the cross-sectional rotation element. 
Frikha et al. [14] used a mixed formulation to formulate a 
third-order C 0 beam element for bending study of FG beams. 
The element with 4 degrees of freedom per node gives the 
exact solution at the nodal points. The refined third-order 
shear deformation theories, in which the transverse displace-
ment is split into bending and shear parts, were adopted by 
Vo et al. [15, 16] in formulating finite element formulations 
for free vibration and buckling analyses of FG sandwich 
beams. Lagrange and Hermite functions were employed 
by the authors to interpolate the displacements field. A C 1 
beam element for bending analysis of FG and FG sandwich 
beams was derived by Yarasca et al. [17] in the basic of a 
quasi-3D hybrid higher-order shear deformation theory. The 

two-dimensional plane stress problem was adopted by Akbaş 
et al. [18] in formulating a finite element formulation for 
computing dynamic response of FG sandwich beams under 
a pulse load, taking into account the influence of porosities 
and viscous damping. The refined trigonometric shear defor-
mation theory was employed by Ebrahimi and Dabbagh [19], 
Dabbagha et al. [20] to derive the finite element formulations 
for analyzing FG composite nanobeams. The free transverse 
shear stress conditions on the bottom and top surfaces of the 
beams in the theory are satisfied by appropriate choice of the 
shape functions for the transverse displacement.

Dynamic analysis of beams under moving loads is an 
important topic in structural mechanics, and it has drawn 
much attention from researchers for a long time. This prob-
lem, originated in civil engineering for the design of bridges 
and highways, also arises in many modern machining opera-
tions. A large number of solutions for homogenous beams 
under moving loads are given in the excellent monograph 
by Frýba [21]. The influence of spatial gradation of material 
properties on dynamic behaviour of beams carrying mov-
ing loads has been investigated in recent years. Şimşek and 
Kocatürk [22], Şimşek [23–25] employed polynomials to 
approximate the displacement fields to study vibration of 
FG beams excited by a moving load, taking into account 
the effect of thickness gradation of material properties. The 
method is simple, and it is then extended by Şimşek et al. 
[26] in dynamic analysis of beams under a moving load 
with material properties varying in the longitudinal direc-
tion. Khalili et al. [27] computed dynamic response of FG 
Euler-Bernoulli beams under a moving mass using the dif-
ferential quadrature (DQ) method. Numerical investigation 
by the authors showed that compared to the Newmark and 
Wilson methods, the proposed DQ method gives better accu-
racy using larger time step sizes. Vibration analysis of a FG 
Euler-Bernoulli beam under a moving oscillator was carried 
out by Rajabi et al. [28] using the Runge-Kutta method. The 
Ritz method was used by Chen et al. [29] to study vibra-
tion of FG Timoshenko beams with a moving load, taking 
the effect of porosities into account. Lagrange method was 
used in conjunction with Newmark method by Wang and Wu 
[30], Wang et al. [31] to investigate the effect of tempera-
ture and porosities on dynamic behaviour of FG Timoshenko 
beams and FG sandwich beams traversed by moving loads, 
respectively. Songsuwan et  al. [32] examined dynamic 
behaviour of FG sandwich beams on Pasternak foundation 
under a moving harmonic load using the Ritz method. The 
authors showed that the frequencies and dynamic deflec-
tions are significantly influenced by the thickness variation 
of the material properties and the layer thickness ratio of 
the beams. The effect of longitudinal variation of material 
properties and cross section on dynamic behaviour of FG 
Timoshenko beams was studied by Gan et al. [33] using a 
finite element formulation. The finite element method was 
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also used by Esen [34, 35] to compute dynamic response 
of FG beams carrying a variable speed moving mass. The 
element formulations in the works are simple, but require a 
shear correction factor to amend the incorrect distribution 
of the transverse shear stress.

The beams in the above discussed references have mate-
rial properties varying in only one direction, the thickness 
or longitudinal direction. Development of FG structures 
with material properties being graded in two or more direc-
tions to meet the multi-functional requirements is of great 
demand [36]. Analysis of bidirectional FG beams has been 
carried out by several authors recently. Lezgy-Nazargah [37] 
employed the NURBS isogeometric finite element method 
to investigate bending behaviour of FG beams with material 
properties varying in both longitudinal and transverse direc-
tions. Şimşek [38] studied vibration of Timoshenko beams 
carrying a moving load with material properties exponen-
tially varying in both the length and thickness directions 
under a moving point load. The author revealed that the 
material properties of the beams can be tailored to meet 
the desired goals of optimizing the response by choosing 
suitable material indices. Nguyen et al. [39] derived a two-
node Timoshenko beam element for computing dynamic 
response of bidirectional power-law FG and FG sandwich 
beams under a moving load. The element used the third-
order polynomials to interpolate the transverse displacement 
is fast convergent. The element was then extended to study 
vibration of a bidirectional functionally graded sandwich 
(BFGSW) beam due to a moving load [40]. A Timoshenko 
beam element was formulated by Nguyen and Tran [41] for 
computing frequencies of bidirectional FG tapered beams. 
The element was derived using the hierarchical interpola-
tion to avoid the shear locking and to improve the conver-
gence of the element. The modified couple stress theory was 
employed by Rajasekaran and Khaniki [42] to derive a finite 
element formulation for vibration analysis of non-uniform 
bidirectional FG micro-beams on elastic foundation under 
a harmonic mass. It has been shown by the authors that the 
material scale factor plays an important role on the dynamic 
response of the beams. The third-order Reddy beam the-
ory has been used in conjunction with the modified couple 
stress theory by Attia and Mohamed [43] to study nonlinear 
vibration of pre- and post-buckled tapered microbeams with 
material properties being graded in both the thickness and 
longitudinal directions by the power gradation law. The dif-
ferential quadrature method was employed by the authors to 
obtain the vibration characteristics of the beams. Based on 
a quasi-3D shear deformation theory, Vu et al. [44] derived 
a finite element formulation for dynamic analysis of a two-
phase BFGSW beam traversed by a moving mass. The effect 
of partial support by a Pasternak foundation on the dynamic 
behaviour of the beam has been investigated by the authors.

