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Abstract
This study investigates the effects of geometric nonlinearities on the dynamical behaviour of carbon nanotube (CNT) 
strengthened imperfect composite beams by considering both axial and transverse motions. For the given general model of 
the beam, the system modelling has been adopted from the literature and the nonlinear dynamic response in presence of an 
external harmonic load is examined for the first time in the case of axially functionally graded (AFG) CNT fibre, which is 
used for strengthening the structure. Porosity imperfection with the ability to vary though the thickness is modelled using 
simple, closed and open-cell models; the porosity variation is formulated using uniform, linear, symmetric and un-symmetric 
models. The geometrical imperfection is considered by allowing the beam to have an initial curved longitudinal axis and the 
mass imperfection is modelled by introducing a concentrated mass at a certain point of the beam. Using a combination of 
the Galerkin scheme together with dynamic equilibrium technique, the influence of different imperfections and porosities 
on the frequency response of the system is examined. It is shown that, for the case of AFG CNT strengthened beam, geo-
metrical imperfection can change the nonlinear response from a hardening to a softening behaviour. Besides, the importance 
of considering the interaction between axial and transverse motion is examined in detail. The influence of lumped mass 
imperfection and its position is also studied showing that this type of imperfection can change the nonlinear behaviour of the 
system significantly. Moreover, the influence of increasing the CNT volume fraction and functionally spreading the CNTs 
through the length is discussed. The results are useful for analysing the resonance phenomena in strengthened structures 
facing various imperfections.
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Abbreviations
L	� Length of the beam
b	� Width of the beam
h	� Thickness of the beam
M	� Mass imperfection parameter
α	� Porosity term
E	� Young’s modulus term
ρi	� Mass density term
k	� CNT grading power term
u	� Axial displacement
w	� Transverse displacement
w0	� Geometrical imperfection
K	� The kinetic energy term
U	� The potential energy term
WF	� The external work
A	� Cross section of the beam
Ii	� The area moments of inertia about the z 

axis
A11, B11, D11	� Axial stiffness terms
F	� External force
ω	� Excitation frequency term
Ω	� Nondimensional frequency term
γ	� Slenderness ratio
e1	� Efficiency parameter
x0	� Position of the mass imperfection
VCNT,total	� Total volume fraction of CNT

VCNT,left	� CNT volume fraction at the left end
Vm	� Volume fraction of matrix
v	� Poisson’s ratio
t	� Time
δd	� Dirac delta
δ	� Variation symbol
m	� Subscript referring to the matrix
CNT	� Subscript referring to CNT

1  Introduction

With recent developments in various cross-disciplinary engi-
neering fields, the importance of having optimum structures 
with higher durability-to-weight, stiffness-to-weight and 
strength-to-weight is visible in engineering horizon. Accord-
ingly, numerous studies concentrated on strengthening con-
ventional structures using different algorithms. Carbon-fibre, 
aramid-fibre and glass-fibre strengthened structures are some 
of the well-known outcomes of the research studies in this 
field [1–6]. Meanwhile, improvements in nano/micro-scale 
technologies made it possible to introduce carbon nanotubes 
(CNTs) as a reliable new reinforcement fibre [7–11]. CNTs 
are well-known for their spectacular mechanical, thermal, 
and electrical properties which made them an important ele-
ment in different areas of science. Due to their ultra-small 
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scale, size-dependent effects and molecular interactions 
have been observed where modelled for different small-scale 
structures using nonlocal elasticity theories [12–24].

Moreover, the possibility to arrange the layout of fibres 
in CNT strengthened structures could make it flexible for 
designers to obtain different desirable mechanical behav-
iours in various applications of such structures. This impor-
tance could be achieved by functionally grading the fibres 
inside the matrix; however, to reach an efficient CNT distri-
bution model for different purposes, it is necessary to com-
prehend the physical and mechanical properties of strength-
ened beams.

