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Abstract
In the global optimization process of the firefly algorithm (FA), there is a need to provide a fast convergence rate and to 
explore the search space more effectively. Therefore, we conduct modular analysis of the FA and propose a novel enhanced 
exploration firefly algorithm (EE-FA), which includes an enhanced attractiveness term module and an enhanced random 
term module. The attractiveness term module can improve the exploration efficiency and accelerate the convergence rate by 
enhancing the attraction between fireflies. The random term module improves the exploration efficiency by introducing a 
damped vibration distribution factor. The EE-FA uses multiple parameters to balance its exploration efficiency and conver-
gence rate. The parameters have a great influence on the performance of the EE-FA. In order to achieve the best performance 
of the EE-FA, each parameter of the EE-FA needs to be simulated to determine its optimal value. Compared to multiple 
variants of the FA, the EE-FA has better exploration efficiency and a faster convergence speed. Experimental results reveal 
that the EE-FA recreated consistently vanquishes the front for 24 benchmark functions and 4 real design case studies in terms 
of both convergence rate and exploration efficiency.

Keywords  Firefly algorithm · Global continuous optimization · Convergence speed · Damping vibration distribution

1  Introduction

Global continuous optimization problems have been exten-
sively applied to scientific research, engineering technology 
and industrial design. Examples include image processing 
[1], path planning [2], complex structure design optimiza-
tion [3, 4], electronic system design, gene recognition, etc. 
In most engineering applications, global optimization prob-
lems are often regarded as highly nonlinear with irregular 
multiple peaks, which are usually called NP-hard problems 
[5]. NP-hard problems always lead to huge computational 
complexity and poor computational stability. However, it is 
difficult to find a suitable and practical algorithm to solve 
any of the NP-hard problems. In fact, designing the best 
algorithm requires not only a wealth of experience but also 
a detailed understanding of the problem. Even so, there is no 
absolute guarantee that the best or even suboptimal solution 
will be found.

For continuous problems, in order to achieve efficient 
global optimization performance, many scholars have 
invested a great deal of effort in research, and many excel-
lent algorithms have been proposed [6–8]. Two catego-
ries have been developed from these splendid algorithms: 
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deterministic algorithms and random algorithms. Determin-
istic algorithms mainly consist of the hill climbing method 
[9], Newton iteration method [10], simplex method [11], 
least squares method [12, 13], etc. The strength of determin-
istic algorithms is that they have high convergence efficiency 
for certain problems. It only takes a few iterations to find the 
optimal solution. Their disadvantage is that they easily fall 
into a local optimum. Due to the unique random mechanism, 
random algorithms can easily jump out of the local optimum 
and obtain the global optimum solution. Their weakness is 
that they can produce different solution sets under the same 
initial conditions, so their repeatability is very poor [14].

Most random algorithms can be considered metaheuris-
tics. Many new metaheuristic algorithms are inspired by 
physical processes or biological intelligence in nature, such 
as particle swarm optimization (PSO) [15], the firefly algo-
rithm (FA) [16], the flower pollination algorithm (FPA) 
[17], the grasshopper optimisation algorithm (GOA) [18], 
and various particle swarm algorithms (IPSO [19], YSPSO 
[20], BPSO [21], etc.). The advantage is that the algorithms 
themselves have a good information sharing mechanism. 
The mechanism could make the algorithms converge quickly 
under certain conditions. They have been used to solve dif-
ficult optimization problems encountered in engineering 
[22]. Gandomi [23] proved that a metaheuristic algorithm 
has good effects in the global optimization of engineering 
problems.

The firefly algorithm is a new metaheuristic algorithm 
that was proposed by Yang [16]. It has the advantages of 
having simple concepts, being easy to understand, using a 
clear process, using few parameters, and having a strong 
random search ability. Lukasik and Żak believed that the 
FA performs better than PSO on continuous optimization 
problems [24]. The FA has been used to overcome eco-
nomic dispatch problems in power system management [25]. 
Kavousi-Fard used the FA to solve the optimal parameters of 
the shortest load based on the support vector regression [7]. 
Similarly, the FA is used to solve NP scheduling problems 
and travelling salesman problems [26]. Sánchez applied the 
FA to the field of intelligent recognition [27]. Yang and He 
discussed the performance of intelligent segmentation and 
multiple mode processing [28]. Frumen [29] proposed a new 
ant colony optimization method with dynamic parameter 
adaptation. Daniela [30] combined PSO and neural networks 
and applied the resulting method to human recognition. Fru-
men [31] proposed an improvement to the convergence and 
diversity of the swarm in PSO using interval type-2 fuzzy 
logic. Frumen [32] used type-2 fuzzy logic to adjust the 
dynamic parameters of the GSA. Daniela [33] used the FA 
to optimize the neural network to realize face recognition.

For global continuous optimization problems, how 
to make the FA quickly and effectively obtain the global 
optimal value is key. This requires the FA to have good 

exploration efficiency and a fast convergence speed. There-
fore, the convergence speed and exploration efficiency of 
the FA have become the research focus of researchers. Many 
researchers have incorporated some parameter adjustment 
mechanisms, such as a fuzzy controller, which could be 
able to update the system parameters in the FA according to 
the exploration process, into the algorithm [34, 35]. Yang 
introduced the Lévy flight strategy into the FA, called the 
Lévy-flight FA (LF-FA) [36]. In 2021, Shuhao adopted a 
personalized step strategy to improve the FA and proposed 
the PSSFA [37]. Ao proposed a sigmoid attractive firefly 
algorithm (IFA) and used it in IIR filter design [38]. Navid 
combined the FA with IFF and proposed a hybrid FA-IFF 
[39]. The FA-IFF and extreme learning machines were used 
to predict the thermal conductivity of soil.

In 2020, Jinran proposed an adaptive firefly algorithm 
for switching between the exploration mode and develop-
ment mode (AD-IFA) [40]. The adaptive switch mechanism 
introduced by the AD-IFA improves the sufficiency of local 
development. However, the mechanism leads to a substantial 
increase in the computational complexity and computational 
costs of the AD-IFA.

The article has the following three innovative aspects:

1.	 An improved attractiveness term is proposed to enhance 
the attraction between fireflies.

2.	 Based on the characteristics of the damped vibration 
waveform, a new random item is constructed to enhance 
the exploitation sufficiency of the FA.

