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Abstract
Harris Hawk’s Optimizer (HHO) is a recently developed meta-heuristics search algorithm with inherent capability to explore 
global minima and maxima. However, the local search of the basic HHO algorithm is sluggish and has slow convergence rate 
due to its poor exploitation capability. In the present work, exploration and exploitation phase of HHO have been improved 
using a chaotic variant of the present optimizer. The proposed chaotic variant has been simulated and tested for 23 standard 
test functions and 10 different engineering design optimization problems of real life. To check the efficacy of the proposed 
algorithm, the test results of the proposed CHHO algorithm have been compared with others recently developed and well-
known classical optimizers, such as PSO, DE, SSA, MVO, GWO, DE, MFO, SCA, CS, TSA, PSO-DE, GA, HS, Ray and 
Sain, MBA, ACO, MMA, etc. The experimental results reveal that the suggested method outperforms on most of the test 
functions and engineering design challenges with superior convergence.

Keywords  Meta-heuristic · Chaotic · Exploitation · Harris Hawks Optimizer · Convergence

1  Introduction

Machine learning and computational intelligence is advanc-
ing rapidly for solving complex optimization problems. Opti-
mization is the process of selecting of best possible solution 
amongst the given set of alternatives. Generally, gradient 
approaches are applied to solve local optimization with only 
one minimum or maximum point. It has been noticed that 
discontinuous methods are difficult to differentiate the global 
solution of multimodal functions in a single run. These types 
of non-linear un-constrained convex optimization could be 

precisely solved by meta-heuristics algorithms. Complex 
engineering problems are effectively tackled by selecting 
a heuristic path which provides an appropriately worthy 
solution to an optimization problem [1]. These days various 
meta-heuristics algorithms have been anticipated by taking 
inspiration from natural phenomena and social activities. 
These optimization techniques are very flexible and may be 
applied to engineering and design problems. These meta-
heuristic algorithms may be broadly categorized as swarm-
intelligence-based, evolutionary algorithms, physics-based 
algorithms, and human-based. The first category of popula-
tion-based meta-heuristics mimics collective or social behav-
iors, such as moving in swarms, flocks, and herds. Some of 
the swarm Intelligence approaches are: Ant Colony Opti-
mization (ACO) [2], Particle Swarm Optimization (PSO) 
[3], Artificial Bee Colony (ABC) [4], Bat-inspired Algo-
rithm (BA) [5], Grey Wolf Optimization (GWO) [1], Moth 
Flame Optimization (MFO) [6], Krill Herd algorithm(KH) 
[7], Water Cycle algorithm(WCA) [8], Animal migration 
optimization(AMO) [9], Imperialist Competitive Algorithm 
(ICA) [10], Branch and Bound (BB) [11], and Harris Hawk 
Optimizer(HHO) [12]. The second category is Evolutionary 
Algorithms (EAs), such as Genetic algorithm (GA) [13], dif-
ferential evolution (DE) [14], Evolution strategy (ES) [15] 
and Genetic programming (GP), and mimic behaviors, such 
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as selection, recombination, and mutation. The third class 
utilizes some physical laws includes Gravitational search 
algorithm (GSA) [16], Big-Bang Big-Crunch (BBBC) 
[17], Multi-Verse Optimizer(MVO) [18], and Sine–Cosine 
Algorithm(SCA) [19]. The last category mimics certain 
human behaviors which include some of the well-known 
algorithms, such as Tabu search (TS) [20], Teaching–learn-
ing-Based Optimization (TLBO) [21], Socio Evolution, and 
Learning Optimization (SELO) [22], Biogeography-Based 
algorithm [23], etc. A momentary assessment of these meta-
heuristics and hybrid search algorithms has been portrayed 
in Table 1.

In last few decades, we witnessed numerous new opti-
mization methodologies which have been introduced to 
improve system performance with different objectives. It has 
been seen that a common feature of these metaheuristics 
algorithms is searching process which involves diversifica-
tion (exploration phase) and intensification (exploitation 
phase). However, local minima stagnation is the major draw-
back of these heuristics algorithms resulting in premature 
convergence. In the proposed work, we intend to improve 
the performance of Harris Hawks Optimizer (HHO) by cha-
otic strategy. HHO is a stochastic metaheuristic algorithm 
developed by Heidari et al. [12].

The main feature of HHO is to mimic the collective hunt-
ing by adopting four strategies, which includes encircling, 
surprise pouch, soft besiege and hard besiege. HHO is a 
simple, fast and efficient method to solve complex opti-
mization including discrete, continuous, constraint and 
unconstraint problems. The major advantages of HHO are 
simplicity in methodology, ability to escape safely from 
local minima stagnation, flexibility in operation, improved 
performance and ease of adoption. However, besides all of 
these advantages, there are some flaws in HHO. The major 
limitations are possibility of being trapped in local minima 
while solving large multimodal and composition optimiza-
tion problems, inability to maintain proper balance between 
global and local search, undesirable performance in case of 
multi-dimensional problems [60]. This is consistent with the 
observations presented by Heidari et al. [12], who notified 
that HHO gives poor performance in some circumstances 
of Unimodal and multimodal test functions. Nevertheless, 
No free lunch theorem allows for further modification and 
improvement, as no single method is efficient to tackle all 
kinds of optimization problems. In a very short span of time, 
several HHO variants have been developed by researchers 
and find wide applications in solving optimization problems 
in different domains, such as engineering design, manufac-
turing problems, power quality, image segmentation, drug 
design, networking and pattern recognition problems. From 
the vast HHO research variants, we have selected some 
of the specific work for precise comparison and interpre-
tation. Yildiz et al. [61] presented an effective solution to 

manufacturing optimization problems by solving grinding 
optimization problem using HHO, GOA and MVO. The 
comparison results show that the proposed method gives 
improved results in handling optimum optimization varia-
bles. Abbasi et al. [62] adopted HHO to explore more promi-
nent solution in lowering entropy generation of the micro-
channel considering velocity and temperature constraints. 
Moayedi et al. [63] incorporated HHO with ANN to find 
stability of soil slopes which is one of the major issues con-
cerned with civil engineering design problem. It was noted 
that HHO-ANN method efficiently provides better fitted 
structure. Chen et al. [64] developed a hybrid algorithm to 
improve local search capability of basic HHO by combin-
ing chaotic maps, multi-population approach and differential 
strategy. In the proposed work, logistic mapping has been 
used to enhance exploitation phase. The comparative assess-
ment reveals that proposed method is capable ensuring a 
balance between exploration and exploitation phase. Firouzi 
et al. [65] have solved the complications associated with 
cracks in cantilever beam design by applying impact test-
ing and explored location and depth of crack for Euler–Ber-
noulli beam using basic and hybridized algorithms. In article 
[66], authors have incorporated Gaussian bare bone (GB) 
strategy with HHO to maintain balance between global and 
local search capabilities. It has been analyzed from this 
study that for better results, the program has to run for a 
large number of iterations. Chiwen et al. [67] presented an 
improved version of HHO by information exchange between 
search agents. A set of nine benchmark problems and seven 
engineering design problems were addressed effectively 
to check potentiality of the method. Elkadeem et al. [68] 
demonstrated performance analysis of three standard IEEE 
system considering renewables and distributed generator 
by applying hybrid HHO–PSO method. All of these studies 
attempted to optimize different objectives by modifying clas-
sical HHO. A common flaw noted from these variants is lack 
of diversity in their search process and possibility of being 
struck in local minima. This premature convergence may 
result in inferior performance for some of Unimodal and 
multimodal benchmark functions. Authors have used differ-
ent topologies, such as hybrid, binary and chaotic strategies, 
for improving performance of various systems. This chaotic 
approach finds wide scope for developing new algorithms 
based on chaotic maps. The researchers are continuously 
working on different chaotic variants to solve optimization 
problems. Such Chaotic behavior has been implemented by 
researchers in algorithms like genetic algorithms [69], cha-
otic Krill Herd search [54], SCA [70], BA [71], GWO [72], 
PSO [73], WOA [74]. Moreover, a large number of studies 
revealed that basic HHO algorithm cannot escape from the 
local optimal solution efficiently and thus results in poor 
convergence efficiency. Therefore, in this work, we intend to 
propose a new chaotic HHO algorithm (CHHO). The chaotic 



1185Engineering with Computers (2023) 39:1183–1228	

1 3

local search (CLS) is combined with basic HHO algorithm 
to improve the exploitation phase of HHO.

The rest of the paper is arranged as follows: Sect. 2 com-
prises a brief over review related to chaotic algorithms. Sec-
tion 3 describes about the back ground of proposed scheme. 

Section 4 first gave a description of standard benchmark 
functions. Section 5 includes test results of proposed algo-
rithm and comparative analysis with well-known algorithms. 
Testing of 10 real-world problems is presented in Sect. 6 and 
finally, paper is concluded in Sect. 7.

Table 1   Survey of Some existing meta-heuristic and hybrid algorithms

Algorithm Year Ref. 
no.