In the past few years, the mechanical response of CNT 
strengthened structures has been investigated by arrang-
ing the fibres through the thickness direction. For linear 
analysis, Lin and Xiang [25] investigated the free oscilla-
tion behaviour of functionally graded (FG) CNT strength-
ened beams. Shear deformable beam theories were used 
to model the beam and differences between the computed 
natural frequency terms were presented showing that by 
decreasing the CNT volume fraction, natural frequency 
terms decrease significantly compared to increasing the 
volume fraction. Shi et al. [26] analysed the effects of dif-
ferent types of boundary conditions on the linear oscilla-
tion of FG CNT reinforced beams; it was shown that the 
CNT distribution could affect the natural frequency terms 
significantly. Joshi et al. [27] analysed the strength and 
elasticity of CNT strengthened hexagonal section beams 
using finite-element simulation. Randomly dispersed and 
aligned CNTs were studied and it was shown that the 
effective elastic reinforcement is a function of CNT length 
and accordingly increasing the length of CNT fibres will 
increase the relative modulus term.

For large deformations and nonlinear analysis, Ke et al. 
[28] examined the nonlinear vibration behaviour of compos-
ite beams reinforced with single-walled carbon nanotubes 
(SWCNTs); the beam was modelled using Timoshenko 
beam theory and von Kármán geometry nonlinearity was 
taken into account—it was shown that the volume fraction 
and distribution of SWCNTs in the matrix could change the 
frequency ratio and mode shapes significantly. In another 
study, Pourasghar and Chen [29] investigated the effects 
of hyperbolic heat conduction on displacements and vibra-
tion response of CNT strengthened FG microbeams using 
Timoshenko beam theory and von Kármán geometry nonlin-
earity. It was concluded that linear and nonlinear frequencies 
decrease by increasing the thermal conductivity of the beam.

For analysing geometrical imperfection in CNT strength-
ened beams varying through the thickness, Wu et al. [30] 
studied the nonlinear oscillation response of composite 
beams strengthened with CNT; it was concluded that the 
nonlinear vibrations in the system is very sensitive to the 
initial imperfections.

Stability and buckling behaviour of strengthen beams 
with thickness FG CNT fibres have been examined by many 
researchers. Ke et al. [31] studied the dynamic stability of 
FG CNT strengthened beams by the means of differen-
tial quadrature method and Bolotin’s technique highlight-
ing that symmetric functionally graded CNT strengthened 
beams have higher excitation frequencies compared to the 
uniformly distributed model. In another study, Fattahi and 
Safaei [32] studied the buckling of functionally graded 
SWCNT strengthened beams with different boundary condi-
tions where it was shown that decreasing the volume fraction 
of SWCNT causes smaller stiffness in the system.

Main concentration in the previous studies is on grading 
the CNTs through the thickness direction [25, 33, 34]. There 
have been few studies on analysing the influence of grading 
the CNTs along the length (AFG CNT strengthened beams) 
which focuses on the linear vibrations of the structure. In 
Ref. [35], authors analysed the linear vibration response 
of CNT strengthened beams. The beam was modelled by 
considering the influence of an elastic Winkler-Pasternak 
foundation and the linear natural frequencies were obtained 
using a generalised differential quadrature method (GDQM). 
Results were compared with literature and finite-element 
simulation for simplified models shown a great accuracy. 
In another study, the influence of imperfection on the linear 
vibrations of the beam was examined [36]. Different types of 
imperfections were considered and the results were obtained 
using a generalised decomposition technique. It was shown 
that the linear frequencies of the beam are sensitive to the 
distribution of CNTs and imperfections.