3.	 Based on feedback theory, the firefly absorption coef-
ficient increases as the number of iterations of FA 
increases.

The remainder of this paper is organized as follows. First, 
related work on the FA, the Lévy-flight FA and the AD-
IFA are reviewed in Sect. 2. Section 3 outlines the method 
to improve the attractiveness term and random term and 
proposes the EE-FA. The optimal parameter setting of the 
EE-FA, the performance comparison of the algorithms, the 
benchmark functions and the simulation results are given in 
Sect. 4. Section 5 shows the efficiency of the EE-FA through 
four engineering applications. Finally, Sect. 6 concludes the 
paper.

2 � Related work

2.1 � The standard firefly algorithm

In nature, fireflies use their own light as a signal to attract 
other individuals of the same kind. FA is a new metaheuris-
tic algorithm proposed by simulating the behaviour of fire-
flies. In the FA, each individual in the group corresponds to 
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a candidate solution of the problem. The global optimization 
process is actually the process of moving the position of 
each individual firefly. The FA has the following three basic 
principles.

1.	 All firefly individuals have no gender distinction.
2.	 The attractiveness of each individual is related to its own 

brightness. Individuals with weaker brightness will be 
attracted by individuals with stronger brightness and 
move towards them, and individuals with the strongest 
brightness could move randomly in the solution space.

3.	 The objective function value of the feasible solution of 
the problem to be solved is usually taken as the indi-
vidual brightness value.

When constructing the FA, two key issues need to be 
addressed. The two key issues are the relative brightness and 
the attractiveness between fireflies.

(1) The relative brightness between fireflies can be 
expressed as follows:

In the formula, r represents the distance between the fire-
flies, � represents the light intensity attraction coefficient, 
and I0 represents the initial fluorescence brightness of the 
firefly.

(2) The attraction between fireflies can be expressed as 
follows:

where �0 is the self-attraction of the firefly when r = 0.
(3) The distance between the fireflies can be expressed 

as follows:

In the formula, assuming that fireflies i and j are located at 
xi and xj , respectively, the Cartesian distance between them 
should be represented by rij , where D is the space dimension.

(1)I(�) = I0e
−�r2 .

(2)�(r) = �0e
−�r2 ,

(3)rij = ||xi − xj|| =
√√√√ D∑

k=1

(xik − xjk)
2.

The position update formula of the firefly algorithm is 
as  follows:

2.2 � The Lévy‑flight firefly algorithm

Like other metaheuristic algorithms, the FA cannot avoid 
falling into a local optimum. Therefore, Lévy flight was 
introduced into the FA to improve its ability to jump out 
of local optima (LF-FA) [36]. Compared with the FA, the 
LF-FA has better global exploration efficiency and a faster 
convergence speed. Its main idea is to use a Lévy random 
distribution instead of a traditional random distribution.

where � indicates the coefficient of the random term, and ⊗ 
is the Hadamard product. sign() is a sign function. Levy is 
a Lévy distribution.

The formula of the Lévy random distribution is as 
follows:

where v and µ obey a standard normal distribution. � is cal-
culated as follows:

where τ is standard Gamma function, and η = 1.5.

2.3 � The adaptive logarithmic spiral‑Lévy firefly 
algorithm

Although the LF-FA has better global exploration efficiency, 
it breaks the balance between exploration and exploitation. 
To compensate for this balance, Jinran [40] proposed a 
new algorithm for exploration and exploitation mode adap-
tive switching (AD-IFA). Its update position formula is as 
follows:

(4)xi,t+1 = xi,t + �0 ⋅ e
−�⋅r2

i,j
⋅ (xj,t − xi,t) + � ⋅ (rand − 0.5).

(5)
xi,t+1 = xi,t + 𝛽0 ⋅ e

−𝛾⋅r2
i,j
⋅ (xj,t − xi,t) + 𝛼 ⋅ sign(rand − 0.5)⊗ Levy.

(6)Levy(�) ∼
� × �

|v|1∕� .

(7)� =

[
�(1 + �) × sin(� × �∕2)

�((1 + �)∕2) × � × 2(�−1)∕2

]1∕�
,

(8)xi,t+1 =

{
xi,t + 𝛽0 ⋅ e

−𝛾⋅r2
i,j
⋅ (xj,t − xi,t) + 𝛼 ⋅ sign|rand − 0.5|⊗ Levy, u > Rt

xi,t + 𝛽0 ⋅ e
−𝛾⋅r2

i,j
⋅ (xj,t − xi,t)⊗ eb⋅1 ⊗ cos(2𝜋 ⋅ 1), u ≤ Rt

.
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where u is a uniform random number in [0, 1], and Rt is 
calculated as follows:

(9)Rt+1 =

⎧
⎪⎪⎨⎪⎪⎩

1

1+exp

�
−

f∗t

f∗t −1

� , ⌈ lg �f ∗
t
�⌋ ≠ ⌈ lg �f ∗

t−1
�⌋,

1

1+exp

⎛
⎜⎜⎝
−

f∗t −�⋅⌈ f
∗
t
�

⌋

f∗
t−1

−�⋅⌈ f
∗
t−1
�

⌋

⎞⎟⎟⎠

,

where f ∗
t
 is the best fitness function value of the tth iteration, 

lg(·) = log10(·), and ⌈ ⋅ ⌋ is the lower bound function. The 
value expression of � is as follows:

The AD-IFA introduces an adaptive switching mecha-
nism, which truly strengthens the balance between the 
exploration and exploitation of the algorithm in the global 
optimization process. However, the AD-IFA has three dis-
advantages as follows:

1.	 The adaptive switch mechanism greatly increases the 
complexity of the AD-IFA.

2.	 The values of the random parameter � and the light 
absorption coefficient � are random, subjective and 
unscientific. The two parameters can directly affect the 
global exploration efficiency of the AD-IFA.

3.	 The complexity of the AD-IFA does not effectively 
speed up the convergence speed and reduces the number 
of iterations.

In order to improve the deficiencies of the AD-IFA, the 
article improves the FA from the following three aspects:

1.	 The complexity of AD-IFA is reduced, the adaptive 
switch mechanism is removed, and the related param-
eters of the distance factor between the fireflies are used 
instead.