Number of 
benchmark

Problem type

Arithmetic optimization algorithm 2021 [24] 29 Engineering design problem
Archimedes optimization algorithm 2021 [25] 30 Engineering design optimization
Modified butterfly optimization algorithm 2021 [26] 14 Engineering design problem
hSMA-PS 2021 [27] 23 Standard benchmark and engineering design problem
Aquila optimizer 2021 [28] 23 Standard benchmark and engineering design problem
Spiral motion mode embedded grasshopper optimization 

algorithm
2021 [29] 30 Standard benchmark and engineering design problem

Hybrid variational mode decomposition (HVMD) 2021 [30] NA Wind turbine power output prediction
Modified krill herd 2021 [31] NA Economic load dispatch problem
A meliorated Harris Hawks optimizer 2021 [32] 23 Combinatorial unit commitment
Hunger game search algorithm 2021 [33] 23 Standard benchmark and engineering design problem
Soccer-inspired metaheuristics 2021 [34] 23 Optimization problems
Hybrid multi-population algorithm (HMPA) 2020 [35] 89 Standard benchmark and engineering design problem
Slime mould algorithm 2020 [36] 33 Standard benchmark and engineering design problem
Marine predators algorithm 2020 [37] 29 Engineering design optimization
Harris Hawks Optimizer 2019 [38] 29 Standard benchmark
Self-adaptive differential artificial bee colony algorithm 2019 [39] 28 Optimization
The Sailfish optimizer 2019 [40] 20 Standard benchmark
Coyote optimization algorithm 2018 [41] 40 Engineering design optimization
barnacles mating optimizer 2018 [42] 23 Design optimization
Salp Swarm algorithm 2017 [43] 19 Engineering design optimization
Electro-search algorithm 2017 [44] 10 Engineering design optimization
Grasshopper optimization algorithm 2017 [45] 19 Global optimization
GWO-SCA 2017 [46] 22 Bio-medical optimization
Lion optimization algorithm 2017 [47] NA Engineering design optimization
Whale optimization algorithm 2016 [48] 29 Engineering design optimization
Sine Co-Sine Algorithm 2016 [19] 19 Universal
Binary Gray Wolf optimization 2015 [49] 18 Design formulation
Fuzzy optimization Technique 2015 [50] 29 Engineering optimization
Moth-flame optimization algorithm 2015 [6] 29 Engineering design
Multi-verse optimizer 2015 [18] 19 Engineering optimization
Cuckoo search optimization algorithms 2015 [51] 28 Engineering optimization
Chaotic invasive weed optimization algorithms 2014 [52] NA Engineering design optimization
Symbiotic organism search 2014 [53] 26 Engineering design optimization
Chaotic Krill Herd algorithm 2014 [54] 14 NA
Interior search algorithm 2014 [55] 14 Engineering design optimization
Competition over resources 2014 [56] 8 NA
Forest optimization algorithm 2014 [57] 4 Feature weighting
Stochastic fractal search 2014 [58] 23 Engineering design optimization
Animal migration optimization 2013 [9] 23 NA
Cultural evolution algorithm 2013 [59] 7 Reliability engineering
Krill Herd algorithm 2012 [7] 20 NA
Water Cycle algorithm 2012 [8] 19 Engineering design optimization
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2 � Literature survey of some recent HHO 
and Chaotic variants

In this section, a specific associated work has been presented 
to explore information regarding recent innovations related 
to HHO variants and different chaotic strategies are explored 
in Table 2.

From the prescribed literature studies, it has been noticed 
that a wide variety of meta-heuristic and hybrid variants 
of HHO have been developed by the research author to fix 
different kinds of stochastic complexities. Some real-world 
problems, such as data mining, environmental issues, medi-
cine and drugs, materials, engineering design, image seg-
mentation, power flow, solar PV modules, feature selection, 
etc., were analyzed by various researchers using a heuristic 
approach. The solution accuracy of any algorithm depends 
on its capability to have a proper balance between intensi-
fication and diversification. Studies revealed that slow con-
vergence is the common problem of most heuristic algo-
rithms. This ultimately gives rise to reduced computational 
efficiency. Thus, to improve the solution efficiency, a trend 
of developing hybrid algorithms is escalating vastly. Also, 
diverse chaotic strategies have been effectively incorporated 
by many researchers to optimize specific objective function. 
The ultimate aim of these techniques is to provide an opti-
mal solution for a pre-defined problem. Recently, a chaotic 
variant of HHO using the “logistic function” was presented 
by Chen et al. [95]. In this work, HHO was integrated with 
opposition-based learning along with chaotic local search 
to estimate PV parameters. Current–Voltage characteristics 
of PV modules are upgraded utilizing chaos periodicity. It 
is observed that this method generates optimal solution by 
sensing temperature difference and irradiation variance. This 
research is pragmatic to deal with only parameter tuning 
and other crucial variables skipped. Ewes et al. [75] applied 
HHO for enhancing local search capability of MVO while 
chaotic maps were employed for determining optimal param-
eter tuning of MVO. Total 15 benchmark functions were 
tested for 10 chaotic functions. It was concluded that “circle 
function” gave best optimal solution. Also, four real-world 
engineering problems were analyzed to show the propensity 
of present method. In this work, for recording optimal solu-
tion, a large number of parameters are altered, which may 
result adverse effect on HHO performance. Gao et al. [96] 
used Tent Chaotic function to improve the exploitation phase 
of HHO. It was noticed that the solutions of benchmark 
functions were not exploited to an appreciable level. It was 
noticed that authors have demonstrated only classical HHO 
and CHHO results. Also, comparative analysis with com-
petitive method was not performed. In most cases, results 
are subjected to premature convergence with poor efficiency.

2.1 � Novelty of proposed Chaotic HHO method

	 (i)	 In the proposed research, the local search capabil-
ity of classical HHO has been enhanced using “Tent 
chaotic function”.

	 (ii)	 The eminence of the initial population has been 
enhanced by chaos theory.

	 (iii)	 To retain original characteristics of HHO, parameters 
of HHO are not altered.

	 (iv)	 The CHHO method has been effectively employed 
to evaluate performance of 23 standard benchmarks, 
and 10 real-world design problems.

	 (v)	 The effectiveness of the proposed algorithms has 
been inspected by Wilcoxon signed-rank test and 
statistical test.

	 (vi)	 The comparative analysis demonstrated in the result 
section revealed that the suggested method gives out-
standing performance in terms of fitness evaluation 
and solution accuracy.

3 � Background of proposed work

Harris Hawks are the intelligent raptors that reside in the 
United States and Mexico. For their survival, Hawks used 
to perform hunting in groups. The hunting process involves 
their inherent ability to communicate within group members 
to encircle, attack by making a large number of soft and hard 
besieges. During this process, if the target succeeds in escap-
ing, hawks again coordinate among themselves for another 
attack. Meanwhile, each hawk may exchange the positions. 
Finally, the exhausted prey loses its energy rapidly and get 
struck by the hawks. The captured prey is shared equally 
among the group members. Remaining food if any is car-
ried by the hawks to their nest for young hawks [97]. In this 
process, there is a probability for each matching strategy 
depending on the sites of the family associates and the prey 
which is mostly a rabbit. In spite of having decent conver-
gence rate, HHO still lacks in finding best optimum solu-
tion. So, to diminish this effect and increase its proficiency, 
chaotic strategy is developed. Basically from the gathered 
literature given in Table 2, ten most significant chaotic maps 
extensively used in the field of optimization discovering the 
search space more enthusiastically and comprehensively. 
Out of all these available chaotic maps, Tent map is applied 
to HHO in the proposed work. Conventional Harris Hawks 
Optimizer has poor exploitation capability and lacks to dis-
cover local search space. In an endeavor to pace up Har-
ris Hawks streamlining agent and to kill it nearby pursuit 
space, the suggested calculation plans to improve the local 
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Table 2   Literature Survey related to hybrid and chaotic variants

Sr. No. Algorithm Ref. no. Year Main findings related to proposed work

1 Chaotic Multi-Verse Harris Hawks Optimization [75] 2020 In this work, local search capability of basic MVO is 
enhanced by applying chaos theory. The chaotic algo-
rithm was tested for fifteen bench mark problems and 
four engineering design problems

2 Atom search optimization and Tree-seed algorithm [76] 2020 In this research, atom search algorithm is hybridized with 
tree-seed algorithm to solve eighty nine benchmark 
problems along with seven engineering design problems. 
Levy flight and chaos theory was employed to develop 
balance between exploration and exploitation phase

3 Hybrid Multi-Population Algorithm(HMPA) [35] 2020 This articles presents multi-population-based hybrid 
algorithm. Beside fifty benchmark problems, seven real-
world engineering problems were found to outperform 
compared to other competitive methods in terms of 
exploration and exploitation. Levy flight and chaos 
theory was employed to develop balance between explo-
ration and exploitation phase

4 HHO-IGWO [77] 2020 Twenty-three benchmark problems along with 10 multidis-
ciplinary engineering design problems were simulated in 
matlab using hybrid HHO-IGWO algorithm

5 SCA-HHO Algorithm [78] 2020 Faults in rolling bearings were analyzed using SCA-HHO 
method. Results prove the superiority of SCA-HHO over 
other methods scaled on the basis of four validity indices

6 HHO-SCA [79] 2020 Sixty five benchmark functions were tested using SCA-
HHO algorithm. It was noticed that the proposed 
hybrid method gives superior results compared to other 
algorithms

7 Boosted Harris Hawk’s Optimization (BHHO) [80] 2020 This paper presents Boosted HHO technique for accelerat-
ing convergence rate by combining mutation parameters 
of DE and random exploratory steps basic HHO. Statisti-
cal results revealed proposed method provides proper 
balance between exploration and exploitation phases 
and gave superior convergence curves compared to other 
methods

8 Improved Harris’s Hawks Optimization(IHHO) [81] 2020 In this work, artificial tree algorithm was applied to 
enhance the exploitation phase of HHO for optimizing 
parameters of space vector machine and extreme learning 
machine.Twenty-three benchmark function were test 
to check the effectiveness of the proposed algorithm in 
determining accurate stock market prediction

9 IHHO and MOIHHO [82] 2020 IHHO and MOIHHO methods were applied for determin-
ing the optimal size and location of DG at different oper-
ating power factors. The proposed method was tested on 
IEEE 33-bus and IEEE 69-bus system to minimize total 
active power loss and improve voltage profile

10 Enhanced Harris Hawks Optimization (EHHO) [83] 2020 In this work, parameter identification of photo-voltaic 
model was enhanced by incorporating orthogonal-based 
learning. This method was to provide better solution 
compared to other methods

11 HHO-FORM [84] 2020 This article presents solution for High-dimensional 
problems involving three numerical problems and two 
engineering design problems were enhanced by improv-
ing parameters of first order reliability method (FORM) 
by incorporating HHO

12 Quasi-reflected Harris hawks optimization algo-
rithm

[85] 2020 In proposed work, QHHOA algorithm was tested for 
twenty- three benchmark functions with two variants 
HHO. It was observed that the hybrid method effective 
in solving multi-dimensional problems with superior 
convergence
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search capability of Harris Hawks Optimizer using a chaotic 
local Search and noted as Chaotic Harris Hawks Optimizer 
(CHHO). The strategy is shown briefly in the Fig. 1.