Improvement of accuracy and efficiency of finite element 
formulations is of great demand in finite element analysis 
of structures. This topic grows in importance due to the 
increasing use of material gradation to optimize structures. 
There are various methods to improve the efficiency of a 
finite element formulation, amongst which the use of trigo-
nometric or hierarchical functions to enrich the conventional 
interpolations is an effective way. In this line of work, Arndt 
et al. [45] employed trigonometric functions to enrich the 
linear interpolations in driving a bar element for longitu-
dinal free vibration analysis of trusses. The convergence 
of the resulted element is significantly improved. Hsu [46] 
enriched the conventional linear interpolation by hierarchic 
functions in formulating a Timoshenko beam element for 
free vibration analysis of beams. The enriched beam ele-
ment is efficient, and it is free of shear-locking. Hsu and 
Deitos [47] showed that the efficiency of an Euler-Bernoulli 
beam element in computing dynamic response of 2D frames 
under wind loading is significantly improved by using trigo-
nometric functions to enrich the conventional Lagrange and 
Hermite shape functions. Recently, Le et al. [48] formulated 
an enriched third-order shear deformation beam element for 
free vibration and buckling analysis of BFGSW beams. The 
element is capable to give accurate frequencies and buck-
ling loads by small number of elements. Motivated by these 
works, the present paper formulates an enriched beam ele-
ment for vibration analysis of a three-phase BFGSW beam 
carrying a moving mass. The element employed hierarchical 
functions for enrichment of the conventional interpolation 
as in Ref. [48], but it is derived in the basis of the sinusoidal 
shear deformation theory [49, 50]. The theory, which does 
not require a shear correction factor as the first-order theory, 
satisfies the free transverse shear stress conditions on the top 
and bottom beam surfaces using a sinusoidal shape function 
for the transverse displacement. The core of the sandwich 
beam is homogeneous while its two skin layers are made 
from a three-phase FG material with effective properties 
varying in both the thickness and longitudinal directions by 
power gradation laws. In addition to the Voigt microme-
chanical model [51], the Maxwell formula [52, 53] is also 
employed herein for the first time to evaluate effective elastic 
moduli of the three-phase FG material. Thus, in addition to 
the use of the Maxwell formula, the vibration analysis of the 
three-phase BFGSW beam carrying a moving mass by the 
enriched beam element presented herein for the first time 
are the main novel points of this paper. Numerical investi-
gations are carried out to show the efficiency of the derived 
beam element and to highlight the effects of the material 
distribution and loading parameters on vibration behaviour 
of the beams.

Following the above introduction, the rest of this paper 
is organized as follows. The mathematical formulation 
for the BFGSW beam with a moving mass is presented in 
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Sect. 2. Section 3 describes the beam element with hier-
archical interpolation enrichment and equation of motion 
in the discretized form. Section 4 is devoted to numerical 
investigation, demonstrating the effects of various param-
eters on vibration of the beam. Finally, conclusions based 
on the numerical investigation are given in the last section.

2  Mathematical formulation

The mathematical formulation is provided in this section, 
including the beam geometry, the gradual material proper-
ties, the displacement field based on the sinusoidal shear 
deformation theory and the resultant expressions of strain, 
as well as the energies associated with the dynamical loading 
and the system of equations to be solved.

Figure 1 shows a simply supported sandwich beam with 
rectangular cross section ( b × h ) under a mass m, moving 
from the left to right with a constant velocity v. The beam 
consists of three layers, a homogeneous core and two FG 
skin layers with material properties varying in both the 
length and thickness directions. It is assumed that the mass 
m is always in contact with the beam. The Cartesian coor-
dinate system (x, y, z) in the figure with the origin at the left 
end of the beam is chosen such that the (x, y) plane is on 
the beam mid-plane, and the x-axis directs to the beam axis 
while the z-axis directs upward. Denoting z0 , z1 , z2 and z3 
with z0 = −h∕2 and z3 = h∕2 are, respective, the coordinates 
along the z-axis of the bottom layer, the interfaces between 
the layers and the top layer.

The beam is assumed to be made from three materials, 
two ceramics M1 and M2, and a metal M3, whose volume 
fractions varying in both the longitudinal and transverse 
directions according to the power-law distributions as [40, 
54]

where L is the beam length; V1 , V2 and V3 are, respectively, 
the volume fraction of M1, M2 and M3; nx and nz are 
the axial and transverse grading indices. Figure 2 shows 
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Two micromechanical models, namely, the Voigt model 
and Maxwell formula, are used herein to evaluate the effec-
tive elastic moduli of the beam. An effective property Pf  , 
such as the Young’s modulus Ef  and mass density �f  , evalu-
ated by the Voigt model is of the form

with P1 , P2 and P3 are the properties of the M1, M2 and 
M3, respectively. Substituting Eq. (1) into Eq. (2), one gets

with

One can easily verify that if nx =0 or M2 is identical to M3, 
Eq. (3) returns to the effective properties of the unidirec-
tional transverse FG sandwich beam in [15].

According to the Maxwell formula (or extended Mori-
Tanaka scheme) the effective bulk modulus (Kf) and shear 
modulus (Gf) of a three-phase composite with matrix M3 
are given by [52, 53]
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using a shear correction factor. According to the theory, 
the displacements in the x and z directions, u(x, z, t) and 
w(x, z, t), of a point in the beam are respectively given by

where u0(x, t) is the axial displacement of the point on the 
mid-plane; wb(x, t) and ws(x, t) are, respectively, the bending 
and shear components of the transverse displacement; t is 
the time variable, and the shape function f(z) is of the form

In Eq. (7) and hereafter, a subscript comma denotes the 
derivative with respect to the variable that follows. e.g. 
wb,x = �wb∕�x.

Equation (7) gives the axial strain ( �xx ) and shear strain 
( �xz ) in the forms

where g(z) = cos
�z

h
.

The constitutive equation based on linear behaviour of 
the beam material is of the form

where �xx and �xz are, respectively, the axial and shear 
stresses; Ef(x, z) and Gf(x, z) respectively are the effective 
Young’s modulus and shear modulus, defined by Eq. (3) or 
by Eqs. (5) and (6).

The elastic strain energy of the beam ( U  ) is given by

where A = bh is the beam cross-sectional area.
From Eqs. (9) and (10), one can write the strain energy 

in Eq. (11) in the form
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The kinetic energy T  of the beam is given by

where �f (x, z) is the effective mass density defined by Eq. 
(3); an over dot is used to denote the derivative with respect 
to the time variable. From Eqs. (7) and (8), one can write the 
above kinetic energy in the form
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The potential energy due to the moving mass is given by 
[34, 44]
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and the natural boundary conditions at x = 0 and x = L are 
of the forms

where N , Qb , Qs , Mb , Ms are, respectively, the axial forces, 
bending and shear components of the shear forces and 
moments at the beam ends. The geometric boundary condi-
tions for the simply supported beam in Fig. 1 are as follows

Since the beam rigidities and the mass moments, as seen 
from Eqs. (13) and (16), are functions of the longitudinal 
coordinate x, a closed-form solution for the system of vari-
able coefficient equations (18) is hardly to obtain. A finite 
beam element is derived in the next section for solving Eq. 
(18).
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]
,x

− I12ü0 + I22(ẅb,x + ẅs,x) − J12ẅs,x = Qb[
(A12 − B11)u0,x + (B12 − A22)wb,xx

+(2B12 − A22 − B22)ws,xx

]
,x

+ D11ws,x + (J11 − I12)ü0 + (I22 − J12)ẅb,x

+ (I22 − 2J12 + J22)ẅs,x = Qs

− A12u0,x + A22(wb,xx + ws,xx) − B12ws,xx = Mb

(A12 − B11)u0,x + (B12 − A22)wb.xx

+ (2B12 − A22 − B22)ws,xx = Ms

(20)
∙ At x = 0 ∶ u0(0, t) = wb(0, t) = ws(0, t) = 0

∙ At x = L ∶ wb(0, t) = ws(0, t) = 0

3  Beam element formulation

This section presents the hierarchical enriched beam ele-
ment, including the beam mass and stiffness matrices as 
well as the mass, damping and stiffness matrices resulted 
from the effects of the inertia, Coriolis and the centrifu-
gal forces of the moving mass. The discrete equation of 
motion for the beam is also provided.