2.	 Modify the random term of the FA. According to the 
damping vibration curve law, the damping vibration fac-
tor is introduced into the unified random distribution 
instead of the Lévy random distribution.

3.	 Each parameter in the newly constructed algorithm is 
simulated to determine its optimal parameter.

4.	 In order to accelerate the convergence rate, let the light 
attraction coefficient � increase as the number of itera-
tions increases.

(10)� = 10⌈lg�f ∗t −f ∗t−1�⌋+1.

Fig. 1   The characteristic curve of the attractiveness term module

Fig. 2   The characteristic curve of the enhanced attractiveness item 
module

Fig. 3   Characteristic curve 
diagram of formula (19) (left 
subfigure) and characteristic 
curve diagram of formula (20) 
(right subfigure)
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3 � A enhanced exploration firefly algorithm

In order to facilitate the study of the FA’s position update 
equation, the FA is divided into three modules: (1) the initial 
position module, (2) the attractiveness term module, and 
(3) random term module. Formula (4) can be simplified as 
follows:

1.	 xi,t is the initial position module.
2.	 The attractiveness term module is as follows:

	   Ai,j represents the attractiveness term module.
3.	 The random term module is as follows

Bi,j is random term module. rand denotes a d-dimensional 
uniform random vector in [0 1]D. � is the light absorption 
coefficient. α is a parameter in [0, 1]. �0 is the original light 
intensity. xj,t − xi,t is a multidimensional variable, and the 
dimension is D.

3.1 � Attractiveness term module

Under the condition of one-dimensional space, we ana-
lyze the attractiveness term module. Let � = 1, �0 = 1 , and 
xj,t − xi,t = z , where z represents the distance between two 
fireflies. The one-dimensional movement area of the firefly is 
[0 10]. The attractiveness term can be simplified as follows:

The characteristic curve of the attractiveness term module 
is as follows.

(11)xi,t+1 = xi,t + Ai,j + Bi,j,

(12)Ai,j = �0 ⋅ e
−�⋅r2

i,j
⋅ (xj,t − xi,t).

(13)Bi,j = � ⋅ (rand − 0.5).

(14)A(z) = �0 ⋅ e
−�⋅z2

⋅ z.

The characteristic curve graph of the attractiveness term 
module shows that the value of the attractiveness term 
begins to increase rapidly as the distance between the fire-
flies increases. Then, as the distance continues to increase, 
the value of the attractiveness term begins to decrease rap-
idly. When the distance is greater than 3, the value of the 
attractiveness term becomes diminutive, almost approaching 
zero. In other words, it is almost unattractive to distant fire-
flies. The location update formula only works with the ran-
dom item module. Long-distance fireflies move randomly, 
directionlessly and aimlessly without restriction. This will 
greatly increase the number of invalid iterations of the FA.

In order to overcome this drawback, to make the attrac-
tiveness term module more attractive to prolonged distant 
fireflies, we introduce an attractiveness enhancement factor 
into the attractiveness term module.

The attractiveness enhancement factor is as follows:

The strengthened attractiveness item module is:

where � , �, b, h are the undetermined constants; and their 
default initial values are 0.03, 1, 10, and 100.

The characteristic curve of the enhanced attractiveness 
item module is as follows.

Figure 2 shows that the value of the enhanced attrac-
tiveness item module increases to a certain value as the 
distance between the fireflies increases. Then, the value 
of the attractiveness item slowly decreases as the distance 
increases. Compared with Figs. 1, 2 has better attraction to 
long-distance fireflies. The novel attractiveness item module 
is able to effectively attract fireflies and reduce the number 
of moves.

(15)K =
1∕h

1 + (b∕h) ⋅ ri,j
.

(16)A(z) = � ⋅ e
−�⋅

(
1∕h

1+(b∕h)⋅z

)
⋅z2

⋅ z.

Fig. 4   Characteristic curve 
diagram of formula (21) (left 
subfigure) and characteristic 
curve diagram of formula (17) 
(right subfigure)
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3.2 � Random item module

The random item module is a unique part of the 
metaheuristic algorithm. It can prevent the FA from falling 
into the local optimum and improve the exploration effi-
ciency of the FA. The purpose of our reconstruction of the 
random item module is to realize the connection between 
the random item module and the firefly. When the distance 
between fireflies is far, the module can improve the global 
search efficiency; and when the distance between fireflies 
decreases, the module can strengthen the local exploration 
efficiency.

Obviously, Eq. (17) is a random term that is unrelated to 
the distance between the fireflies. If α takes a fixed value, it 
is a random number that obeys a [0, 1] uniform distribution. 
Regardless of whether the distance between the fireflies is 

(17)Bi,j = � ⋅ (rand − 0.5)
far or near, the exploration efficiency of the random term 
is almost the same. This severely weakens the exploration 
efficiency of the FA. According to the characteristics of the 
damping vibration curve, the amplitude decreases rapidly 
as the number of vibrations increases. The frequency of the 
damped vibration function can be changed. The purpose of 
the damping vibration characteristic is to play a major role 
when the distance between the fireflies decreases. When the 
distance between fireflies increases, the characteristic does 
not play a major role.

The damping vibration function formula is as follows 
[41]:

In order to satisfy that condition when t = 0, y = 0, 
Eq. (19) below is used to replace it.

(18)y = A ⋅ e−a1⋅t ⋅ cos(a2 ⋅ t + a3).

Fig. 5   Convergence trend of 
different values of β 

Fig. 6   Convergence trend with different values of γ 
Fig. 7   Convergence trend of different values of b 
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The damping vibration distribution equation is as follows:

Let A = 5, a1 = 1 and a2 = 2π. The curves corresponding to 
formula (19) and formula (20) are as follows.

The right subfigure in Fig. 3 shows that the characteristic 
curve not only has the characteristic curve of the damping 
vibration but also has the characteristic curve of a random 
distribution.

Let A = 5 and α = 5. The best values of A and α are 
obtained in Sect. 4, which are set arbitrarily to illustrate the 
principle.