In this study, the effects of geometric nonlinearities 
on the coupled forced vibrations of AFG CNT reinforced 
beams are investigated in the presence of an external time-
dependent transverse load with not neglecting axial motion 
(Fig. 1); this is for the first time. The coupled equation of 
motion is adopted from Ref. [36] and the non-dimensional 
form and the solution procedure are presented in details. 
General forms of functionally graded CNT distributions are 
presented for modelling the reinforcement in the structure. 
The governing equations are solved using a combination of 
Galerkin scheme and dynamic equilibrium technique, and a 
comprehensive parametric study on the nonlinear vibrations 
of the structure is conducted by considering different types 
of porosities and imperfections.

2 � Problem definition and solution 
procedure

2.1 � Model description

The coupled equations of motion of geometrical/mass 
imperfect porous CNT strengthened beams have previously 
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been obtained in Ref. [36], by the same authors which by 
adding the presence of an external harmonic load, is briefly 
described here. For a hollow beam model, by having a 

Fig. 1   Schematic representation of porous axially functionally graded CNT strengthened beams with geometric and mass imperfections

geometrical imperfection and neglecting the shear defor-
mation, variations of potential and kinetic energy terms are 
written as 
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where E is the Young’s modulus (function of x and z), v is 
the Poisson ratio (function of x), ρ is the density (function 
of x and z), w and u are the transverse and axial displace-
ments in z and x directions, respectively, w0 is the geometri-
cal imperfection, M is the lumped mass imperfection, x0 is 
the axial position of the mass imperfection, A is the cross 
section, t is time, L is the length of the beam, δd is the Dirac 
delta, and δ is the variation symbol. For the sake of brev-
ity, the procedure for obtaining Eqs. (1) and (2) is shown in 
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Appendix A. The variation of the external work (WF) due to 
a transverse external harmonic excitation force is

where F is the external force magnitude and ω is the fre-
quency of the harmonic excitation. Employing the coupled 
equations of motion, Hamilton’s principle gives [36]
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with the axial stiffness terms (D11, B11 and A11) and the area 
moments of inertia (I2, I1 and I0) about the z axis defined 
as [36]

where subscripts m and CNT denote the matrix and CNT prop-
erties, V is the volume fraction and e1 is the effective coef-
ficient indicating the efficiency of CNTs in strengthening the 
Young’s modulus of the composite, and α1 and α1 are the 
porosity terms affecting the Young’s modulus and density 
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terms respectively. For symmetric porosity variation through 
the thickness, the stiffness and inertia terms B11 and I1 will 
be zero.

2.2 � Solution method

Since the equations of motion include different parameters 
with a wide range of scale, new non-dimensional parameters 
are defined to decrees the scale differences as [36]
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The superscript * is removed from Eqs. (9) and (10) for 
the sake of brevity. The axial and transverse motion of the 
hollow beam are written by assuming the first 2N modes of 
vibration and neglecting the shear effects using Galerkin’s 
scheme as
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the governing coupled Eqs. (9) and (10) are rewritten as
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which can be sorted as

with
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pi(t)pj(t)pk(t) = F cos (Ωt),

(15)M11r̈ +M12p̈ + C1ṙ + KL11r + KL12p + KN11p
2 = 0,

(16)M22p̈ +M21r̈ + C2ṗ + KL21r + KL22p + KN21p
2 + KN22rp + KN23p
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(17)r =
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,
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,
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(a)

(b)

(c)

Fig. 2   Influence of the CNT fibre distribution through the length 
on the transverse amplitude-frequency response of imperfect AFG 
CNT strengthened porous beam a VCNT,L = 1%, b VCNT,L = 2%, and c 
VCNT,L = 3%

(a)

(b)

(c)

Fig. 3   Influence of the CNT fibre distribution through the length 
on the axial amplitude-frequency response of imperfect AFG CNT 
strengthened porous beam a VCNT,L = 1%, b VCNT,L = 2%, and c 
VCNT,L = 3%
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(a)

(b)

(c)

Fig. 4   Influence of the total volume of CNT fibre on the transverse 
amplitude-frequency response of imperfect AFG CNT strengthened 
porous beam a VCNT,Total = 1%, b VCNT,Total = 2%, and c VCNT,Total = 3%