3.1  Enriched interpolation

A two-node beam element with length l is considered here-
with. A conventional C1 beam element can be derived from 
the energy expressions in the previous section using the 
linear Lagrange and cubic Hermite polynomials to interpo-
late the axial displacement and transverse displacements, 
namely

where

are, respectively, the vectors of nodal displacement for 
u0, wb and ws at node 1 and node 2; � = [N0 N1] and 
� = [H0 H1 H2 H3] are matrices of the following Lagrange 
and Hermite shape functions

and

Substituting Eqs. (21)–(24) into Eqs. (12), (15) and (17), 
one can obtain stiffness, mass, damping matrices and the 
vector of nodal load forces of a conventional two-node beam 
element for vibration analysis of the FGSW beam with a 
moving mass.

To improve the efficiency of the beam element, the above 
Lagrange and Hermite interpolations are enriched herein by 
hierarchical functions. To this end, the above interpolation 
functions Ni (i = 0, 1) and Hj (j = 1… 3) are supplemented 
by the following higher-order functions

(21)u0 = ��u0
, wb = ��wb

, ws = ��ws

(22)

�u0
= {u01 u02}

T
,

�wb
= {wb1 wb,x1 wb2 wb,x2}

T
,

�ws
= {ws1 ws,x1 ws2 ws,x2}

T

(23)N0 =
l − x

l
, N1 =

x

l

(24)
H0 = 1 − 3

x2

l2
+ 2

x3

l3
, H1 = x − 2

x2

l
+

x3

l2

H2 = 3
x2

l2
− 2

x3

l3
, H3 = −

x2

l
+

x3

l2

(25)�̂p = {N2 N3... Np}, �̂k = {H4 H5... Hk}
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with p ≥ 2, k ≥ 4 ; Np and Hk are the enrichment functions of 
degrees p and k, respectively. Four higher-order hierarchic 
polynomials are used herewith to enrich the original func-
tions, and the interpolation (21) is now replaced by

where �̂5 = {N2 N3 N4 N5} and �̂7 = {H4 H5 H6 H7} are 
matrices of the enriched shape functions; �̂u0 , �̂wb

 and �̂ws
 

are the supplemented vectors of unknowns with the follow-
ing forms

The enrichment functions Ni (i = 2… 5) and Hj (j = 4… 7) , 
derived in Ref. [55] and previously employed in [46, 48], 
are given below

and

With the enriched interpolations, the vector of degrees of 
freedom for the element (�) contains 22 components, and it 
can be written as

where �u0 , �wb
, �ws

 are given by Eq. (22), and �̂u0 , �̂wb
, �̂ws

 
are defined by (27).

(26)
u0 =��u0 +

��5�̂u0
, wb = ��wb

+ ��7�̂wb
,

ws =��ws
+ ��7�̂ws

(27)

�̂u0
= {û01 û02 û03 û04}

T

�̂wb
= {ŵb1 ŵb2 ŵb3 ŵb4}

T

�̂ws
= {ŵs1 ŵs2 ŵs3 ŵs4}

T

(28)

N2 =
√
6
x

l

�
x

l
− 1

�
,

N3 =
√
10

x

l

�
x

l
− 1

��
2x

l
− 1

�
,

N4 =
√
14

x

l

�
x

l
− 1

��
5x2

l2
−

5x

l
+ 1

�
,

N5 =
√
18

x

l

�
x

l
− 1

��
7x2

l2
−

7x

l
+ 1

��
2x

l
− 1

�

(29)

H4 =
√
10

x2

l2

�
1 −

x

l

�2

,

H5 =
√
14

x2

l2

�
1 −

x

l

�2�2x
l
− 1

�
,

H6 =
√
2
x2

l2

�
1 −

x

l

�2�
−

14x2

l2
+

14x

l
− 3

�
,

H7 =
√
22

x2

l2

�
1 −

x

l

�2�6x2
l2

−
6x

l
+ 1

��
2x

l
− 1

�

(30)�
22×1

= {�u0 �̂u0
�wb

�̂wb
�ws

�̂ws
}T

3.2  Beam element stiffness and mass matrices

Using Eqs. (26) and (30), one can write the strain energy in 
Eq. (12) in the following matrix form

where nele is the total number of elements used to discrete 
the beam, and � is the element stiffness matrix, which can 
be split into sub-matrices as

The sub-matrices in the diagonal of the above element stiff-
ness matrix have the following forms

and the off-diagonal sub-matrices are

(31)U =
1

2

nele∑
i=1

�
T
i
�i �i

(32)�
22×22

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�u0u0
�u0û0

�u0wb
�u0ŵb

�u0ws
�u0ŵs

�
T
u0û0

�û0û0
�û0wb

�û0ŵb
�û0ws

�û0ŵs

�T
u0wb

�
T
û0wb

�wbwb
�wbŵb

�wbws
�wbŵs

�
T
u0ŵb

�
T
û0ŵb

�
T
wbŵb

�ŵbŵb
�ŵbws

�ŵbŵs

�T
u0ws

�
T
û0ws

�T
wbws

�
T
ŵbws

�wsws
�wsŵs

�
T
u0ŵs

�
T
û0ŵs

�
T
wbŵs

�
T
ŵbŵs

�
T
wsŵs

�ŵsŵs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�u0u0
2×2

= ∫
l

0

�
T
,x
A11�,xdx,

�û0û0
4×4

= ∫
l

0

��T
5,x
A11

��5,xdx

�wbwb

4×4

= ∫
l

0

�
T
,xx
A22�,xxdx,

�ŵbŵb

4×4

= ∫
l

0

��T
7,xx

A22
��7,xxdx

�wsws

4×4

= ∫
l

0

[
�

T
,xx
(A22 − 2B12 + B22)�,xx +�

T
,x
D11�,x

]
dx

�ŵsŵs

4×4

= ∫
l

0

[
��T
7,xx

(A22 − 2B12 + B22)
��7,xx +

��T
7,x
D11

��7,x

]
dx

(33)
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(34)

�u0û0
2×4

= ∫
l

0

�
T
,x
A11

��5,xdx,

�u0wb

2×4

= −∫
l

0

�
T
,x
A12�,xxdx,

�u0ŵb

2×4

= −∫
l

0

�
T
,x
A12

��7,xxdx,

�u0ws

2×4

= ∫
l

0

�
T
,x
(−A12 + B11)�,xxdx,

�u0ŵs

2×4

= ∫
l

0

�
T
,x
(−A12 + B11)

��7,xxdx,

�û0wb

4×4

= −∫
l

0

��T
5,x
A12�,xxdx,

�û0ŵb

4×4

= −∫
l

0

��T
5,x
A12

��7,xxdx,

�û0ws

4×4

= ∫
l

0

��T
5,x
(−A12 + B11)�,xxdx,

�û0ŵs

4×4

= ∫
l

0

��T
5,x
(−A12 + B11)

��7,xxdx,

�wbŵb

4×4

=
1

2 ∫
l

0

�
T
,xx
A22

��7,xxdx,

�wbws

4×4

= ∫
l

0

�
T
,xx
(A22 − A12)�,xxdx,

�wbŵs

4×4

= ∫
l

0

�
T
,xx
(A22 − A12)

��7,xxdx,

�ŵbws

4×4

= ∫
l

0

��T
7,xx

(A22 − A12)�,xxdx,

�ŵbŵs

4×4

= ∫
l

0

��T
7,xx

(A22 − A12)
��7,xxdx,

�wsŵs
=

1

2 ∫
l

0

[
�

T
,xx
(A22 − 2B12 + B22)