The left subfigure in Fig. 4 shows the following two char-
acteristic points:

1.	 Compared with Fig. 3, the amplitude is significantly 
enhanced.

2.	 As the distance between the fireflies increases, the ran-
dom attribute grows increasingly smaller.

Therefore, when the distance between fireflies is small, it 
can play a major role; and when the distance between fire-
flies is large, formula (17) plays a major role. According to 
formula (17) and formula 21, the new random term module 
is reconstructed to realize the enhancement of the explora-
tion efficiency of FA.

The new random term model is as follows:

(19)y = A ⋅ e−a1⋅t ⋅ sin(a2 ⋅ t).

(20)y = A ⋅ e−t ⋅ sin(2 ⋅ � ⋅ (rand − 0.5)).

(21)y = A ⋅ e−t ⋅ e2⋅(rand−0.5) ⋅ sin(2 ⋅ � ⋅ (rand − 0.5)).

where k, f, and g are undetermined parameters. The role of k, 
f, and g is to balance exploration efficiency and convergence 
behaviour.

This modifies the light absorption coefficient γ as follows:

where iter is the current number of iterations, itermax is the 
maximum number of iterations, and s is an undetermined 
parameter.

The location update formulas of the EE-FA are as follows:

(22)

Bi,j = g ⋅ (k ⋅ Ai,j ⋅ (rand − 0.5) + f ⋅ e−|xj,t−xi,t| ⋅ e2(rand−0.5)

⋅ sin(2 ⋅ � ⋅ (rand − 0.5))).

(23)� = s + iter∕itermax,

Fig. 8   Convergence trend of 
different values of h 

Fig. 9   Convergence trend of different values of k 
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4 � Numerical simulations

The EE-FA adopts multiple constants to balance the explo-
ration efficiency and convergence speed and determines the 
best value of these constants through simulation. Then, the 
exploration efficiency and convergence speed of the FA, 
LF-FA, PSSFA, IFA, FA-IFF, AD-IFA and EE-FA were 
compared. Finally, the benchmark functions are globally 

(24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xi,t+1 = xi,t + Ai,j + Bi,j

Ai,j = � ⋅ e
−�⋅

�
1∕h

1+(b∕h)⋅ri,j

�
⋅r2
i,j
⋅

�
xj,t − xi,t

�

� = s + iter/itermax

Bi,j = g ⋅ (k ⋅ Ai,j ⋅ (rand − 0.5) + f ⋅ e−�xj,t−xi,t�

⋅ e2(rand−0.5) ⋅ sin(2 ⋅ � ⋅ (rand − 0.5)))

.

optimized, and the minimum mean (mean) and standard 
deviation (std) are recorded.

4.1 � Determination of the best parameters 
of the EE‑FA

At this time, γ is a fixed parameter. The EE-FA contains 
seven undetermined parameters:�, � , b, h, k, f , g . The best 
values of the seven independent parameters are determined 
through the different influences of different parameters 
on the performance of the EE-FA. The sphere function 
f (x) =

∑d

i=1
x2
i
 is selected as the benchmark function. The 

dimension space d is set to 15. The value of xi ranges from 
0 to 100.

To eliminate the influence of random errors, each simula-
tion is executed 50 times, and the average value is calculated.

Using the control variable method, the diverse values of 
each undetermined parameter are simulated individually. 
After many simulations, the parameter values are obtained.

4.1.1 � Impact of β on the exploration efficiency of the EE‑FA

The other six parameter values are initialized as follows: 
� = 2 , b = 10 , h = 100 , k = 0.8 , f = 6 , and g = 0.04 . The 
effects of different values of β on the performance of the 
algorithm are shown in the following Fig. 5.

Figure 5 shows that when β = 5.8 and 5.9, the exploration 
efficiency of the algorithm is the lowest. When β = 5.721, 
the exploration efficiency is improved. When β = 5.7437, the 
exploration efficiency is higher than when β = 5.721. When 
β = 5.743889, the exploration efficiency is the best. There-
fore, the optimal value of the undetermined parameter β is 
5.743889.

4.1.2 � Impact of γ on the exploration efficiency of the EE‑FA

The optimal parameter value obtained was the following: 
β = 5.743889. The other five parameter values are then 
initialized as follows: b = 10, h = 100, k = 0.8, f = 6, and 
g = 0.04 . The effects of different values of γ on the perfor-
mance of the algorithm are shown in the following Fig. 6.

Figure 6 shows that when γ = 2.27, the exploration effi-
ciency of the algorithm is the lowest. When γ = 2.29 and 
2.26, the exploration efficiency is improved. When γ = 2.33, 
the exploration efficiency is higher than when γ = 2.26. 
When γ = 2.28, the exploration efficiency is the best. There-
fore, the optimal value of the undetermined parameter γ is 
2.28.

4.1.3 � Impact of b on the exploration efficiency of the EE‑FA

The optimal parameter values obtained were β = 5.743889 
and γ = 2.28. The other four parameter values are initialized 

Fig. 10   Convergence trend of different values of f 

Fig. 11   Convergence trend of different values of g 
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as follows: h = 100 , k = 0.8 , f = 6 , and g = 0.04 . The effect 
of different values of b on the performance of the algorithm 
is shown in the following Fig. 7.

Figure 5 shows that when b = 14.5, the exploration effi-
ciency of the algorithm is the lowest. When b = 14.3, the 
exploration efficiency is improved. When b = 15.5 and 16.5, 
the exploration efficiency is higher than when b = 14.3. 
When b = 15.0, the exploration efficiency is the best. There-
fore, the optimal value of the undetermined parameter b is 
15.0.

4.1.4 � Impact of h on the exploration efficiency of the EE‑FA

The optimal parameter values obtained were as follows: 
β = 5.743889, γ = 2.28, and b = 15. The other three param-
eter values are then initialized as follows: k = 0.8 , f = 6 , and 
g = 0.04 . The effects of different values of h on the perfor-
mance of the algorithm shown in the Fig. 8.

Figure 8 shows that when h = 74.0, the exploration effi-
ciency of the algorithm is the lowest. When h = 73.0 and 
85.0, the exploration efficiency is improved. When h = 76.0, 
the exploration efficiency is higher than when h = 73.0. 
When h = 75.0, the exploration efficiency is the best. There-
fore, the optimal value of the undetermined parameter h is 
75.0.