3.1 � Different Chaotic functions

The concepts of probability distribution are captured by lot 
of meta-heuristics algorithms to gain randomness. Chaotic 
maps could be beneficial if randomness due to ergodicity, 
idleness and randomness properties is properly utilized. 
These chaotic criteria are fulfilled by Eq. (1).

In Eq.  (1), ok+1 & f (ok) are the ( k + 1)th & kth chaotic 
number, respectively. The action of chaotic function is 
dependent on initial value o0 . The particular type of chaotic 
function will generate a solution within the standardized 
equations as shown in Table 3. In the proposed research, 
from these 10 chaotic strategies, Tent chaotic map is intui-
tively clubbed with basic HHO to enhance the exploitation 
phase of the search space.

(1)ok+1 = f (ok)

Table 2   (continued)

Sr. No. Algorithm Ref. no. Year Main findings related to proposed work

13 HHO-ANN [86] 2020 In this work, HHO method was applied to improve search 
capability of ANN to improve efficiency of prediction for 
two test models incorporating three different distillation 
systems. The analytical results prove that HHO algorithm 
effectively enhanced the prediction ability of the system

14 CHHO [87] 2020 In this research, ten chaotic maps were integrated with 
basic HHO for tuning parameters of for marketable 
proton exchange membrane fuel cell

15 NOL-HHO [88] 2020 Nonlinear opposition-based learning strategy was applied 
to basic HHO to improve a set of constrained codes in 
DNA storage. The hybrid algorithm was tested for 23 test 
functions.. The simulation result revealed that NOL-
HHO obtained the optimal solution much faster compar-
ing to other algorithms

16 CHHO—QWSC [89] 2020 In this work, concrete service datasets was employed with 
logistic strategy for enhancing local search capability of 
basic HHO. The proposed chaotic HHO was effective 
solving QWSC problem

17 ANFIS-HHO [90] 2019 Friction Stir Welding associated with welding problems 
was modified by integrating ANFIS with HHO to maxi-
mize the quality and strength of joints

18 HHODE [91] 2019 In this work, a IEEE 30-bus test system was tested without 
incorporating valve-point effect and prohibited zones by 
implementing proposed method for optimizing power 
flow problems

19 DA-HHO algorithm [92] 2019 In this work, DA-HHO algorithm was applied to a multi-
layer predictive tool to modify connecting weights and 
biases for improving bearing capacity of foundations

20 Chaotic harmony search algorithm [93] 2019 Combined economic emission dispatch problems were 
analyzed for Six test systems having 6, 10, 13, 14, 40, 
and 140 units with uniform distribution by applying vir-
tual harmony and dynamic tuning algorithm parameters

21 Chaotic Grasshopper Optimization Algorithms [94] 2018 Ten shifted and biased functions were tested with 
30-dimensional and 50-dimensional benchmark prob-
lems. Further three truss bar designs were analyzed. 
The test results revealed that the proposed method 
outperforms in terms of convergence compared to other 
algorithms

22 Chaotic Grey wolf algorithm [72] 2018 In this work, performance of 13 test functions were tested 
by applying chaotic GWO method. To check the effec-
tiveness of the proposed method, five engineering design 
problems were tested by the same method
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3.2 � Mathematical modeling of proposed CHHO

The mathematical equations are implemented based on the 
behavior of Harris hawks and chaotic strategy. This section 
includes the methodology of capturing the prey. The typical 
chasing technique of Harris birds is where they recognize 
the food and chase it using their sharp judgments while the 
prey not knowing hunters’ plan. Let q be the probability for 
each equalizing attempt which depends on the position of 
the other family members close enough to them, which is 
modeled in Eq. (2), when q < 0.5 or perch on randomly on 
tall trees and modeled as in Eq. (2a) for q ≥ 0.5.

where, X(itn + 1) represents the hawks position in next iter-
ation (itn) , Xrand (itn) represents randomly selected hawks, 
X(itn) is the current r1 ,r2 ,r3 ,r4 , and q are random values 
in between (0, 1) and these are modified in each iteration 
between upper bound (Ub) and lower bound (Lb).Xprey(itn) 

(2)

X(itn + 1) =
{

Xrand (itn) − r1 × abs(Xrand(itn)

− 2 × r2 × X(itn)) ; q ≥ 0.5

(2a)

X(itn + 1) =
{

(Xprey (itn) − Xm(itn)) − r3 × (Lb + r4

× (Ub − Lb)) ; q < 0.5

Fig. 1   Improved exploitation phase of HHO with Chaotic local search strategy (CLS)

Table 3   Chaotic functions Sr. no. Chaotic name Mathematical description

1 Chebyshev yi+1 = cos
(

cos−1
(

yi
))

2 Iterative yi+1 = Sin
(

a�
/

yi

)

, a = 0.7

3 Sinusoidal yi+1 = axi Sin(�xi) ; a = 2.3

4 Sine yi+1 =
a

4
Sin(�yi) , a = 4

5 Circle yi+1 = mod (yi + b −
(

a∕2�
)

Sin
(

2�yi
)

, 1) ; a = 0.5, b = 0.2

6 Piecewise
⎧

⎪

⎪

⎨

⎪

⎪

⎩

yi
�

p 0 ≤ yi ⟨ p
�

yi − p
�

�

(0.5 − p) p ≤ yi ⟨ 0.5
�

1 − p − yi
�

�

(0.5 − p)
�

1 − yi
�

�

p

0.5 ≤ yi ⟨ 1 − p

1 − p ≤ yi ⟨ 1
, p = 0.4

7 Gauss/Mouse
{

1, yi = 0
1

mod (yi ,1)
otherwise

8 Singer yi+1 = �
(

7.86 yi − 23.3 y2
i
+ 28.75 y3

i
− 13.301875 y4

i

)

, � = 1.07

9 Logistic yi+1 = a yi
(

1 − yi
)

, a = 4

10 Tent
yi+1 =

{ (

yi∕0.7
)

, yi < 0.7

(10∕3)(1 − y), yi ≥ 0.7
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represents the position of prey. Xm(itn) represents the mean 
position of Hawks which is determined by Eq. (3).

where X(itn) is the hawk location in each iteration and N 
denotes total number of hawks.

Transition from Exploration to exploitation phase 
depends upon the escaping energy of the prey and is evalu-
ated using Eq. (4)

where EA is avoidance energy of the prey, E0 is the initial 
energy of the prey changing randomly between (− 1, 1) and 
itnmax is maximum iterations. Equation (5) is used to deter-
mine the upgraded position of hawks. The successful capture 
relies on chasing strategies of Hawks and escaping nature of 
prey depending upon Escaping energy (EA) and Change of 
escape (r).Transition from exploration to exploitation phase 
depends upon escaping energy of prey. The prey has enough 
escaping energy. Hawks will first encircle and then surprise 
pounce is performed. Modeled in Eq. (5) and Eq. (6), Hawks 
perform a soft besiege for r ≥ 0.5&|E| ≥ 0.5.

where ΔX(itn) is the difference between current position of 
prey and location of Hawks at iteration ( itn ) J = 2(1 − r5) 
is the Jump energy which alters randomly in each itera-
tion. r5 is the random number within the range (0, 1). The 
exhausted prey fails to escape and Hawks perform hard 
besiege. Modeled in Eq. (7), Hawks perform a hard besiege 
for r ≥ 0.5& |E| < 0.5.

where D = Problem’s dimension, S = Range of fractal flight 
path by size (1 × D).

The LF (D)-based patterns which follow the given rule in 
Eq. (10) and Eq. (11)

(3)Xm(itn) =
1

N

(

N
∑

i=1

Xi(itn)

)

(4)EA = 2 × E0 ×

(

1 −
itn

itnmax

)

(5)X(itn + 1) = ΔX(itn) − EA × abs(J Xprey(itn) − X(itn))

(6)ΔX(itn) =
(

Xprey(itn) − X(itn)
)

(7)X(itn + 1) = Xprey(itn) − EA × abs(ΔX(itn))

(8)Y = Xprey(itn) − E × abs(JXprey(itn) − X(itn))

(9)Z = Y + S × LF(D)

(10)LF(x) = 0.01

(

� × �

|v|
1

�

)

where �, � are denoted as such kinds of values randomly in 
between (0, 1) and � is default constant set to 1.5.

At this stage, the prey has enough energy and besiege 
during this phase depends on Levy flight (LF) concept as 
modeled in Eq. (12). Hawks perform a soft besiege with 
rapid dives for |E| ≥ 0.5 &r < 0.5.

The Hawks are very close to prey and perform hard 
besiege. Modeled in Eq. (15), Hawks perform hard Besiege 
with rapid dives for |E| < 0.5 &r < 0.5.

3.3 � Algorithm of proposed work

The basic HHO is upgraded by combining the chaotic 
approach to further enhance the search accuracy. The 
pseudo-code for method proposed is as shown in Fig. 2. 
The flow chart showing process of algorithm is illustrated 
in Fig. 3.

4 � Standard benchmark test functions

In the proposed CHHO algorithm, the Tent Chaotic map has 
been used. The mathematics of the chaotic tent map has been 
explained in Table 3 [75]. These standard benchmark func-
tions are characterized by their objective fitness in param-
eter space within a particular dimension (Dim), range, and 
optimal value ( fmin).The parameter setting for the proposed 
algorithm is shown in Table 4. Table 5 illustrates uni-modal 
benchmark function from F1 to F7. Convergence curve for 
HHO and CHHO for the respective uni-modal (UM) bench-
mark is in Fig. 4. Similarly, Tables 6, 7 show test results for 
Multi-modal (UM) (F8 to F13) and fixed dimension (FD) 
(F14 to F23) functions. Figure 5 and Fig. 6 presents conver-
gence curve for multi-modal and fixed dimension functions. 
The convergence curves of HHO and CHHO are indicated 

(11)� =

⎛

⎜

⎜

⎜

⎝

Γ(1 + �) × sin
�

��

2

�

Γ
�

1+�

2

�

× � × 2
�

�−1

2

�

⎞

⎟

⎟

⎟

⎠

1

�

(12)X(itn + 1) =

{

Y ; if F(Y) < F(X(itn))

Z ; if F(Z) < F(X(itn))

(13)Y � = Xprey(itn) − E × abs(JXprey(itn) − Xm(itn))

(14)Z
�

= Y
�

+ S × LF(D)

(15)X(itn + 1) =

{

Y
�

; if F(Y
�

) < F(X(itn))

Z
�

; if F(Z
�

) < F(X(itn))
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Fig. 2   Pseudo-code of Chaotic HHO algorithm
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by green and red curve, respectively. It can be easily noticed 
from corresponding figures that search capability has been 

improved by the resultant chaotic approach with superior 
convergence.