��7,xx +�
T
,x
D11

��7,x

]
dx

Similarly, the kinetic energy T  in Eq (15) can also be written 
in the following matrix form as

with the element mass matrix of the beam � can be written 
in sub-matrices as

in which

and

(35)T =
1

2

nele∑
i=1

�̇
T
i
�i �̇i

(36)�
22×22

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�u0u0
�u0û0

�u0wb
�u0ŵb

�u0ws
�u0ŵs

�
T
u0û0

�û0û0
�û0wb

�û0ŵb
�û0ws

�û0ŵs

�T
u0wb

�
T
û0wb

�wbwb
�wbŵb

�wbws
�wbŵs

�
T
u0ŵb

�
T
û0ŵb

�
T
wbŵb

�ŵbŵb
�ŵbws

�ŵbŵs

�T
u0ws

�
T
û0ws

�T
wbws

�
T
ŵbws

�wsws
�wsŵs

�
T
u0ŵs

�
T
û0ŵs

�
T
wbŵs

�
T
ŵbŵs

�
T
wsŵs

�ŵsŵs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(37)

�u0u0
2×2

= ∫
l

0

�
TI11�dx,

�wbwb

4×4

= ∫
l

0

(
�

TI11� +�
T
,x
I22�,x

)
dx

�û0û0
4×4

= ∫
l

0

��T
5
I11

��5dx,

�ŵbŵb

4×4

= ∫
l

0

(
��T
7
I11

��7 +
��T
7,x
I22

��7,x

)
dx,

�wsws

4×4

= ∫
l

0

[
�

TI11� +�
T
,x
(I22 − 2J12 + J22)�,x

]
dx,

�ŵsŵs

4×4

= ∫
l

0

[
��T
7
I11

��7 +
��T
7,x
(I22 − 2J12 + J22)

��7,x

]
dx,
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Gauss quadrature with eight points in both the element 
length and thickness is used herein to evaluate the integrals 
in Eqs. (33), (34), (37) and (38). More points have been used, 
but no improvement in the numerical results was observed.

3.3  Moving mass matrices and load vector

The element mass, damping, stiffness matrices and the 
load vector resulted from the moving mass are given in 
this subsection. By substituting Eq. (26) into Eq. (17), 
one can write the potential energy of the moving mass in 
the form

(38)

�u0û0
2×4

= ∫
l

0

�
TI11

��5d,

�u0wb

2×4

= −∫
l

0

�
TI12�,xdx,

�u0ŵb

2×4

= −∫
l

0

�
TI12

��7,xdx,

�u0ws

2×4

= ∫
l

0

�
T (−I12 + J11)�,xdx,

�u0ŵs

2×4

= ∫
l

0

�
T (−I12 + J11)

��7,xdx,

�û0wb

4×4

= −∫
l

0

��T
5
I12�,xdx,

�û0ŵb

4×4

= −∫
l

0

��T
5
I12

��7,xdx,

�û0ws

4×4

= ∫
l

0

��T
5
(−I12 + J11)�,xdx,

�û0ŵs

4×4

= ∫
l

0

��T
5
(−I12 + J11)

��7,xdx,

�wbŵb

4×4

= ∫
l

0

(
�

TI11
��7 +�

T
,x
I22

��7,x

)
dx,

�wbws

4×4

= ∫
l

0

[
�

TI11� +�
T
,x
(I22 − J12)�,x

]
dx,

�wbŵs

4×4

= ∫
l

0

[
�

TI11
��7 +�

T
,x
(I22 − J12)

��7,x

]
dx,

�ŵbws

4×4

= ∫
l

0

[
��T
7
I11� + ��T

7,x
(I22 − J12)�,x

]
dx,

�ŵbŵs

4×4

= ∫
l

0

[
��T
7
I11

��7 +
��T
7,x
(I22 − J12)

��7,x

]
dx,

�wsŵs

4×4

= ∫
l

0

[
�

TI11
��7 +�

T
,x
(I22 − 2J12 + J22)

��7,x

]
dx,

where �m , �m and �m are, respectively, the element mass, 
damping and stiffness matrices due to the effects of the iner-
tia, Coriolis and the centrifugal forces of the moving mass; 
�m is the time-dependent element nodal load vector generated 
by the moving mass. The expressions for �m , �m , �m and �m 
are, respectively, given by Eqs. (40), (41), (42) and (43) in 
the below.

and

The notation [.]xe in the above equations means that the 
expression [.] is evaluated at xe - the current abscissa of the 
moving mass with respect to the left node of the element. 
Noting that except for the element under the moving mass, 
the element matrices �m , �m , �m and the force vector �m are 
zeros for all other elements.

3.4  Discrete equation of motion

The stiffness and mass matrices, as well as the nodal force 
vector for entire beam are constructed by assembling the 

(39)V =

nele∑
i=1

(
�̈
T
i
�mi

�̈i + �̇
T
i
�mi

�̇i + �
T
i
�mi

�i − �
T
i
�mi

)

(40)�m
22×22

= m

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�T� �T�̂5 � � � �

�̂
T
5
� �̂

T
5
�̂5 � � � �

� � �T� �T�̂7 �T� �T�̂7

� � �̂
T
7
� �̂

T
7
�̂7 �̂

T
7
� �̂

T
7
�̂7

� � �T� �T�̂7 �T� �T�̂7

� � �̂
T
7
� �̂

T
7
�̂7 �̂

T
7
� �̂

T
7
�̂7

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
xe

,

(41)�m
22×22

= 2mv

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� � � � � �

� � � � � �

� � �T�,x �T�̂7,x �T�,x �T�̂7,x

� � �̂
T
7
�,x �̂

T
7
�̂7,x �̂

T
7
�,x �̂

T
7
�̂7,x

� � �T�,x �T�̂7,x �T�,x �T�̂7,x

� � �̂
T
7
�,x �̂

T
7
�̂7,x �̂

T
7
�,x �̂

T
7
�̂7,x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦xe

,

(42)

�m
22×22

= mv2

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

� � � � � �

� � � � � �

� � �T�,xx �T�̂7,xx �T�,xx �T�̂7,xx

� � �̂
T
7
�,xx �̂

T
7
�̂7,xx �̂

T
7
�,xx �̂

T
7
�̂7,xx

� � �T�,xx �T�̂7,xx �T�,xx �T�̂7,xx

� � �̂
T
7
�,xx �̂

T
7
�̂7,xx �̂

T
7
�,xx �̂

T
7
�̂7,xx

⎤
⎥⎥⎥⎥⎥⎥⎥⎦xe

,

(43)�m
22×1

= mg
[
� � �T �̂

T
7
�T �̂

T
7

]T
xe
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derived element matrices and vector to form the equation 
of motion for the vibration analysis of the beam as

where � , �̇ and �̈ are, respectively, the global vectors of 
nodal displacement, velocity and acceleration; � , �m , �m , 
� , �m and � are, respectively, the global matrices and vec-
tor, constructed by assembling the matrices � , �m , �m , � , 
�m and � over the elements, respectively; the global damping 
matrix � of a FG beam can be determined by the theory of 
Rayleigh damping as [35]

where

with �i and �j are the damping ratios corresponding to two 
natural frequencies of the beam, �i and �j . A value of 0.5%, 
previously used in [42], is adopted for both �i and �j herein.