4.1.5 � Impact of k on the exploration efficiency of the EE‑FA

The optimal parameter values obtained were as follows: 
β = 5.743889, γ = 2.28, b = 15, and h = 75.0. The other two 
parameter values are then initialized as f = 6 and g = 0.04 , 

The effects of different values of k on the performance of the 
algorithm are shown in the Fig. 9.

Figure 9 shows that when k = 0.8 and 1.9, the exploration 
efficiency of the algorithm is the lowest. When k = 1.0, the 
exploration efficiency is improved. When k = 1.52, the explo-
ration efficiency is higher than when k = 1.0. When k = 1.5, 
the exploration efficiency is the best. Therefore, the optimal 
value of the undetermined parameter k is 1.500.

4.1.6 � Impact of f  on the exploration efficiency of the EE‑FA

The optimal parameter values obtained were as follows: 
β = 5.743889, γ = 2.28, b = 15, h = 75.0, and k = 1.5. The 
last parameter value is initialized as follows: g = 0.04 . The 
effects of different values of k on the performance of the 
algorithm are shown in the Fig. 10

Figure 10 shows that when f = 10.0, the exploration effi-
ciency of the algorithm is the lowest. When f = 11.0, the 
exploration efficiency is improved. When f = 9.0 and 6.0, the 
exploration efficiency is higher than when f = 11.0. When 
f = 7.0, the exploration efficiency is the best. Therefore, the 
optimal value of the undetermined parameter f is 7.0.

4.1.7 � Impact of g impact on the exploration efficiency 
of the EE‑FA

The optimal parameter values obtained were as follows: 
β = 5.743889, γ = 2.28, b = 15, h = 75.0, k = 1.5, and f = 7.0. 
The effects of different values of g on the performance of 
the algorithm are shown in the Fig. 11.

Figure 11 shows that when g = 0.01, the exploration effi-
ciency of the algorithm is the lowest. When g = 0.02 and 

Table 1   Types of algorithms
FA xi,t+1 = xi,t + �0 ⋅ e

−�⋅r2
i,j
⋅ (xj,t − xi,t) + � ⋅ (rand − 0.5)

LF-FA xi,t+1 = xi,t + 𝛽0 ⋅ e
−𝛾⋅r2

i,j
⋅ (xj,t − xi,t) + 𝛼 ⋅ sign(rand − 0.5)⊗ Levy

AD-IFA
xi,t+1 =

{
xi,t + 𝛽0 ⋅ e

−𝛾⋅r2
i,j
⋅ (xj,t − xi,t) + 𝛼 ⋅ sign|rand − 0.5|⊗ Levy, u > Rt

xi,t + 𝛽0 ⋅ e
−𝛾⋅r2

i,j
⋅ (xj,t − xi,t)⊗ eb⋅1 ⊗ cos(2𝜋 ⋅ 1), u ≤ Rt

EE-FA ⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi,t+1 = xi,t + Ai,j + Bi,j

Ai,j = 5.743889 ⋅ e
−(1.28+iter×(1∕itermax))⋅

�
1∕75

1+(15∕75)⋅ri,j

�
⋅r2
i,j
⋅

�
xj,t − xi,t

�

Bi,j = 0.015 ⋅ (1.5 ⋅ Ai,j ⋅ (rand − 0.5) + 7 ⋅ e−�xj,t−xi,t � ⋅ e2(rand−0.5) ⋅ sin(2 ⋅ pi ⋅ (rand − 0.5)))

Table 2   Time complexity 
experiment setup

Algorithms Population Maximum 
iterations

Dimensional Others

AD-IFA 15 100 4 Intel(R) Core(TM) i3 CPU, M 380 @ 2.53 GHz
EE-FA 15 100 4
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0.03, the exploration efficiency is improved. When g = 0.004, 
the exploration efficiency is higher than when g = 0.02. 
When g = 0.015, the exploration efficiency is the best. There-
fore, the optimal value of the undetermined parameter g is 
0.015.

The optimal parameter values obtained were as follows: 
β = 5.743889, γ = 2.28,  b= 15, h = 75.0, k = 1.5, f = 7.0, and 
g = 0.015.

The EE-FA proposed in this article is as follows:

Table 3   Time complexity calculation of experimental results

Function Total running time (unit: seconds)

AD-IFA EE-FA

F1 12.52799947 7.01598407
F2 12.21551831 6.96824297
F3 8.279623167 6.97935718
F4 12.39544264 7.14623037
F5 13.85101093 8.71392987
F6 12.85877523 7.99802498
F7 12.09153378 7.97123994
F8 12.56812335 8.07496944
F9 11.41057697 7.88444513

Table 4   Description of the 24 
benchmark functions

Function ID Equation description

F1
f1(x) =

D∑
i=1

x2
i
, xi ∈ [−100, 100]

F2
f2(x) =

∑D

i=1

�∑i

j=1
xj

�2

, xi ∈ [−100, 100]

F3 f3(x) =
∑D

i=1
�xi� +∏D

i=1
�xi�, xi ∈ [−10, 10]

F4 f4(x) =
∑D

i=1
ix4

i
, xi ∈ [−1.28, 1.28]

F5
f5(x) = −20 exp

⎛⎜⎜⎝
−0.2

�
1

D

D∑
i=1

x2
i

⎞⎟⎟⎠
− exp

�
1

D

D∑
i=1

cos(2�xi)

�
+ 20 + exp(1), xi ∈ [−32, 32]

F6
f6(x) =

D∑
i=1

i∑
j=1

x2
j
, xi ∈ [−65.536, 65.536]

F7
f7(x) =

D∑
i=1

�xi�i+1, xi ∈ [−1, 1]

F8
f8(x) =

D∑
i=1

x2
i
+

�
D∑
i=1

0.5xi

�2

+

�
D∑
i=1

0.5ixi

�4

, xi ∈ [−5, 10]

F9
f9(x) = 106 ⋅ x2

1
+

D∑
i=2

x2
i
, xi ∈ [−1, 1]