Fig. 3   Flow chart of Chaotic HHO algorithm
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5 � Simulation results and discussion

In this section, results of 23 standard Benchmark functions 
are presented. The test systems are simulated in MATLAB 
2018a Windows 10, CPU@2.10Ghz-4 GB RAM Core i5. 
Test results for benchmark functions are discussed with their 
average, worst, best, median, standard deviation. To analyze 
feasibility of solution, Wilcoxon sum test and statistical T 
test have been taken into account. The stochastic complexity 
of the proposed algorithm is justified and analyzed by run-
ning the algorithm for 30-trial checks and 500 re-iterations. 
On similar grounds, results are compared with other univer-
sally validated methods.

5.1 � Testing of uni‑modal functions

The search process for best position depends upon the capa-
bility of the algorithm to reach closer to origin. During the 
search process by various agents, there may be possibility 

of being entrapped far or nearby and accordingly defined in 
terms of exploration and exploitation. Exploration comes 
under global search process and exploitation falls under 
local search category. The outcomes for uni-modal (UM) test 
functions have been illustrated in Table 8. Table 9 illustrates 
Statistical Analysis for Uni-modal benchmark functions. 
Further to check the feasibility of proposed method, Dunn’s 
test has been performed and test results for sum-of-squares 
(SS), degree of freedom (df), Mean square values (MS), Chi-
sq Prob > Chi-sq and corresponding errors are tabulated in 
Table 10. Simulation time for UM Benchmark Problems 
utilizing CHHO is shown in Table 11. Table 12 shows 
compared results with other meta-heuristics search algo-
rithms like PSO[98], GWO[1], GSA[16], BA[99], FA[100], 
GA[101], MFO[6], MVO[18], SMS[102], FPA[103], 
DE[104], ALO[105], WOA [48], etc. in terms of standard 
and mean deviation. In Fig. 7, a correlation between Chaotic 
HHO and different methods appears intermingling bend for 
UM (F1 to F7) shows a few ideal foci convergences nearer 
to optimal value. The algorithm is tested for 30-trial runs 
and 500 iterations as presented in Fig. 7. The test outcomes 
of UM (F1 to F7) have some raised points with increased 
convergence using CHHO revealing the effectiveness of 
algorithm. Box-Plot of Trial runs of U-Modal Benchmark 
Function CHHO compared with competitive algorithms is 
shown in Fig. 8.

5.2 � Testing of multi‑modal test function

The proposed chaotic algorithm is tested for multi-modal test 
function with 30-trial runs and 500 iterations as presented 
in Fig. 9. The outcomes for Multi-modal (MM) test func-
tions have been illustrated in Table 13. Table 14 illustrates 
Statistical Analysis for Multi-modal benchmark functions. 
Further to check the feasibility of proposed method, Dunn’s 
test has been performed and test results for sum-of-squares 
(SS), degree of freedom (df), Mean square values (MS), Chi-
sq Prob > Chi-sq and corresponding errors are tabulated in 
Table 15. Simulation time for multi-modal (MM) Bench-
mark Problems with best, mean and worst utilizing CHHO 
is shown in Table 16. Table 17 summarizes compared results 
with other meta-heuristics search algorithms like PSO [98], 
GWO [1], GSA [16], BA [99], FA [100], GA [101], BDA 
[107], BPSO [108], MFO [6], MVO [18], SMS [102], DE 
[104], ALO [105], etc., in terms of mean and standard devia-
tion. The test outcomes for MM (F8 to F13) have few pick 
points with increased convergence using CHHO revealing 
the effectiveness of algorithm. Box-Plot of Trial runs of 
M-Modal benchmark function compared with other methods 
is shown in Fig. 10.      

Table 4   Parameter setting for the proposed method

Parameter setting Tent_CHHO

Number of search agents 30
Number of iterations for U-Modal, M-modal, and 

F-Modal
500

Number of iterations for Engineering optimization 
design problems

500

Number of trial runs 30
Initial Parameter of Tent map (r) 0.7
Range of Tent map (0,1)

Table 5   Unimodal test function

Unimodal function Dim Range fmin

f1(y) =
n
∑

i=1

y2
i

30 [− 100, 100] 0

f2(y) =
n
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i=1
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yi
�

�

+
n
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i=1

�

�

yi
�

�

30 [− 10,10] 0

f3(y) =
n
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i=1

�

i
∑

j=1

yj

�2 30 [− 100, 100] 0

f4(y) = maxi
{

|

|

yi
|

|

, 1 ≤ i ≤ n
}

30 [− 100, 100] 0

f5(y) =
n−1
∑

i=1

�

100(yi+1 − y2
i
)2 + (yi − 1)2

� 30 [− 30, 30] 0

f6(y) =
n
∑

i=1

��

yi + 0.5
��2 30 [− 100, 100] 0

f7(y) =
n
∑

i=1

iy4
i
+ random[0, 1]

30 [− 1.28, 1.28] 0
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Fig. 4   Three-dimensional view of F1 to F7 along with convergence curve for HHO and CHHO



1195Engineering with Computers (2023) 39:1183–1228	

1 3

5.3 � Testing of fixed dimension benchmark 
functions

The proposed Chaotic HHO algorithm is tested for Fixed 
Modal Benchmark functions (F14 to F23) for 30-trial runs 
and 500 iterations. The outcomes for fixed dimension (FD) 
test functions have been illustrated in Table 18. Table 19 
illustrates Statistical Analysis for fixed-modal benchmark 

functions. Further to check the feasibility of proposed 
method, Dunn’s test has been performed and test results for 
sum-of-squares (SS), degree of freedom (df), Mean square 
values (MS), Chi-sq Prob > Chi-sq and corresponding errors 
are tabulated in Table 20. Simulation time for FD Bench-
mark Problems utilizing CHHO is shown in Table 21. The 
results illustrated in Table 22 are compared with others vari-
ants, such as GWO [1], PSO [3], GSA [109], DE [14], ALO 
[105], BA [111], GA [110], SSA [43], DE [112], etc. in 
terms of mean and standard deviation. From the compared 
convergence curves shown in Fig. 11, it is observed that 
proposed tent chaotic HHO gives more superior results in 
terms of convergence. Box-Plot of Trial runs of FD-Modal 
benchmark function compared with other methods is shown 
in Fig. 12.      

6 � Multi‑disciplinary engineering design 
problems

In this section, ten different design problems are discussed 
which includes 3-bar truss problem, speed reducer problem, 
pressure-vessel design, cantilever beam design, compression 
design, rolling element problem welded beam, Belleville 
spring problem, gear train design problem, and multidisc 

Fig. 4   (continued)

Table 6   Multimodal test function

Multimodal function Dim Limit fmin

f8(y) =
n
∑

i=1

−yi sin

�

�

�

�

yi
�

�

�

30 [[− 500, 500] − 418.98295

f9(y) =
n
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[y2
i
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clutch brake problem [79]. These engineering problems 
are abbreviated as Engineering Function (EF). Table 23 
summarizes details of ten real-world design problems. The 
comparison of the various engineering design problem with 
their best mean, worst standard deviation, and p value is 
illustrated in Table 24. The simulation time is shown in 
Table 25. Relative convergence curvatures of the proposed 
CHHO with standard HHO are shown in Fig. 13. All design 
problems from EF1 to EF2 are executed for 30-trial runs 
with 500 iterations.

To check the effectiveness of Chaotic HHO, algorithm is 
tested for 30-trial runs and 500 iterations. The algorithm is 
tested with respect for best value, standard deviation worst 
value, and p value. Furthermore, a comparative analysis 
with recent optimization methods is provided for justify-
ing the validity of tested results for each design problems. 
Figure 14 illustrates 30-trial runs iterations for ten multidis-
ciplinary engineering problems to check the optimality of 
the algorithm.

6.1 � EF1—three‑bar truss design problem

The proposed Chaotic HHO algorithm is applied for solv-
ing problem of Truss design as shown in Fig. 15 [24]. It 
has two variables and three parameters. The main focus of 
truss design problem is to minimize weight by optimizing 
two parameters. In truss bar design problem, three types of 
constraints warping, deflection and stress are optimized to 
achieve the desired objective. The mathematical modeling 
of 3-Bar Truss is illustrated through Eq. (16.1, 16.1a, 16.1b, 
16.1c, 16.1d) subject to various constraints. The results of 
CHHO are compared with other optimization algorithms. 
The results are illustrated in Table 26. It is seen that the 
suggested method appreciably improves the objective of 
cost minimization. The design problem is modeled as given 
below: 

  
Minimize

(16.1)y⃗ =
[

y1, y2
]

=
[

A1,A2

]

Table 7   Fixed dimension function

Fixed dimension Function Dim Range fmin
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Fig. 5   Three-dimensional view of F8 to F13 along with convergence curve for HHO and CHHO
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Fig. 6   Three-dimensional view of F14 to F23 along with convergence curve for HHO and CHHO
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Subject to:

6.2 � EF2—speed reducer design problem

The speed reducer design is associated with seven design 
parameters. The foremost objective is to minimize weight 
of speed reducer. This type of design problem consists of 11 

(16.1a)f
�

y⃗
�

=
�

2
√

2y1 + y2

�

∗ l

(16.1b)g1
�

y⃗
�

=

√

2y1 + y2
√

2y2
1
+ 2y1y2

P − 𝜎 ≤ 0

(16.1c)g2
�

y⃗
�

=
y2

√

2y2
1
+ 2y1y2

P − 𝜎 ≤ 0

(16.1d)g3
�

y⃗
�

=
1

√

2y2 + y1

P − 𝜎 ≤ 0

constraints and 6 continuous variables as shown in Fig. 16 
[116]. The seven variables are face width (z1) , teeth module 
(z2) , pinion teeth (z3) , first shaft length (z4) , second shaft 
length (z5) , the first shaft diameter z6 and second shaft diam-
eter (z7) . All parameters except (z3) are continuous since it 
is having an integer value. The mathematical modeling for 
the optimal design of speed reducer is illustrated through 
Eq. (16.2a, 16.2b, 16.2c, 16.2d, 16.2e, 16.2f, 16.2g, 16.2h, 
16.2k). The comparative analyses of CHHO with other 
metaheuristics method are listed in Table 27. It can be 
observed from the analysis that CHHO is more effective in 
cost minimization as compared to other methods.