(a)

(b)

(c)

Fig. 5   Influence of the total volume of CNT fibre on the axial ampli-
tude-frequency response of imperfect AFG CNT strengthened porous 
beam a VCNT,Total = 1%, b VCNT,Total = 2%, and c VCNT,Total = 3%
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and the linear coefficients M11, M12, KL11, KL12, KL21 and 
KL22 are given in Ref. [31]. Using the given assumptions and 
employing a dynamic equilibrium technique for appropriate 
beam base functions, the dynamic equilibrium coefficients 
are written in an exponential seriesas

where Amn and Bmn are the dynamic equilibrium coordinates 
and the dynamic complex equilibrium equation are obtained 
by substituting Eqs. (23) and (24) into Eqs. (15) and (16) 
as [37]

where Fexternal
n

 is the external actuating force on each mode of 
transverse motion, and NL1systemn  and NL2systemn  are the non-
linear terms of the axial and transverse motions, respectively. 
By considering all the 2 N modes of vibration in axial and 
transverse equations, Eq. (25) is rewritten as

where [T] is a complex matrix defined and {R} is the ampli-
tudes of the motion defined as

For the next step, using Eq. (26), an equivalent root-find-
ing equation is written as

(21)
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1
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dx
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(
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)(
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)}
dx,

(22)
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1
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d

dx

{
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2
A11(x)

(
d�i

dx

)(
d�j

dx

)(
d�k

dx

)}
dx,

(23)pn =

N∑
m=−N

Amne
inΩt,

(24)rn =

N∑
m=−N

Bmne
inΩt,

(25)

{
−n2Ω2[M] + inΩ[C] + [K]

}{ rn

pn

}

=

{
0

Fexternal
n

}
+

{
NL1system

n

NL2system
n

}
,

(26)[T]{R} =
{
Fexternal

}
+
{
NLsystem

}
,

(27)[T] =
{
−n2Ω2[M] + inΩ[C] + [K]

}
,

(28){R} =

{
r

p

}
.

(29)G(R,Ω) = [T]{R} −
{
Fexternal

}
−
{
NLsystem

}
= 0,

(a)

(b)

(c)

Fig. 6   Transverse amplitude-frequency response of geometrically perfect 
AFG CNT strengthened porous beam (uniform open-cell porosity with 
α1 = 0.4) a first coordinate, b second coordinate, and c third coordinate
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(a)

(b)

(c)

Fig. 7   Transverse amplitude-frequency response of geometrically imperfect 
(A0 = 0.5) AFG CNT strengthened porous beam (uniform open-cell porosity 
with α1 = 0.4) a first coordinate, b second coordinate, and c third coordinate

(a)

(b)

(c)

Fig. 8   Transverse amplitude-frequency response of geometrically 
imperfect (A0 = 1.0) AFG CNT strengthened porous beam (uniform 
open-cell porosity with α1 = 0.4) a first coordinate, b second coordi-
nate, and c third coordinate
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(a)

(b)

(c)

Fig. 9   Axial amplitude-frequency response of geometrically imper-
fect (A0 = 0.5) AFG CNT strengthened porous beam (uniform open-
cell porosity with α1 = 0.4) a first coordinate, b second coordinate, 
and c third coordinate

(a)

(b)

(c)

Fig. 10   Axial amplitude-frequency response of geometrically imper-
fect (A0 = 1.0) AFG CNT strengthened porous beam (uniform open-
cell porosity with α1 = 0.4) a first coordinate, b second coordinate, 
and c third coordinate
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(a)

(b)

(c)

Fig. 11   Transverse amplitude-frequency response of geometrically 
perfect AFG CNT strengthened porous beam (linear closed-cell 
porosity with α1 = 0.4) a first coordinate, b second coordinate, and c 
third coordinate

(a)