F10 Composition function 5 (D = 16), [− 32 32]
F11 Composition function 6 (D = 16), [− 65 65]
F12 Composition function 7 (D = 16), [− 1 1]
F13 Composition function 8 (D = 16), [− 5 10]
F14 Composition function 9 (D = 16), [− 1, 1]
F15 Composition function 5 (D = 16), [− 24 24]
F16 Composition function 6 (D = 16), [24,24]
F17 Composition function 7 (D = 32), [− 0.5 0.5]
F18 Composition function 8 (D = 32), [− 5 10]
F19 Composition function 9 (D = 32), [− 1 1]
F20 Composition function 5 (D = 64), [− 14 14]
F21 Composition function 6 (D = 64), [− 14 14]
F22 Composition function 7 (D = 64), [− 1 1]
F23 Composition function 8 (D = 64), [− 5 10]
F24 Composition function 9 (D = 64), [− 1 1]
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4.2 � Improve the iteration speed of the EE‑FA

Our research found that the light attraction coefficient of fire-
flies also has a significant effect on the convergence speed of 

(25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

xi,t+1 = xi,t + Ai,j + Bi,j

Ai,j = 5.743889 ⋅ e
−2.28⋅

�
1∕75

1+(15∕75)⋅ri,j

�
⋅r2
i,j
⋅

�
xj,t − xi,t

�

Bi,j = 0.015 ⋅ (1.5 ⋅ Ai,j ⋅ (rand − 0.5) + 7 ⋅ e−�xj,t−xi,t�

⋅ e2(rand−0.5) ⋅ sin(2 ⋅ pi ⋅ (rand − 0.5)))

.

the FA. Within a certain range, the greater the optical attrac-
tion coefficient of the FA is, the faster its iteration speed, 
but its exploration efficiency is correspondingly weakened.

In order to improve the convergence speed without com-
promising the exploratory ability, a functional equation to 
increase the optical attraction coefficient with the number of 
iterations of the algorithm is proposed (27).

The iterative formula of the light absorption coefficient 
is as follows:

where itermax is the maximum number of iterations.
Therefore, the position update formulas of the EE-FA 

with the best parameter value are as follows:

(26)� = 1.28 + iter/itermax,

Table 5   Results and comparison

Algorithms F1 F2 F3

Mean Std Mean Std Mean Std

FPA 1.0E+01 8.0E+00 3.3E+01 2.9E+01 2.0E+00 1.2E+00
GOA 2.9E+02 2.2E+02 1.6E+02 1.5E+02 2.5E+01 2.1E+01
PSO 8.0E−03 5.7E−03 6.3E−02 7.5E−02 2.1E+00 4.0E+00
IPSO 2.3E−03 1.3E−03 4.2E−03 3.0E−03 8.3E−02 2.8E−02
YSPSO 1.6E+02 1.0E+02 2.3E+02 1.6E+02 6.1E+00 3.4E+00
BPSO 4.6E+02 2.5E+02 5.3E+02 4.0E+02 1.4E+01 6.4E+00
EE-FA 0.0E+00 0.0E+00 0.0E+02 0.0E+00 00E+00 00E+00

Algorithms F4 F5 F6

Mean Std Mean Std Mean Std

FPA 1.3E+02 1.9E+02 8.9E+00 2.3E+00 1.0E+02 6.1E+01
GOA 1.5E+05 3.1E+05 1.9E+01 3.0E−01 1.4E+03 1.3E+03
PSO 8.5E−04 2.8E−03 1.9E+01 1.5E+00 4.8E−02 4.1E−02
IPSO 9.6E−06 9.7E−06 1.2E+01 6.7E+00 1.1E−02 7.2E−03
YSPSO 6.8E+04 1.5E+05 1.6E+01 2.7E+00 8.9E+02 7.4E+02
BPSO 1.5E+05 1.6E+05 1.9E+01 1.5E+00 3.1E+03 1.5E+03
EE-FA 0.0E+00 0.0E+00 3.9E+00 1.0E+00 00E+00 00E+00

Algorithms F7 F8 F9

Mean Std Mean Std Mean Std

FPA 8.8E+00 4.2E+00 6.5E+03 7.2E+03 6.0E+00 1.2E+01
GOA 4.8E+03 1.0E+04 1.2E+03 4.0E+02 1.5E+00 6.8E−01
PSO 1.9E−01 6.9E−01 3.0E−02 3.8E−02 3.6E+00 2.6E+00
IPSO 6.8E−03 3.9E−03 3.9E−03 3.3E−03 2.0E+00 1.4E+00
YSPSO 1.6E+04 3.6E+04 6.7E+06 6.9E+06 7.2E+00 2.7E+01
BPSO 9.0E+03 1.0E+04 7.8E+06 9.1E+06 2.3E+04 3.4E+04
EE-FA 0.0E+00 0.0E+00 0.0E+00 0.0E+00 1.5E−01 3.6E−01
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Fig. 12   Simulation Curves for test Functions
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Fig. 13   Simulation curves for test functions
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(27)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi,t+1 = xi,t + Ai,j + Bi,j

Ai,j = 5.743889 ⋅ e
−(1.28+iter×(1∕itermax))⋅

�
1∕75

1+(15∕75)⋅ri,j

�
⋅r2
i,j
⋅

�
xj,t − xi,t

�

Bi,j = 0.015 ⋅ (1.5 ⋅ Ai,j ⋅ (rand − 0.5) + 7 ⋅ e−�xj,t−xi,t� ⋅ e2(rand−0.5) ⋅ sin(2 ⋅ pi ⋅ (rand − 0.5)))

.

Fig. 13   (continued)
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Fig. 14   Schematic of a cantile-
ver beam

Fig. 15   The iterative trends of 
the 7 algorithms

Fig. 16   Schematic of pressure 
vessel. Ts shell thickness, Th 
spherical head thickness, R 
radius of cylindrical shell, and L 
shell length
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Algorithm 1 The enhanced exploration firefly algorithm (EE-FA) 
The fitness function f(x), x=(x1,x2,x3, ,xd)T

Initialize a population of fireflies xi (i=1,2,3, ,n) 
While iter < itermax do

for i=1:n all n fireflies do
for j=1:n all n fireflies (inner loop) do

Light intensity li at xi is determined by f(xi) 
if li < lj then

Update the ith firefly’s position using Eq. 27 
end if 
Evaluate new solutions and update the light intensity 

end for 
end for 
Rank the fireflies and find the current best fitness function value fiter*

iter=iter+1
end while 

Output results and visualization 

Fig. 17   The iterative trends of 
seven algorithms

4.3 � Comparison of the time complexity of the EE‑FA 
and AD‑IFA

The time complexity of the FA and its variants depend on 
the population size (n), the dimensional size (d), the maxi-
mum number of evaluations (Max_iter), and the type of 
algorithm. The population size (n), dimensional size (d) and 
maximum number of evaluations (Max_iter) were the same. 
The FA and its variants differ greatly in time complexity due 
to different types of algorithms (Tables 1, 2).