Minimizing;

Subject to;

f (z⃗) = 0.7854z1z2(3.3333z
2

3
+ 14.9334z3 − 43.0934) − 1.508z1

(z2
6
+ z2

7
) + 7.4777(z3

6
+ z3

7
) + 0.7854(z4z

2

6
+ z5z

2

7
)

(16.2a)g1(z⃗) =
27

z1z
2
2
z3

− 1 ≤ 0

Fig. 6   (continued)

Table 8   Test results of Uni-modal benchmark functions

Function Objective function fitness Wilcoxon rank Sum test T test

Mean STD Best Worst Median p value t value h value

F1 2.29E-96 1.18E-95 1.5E-119 6.49E-95 2E-104 1.7344E-06 0.299955 0
F2 1.08E-48 5.77E-48 2.12E-60 3.16E-47 4.43E-54 1.7344E-06 0.157795 0
F3 1.54E-69 7.74E-69 7.32E-98 4.24E-68 1.56E-84 1.7344E-06 0.318537 0
F4 1.4E-48 6.39E-48 2.94E-55 3.48E-47 2.68E-52 1.7344E-06 0.237638 0
F5 0.013086 0.01999 1.59E-06 0.08431 0.003289 1.7344E-06 0.000232 1
F6 0.00016 0.000299 1.99E-08 0.001119 5.94E-05 1.7344E-06 0.000957 1
F7 0.00015 0.000159 2.54E-06 0.00069 9.11E-05 1.7344E-06 3.58E-06 1
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w h e r e  2.6 ≤ z1 ≤ 3.6, 0.7 ≤ z2 ≤ 0.8, 17 ≤ z3 ≤ 28, 7.3

≤ z4 ≤ 8.3, 7.8 ≤ z5 ≤ 8.3, 2.9 ≤ z6 ≤ 3.9and5 ≤ z7 ≤ 5.5.

6.3 � EF3—Pressure Vessel Engineering Problem

The design specification for this type aims to minimize cost 
of cylindrical pressure vessel illustrated in Fig. 17 [116]. 
The chaotic HHO is applied to diminish the expense which 
includes the material cost and welding cost to form the ves-
sel in cylindrical form. The design variables include the 
thickness of the shell (Ts), the inner radius (R), the thickness 
of the head (Th) and the length of the cylindrical section of 
the vessel (L). These four variables are modeled as S1 to 
S4. The numerical formulations of this kind of problem are 
shown through Eq. (16.3, 16.3a, 16.3b, 16.3c, 16.3d, 16.3e). 
Table  28 shows the result analysis of proposed CHHO 
method with HHO, GWO, GSA, PSO, GA, DE, ACO and 

(16.2b)g2(z⃗) =
397.5

z1z
2
2
z2
3

− 1 ≤ 0

(16.2c)g3(z⃗) =
1.93z3

4

z2z3z
4
6

− 1 ≤ 0

(16.2d)g4(z⃗) =
1.93z3

5

z2z3z
4
7

− 1 ≤ 0

(16.2e)

g5(z⃗) =
1

110z3
6

√

(

745.0z4

z2z3

)2

+ 16.9 × 106 − 1 ≤ 0

(16.2f)

g6(z⃗) =
1

85z3
7

√

(

745.0z5

z2z3

)2

+ 157.5 × 106 − 1 ≤ 0

(16.2g)g7(
→

z ) =
z2z3

40
− 1 ≤ 0

(16.2h)g8(
→

z ) =
5z2

z1
− 1 ≤ 0

(16.2i)g9(z⃗) =
z1

12z2
− 1 ≤ 0

(16.2j)g10(z⃗) =
1.5z6 + 1.9

12z2
− 1 ≤ 0

(16.2k)g11(z⃗) =
1.1z7 + 1.9

z5
− 1 ≤ 0

Ta
bl

e 
9  

S
ta

tis
tic

al
 a

na
ly

si
s f

or
 U

ni
-m

od
al

 b
en

ch
m

ar
k 

fu
nc

tio
ns

Fu
nc

tio
ns

N
o.

 o
f t

ria
l 

ru
n

M
in

im
um

 fi
t-

ne
ss

M
ax

im
um

 
fit

ne
ss

M
ea

n 
fit

ne
ss

M
ed

ia
n 

fit
ne

ss
Fi

rs
t q

ua
rti

le
 

(2
5t

h 
Pe

rc
en

-
til

e)

Se
co

nd
 q

ua
rti

le
 

(5
0t

h 
Pe

rc
en

-
til

e)

Th
ird

 q
ua

rti
le

 
(7

5t
h 

Pe
rc

en
-

til
e)

Se
m

i 
In

te
rq

ua
rti

le
 

D
ev

ia
tio

n

N
um

be
r 

of
 o

ut
li-

er
s

St
an

da
rd

 D
ev

ia
-

tio
n

F1
30

1.
47

34
E-

11
9

6.
48

95
E-

95
2.

29
40

7E
-9

6
1.

97
75

E-
10

4
6.

46
71

E-
10

8
1.

97
7E

-1
04

3.
07

48
E-

10
0

1.
53

74
E-

10
0

7
1.

18
E-

95
F2

30
2.

12
19

6E
-6

0
3.

16
39

2E
-4

7
1.

08
35

8E
-4

8
4.

42
92

7E
-5

4
1.

70
05

6E
-5

6
4.

42
93

E-
54

2.
60

56
3E

-5
1

1.
30

28
1E

-5
1

4
5.

77
E-

48
F3

30
7.

32
34

9E
-9

8
4.

23
82

E-
68

1.
53

87
E-

69
1.

55
92

4E
-8

4
7.

03
98

8E
-8

9
1.

55
92

E-
84

1.
22

11
2E

-8
1

6.
10

55
9E

-8
2

7
7.

74
E-

69
F4

30
2.

94
29

3E
-5

5
3.

48
49

1E
-4

7
1.

39
54

2E
-4

8
2.

68
09

6E
-5

2
1.

30
92

6E
-5

3
2.

68
1E

-5
2

2.
65

66
5E

-5
0

1.
32

76
7E

-5
0

7
6.

39
E-

48
F5

30
1.

59
41

5E
-0

6
0.

08
43

09
90

9
0.

01
30

86
19

7
0.

00
32

89
21

8
0.

00
15

46
22

0.
00

32
89

22
0.

01
63

54
73

4
0.

00
74

04
25

7
2

0.
01

99
9

F6
30

1.
99

14
2E

-0
8

0.
00

11
18

92
0.

00
01

60
28

5.
94

12
1E

-0
5

1.
79

72
E-

05
5.

94
12

E-
05

0.
00

01
27

96
5.

49
94

1E
-0

5
3

0.
00

02
99

F7
30

2.
54

34
E-

06
0.

00
06

89
67

8
0.

00
01

49
71

9
9.

10
61

6E
-0

5
4.

26
37

8E
-0

5
9.

10
62

E-
05

0.
00

01
81

66
5

6.
95

13
6E

-0
5

1
0.

00
01

59



1201Engineering with Computers (2023) 39:1183–1228	

1 3

BB. From the summarized results in Table 28, it has been 
observed that CHHO gives marginal results and gives cost-
effective solution for pressure vessel design problem. 

Consider:

Minimize;

Subject to:

(16.3)
→

s =
[

s1s2s3s4
]

=
[

TsThRLh
]

(16.3a)
f (

→

s ) = 0.6224s1s3s4 + 1.7781s2s
2
3
+ 3.1661s2

1
s4 + 19.84s2

1
s3

(16.3b)g1(
→

s ) = −s1 + 0.0193s3 ≤ 0

(16.3c)g2(
→

s ) = s3 + 0.00954s3 ≤ 0

(16.3d)g3(
→

s ) = −�s2
3
s4 −

4

3
�s3

3
+ 1296000 ≤ 0

(16.3e)g4(
→

s ) = s4 − 240 ≤ 0

Table 10   Dunn’s test for uni-
modal benchmark function

Function SS df MS Chi-sq Prob > Chi-sq Error Total

SS df MS SS df

F1 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F2 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F3 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F4 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F5 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F6 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F7 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29

Table 11   Simulation time for unimodal test function using Chaotic 
HHO algorithm

Functions Mean time Best time Worst time

F1 0.264583333 0.21875 0.71875
F2 0.277604167 0.234375 0.828125
F3 0.466145833 0.390625 1.125
F4 0.315104167 0.25 0.828125
F5 0.469791667 0.390625 1.15625
F6 0.358854167 0.3125 0.859375
F7 0.43125 0.375 1.0625

Table 12   Comparison of Uni-Modal test function

Algorithms Parameters UM test function

F1 F2 F3 F4 F5 F6 F7

GWO [1] STD 6.3400E-07 0.02901 7.9.1495E+01 1.31508 69.9049 0.00012 0.10028
Mean 6.590E-29 7.180E-18 3.20E-07 5.610E-08 26.8125 0.81657 0.00221

PSO [3] STD 0.0002.0E-04 0.04542 2.1192E+01 3.1703E+01 6.01155E+01 8.28E-05 0.04495
Mean 1.3E-04 0.04214 7.01256E+01 1.08648 96.7183 0.00010 0.12285