(b)

(c)

Fig. 12   Transverse amplitude-frequency response of geometrically 
imperfect (A0 = 0.5) AFG CNT strengthened porous beam (linear 
closed-cell porosity with α1 = 0.4) a first coordinate, b second coordi-
nate, and c third coordinate
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and the differential of Eq. (29) is written as

By putting frequency parameter as the input, the ampli-
tudes of the equations of motion are obtained. It should be 
mentioned that this sequential method fails when the singu-
larity is obtained at ∂G(R,Ω)/∂R (at the turning point) [38]. 
Accordingly, a continuation term (αarc) should be added to 
the system and parameters R and Ω are defined as a function 
of this parameter as [39]

where Eq.  (30) is rewritten by the definition given in 
Eq. (31) as [38]

The tangent vector 

⎧⎪⎨⎪⎩

dR

d�arc
dΩ

d�arc

⎫⎪⎬⎪⎭
 has unit length with normal-

ising αarc as [40]

Accordingly, an additional equation for updating αarc 
along with R and omega is written using Eq. (33) as

The iteration process starts from an initial guess which 
in this study, the initial guess is made by solving the linear 
part of Eq. (29). Equations (32) and (34) are solved simul-
taneously using the initial guess and the process is repeated 
to reach a converged result. Then the frequency is evolved 
by [41]

and also, the dynamic equilibrium coefficients by

(30)dR

dΩ
= −
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�G(R,Ω)
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)
.
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)
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+
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(35)Ωnew = Ωold + ΔΩ,

(36)Amn = Amn + ΔAmn,

(a)

(b)

(c)

Fig. 13   Transverse amplitude-frequency response of geometrically 
imperfect (A0 = 1.0) AFG CNT strengthened porous beam (linear 
closed-cell porosity with α1 = 0.4) a first coordinate, b second coordi-
nate, and c third coordinate
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(a)

(b)

(c)

Fig. 14   Axial amplitude-frequency response of geometrically perfect 
AFG CNT strengthened porous beam (linear closed-cell porosity with 
α1 = 0.4) a first coordinate, b second coordinate, and c third coordi-
nate

(a)

(b)

(c)

Fig. 15   Axial amplitude-frequency response of geometrically imper-
fect (A0 = 0.5) AFG CNT strengthened porous beam (linear closed-
cell porosity with α1 = 0.4) a first coordinate, b second coordinate, 
and c third coordinate
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(a)

(b)

(c)

Fig. 16   Axial amplitude-frequency response of geometrically imper-
fect (A0 = 1.0) AFG CNT strengthened porous beam (linear closed-
cell porosity with α1 = 0.4) a first coordinate, b second coordinate, 
and c third coordinate

(a)

(b)

(c)

Fig. 17   Influence of porosity on the transverse amplitude-frequency 
response of geometrically imperfect AFG CNT strengthened porous 
beam—linear porous closed-cell model a α1 = 0.00, b α1 = 0.10, and 
c α1 = 0.20
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(a)

(b)

(c)

Fig. 18   Influence of porosity on the transverse amplitude-frequency 
response of geometrically imperfect AFG CNT strengthened porous 
beam—un-symmetric porous closed-cell model a α1 = 0.00, b 
α1 = 0.10, and c α1 = 0.20

(a)

(b)

(c)

Fig. 19   Influence of porosity on the axial amplitude-frequency 
response of geometrically imperfect AFG CNT strengthened porous 
beam—linear porous closed-cell model a α1 = 0.00, b α1 = 0.10, and 
c α1 = 0.20
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and the process is repeated.