The number of independent simulations for each bench-
mark function is 100. Then, we calculate the total running 
time of each variant algorithm. The other experimental 
conditions of the EE-FA and AD-IFA remained the same. 

Time complexity is measured based on the running time 
on the same computer in the same environment. F1–F9 are 
described in Table 4.

The data in Table 3 show that the total time for 100 indi-
vidual runs of the AD-IFA under the same environment 
and conditions is much higher than that of the EE-FA. This 
reflects that the AD-IFA has high time complexity, high 
computational costs and a long running time. The EE-FA 
removes the adaptive switching mechanism involved in the 
AD-IFA. The mechanism increases the time complexity and 
computational costs.

In short, compared to the AD-IFA, the EE-FA is also 
cheaper to calculate.
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4.4 � Test function

We choose benchmark functions with different shapes for 
the simulation experiment [42, 43] in Table 4. Most of these 
benchmark functions have multiple local minimums or have 
bowl, plate and valley shapes.

4.5 � Compared with other smart swarm algorithms

We selected PSO and its variants, the FPA, the GOA and the 
EE-FA, for a performance comparison. Standard function 
F1–F9 is selected, the search space dimension D = 5, each 
algorithm is simulated 30 times separately, and the number 
of search agents is 15.

The comparative data between the EE-FA and the 
selected object reveal that the mean and std are the small-
est. The EE-FA has the highest exploration efficiency. The 

data from Table 5 prove that the new random item module 
greatly improves the FA’s exploration capabilities.

Figure 12 shows that the EE-FA has the fastest iteration 
speed and the best exploration capability. The improvement 
in the convergence speed is mainly attributed to the attrac-
tiveness item and the random item module. The enhance-
ment of the attractiveness item speeds up convergence.

The improvement of the EE-FA’s exploration efficiency is 
attributed to the reconstructed random term module.

4.6 � Comparison of FA and its variant algorithms

The experimental result data are recorded in Table 6.
As shown in Table 6, for F1, F2, F3, F4, F5, F6, F9, 

F10, F14, F19 and F24, the minimum mean values of the 
EE-FA and the AD-IFA are significantly smaller than those 
of the FA, LF-FA, PSSFA, IFA and FA-IFF. EE-FA and 
AD-IFA. The EE-FA and AD-IFA have the same exploration 
efficiency. For F8, F11, F13, F15, F16, F18, F20, F21 and 
F23, the minimum mean value of the EE-FA was the small-
est. The exploration efficiency of the EE-FA is the highest.

For the global continuous optimization problem of 24 
benchmark functions, the EE-FA has the highest explora-
tion efficiency, followed by the AD-IFA. Their exploration 
efficiency is significantly better than that of other algorithms.

Figure 13 shows that the EE-FA has the best exploration 
efficiency and convergence behaviour. The attractiveness 
item module enhances the attraction between long-distance 
fireflies and improves the convergence efficiency. The recon-
structed random term has greatly improved the EE-FA’s 
exploration efficiency.Fig. 18   Schematic of tension/compression spring

Fig. 19   The iterative trends of 
seven algorithms
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F20, F21 and F24 reveal that the EE-FA has a much better 
global optimization capability than the FA, LF-FA, PSSFA, 
IFA, FA-IFF and AD-IFA. For F11, F13 and F16, the con-
vergence speed of the EE-FA is the fastest. For F15 and F20, 
other algorithms fall into local optima, but the EE-FA can 
effectively avoid the situation.

Overall, the EE-FA is superior to the FA, LF-FA, PSSFA, 
IFA, FA-IFF and AD-IFA in terms of both convergence 
speed and exploration efficiency. This is due to the seven 
important optimality constants in the EE-FA: β, γ, b, h, k, 
f, and g.

Finally, the proposed EE-FA enhances the exploration 
efficiency and speeds up convergence while avoiding the 
problem of falling into local optima.

5 � Real application cases

In this section, the performance of seven algorithms, the 
FA, LF-FA, PSSFA, IFA, FA-IFF, AD-IFA and EE-FA, are 
evaluated in the following four engineering real applications: 
cantilever beam design [44], pressure vessel design [45], ten-
sion/compression spring design [46], and a three-bar tress 
design [45].

Regarding the parameter settings of the FA, LF-FA, 
PSSFA, IFA, FA-IFF and AD-IFA, α, γ, and β0 are set to 0.2, 
1, and 1, respectively. The dimensional space settings are 
as follows: cantilever beam (d = 5), pressure vessel design 
(d = 4), tension/compression spring design (d = 3), and a 
three-bar tress design (d = 2). The corresponding maximum 
numbers of iterations are the following: 1000, 1000, 200, 
and 200. The experiment of each case was repeated 50 times 
to evaluate the performance of the 7 algorithms. The experi-
mental results are recorded in the corresponding table.

5.1 � Cantilever beam design

This case is related to the weight optimization of a cantilever 
beam with a square cross section (Figs. 14, 15). The bound 
constraints are set as 0.01 ≤ xj ≤ 100. This problem can be 
expressed analytically as follows:

where 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100.

min f (x) = 0.0624(x1 + x2 + x3 + x4 + x5)

s.t. g =
61

x3
1

+
37

x3
2

+
19

x3
3

+
7

x3
4

+
1

x3
5

− 1 ≤ 0,

Fig. 20   Schematic of a three-bar tress

Fig. 21   The iterative trends of 
seven algorithms
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Case Optimizer Mean of optimal variables Mean of 
optimal value 
f(x)Cantilever 

beam
x1 x2 x3 x4 x5

FA 26.5909 28.0631 30.3021 25.5186 30.3066 8.7848
LF-FA 11.7234 14.147 14.2108 10.6045 12.1334 3.9199
PSSFA 16.9475 18.2402 19.3348 14.8616 19.2409 5.5302
IFA 19.9816 21.113 21.7019 19.0129 21.1807 6.4266
FA-IFF 9.42642 12.044 12.2957 9.02233 9.6568 3.2714
AD-IFA 6.4233 6.3218 5.6213 4.4494 2.6913 1.5916
EE-FA 6.1428 5.6241 4.917 4.0009 2.7068 1.4596

5.2 � Pressure vessel design

In order to minimize the total cost of a cylindrical PV, the 
thickness of the shell (Ts), the thickness of the head (Th), the 
inner radius (R), and the length of the annular cross section 
(L) are optimized (Figs. 16, 17).