MFO [6] STD 0.00015 0.00087 188.527 5.27505 120.2607 9.87E-05 0.04642
Mean 0.00011 0.00063 696.730 70.6864 139.1487 0.000113 0.091155

SCA [19] STD 0.000 0.0001 0.1372 0.5823 0.0017 0.0001 0.0014
Mean 0.000 0.000 0.0371 0.0965 0.0005 0.0002 0.000

MVO [18] STD 0.64865 44.7459 177.0973 1.58291 1479.47 0.63081 0.02961
Mean 2.08583 15.9247 453.200 3.12301 1272.13 2.29495 0.05199

SSA [43] STD 0.000 1.000 0.000 0.6556 0.000 0.000 0.007
Mean 0.000 0.2272 0.000 0.000 0.000 0.000 0.0028

CSMA[106] STD 0 1.7E-155 0 2.8E-133 9.27916 0.003059 0.00021
Mean 1.2E-280 3.4E-156 0 5.1E-134 5.035453 0.004431 0.0003

TENT_CHHO STD 1.18E-95 5.77E-48 7.74E-69 6.39E-48 0.01999 0.000299 0.000159
Mean 2.29E-96 1.08E-48 1.54E-69 1.4E-48 0.013086 0.00016 0.00015
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Fig. 7   Comparative convergence curve of F1 to F7 (from a–g)
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Variable range 0 ≤ s1 ≤ 99, 0 ≤ s2 ≤ 99, 10 ≤ s3 ≤ 200, 10 
≤ s4 ≤ 200.

6.4 � EF4‑cantilever beam design

This is concrete engineering problem in which main focus 
is minimization of beam weight as shown in Fig. 18 [27]. 
In beam design, there are five elements l1 , l2 , l3 , l4 and l5 . 
The main goal is minimization of the weight of the beam. 
The design problem is mathematically modeled through 
Eq. (16.4, 16.4a, 16.4b). Table 29 elucidates that proposed 
method efficiently reduces the weight of the beam compared 
to HHO, CS, ALO, SOS, MMA and GCA_1. The math-
ematical equations are as shown below:

  
Minimize

Subject to

6.5 � EF5—compression spring design

Figure 19 illustrates spring design problem concerned with 
mechanical engineering [37]. Weight minimization is the 
main consideration to tackle this type of problem. There are 
three types of design variables: (i) wire diameter (dr) (ii) 
active coils (Nc) and (iii) coil diameter (Dm). The design 
problem is mathematically formulated through Eq. (16.5, 
16.5a, 16.5b, 16.5c, 16.5d, 16.5e, 16.5f). The proposed 
method is applied to solve compression design problem and 

(16.4)Consider,
→

l =
[

l1l2l3l4l5
]

(16.4a)f (
→

l ) = 0.6224(l1 + l2 + l3 + l4 + l5),

(16.4b)g(
→

l ) =
61

l
+

37

l3
2

+
19

l3
3

+
7

l3
4

+
1

l3
5

≤ 1

results are illustrated in Table 30. It is clearly seen from the 
analysis that CHHO method is efficient for reducing spring 
weight marginally.

Minimize

Subject to:

Variable range 0.005 ≤ y1 ≤ 2.00, 0.25 ≤ y2 ≤ 1.30, 2.00 
≤ y3 ≤ 15.0.

6.6 � EF6—rolling element bearing design

The major aspect of this kind of design is to improve the 
dynamic load carrying capacity of rolling bearing element as 
illustrated in Fig. 20 [116]. There are ten parameters which 
decide the optimum design of bearing for improving the 
load-bearing power. Out of these ten variables, only five var-
iables are of much consideration. These major variables are 
(i) diameter of the ball (DIMB), (ii) diameter pitch (DIMP), 
(iii) ball numbers (Nb), (iv) outer curvature coefficient, and 
(v) inner curvature coefficient. Rest of five variables only 
affect indirectly to the internal portion of the geometry. The 
design problem is mathematically formulated through Eq. 
(16.6, 16.6a, 16.6b, 16.6c, 16.6d, 16.6e, 16.6f, 16.6g, 16.6h, 
16.6i, 16.6j, 16.6k, 16.6l). From the comparative results 
shown in Table 31, it can be seen that the proposed method 
gives superior results compared to HHO and other methods.

Maximizing;

(16.5)Consider y⃗ =
[

y1y2y3
]

= [drDmNc],

(16.5a)f (y⃗) =
(

y3 + 2
)

y2y
2
1
,

(16.5b)g1
(

y⃗
)

= 1 −
y3
2
y3

71785y4
1

≤ 0,

(16.5c)g2
(

y⃗
)

=
4y2

2
− y1y2

12566
(

y2y
3
1
− y4

1

) +
1

5108y2
1

≤ 0,

(16.5d)g2
(

y⃗
)

=
4y2

2
− y1y2

12566
(

y2y
3
1
− y4

1

) +
1

5108y2
1

≤ 0,

(16.5e)g3
(

y⃗
)

= 1 −
140.45y1

y2
2
y3

≤ 0,

(16.5f)g4
(

y⃗
)

=
y1 + y2

1.5
− 1 ≤ 0,

(16.6)CD = fcN
2∕3DIM1.8

B

Fig. 7   (continued)
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F1

F2

F3

F4

F5 

  

Fig. 8   Box plot of trial runs of U-modal benchmark function compared with other competitive algorithms
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Subjected to;

(16.6a)
if DIM ≤ 25.4mm

CD = 3.647fCN
2∕3DIM1.4

B

(16.6b)if DIM ≥ 25.4mm

(16.6c)r1(x) =
�0

2 sin−1
(

DIMB

DIMMAX

) − N + 1 ≥ 0

(16.6d)r2(x) = 2DIMB − KDIMMIN
(DIM − dim) ≥ 0

(16.6e)r3(x) = KDIMMAX
(DIM − dim) ≥ 0

(16.6f)r4(x) = �BW − DIMB ≤ 0

(16.6g)r4(x) = DIMMAX − 0.5(DIM + dim) ≥ 0

(16.6h)r5(x) = DIMMAX − 0.5(DIM + dim) ≥ 0

F7 

  

F6 

 
 

Fig. 8   (continued)

where fc = 37.91

[

1 +

{

1.04

(

1−�

1+�

)1.72(
fI(2f0−1)
f0(2fI−1)

)0.41
}10∕3

]−0.3

×
[

�0.3(1−�)1.39

(1+�)1∕3

][

2fI

2fI−1

]0.41

0.515 ≤ fI And f0 ≤ 0.6

(16.6i)r6(x) = (0.5 + re)(DIM + dim) ≥ 0

(16.6j)
r7(x) = 0.5(DIM − DIMMAX − DIMB) − �DIMB ≥ 0

(16.6k)r8(x) = fI ≥ 0.515

(16.6l)r9(x) = f0 ≥ 0.515

�0 = 2� − 2 cos−1

⎛

⎜

⎜

⎜

⎝

�

{(DIM − dim)∕2 − 3(t∕4)}2 +
�

DIM∕2 − t∕4 − DIMB

�2
− {dim ∕2 + t∕4}2

�

2{(DIM − dim)∕2 − 3(t∕4)}
�

D∕2 − t∕4 − DIMB

�

⎞

⎟

⎟

⎟

⎠

� =
DIMB

DIMMAX

, fI =
RI

DIMB

, f0 =
R0

DIMB

, t = DIM − dim−2DIMB

DIM = 160, dim = 90,BW = 30,RI = R0 = 11.033

0.5(DIM + dim) ≤ DIMMAX

≤ 0.6(DIM + dim), 0.15(DIM − dim)

≤ DIM
B
≤ 0.45(DIM − dim), 4 ≤ N ≤ 50
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Fig. 9   Convergence curve for multi-modal test function showing comparison of CHHO with other algorithms
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6.7 � EF7—welded beam design

In welded beam design, welding is carried out by fusing 
different sections by molten metal as presented in Fig. 21 
[37]. The major feature of this kind of design is to minimize 

0.4 ≤ KDIMMIN
≤ 0.5, 0.6 ≤ KDIMMAX

≤ 0.7, 0.3 ≤ re ≤ 0.1, 0.02 ≤ re ≤ 0.1, 0.6

≤ � ≤ 0.85

Table 15   Dunn’s test for Multi-
modal benchmark function

Function SS df MS Chi-sq Prob > Chi-sq Error Total

SS df MS SS df

F8 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F9 0 0 NaN 0 NaN 0 29 0 0 29
F10 0 0 NaN 0 NaN 0 29 0 0 29
F11 0 0 NaN 0 NaN 0 29 0 0 29
F12 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F13 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29

Table 16   Simulation time for multi-modal using CHHO 

Functions Mean time Best time Worst time

F8 0.457 0.375 1.140
F9 0.395 0.343 1.031
F10 0.409 0.359 1.015
F11 0.515 0.453 1.234
F12 0.968 0.890 1.687
F13 0.959 0.890 1.703

Table 17   Comparison of Multi-modal test function

Algorithms Parameters Multi-modal test function

F8 F9 F10 F11 F12 F13

GWO [1] STD − 4.0900E+ 02 4.740E+ 01 7.7800E-03 6.6600E-04 2.0700E-03 4.470E-03
Mean − 6.1200E + 02 3.1100E-02 1.0600E-14 4.4900E-04 5.3400E-03 6.5400E-02

PSO [3] STD 1.1500E+04 1.160E+01 5.090E-01 7.7200E-04 2.6300E-03 8.9100E-04
Mean − 4.8400E+04 4.670E+01 2.760E-01 9.2200E-04 6.9200E-04 6.6800E-04

GSA [109] STD 4.930E+02 7.470E+00 2.360E-01 5.040E+00 9.510E-01 7.130E+00
Mean − 2.820E+03 2.600E+01 6.210E-02 2.770E+01 1.800E+00 8.900E+00

MFO [6] STD 7.260E+02 1.620E+01 7.300E-01 2.170E-02 8.810E-01 1.930E-01
Mean − 8.500E+03 8.460E+01 1.260E+00 1.910E-02 8.940E-01 1.160E-01