Equation (44) can be solved by the direct integration 
Newmark method. The average acceleration method which 
ensures the unconditional convergence [56] is adopted 
herein. The detail of the average acceleration method and 
its implementation are described in Ref. [56].

4  Numerical investigation

Numerical investigation is carried out in this section to 
validate the formulated beam element and to illustrate the 
effects of the material gradation and loading parameters on 
the vibration behaviour of the BFGSW beam. To this end, 
a simply supported beam with b = 0.5 m, h = 1 m and geo-
metric boundary conditions stated in Eq. (20) is employed 
in the analysis. Various values of the length-to-height ratio 
L/h are considered. The beam is made from alumina (Al2O3 ) 
as M1, zirconia (ZrO2 ) as M2 and aluminum (Al) as M3. 
The material data for the constituents are as follows [15, 57]

(44)(� +�m)�̈ + (� + �m)�̇ + (� +�m)� = �

(45)� = �� + ��

(46)� =
2�i�j(�i�j − �j�i)

�2

j
− �2

i

, � =
2(�j�j − �i�i)

�2

j
− �2

i

E1 = 380 MGPa, �1 = 3960 kg/m3 , �1 = 0.3 for alumina
E2 = 151 GPa, �2 = 3000 kg/m3 , �2 = 0.3 for zirconia
E3 = 70 GPa,  �3 = 2702 kg/m3 , �3 = 0.3 for aluminum

The dimensionless parameters, �i , Dd and rm , are respec-
tively introduced for the natural frequencies, dynamic mag-
nification factor and mass ratio as follows [32, 39]

where �i is the ith natural frequency, and wst = mgL3∕48E1I 
is the maximum static deflection of the fully alumina beam 
under the load mg. A uniform time step Δt = ΔT∕300 with 
ΔT  is the total time necessary for the mass crossing the 
beam is used for the Newmark procedure. Three numbers 
in parentheses, e.g. (2-1-1), are used below to denote the 
thickness ratio of the beam layers, from the bottom layer to 
the top layer.

4.1  Accuracy and convergence studies

The accuracy and convergence of the derived beam element 
are investigated in this sub-section. To this end, Table 1 
lists the fundamental frequency parameters of symmetric 
(2-1-2) and non-symmetric (2-2-1) beams with L∕h = 20 
obtained by the Voigt model and different number of the 
present enriched beam elements. For comparison purpose, 
the frequency parameters obtained by 26 Timoshenko beam 
elements of Ref. [40] are also given in the table. As seen 
from the table, the convergence of the present enriched 
element is very fast, and it is capable to give the accurate 
frequencies by using just one elements, regardless of the 
layer thickness ratio and the power-law indices. The con-
vergence of the present element in evaluating the frequen-
cies is the same as that of Ref. [48], where the frequencies 
of the two-phase BFGSW beam can also be obtained by 
using one enriched third-order shear deformation beam ele-
ment. The convergence of the derived element in evaluating 
the dynamic magnification factor Dd is shown in Table 2, 
where the dynamic factors of symmetric (2-1-2) and 

(47)

�i =
�iL

2

h

√
�3
E3

, Dd = max

(
w(L∕2), t

wst

)
, rm =

m

�1AL

Table 1  Convergence of 
enriched beam element in 
evaluating frequency parameter 
�1 of three-phase BFGSW beam 
(L/h = 20)

nx nz (2-1-2) beam (2-2-1) beam

nele=1 nele=2 Ref. [40] nele=1 nele=2 Ref. [40]

0.5 0.3 4.7114 4.7114 4.7096 4.8588 4.8588 4.8575
1 3.8643 3.8643 3.8634 4.1707 4.1707 4.1701
3 3.2119 3.2119 3.2110 3.6101 3.6101 3.6094

1 0.3 4.6828 4.6828 4.8365 4.8378 4.8378 3.6095
1 3.8580 3.8580 3.8571 4.1604 4.1604 4.1597
3 3.2528 3.2528 3.2517 3.6296 3.6296 3.6288
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non-symmetric (2-2-1) beams obtained by different num-
ber of the elements are given for various power-law indices. 
The table shows that the dynamic magnification factor Dd 
needs eight elements to converges, which is also very fast. 
It is worthy to mention that the frequency parameter and the 
dynamic magnification factor respectively require sixteen 
and twenty non-enriched elements to converge (not shown 
herein). Regarding the processing time, a desktop with pro-
cessor Intel quartet core i5-8250U 1.8 GHz and 4GB RAM 
needs 1.0621 s for the uniform mesh of 8 enriched beam 
elements to get the factor Dd of (2-1-2) beam with nx = 0.5 
and nz = 1 in Table 2, while the corresponding time for the 
mesh of 20 non-enriched elements is 1.2988 s. The process-
ing time of the enriched and non-enriched elements required 
for the frequency is much more different, namely 0.0961 s 
for the mesh of one enriched element, and 0.5502 s for the 
mesh of 18 non-enriched elements. Thus, compared to the 
non-enriched element, the enriched element is efficient in 
term of both the element requirement and processing time.

To show the accuracy of the derived beam element in 
some more further, Table 3 compares the fundamental fre-
quency parameters of a two-phase unidirectional FG sand-
wich beam obtained by the present element with that of 
Su et al. [58] using the general Fourier formulation. The 

two-phase beam in [58] is a special case of the present beam 
when nx = 0 or M2 is identical M3, and in this case the Max-
well formula returns to the original Mori-Tanaka scheme 
[52, 53]. Very good agreement between the result of the 
present work with that of Ref. [58] is noted from Table 3, 
regardless of the micromechanical model and the layer thick-
ness ratio. Table 4 compares the dynamic magnification fac-
tors of a two-phase unidirectional FG beam with L∕h = 20 , 
obtained by four elements of the present work with the 
results using the Ritz-DQ method of Khalili et al. [27], and 
Song et al. [59]. The table shows good agreement between 
the dynamic magnification factors of the present work with 
that of the references, especially Ref. [27], regardless of the 
moving mass velocity and the power-law index. The result of 
Ref. [27] is based on the Euler-Bernoulli beam theory, while 
the Kirchhoff plate theory is employed in Ref. [59], and the 
differential quadrature method is adopted in both the refer-
ences in computing the dynamic response of the beam. The 
small difference between the result of the present work with 
that of Refs. [27, 59] in Table 4 is resulted from the different 
theories and methods used in the works. The comparison of 
the time-histories for mid-span deflection of a two-phase 
unidirectional FG sandwich beam and a three-phase BFGSW 
beam under a moving point force obtained herein with the 

Table 2  Convergence of 
enriched beam element 
in evaluating dynamic 
magnification factor of three-
phase BFGSW beam (L/h = 
20, rm = 0.5, v = 50 m/s, Voigt 
model)

Beam nx nz nele=2 nele=4 nele=6 nele=8 nele=10

(2-1-2) 0.5 0.3 1.5478 1.5474 1.5474 1.5473 1.5473
1 2.2049 2.2043 2.2043 2.2043 2.2043
3 3.4145 3.4151 3.4150 3.4150 3.4150

 1 0.3 1.5191 1.5187 1.5188 1.5188 1.5188
1 2.1227 2.1222 2.1222 2.1222 2.1228
3 2.9097 2.9102 2.9101 2.9100 2.9100