Then, the optimization problem can be expressed as 
follows:

where1 × 0.0625 ≤ Ts , Th ≤ 99 × 0.0625, and10 ≤ R, L ≤ 200.

Case Opti-
mizer

Mean of optimal variables Mean of 
optimal 
value f(x)PVD Ts Th R L

FA 2.6250 1.2500 60.478 104.87 23320.36
LF-FA 1.6875 0.5625 52.953 102.35 7386.577
PSSFA 2.1875 0.6875 54.104 103.90 11506.35
IFA 2.3750 0.8750 54.759 102.99 14664.36
FA-IFF 1.8750 0.5625 52.039 102.60 7683.466
AD-IFA 2.5625 0.5000 56.867 66.349 6540.617
EE-FA 1.3750 0.6250 64.711 13.540 5560.038

5.3 � TCSD (tension/compression spring design) 
problem

Another classic engineering problem is TCSD. In this case, 
the decision maker wants to minimize the heaviness of a 
spring (Figs. 18, 19). The problem consists of the following 
three variables: the diameter (d), the mean coil diameter (D), 
and the number of dynamic coils (N).

min f (Ts, Th,R, L) = 0.6224TsRL

+ 1.7781ThR
2 + 3.1661T2

s
L + 19.84T2

h
L,

s.t.

⎧⎪⎪⎨⎪⎪⎩

g1 = −Ts + 0.0193R ≤ 0,

g2 = −Th + 0.0095R ≤ 0,

g3 = −�R2L −
4

3
R3 + 1296000 ≤ 0,

g4 = L − 240 ≤ 0,

The expressions for TCSD is as follows.
Consider �⃗x = [x1, x2, x3] = [d,D,N].
Minimize f (�⃗x) = (x3 + 2)x2x1.
Subject to g1(�⃗x) = 1 −

x3
2
x3

7178x4
1

≤ 0

V a r i a b l e  r a n g e s 
0.05 ≤ x1 ≤ 2.00, 0.25 ≤ x2 ≤ 1.30, 2.00 ≤ x3 ≤ 15.0.

2.00 ≤ x
3
≤ 15.0.

Case Optimizer Mean of optimal variables Mean of 
optimal 
value f(x)TCSD d D N

FA 0.050 0.25005 4.7611 0.0042266
LF-FA 0.050 0.25000 2.3783 0.0027365
PSSFA 0.050 0.25000 2.0000 0.0025000
IFA 0.050 0.25000 2.9578 0.0030986
FA-IFF 0.050 0.25000 2.0000 0.0025000
AD-IFA 0.050 0.25000 2.0000 0.0025000
EE-FA 0.050 0.25000 2.0000 0.0025000

5.4 � A three‑bar tress design

This problem was first presented by Nowacki in 1973. The 
volume of a statically loaded 3-bar truss is to be minimized 
subject to stress (r) constraints on each of the truss members 
(Figs. 20, 21). The objective is to evaluate the optimal cross-
sectional areas (A1 and A2).

The mathematical formulation is given as follows:

g2(�⃗x) =
4x2

2
− x1x2

12566(x2x
3
1
− x4

1
)
+

1

5180x2
1

≥ 0

g3(�⃗x) = 1 −
140.45x1

x3
2
x3

≤ 0

g4(�⃗x) =
x1 + x2

1.5
− 1 ≤ 0
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with l = 100 cm, P = 2KN∕CM2, and � = 2KN∕CM2

(0 ≤ A
1
,A

2
≤ 1).

Case Optimizer Mean of optimal 
variables

Mean of 
optimal 
value f(x)

A three-bar tress A1 A2

FA 0.98238 0.026953 2.8300
LF-FA 1 0 2.8284
PSSFA 1 0 2.8284
IFA 1 0 2.8284
FA-IFF 1 0 2.8284
AD-IFA 1 0 2.8284
EE-FA 1 0 2.8284

6 � Conclusions

Regarding global continuity optimization, the original FA 
faced the defects of low exploration efficiency and a slow 
convergence rate. Although the LF-FA enhances the explo-
ration efficiency by introducing the Lévy distribution, it 
causes its convergence rate to slow down. On the basis of the 
LF-FA, the AD-IFA introduces a logarithmic spiral path and 
adopts an adaptive switch mechanism. The adaptive switch 
mechanism effectively balances the global search and local 
development performance while greatly increasing the com-
putational costs. The variant PSSFA adopts a personalized 
step strategy to improve the defect that the FA has fallen 
into a local optimum. The IFA uses sigmoid attractiveness 
to improve convergence efficiency and convergence rate. 
Compared with the PSSFA, IFA and FA_IFF, the EE-FA 
has better exploration efficiency and convergence behaviour.

By enhancing the attraction between fireflies and intro-
ducing a damping vibration function, the EE-FA can effec-
tively improve the exploration efficiency and accelerate the 
convergence behaviour. Compared with the AD-IFA, the 
calculation costs of the EE-FA are lower.

Our future work will further try to strengthen the attrac-
tiveness of fireflies and study their exploration efficiency and 
convergence characteristics. Furthermore, we will explore 
multiple potential directions. These include tailoring the 

min f (A1,A2) = (2
√
2A1 + A2)l,

s.t.

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g1 =

√
2A1 + A2√

2A2
1
+ 2A1A2

P − � ≤ 0,

g2 =
A1√

2A2
1
+ 2A1A2

P − � ≤ 0,

g3 =
1

A1 +
√
2A2

P − � ≤ 0,

application of the algorithm in the actual system, such as 
the privacy protection network in social networking; and 
the optimal parameter selection in machine learning model 
training.
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