ALO [105] STD 3.14E+02 8.45E-06 1.50E-15 9.55E-03 9.33E-12 1.13E-11
Mean − 1.61E+03 7.71E-06 3.73E-15 1.86E-02 9.75E-12 2.00E-11

GA [110] STD 2.470E+00 8.160E-01 8.080E-01 2.180E-01 2.150E-03 6.890E-02
Mean − 2.090E+03 6.590E-01 9.560E-01 4.880E-01 1.110E-01 1.290E-01

MVO [18] STD 9.370E+02 3.930E+01 5.500E+00 6.000E-02 7.900E-01 9.000E-02
Mean − 1.170E+04 1.180E+02 4.070E+00 9.400E-01 2.460E+00 2.200E-01

SCA [19] STD 3.600E-03 7.300E-01 1.000E+00 5.100E-03 0.000E+00 0.000E+00
Mean 1.000E+00 0.000E+00 3.800E-01 0.000E+00 0.000E+00 0.000E+00

DA [107] STD 3.840E+02 9.480E+00 4.870E-01 7.350E-02 9.830E-02 4.630E-03
Mean − 2.860E+03 1.600E+01 2.310E-01 1.930E-01 3.110E-02 2.200E-03

SSA [43] STD 8.090E-01 0.000E+00 1.530E-01 6.510E-02 5.570E-01 7.060E-01
Mean 5.570E-02 0.000E+00 1.950E-01 0.000E+00 1.420E-01 8.320E-02

CSMA[106] STD 0.319584 0 0 0 0.006237 0.00989
Mean − 12,569.1 0 8.88E-16 0 0.003937 0.00664

TENT_CHHO STD 0.661731 0 0 0 5.92E-06 9.09E-05
Mean − 12,569.1 0 8.88E-16 0 5.78E-06 8.42E-05
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F11
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Fig. 10   Box Plot for Trial runs of F8 to F13 functions compared with other competitive algorithms
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overall cost of beam by optimizing four design variables 
subjected to seven constraints. The four variables are (i) bar 
thickness (b), (ii)bar length (l), (iii) weld thickness (h) and 
(iv) the bar height (h). The mathematical equations are for-
mulated depending on prerequisites of variables and con-
straints illustrated through Eq. (16.7, 16.7a, 16.7b, 16.7c, 
16.7d, 16.7e, 16.7f, 16.7g, 16.7h, 16.7i, 16.7j, 16.7k, 16.7l, 
16.7m, 16.7n). The CHHO results are compared with HHO, 
GSA, HS, GA random, simplex and approximate methods 
and are listed in Table 32. The comparative analysis reveals 
that proposed method is competent for handling beam design 
problem more precisely.

Minimize,

Subject to

(16.7)Consider, y⃗ =
[

y1y2y3y4
]

= [hltb]

(16.7a)f (y⃗) = 1.10471y2
1
y2 + 0.04811y3y4

(

14.0 + y2
)

(16.7b)g1(y⃗) = 𝜏(y⃗) − 𝜏maxi ≤ 0,

Variable range 0.1 ≤ y1 ≤ 2 , 0.1 ≤ y2 ≤ 10 , 0.3 ≤ y3
≤ 10 , 0.1 ≤ y4 ≤ 2.where

(16.7c)g2(y⃗) = 𝜎(y⃗) − 𝜎maxi ≤ 0,

(16.7d)g3(y⃗) = 𝛿(y⃗) − 𝛿maxi ≤ 0,

(16.7e)g4(y⃗) = y1 − y4 ≤ 0,

(16.7f)g5(y⃗) = Pi − Pc(y⃗) ≤ 0,

(16.7g)g6(y⃗) = 0.125 − y1 ≤ 0,

(16.7h)
g7(y⃗) = 1.10471y2

1
+ 0.04811y3y4(14.0 + y2) − 5.0 ≤ 0

(16.7i)𝜏(y⃗) =

√

(𝜏∕)2 + 2𝜏∕𝜏∕∕
y2

2R
+ (𝜏∕∕)2,

(16.7j)�∕ =
Pi

√

2y1y2

, �∕∕ =
MR

J
,M = Pi

�

L +
y2

2

�

,

(16.7k)R =

√

y2
2

4
+

(

y1 + y3

2

)2

,

(16.7l)J = 2

�

√

2y1y2

�

y2
2

4
+

�

y1 + y3

2

�2
��

,

(16.7m)𝜎(y⃗) =
6PiL

y4y
2
3

, 𝛿(y⃗) =
6PiL

3

Ey2
2
y4
,

Table 20   Dunn’s test for fixed-
modal benchmark function

Function SS df MS Chi-sq Prob > Chi-sq error Total

SS df MS SS df

F14 0 0 NaN 0 NaN 1663.5 29 57.3621 1663.5 29
F15 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F16 0 0 NaN 0 NaN 785 29 27.069 785 29
F17 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F18 0 0 NaN 0 NaN 2064.5 29 71.1897 2064.5 29
F19 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F20 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F21 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F22 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29
F23 0 0 NaN 0 NaN 2247.5 29 77.5 2247.5 29

Table 21   Simulation time for fixed dimension using Chaotic HHO

Functions Mean time Best time Worst time

F14 2.5083333 2.39062 3.2343
F15 0.3911458 0.32812 1
F16 0.3744791 0.32812 0.96875
F17 0.00 0.00 0.00
F18 0.3322916 0.28125 0.875
F19 0.4453125 0.375 1.10937
F20 0.4442708 0.39062 1.0625
F21 1.0484375 0.95312 1.79687
F22 1.2630208 1.1875 2
F23 1.6984375 1.48437 2.59375
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6.8 � EF8—Belleville spring design

This type of design problem is shown in Fig. 22 [116]. The 
major consideration of this method is to minimize overall 
weight while satisfying various constraints. In this method, 
four types of designed variables, such as, internal spring 
diameter (DIMI), outer spring diameter (DIME), spring 
height (SH) and spring width (ST), are required to be opti-
mized. The formulations of equations for spring design are 
described through Eq. (16.8, 16.8a, 16.8b, 16.8c, 16.8d, 
16.8e, 16.8f, 16.8g). To check the validity of proposed 
method, a comparative result analysis is shown in Table 33. 
It is seen from the comparison results that proposed method 
gives more precise results compared to other methods.

Minimizing;

Subject to:

(16.7n)Pc(y⃗) =
4.013E

√

y2
3
y6
4

36

L2

�

1 −
y3

2L

�

E

4G

�

,

Pi = 6000lb, L = 14in, �max i = 0.25in,

E = 30 × 16psi,G = 12 × 106psi,

�maxi = 13600psi, �maxi = 3000psi

(16.8)f (x) = 0.07075�(DIM2
E
− DIM2

I
)t

(16.8a)

b1(x) = G −
4P�max

(1 − �2)�DIME

[

�
(

SH −
�max

2

)

+ �t
]

≥ 0

(16.8b)

b2(x) =

(

4P�max

(1 − �2)�DIME

[(

SH −
�

2

)

(

SH − �
)

t + t3
]

)

�max

− PMAX ≥ 0

(16.8c)b3(x) = �1 − �max ≥ 0

(16.8d)b4(x) = H − SH − t ≥ 0

(16.8e)b5(x) = DIMMAX − DIME ≥ 0

(16.8f)b6(x) = DIME − DIMI ≥ 0

(16.8g)b7(x) = 0.3 −
SH

DIME − DIMI

≥ 0
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Fig. 11   Convergence curve for fixed-modal test function showing comparison of CHHO with other algorithms
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where, 

� =
6

� ln J

(

J − 1

J

)2

� =
6

� ln J

(

J − 1

ln J
− 1

)

� =
6

� ln J

(

J − 1

2

)

PMAX = 5400lb

P = 30e6 psi, �max = 0.2 in, � = 0.3,G = 200Kpsi,

H = 2 in, DIMMAX = 12.01 in,

J =
DIME

DIMI

, �1 = f (a)a, a =
SH

t

6.9 � EF9–gear train design

In this method, the four variables g1, g2, g3, and g4 are 
reformed to diminish the scalar value and teeth ratio as 
shown in Fig. 23 [116]. Teeth on each gear are the deci-
sion variables in designing process. The design aspects are 
expressed through Eq. (16.9a) to Eq. (16.9b). The simula-
tion results shown in Table 34 reveal that optimum fitness 
has improved to greater extend compared with HHO and 
other methods.

Considering;

(16.9a)�⃗g =
[

g1g2g3g4
]

=
[

MAMBMCMD

]

Fig. 11   (continued)
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Fig. 12   Box plot of trial runs of fixed dimensions benchmark function compared with other competitive algorithms
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Minimizing;

Subject to: 12 ≤ g1, g2, g3, g4 ≤ 60.

6.10 � EF10–multidisc clutch brake design

Brake design is one of the most crucial problems in engi-
neering design. This type of design problem is illustrated in 
Fig. 24 [27]. The clutch design problem is mainly fabricated 
to minimize the overall weight. Its five design variables are 
inner surface radius (Rin), outer surface radius (Ro), thick-
ness of discs (Th), actuating force (Fac) and count of fric-
tion surface (Sf). The multi-clutch design problem is math-
ematically formulated through Eq. (16.10, 16.10a, 16.10b, 
16.10c, 16.10d, 16.10e, 16.10f). In Table 35, test results of 
proposed method are compared with HHO and other opti-
mization methods. It is observed that CHHO gives better 

(16.9b)f ( �⃗g) =

(

1

6.931
−

g3g4

g1g4

)2

fitness as compared to HHO and other methods in terms of 
cost minimization.