(2-2-1) 0.5 0.3 1.4551 1.4548 1.4549 1.4549 1.4549
1 1.9474 1.9470 1.9470 1.9470 1.9470
3 2.4379 2.4370 2.4369 2.4370 2.4370

1 0.3 1.4335 1.4332 1.4333 1.4333 1.4333
1 1.8859 1.8855 1.8855 1.8855 1.8855
3 2.3387 2.3379 2.3379 2.3379 2.3379

Table 3  Comparison of 
fundamental frequency 
parameters of FG sandwich 
beam for nx = 0 and L/h = 10

Source nz Voigt model Mori-Tanaka scheme

1-1-1 1-2-1 1-3-1 1-4-1 1-1-1 1-2-1 1-3-1 1-4-1

Ref. [58] 0 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988 5.3988
Present 5.3934 5.3934 5.3934 5.3934 5.3934 5.3934 5.3934 5.3934
Ref. [58] 0.6 4.3706 4.5555 4.6894 4.7885 3.7388 4.0246 4.2394 4.4004
Present 4.3685 4.5525 4.6858 4.7844 3.7372 4.0220 4.2361 4.3965
Ref. [58] 1 4.0017 4.2539 4.4376 4.5734 3.4480 3.7782 4.0314 4.2220
Present 3.9995 4.2509 4.4340 4.5693 3.4462 3.7755 4.0281 4.2182
Ref. [58] 5 3.0937 3.4708 3.7728 4.0017 2.9387 3.3101 3.6263 3.8709
Present 3.0918 3.4679 3.7693 3.9978 2.9371 3.3074 3.6229 3.8672
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Table 4  Comparison of 
dynamic magnification factor of 
a unidirectional FG beam under 
a moving mass (L/h =20, Voigt 
model)

v (m/s) Source nz = 0.2 nz = 0.5 nz = 1 nz = 2 nz = 5 nz = 10 nz = 20

20 Present 0.6299 0.6942 0.7345 0.8046 0.8820 0.9412 0.9940
Ref. [27] 0.6305 0.6963 0.7568 0.8305 0.8937 0.9419 0.9880
Ref. [59] 0.6170 0.6928 0.7429 0.8062 0.8828 0.9414 0.9899

60 Present 0.6269 0.7015 0.8173 0.9258 1.0551 1.1601 1.2587
Ref. [27] 0.6134 0.7267 0.8570 0.9732 1.0901 1.1829 1.2749
Ref. [59] 0.6341 0.7154 0.8403 0.9547 1.0848 1.1912 1.2907

100 Present 0.8752 1.0129 1.1408 1.2560 1.3902 1.5009 1.6059
Ref. [27] 0.8863 1.0368 1.1798 1.3003 1.4173 1.5133 1.6100
Ref. [59] 0.9293 1.0877 1.2332 1.3565 1.4940 1.6087 1.7233

150 Present 1.0636 1.2018 1.3205 1.4144 1.5246 1.6251 1.7228
Ref. [27] 1.0684 1.2169 1.3524 1.4530 1.5435 1.6261 1.7131
Ref. [59] 1.1906 1.3561 1.5066 1.6283 1.7565 1.8717 1.9855

Fig. 1  A simply supported 
beam made from three-phase 
BFGSW, two ceramics (M1 and 
M2) and a metal (M3), with a 
moving mass

Fig. 2  Distribution of V1 , V2 
and V3 for nx = nz = 0.3 and 
z1 = −z2 = −h∕4

Fig. 3  Comparison of time 
histories for mid-span deflection 
of beams under a moving force 
with v = 50 m/s: a unidirec-
tional two-phase FG sandwich 
beam; b three-phase BFGSW 
beam
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result of Ref. [32] and Ref. [40], as shown in Fig. 3a and b, 
respectively, also confirms the accuracy of the derived ele-
ment in evaluating the dynamic response of the sandwich 
beam. Noting that Figs. 3a and b have been obtained with 
the beam geometric and material data of Refs. [32] and [40], 
respectively, and the damping effect was ignored.

4.2  Natural frequencies

The fundamental frequency parameters of the three-phase 
BFGSW beam with various power-law indices and layer 
thickness ratios are listed in Tables 5 and 6 for two values 
of the span-to-height ratio, L∕h = 5 and L∕h = 20 , respec-
tively. The frequency parameters are given for both the Voigt 
model and Maxwell formula. An opposite influence of the 
axial and transverse indices on the frequency of the beam is 
seen from the tables. The frequency parameter �1 increases 
with the increase of the axial index nx and it decreases with 
increasing the transverse index nz , irrespective of the micro-
mechanical model and the span-to-height ratio. The effect 
of the layer thickness ratio and the micromechanical model 
on the frequency parameter can also be observed from the 
tables. The frequency parameter is higher for the beam asso-
ciated with a large core thickness, regardless of the span-to-
height ratio and the power-law indices. The influence of the 
power-law indices and the layer thickness ratio on the funda-
mental frequency can be explained by the change in the per-
centage of the constituent materials, as stated in Ref. [40]. 
The micromechanical model also plays an important role on 
the fundamental frequency, and the frequencies obtained by 
the Maxwell formula are always lower than that using the 
Voigt model, regardless of the power-law indices. A careful 
examination of the table shows that the sensitivity to the 
change of the power-law indices is different for the frequen-
cies obtained by the Voigt model and the Maxwell formula. 
For example, the frequency parameter based on the Voigt 
model of the (2-1-2) beam with nx = 0.5 in Table 5 decreases 

27.07% by increasing nz from 0.5 to 5, while the correspond-
ing value of the parameter using the Maxwell formula is just 
20.92%. Furthermore, when increase nx from 0.5 to 5, the 
frequency parameter using the Voigt model of the (2-1-2) 
beam with nz = 1 in Table 5 increases only 6.92%, while the 
corresponding value using the Maxwell formula is 13.39%. 
Thus, the dependence of the frequencies upon the power-law 
indices is influenced by the micromechanical model. The 
influence of the material distribution and micromechanical 
model on the fundamental frequencies of the beam can be 
seen in some more further from Fig. 4, where the variation 
of the fundamental frequency parameter of symmetric (1-1-
1) and non-symmetric (2-2-1) beams obtained by both the 
Voigt model and Maxwell formula is depicted for L∕h = 10 . 
The frequency parameter based on the Voigt model, as seen 
from the figure, is always higher than that obtained by the 
Maxwell formula, irrespective of the power-law indices and 
the beam type.

Figure 5 shows the relation between the frequency param-
eter �1 and the span-to-height ratio L/h of symmetric (1-1-1) 
and non-symmetric (2-2-1) beams. Both the Voigt model 
and Maxwell formula are used to obtained the curves in the 
figure. As expected, an increase of the span-to-height ratio 
results in an increase of the frequency parameter, regardless 
of the micromechanical model and the beam type. The result 
in the figure shows the ability of the derived beam element 
in modelling the shear deformation effect on the frequencies 
of the BFGSW beam, and this effect is more significant for 
the beam with L∕h < 15.