Minimizing;

where

Subjected to,

(16.10)f
(

Rin,RO, Sf , Th
)

= �Th�
(

R2
0
− R2

in

)(

Sf + 1
)

Rin ∈ 60, 61, 62....80;

Ro ∈ 90, 91, .....110;

Th ∈ 1, 1.5, 2, 2.5, 3;

Fac ∈ 600, 610, 620, 1000;

Sf ∈ 2, 3, 4, 5, 6, 7, 8, 9

(16.10a)m1 = R0 − Rin − ΔR ≥ 0

(16.10b)m2 = LMAX − (Sf + 1)(Th + �) ≥ 0

Table 23   Engineering design problem statistics data

Engineering 
Function(EF)

Design Discrete-
variables

Constraints

EF1 3-Bar truss problem 2 3
EF2 Speed reducer problem 7 11
EF3 Pressure vessel 4 4
EF4 Cantilever beam design 5 1
EF5 Compression spring design 3 4
EF6 Rolling element bearing 10 9
EF7 Welded beam 4 7
EF8 Belleville spring
EF9 Gear train 4 1
EF10 Multiple Disk Clutch Brake 

(Discrete) variables)
5 8

Table 24   Results engineering 
design problems using CHHO

Engineering 
functions(EF)

Mean STD value Best value Worst value Median value p value

EF1 2.64E+02 3.19E-01 2.64E+02 2.65E+02 2.64E+ 02 1.73E-06
EF2 4.47E-01 4.64E-02 3.90E-01 5.71E-01 4.42E-01 1.73E-06
EF3 3.75E+03 7.37E+02 3.01E+03 5.26E+03 3.36E+03 1.73E-06
EF4 2.14E+00 3.61E-01 1.74E+00 3.49E+00 2.04E+00 1.73E-06
EF5 7.02E+03 3.63E+02 6.29E+03 7.71E+03 7.09E+03 1.73E-06
EF6 2.65E+22 2.70E+22 1.98E+00 5.30E+22 2.65E+22 1.29E-06
EF7 1.40E-02 1.38E-03 1.27E-02 1.78E-02 1.33E-02 1.73E-06
EF8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.00E+00
EF9 − 6.74E+04 1.63E+04 − 8.41E+04 -4.24E+04 − 7.37E+04 1.73E-06
EF10 1.31E+00 1.68E-03 1.30E+00 1.31E+00 1.31E+00 1.73E-06

Table 25   Computation time for EF1 to EF10

Function (EF) using CHHO

Functions Best time Mean time Worst time

EF1 0.328125 0.388541667 0.96875
EF2 0.359375 0.463020833 1.015625
EF3 0.375 0.484375 1.234375
EF4 0.3125 0.4203125 0.953125
EF5 0.40625 0.566145833 1.34375
EF6 0.578125 0.7828125 1.640625
EF7 0.296875 0.510416667 1.109375
EF8 0.265625 0.35 0.796875
EF9 0.3125 0.492708333 1.078125
EF10 0.328125 0.449479167 1



1218	 Engineering with Computers (2023) 39:1183–1228

1 3

(16.10c)m3 = PMMAX − PM� ≥ 0

(16.10d)m4 = PMMAXYMAX + PM�YSR ≥ 0

(16.10e)m5 = YSRMAX
− YSR ≥ 0

(16.10f)m6 = tMAX − t ≥ 0

(16.10g)m7 = DCh − DCf ≥ 0

where, 

PM� =
Fac

Π
(

R2
0
− R2

in

)

YSR =
2�n

(

R3
0
− R3

in

)

90
(

R2
0
− R2

in

)

t =
ix�n

30
(

DCh + DCf

)

.

(16.10h)m8 = t ≥ 0

Fig. 13   Engineering design (EF1 to EF10) convergence curve comparison of CHHO with standard HHO
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Fig. 14   Trial run for engineering design (EF1 to EF2)
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Fig. 15   Truss design

Table 26   CHHO results compared with other methods for 3-bar truss 
design

Algorithm CHHO HHO CS [113] Ray and 
Sain 
[114]

TSA [115]

Optimal values for variables
 y1 0.786672 0.78866 0.789 0.795 0.788
 y2 0.413943 0.408283 0.409 0.395 0.408

Optimal 
weight

263.898 263.895 263.972 264.3 263.68

Fig.16   Speed reducer engineering design problem

Table 27   Comparison cost of 
speed reducer problem with 
other methods

Method CHHO HHO MDE [117] PSO-DE [118] MBA [116]

Fitness values for variables
 z1 3.5 3.56 3.50001 3.50 3.5
 z2 0.7 0.7 0.7 0.7 0.7
 z3 17 17 17 17 17
 z4 7.3 8.0186 7.300156 7.3 7.300033
 z5 7.715418 8.01891 7.800027 7.8 7.715772
 z6 3.350215 3.4948 3.350221 3.350214 3.350218
 z7 5.286655 5.2867 5.286685 5.286683 5.286654

Optimum Cost 2994.4737 3060.372 2996.3566 2996.3481 2994.4824
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Fig. 17   Pressure vessel design

Table 28   Comparative analysis of CHHO with classical heuristic algorithms

Algorithm CHHO HHO GWO [119] GSA [109] PSO [38] GA [120] DE [121] ACO [79] Branch-bound [48]

Optimum value
 Ts 0.886494 0.817583 0.84806 1.125 0.8125 0.8125 0.8125 0.8125 1.125
 Th 0.486049 0.4312 0.4345 0.625 0.4375 0.4345 0.4375 0.4375 0.625
 R 45.85021 42.09174 42.8279 55.9887 42.0913 40.3239 42.0984 42.1036 47.7
 L 135.1251 167.8369 176.7587 84.4542 176.7465 200 176.6377 176.5727 117.701

Optimum Cost 6193.94 6286.337 7016.962 6051.5 8538.84 6061.0 6059.7 6059.734 7198.043

Fig. 18   Cantilever beam design

Table 29   Results of beam 
problem compared with other 
techniques

Method CHHO HHO CS [113] ALO [105] SOS [53] MMA [122] GCA_I [122]

Optimal values for variables
 l1 6.058512 5.9374 6.0089 6.0181 6.0188 6.01 6.01
 l2 4.838525 4.9199 5.3049 5.3114 5.3034 5.3 5.304
 l3 4.460903 4.3780 4.5023 4.4884 4.4959 4.49 4.49
 l4 3.471295 3.5468 3.5077 3.4975 3.499 3.49 3.498
 l5 2.113283 2.1648 2.1504 2.1583 2.1556 2.15 2.15

Optimum weight 1.30328 1.3037 1.33996 1.33996 1.33995 1.33999 1.34
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7 � Conclusion and future scope

In the proposed research, tent chaotic strategy has been com-
bined with classical HHO for achieving a better exploita-
tion search capabilities. The proposed algorithm is tested 
using 23 standard benchmark functions and also on universal 
design problems to justify the effectiveness of the proposed 
method. In the set of experiments, CHHO was compared 
with basic HHO. The experimental results revealed that 
proposed CHHO algorithm improves convergence for most 

Fig. 19   Design of compression spring

Table 30   Comparison of CHHO with other methods

Method CHHO HHO GWO [1] GSA [1] CPSO [123] ES [124] GA [125] HS [126] DE [127]

Optimized value for variables
 ‘d’ 0.05170 0.05179 0.0516 0.0503 0.0517 0.052 0.0515 0.0512 0.0516
 ‘D’ 0.35712 0.35930 0.3567 0.3237 0.3576 0.364 0.3517 0.3499 0.3547
 ‘N’ 11.2652 11.1388 11.2889 13.5254 11.2445 10.890 11.632 12.076 11.4108

Optimum weight 0.01266 0.01269 0.01195 0.01267 0.0127 0.0126 0.0126 0.0127 0.01267

Fig. 20   Bearing deign for roll-
ing elements

Table 31   Assessment of rolling 
element design variables with 
other methods

Method CHHO HHO WCA [128] SCA [129] MFO [6] MVO [18]

Values for variables
 r1 125.7227 125 125.72 125 125 125.6002
 r2 21.4233 21.0745 21.42300 21.03287 21.03287 21.32250
 r3 11.00116 11.0764 10.01030 10.96571 10.96571 10.97338
 r4 0.515 0.515 0.515000 0.515 0.515 0.515
 r5 0.515 0.515 0.515000 0.515 0.515000 0.515000
 r6 0.4944 0.4055 0.401514 0.5 0.5 0.5
 r7 0.6986 0.606 0.659047 0.7 0.67584 0.68782
 r8 0.3 0.3 0.300032 0.3 0.300214 0.301348
 r9 0.03346 0.0844 0.040045 0.027780 0.02397 0.03617
 r10 0.60049 0.6 0.600000 0.62912 0.61001 0.61061

Optimum fitness 83,455.825 84,072.584 85,538.48 83,431.11 84,002.524 84,491.266
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of the Standard benchmark functions. Thus, the resultant 
chaotic Harris Hawk’s optimization (CHHO) is capable of 
giving more optimistic and convergent results. Therefore, it 
is observed that the proposed CHHO may be a good choice 
for solving numerical optimization problems and in future 
may be considered to solve power system dispatch and unit 
commitment problems considering electric and hybrid elec-
tric vehicles including uncertainty of wind and solar power.

Fig. 21   Design of welded beam

Table 32   Relative investigation of Welded beam Design with other methods

Method CHHO HHO GSA [48] HS [130] GA [125] Random [131] Simplex [131] APPROX [131]

Optimum variables
 h 0.202886 0.204039 0.2442 0.1821 0.2489 0.4575 0.2792 0.2444
 l 3.545256 3.531061 6.2231 3.857 6.173 4.7313 5.6256 6.2189
 t 9.005042 9.027463 8.2915 10 8.1789 5.0853 7.7512 8.2915
 b 0.207302 0.206147 0.2443 0.2024 0.2533 0.66 0.2796 0.2444

Optimal cost 1.7369 1.75835 1.88 2.3807 2.4331 4.1185 2.5307 2.3815

Fig. 22   Belleville spring design

Table 33   Relative analysis of design variables with other algorithms

Method CHHO HHO TLBO [21] MBA [116]

Values for variables
 × 1 11.98694 12.0060 12.01 12.01
 × 2 10.00147 10.0254 10.0304 10.0304
 × 3 0.204191 0.2041 0.20414 0.20414
 × 4 0.2 0.2 0.2 0.2

Optimum fitness 1.9813 1.9801 1.9896 1.9896

Fig. 23   Gear train problem
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