The influence of the material distribution on the higher 
frequencies of the BFGSW beam is illustrated in Fig. 6, 
where the variation of the first four natural frequency 
parameters with the power-law indices is depicted for 
symmetric (1-1-1) and non-symmetric (2-2-1) beams with 
L∕h = 10 . The Maxwell formula was employed to obtain 
the frequencies in the figure. Similar to the fundamental 
frequency, the higher frequencies also increase with the 

Fig. 4  Variation of the funda-
mental frequency parameters 
with power-law indices of 
BFGSW beam with L∕h = 10
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increase of the index nx , and they decrease with increas-
ing the index nz . Based on the variation of the natural fre-
quencies upon the power-law indices in Fig. 6, a BFGSW 
beam with desired frequencies can be designed by choos-
ing appropriate values of the power-law indices nx and nz.

4.3  Dynamic response

The time histories for mid-span deflection of symmetric 
(1-1-1) and non-symmetric (2-2-1) beams with L∕h = 20 
are given in Fig. 7 for rm = 0.5 , nx = nz = 0.5 and various 
values of the moving mass velocity. The velocity, as seen 

Fig. 5  Relation between fre-
quency parameter �1 and span-
to-height ratio L/h of BFGSW 
beam
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Fig. 6  Variation of the first four 
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from the figure, has a significant influence on the way the 
beam vibrates, and the beam tends to executive more vibra-
tion cycles when it is under a moving mass with a lower 
velocity. For most of the travelling time, the mid-span 
deflection of the beam obtained by the Voigt model is lower 
than that using the Maxwell formula. In Fig. 8, the time 
histories for mid-span deflection of the symmetric (1-1-1) 
and non-symmetric (2-2-1) beams with L∕h = 20 obtained 
by both the Voigt model and Maxwell formula are depicted 
for nx = nz = 0.5 , v = 50 m/s and various values of the mov-
ing mass ratio. The mass ratio, as expected, changes the 
dynamic deflection significantly, and the maximum mid-
span deflection of the beams is larger for a higher moving 
mass ratio. Figures 7 and 8 show an important role of the 
micromechanical model on the dynamic response of beams. 
Not only the deflection amplitude but also the time at which 
the deflection attains the maximum value are significantly 
influenced by the micromechanical model.

In Table 7, the dynamic magnification factors of the 
BFGSW beam with L∕h = 10 are given for rm=0.5, v=50 
m/s and various values of the power-law indices and the 
layer thickness ratio. The dynamic magnification factor in 
the table increases with the increase of the transverse index 

nz and it decreases with increasing the axial index nx , regard-
less of the layer thickness ratio and the micromechanical 
model. The influence of the material distribution and the 
micromechanical model on the dynamic magnification factor 
can be seen more clearly from Fig. 9, where the variation 
of the factor Dd with the indices nx and nz of symmetric 
(1-1-1) and non-symmetric (2-2-1) beams is depicted for 
L∕h = 10 , rm = 0.5 and v = 50 m/s. The factor Dd obtained 
by the Voigt model is always lower than that using the Max-
well formula, regardless of the power-law indices and the 
beam type. Based on the result in Fig. 9, the beam can be 
tailored to achieve a desired dynamic magnification factor 
by appropriately selecting the indices nx and nz.

The relation between the factor Dd with the moving 
velocity v of the BFGSW beam obtained by the two micro-
mechanical models is illustrated in Fig. 10 for two pairs of 
the power-law indices, nx = nz = 0.5 and nx = nz = 5 , of 
symmetric (1-1-1) and non-symmetric (2-2-1) beams with 
L∕h = 20 . The non-symmetric beam with a larger core thick-
ness contains higher percentage of alumina, and thus it is 
stiffer than the symmetric beam. This is the reason for the 
lower dynamic magnification factor of the non-symmetric 
(2-2-1) beam compared to the symmetric (1-1-1) beam. 

Fig. 7  Time histories for mid-
span deflection for L∕h = 20 , 
nx = nz = 0.5 , rm = 0.5 and 
various moving mass velocities
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The factor Dd obtained by the Voigt model attains the maxi-
mum value at a higher velocity than the one does using the 
Maxwell formula. From the frequencies and the dynamic 
magnification factors obtained by the two micromechani-
cal models, one can conclude that the Voigt model is more 
conservative compared to the Maxwell formula. It is worthy 

to note that while Voigt model is just an arithmetic aver-
age, the Maxwell formula treats the matrix and inclusions 
differently, and thus it describes better the material micro-
structures of the beam [52, 53]. This leads to the difference 
between the vibration characteristics obtained by the two 
homogenization models. The influence of the mass ratio on 

Fig. 8  Time histories for mid-
span deflection for L∕h = 20 , 
nx = nz = 0.5 , v = 50 m/s and 
various mass ratios
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Table 5  Fundamental frequency 
parameters for L/h = 5 and 
different power-law indices and 
layer thickness ratios

nx nz Voigt model Maxwell formula

1-0-1 2-1-2 2-1-1 2-2-1 1-0-1 2-1-2 2-1-1 2-2-1

0.5 0.5 4.2322 4.3262 4.3918 4.4867 3.6222 3.7585 3.8737 4.0247
1 3.7549 3.8854 3.9945 4.1349 3.2509 3.3876 3.5434 3.7201
2 3.3382 3.4702 3.6260 3.7960 3.0214 3.1249 3.3119 3.4929
5 3.0885 3.1551 3.3460 3.5094 2.9317 2.9724 3.1745 3.3365

1 0.5 4.2953 4.3814 4.4421 4.5296 3.7574 3.8818 3.9854 4.1226
1 3.8613 3.9781 4.0778 4.2055 3.4095 3.5340 3.6745 3.8351
2 3.4913 3.6053 3.7456 3.8973 3.1950 3.2881 3.4564 3.6198
5 3.2763 3.3293 3.4985 3.6408 3.1124 3.1468 3.3279 3.4721

5 0.5 4.4295 4.4993 4.5496 4.6219 4.0984 4.1914 4.2670 4.3689
1 4.0852 4.1743 4.2545 4.3559 3.8189 3.9114 4.0138 4.1326
2 3.8088 3.8881 3.9968 4.1115 3.6485 3.7150 3.8367 3.9548
5 3.6605 3.6898 3.8153 3.9165 3.5853 3.6064 3.7352 3.8345
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Table 6  Fundamental frequency 
parameters for L/h=20 and 
different power-law indices and 
layer thickness ratios

nx nz Voigt model Maxwell formula

1-0-1 2-1-2 2-1-1 2-2-1 1-0-1 2-1-2 2-1-1 2-2-1

0.5 0.5 4.4296 4.5289 4.6033 4.7067 3.7735 3.9130 4.0410 4.2019
1 3.9099 4.0451 4.1666 4.3174 3.3762 3.5115 3.6829 3.8689
2 3.4644 3.5960 3.7675 3.9472 3.1363 3.2301 3.4347 3.6225
5 3.2093 3.2607 3.4699 3.6379 3.0550 3.0692 3.2904 3.4544

1 0.5 4.4992 4.5900 4.6590 4.7545 3.9200 4.0469 4.1626 4.3090
1 4.0258 4.1461 4.2578 4.3949 3.5467 3.6691 3.8245 3.9935
2 3.6296 3.7417 3.8971 4.0572 3.3224 3.4046 3.5900 3.7592
5 3.4123 3.4474 3.6343 3.7797 3.2492 3.2554 3.4550 3.5999

5 0.5 4.6481 4.7210 4.7788 4.8574 4.2932 4.3862 4.4718 4.5801
1 4.2712 4.3613 4.4523 4.5609 3.9922 4.0791 4.1945 4.3186
2 3.9756 4.0489 4.1713 4.2913 3.8156 3.8661 4.0030 4.1232
5 3.8324 3.8374 3.9788 4.0793 3.7670 3.7519 3.8971 3.9925

Table 7  Dynamic magnification 
factors for different power-law 
indices and layer thickness 
ratios (L/h=10, rm=0.5, v=50 
m/s)

nx nz Voigt model Maxwell formula

1-0-1 2-1-2 2-1-1 2-2-1 1-0-1 2-1-2 2-1-1 2-2-1

0.5 0.5 1.8295 1.7006 1.6295 1.5209 2.5251 2.3131 2.1655 1.9666
1 2.4973 2.2635 2.1182 1.9151 3.1744 2.8925 2.6692 2.3900
2 3.2097 2.9078 2.6717 2.3757 4.0892 3.5983 3.0863 2.7623
5 4.1106 3.6827 3.1688 2.8322 4.6786 4.3050 3.5679 3.0601

1 0.5 1.7537 1.6392 1.5755 1.4779 2.3429 2.1559 2.0274 1.8530
1 2.3417 2.1378 2.0085 1.8294 2.9299 2.6887 2.4865 2.2384
2 2.9685 2.7036 2.4929 2.2353 3.4467 3.1373 2.8783 2.5829
5 3.4339 3.2051 2.9296 2.6344 3.8969 3.6252 3.1692 2.8641

5 0.5 1.6068 1.5199 1.4702 1.3939 1.9157 1.7937 1.7116 1.5983
1 2.0342 1.8894 1.7941 1.6629 2.3243 2.1664 2.0366 1.8745
2 2.4584 2.2845 2.1372 1.9577 2.6456 2.4859 2.3138 2.1232
5 2.7580 2.6165 2.4279 2.2333 2.8414 2.7180 2.5200 2.3248

Fig. 9  Variation of dynamic 
magnification factor with 
power-law indices of BFGSW 
beam for L/h = 10, rm = 0.5 and 
v = 50 m/s
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the dynamic behaviour of the sandwich beam is shown in 
Fig. 11, where the relation between the factor Dd with the 
velocity v of the (1-1-1) and (2-2-1) beams is shown for 
L∕h = 20 , nx = nz = 0.5 and various values of the mass ratio. 
As expected, for most of the moving mass velocity, dynamic 
magnification factor is higher when the beam under a larger 
ratio moving mass.

The effect of the span-to-height ratio on the dynamic 
response of the BFGSW beam is shown in Fig. 12, where 
the relation between the dynamic factor Dd and the moving 
mass velocity v of symmetric (1-1-1) and non-symmetric 
(2-2-1) beams is depicted for various values of the ratio L/h 
and two pairs of the power-law indices, nx = nz = 0.3 and 
nx = nz = 3 . The figure shows an important role of the span-
to-height ratio on the relation between the factor Dd and the 
velocity v. The velocity at which the factor Dd attained the 
maximum value is considerably higher for the beam having 
a lower ratio L/h, regardless of the power-law-indices and 
the beam type. In addition, the range of the velocity in which 

the dynamic magnification factors repeatedly increases and 
decreases is also wider for the beam with a lower span-to-
height ratio.

Finally, the influence of the material distribution and 
the micromechanical model on the stress distribution of 
the three-phase BFGSW beam is investigated. To this end, 
Figs. 13 and 14 respectively show the thickness distribution 
of the axial and shear stresses of symmetric (1-1-1) and non-
symmetric (2-2-1) beams for L∕h = 10 , nx = 0.5 , rm = 0.5 , 
v = 50 m/s and two values of the transverse index nz , nz = 0.5 
and nz = 5 . The stresses in the figures are computed at the 
time when the moving mass arrives at the mid-span of the 
beam, and they are normalized as �∗

xx
= �xx(L∕2, z)∕�0 and 

�∗
xz
= �xz(L∕2, z)∕�0 , with �0 = mg∕bh . The influence of the 

transverse index nz on the axial stress distribution of both the 
symmetric and non-symmetric beams is clearly seen from 
Fig. 13a and b, especially in the two skin layers. It can be 
seen from Fig. 14 that the computed shear stress vanishes 
at the bottom and top surfaces of the beam, and this is in 

Fig. 10  Relation between 
dynamic magnification factor 
with moving mass velocity for 
L∕h = 20 and rm = 0.5
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agreement with the free transverse shear stress conditions on 
the surfaces of the sinusoidal theory. The transverse index nz , 
as seen from Fig. 14, significantly changes the shear stress 
amplitude, and the maximum shear stress of both the sym-
metric and non-symmetric beams increases by increasing 

the index nz . The difference between the stress distribution 
of the symmetric beam and the non-symmetric beam can 
be observed from Figs. 13 and 14. The change in the thick-
ness direction of the axial stress in the upper layer of the 
non-symmetric beam (Fig. 13b) is much more significant 

Fig. 12  Effect of span-to-
height ratio on relation between 
dynamic magnification factor 
and moving mass velocity of 
BFGSW beam ( rm = 0.5)
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compared to that of the symmetric beam (Fig. 13b). The 
shear stress of the non-symmetric beam (Fig. 14b) is no 
longer symmetric with respect to the mid-plane as in case of 
the symmetric beam (Fig. 14a). In addition, the maximum 
axial and shear stresses obtained by the Maxwell formula are 
considerably higher than that obtained by the Voigt model.

5  Conclusions

The vibration analysis of a three-phase BFGSW beam with 
a moving mass using the sinusoidal shear deformation 
enriched beam element has been presented in this paper for 
the first time. The beam consists of a homogeneous core 
and two FG layers with material properties varying in both 
the longitudinal and transverse directions by the power gra-
dation laws. In addition to the Voigt model, the Maxwell 
formula were firstly used herein to evaluate effective elastic 
moduli of the beam. The conventional Lagrange and Her-
mite interpolations were enriched by the hierarchical func-
tions in derivation of the element stiffness and mass matri-
ces. An extensive numerical investigations have been carried 
out, and the effects of the beam and loading parameters on 
vibration behaviour of the beam have been investigated. The 
difference in the frequencies and dynamic response of the 
three-phase FGSW beam obtained by the Voigt model and 
the Maxwell formula is studied this paper for an initial time. 
The main findings from the numerical results can be sum-
marized as follows:

• The beam element with enrichment interpolation derived 
in the present work is accurate and efficient in modelling 
vibration of the BFGSW beam carrying a moving mass. 
The element can yield accurate frequencies and dynamic 
response of the beam with a small number of elements.

• The material distribution plays an important role on the 
vibration behaviour of the beam, and the beam can be tai-
lored to achieve desired vibration characteristics by choos-
ing appropriate power-law indices.

• The micromechanical model has an important role on 
both the free and forced vibration of the BFGSW beam. 
The natural frequencies obtained by the Voigt model are 
always higher than that using the Maxwell formula, while 
the dynamic magnification factors using the Voigt model 
are smaller than the corresponding values using the Max-
well formula.

It is worthy to mention that though the numerical investiga-
tions are presented in this paper for the simply supported beam 
only, the beam element derived herein can be used in vibration 
analysis of BFGSW beams with other boundary conditions 
as well. In addition, more efforts should be made to take into 
account influence of some practical factors such as porosities 
in the beam microstructure and environmental temperature on 
the vibration of the sandwich beam.
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