3 � CNT fibre effect on nonlinear coupled 
response

For AFG CNT strengthened imperfect beams, the equations 
of motion and solution procedure to obtain the nonlinear 
dynamic response are presented in the previous section. 
In this section, by defining the problem with the geo-
metrical and physical properties as in Ref. [36] b = 0.2 m, 
h = 0.1 m, L = 2 m, Em = 2.5 GPa, ECNT = 5646.6 GPa, ρm 
= 1190 kg/m3, ρCNT = 1400 kg/m3, k = 1, VCNT,total = 5% and 
VCNT,left = 2.5%, e1 = 0.14, ν = 0.3 and non-dimensional exter-
nal force as F = 5 with a modal damping 0.075, the influ-
ence of various parameters on the nonlinear forced vibra-
tion behaviour of the system with pinned- pinned boundary 
conditions is discussed.

One of the main analysis of this paper is to examine the 
effect of adding CNT fibres to imperfect beam models and 
show the impact on the nonlinear response. In the previous 
study [36], the improvements in the linear response of the 
system has been investigated and here, the nonlinear fre-
quency response will be presented to clarify the nonlinear 
response of the system to the presence of an external har-
monic load.

To this end, firstly, the influence of AFG varying the 
CNT volume fraction is analysed for a beam with symmetric 
porous closed cell as [42, 43]

with α10 = 0.2, geometry imperfection A0 = 0.5 and mass 
imperfection of M = 5 at x0 = 0.3. For this imperfect beam 
model, CNT distribution is assumed as Vcnt,Total = 5% linear 
variation through the length with Vcnt,Left = [1%, 2%, 3%]. 
Results for transverse dynamic equilibrium coordinates 
can be seen in Fig. 2 with respect to non-dimensional fre-
quency parameter (Ω0.5) showing that increasing the CNT 
distribution variation has a substantial effect in varying the 
amplitude response of the system and increasing the VCNT,Left 
for this beam model sweeps the excitation frequency to the 
right side. Besides, it can be seen that increasing the VCNT,Left 

(37)Bmn = Bmn + ΔBmn,

(38)Symmetric →

⎧⎪⎨⎪⎩

�1(x) = �10 cos
�
�x

a

�

�2(x) = �20 cos
�
�x

a

� ,

(39)

Closed-cell cellular → �20

= 1.121

(
�1
(
xi
)

�10

)−1[
−

2.3

√
1 − �1

(
xi
)
+ 1

]
.

(a)

(b)

(c)

Fig. 20   Influence of porosity on the axial amplitude-frequency 
response of geometrically imperfect AFG CNT strengthened porous 
beam—un-symmetric porous closed-cell model a α1 = 0.00, b 
α1 = 0.10, and c α1 = 0.20
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(a)

(b)

(c)

Fig. 21   Influence of the mass imperfection position on the transverse 
amplitude-frequency response of imperfect AFG CNT strengthened 
porous beam a x0 = 0.00, b x0 = 0.30, and c x0 = 0.50

(a)

(b)

(c)

Fig. 22   Influence of the mass imperfection position on the axial 
amplitude-frequency response of imperfect AFG CNT strengthened 
porous beam a x0 = 0.00, b x0 = 0.30, and c x0 = 0.50
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(a)

(b)

(c)

Fig. 23   Influence of the mass imperfection on the transverse ampli-
tude-frequency response of imperfect AFG CNT strengthened porous 
beam a M = 5, b M = 10, and c M = 20

(a)

(b)

(c)

Fig. 24   Influence of the mass imperfection on the axial amplitude-
frequency response of imperfect AFG CNT strengthened porous 
beam a M = 5, b M = 10, and c M = 20
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from 1 to 3% leads to lower coupling between the transverse 
modes by increasing the maximum amplitude of the first 
generalised coordinate and decreasing it for the other two 
coordinates.

Frequency amplitude responses for axial dynamic equi-
librium coordinates are shown in Fig. 3 which in contrast to 
the transverse response, increasing the CNT volume frac-
tion in the left side of the beam from 1 to 3% decreases the 
peak of the first axial coordinate and increases the peak of 
the second coordinate. Besides, increasing the CNT volume 
fraction for this beam model sweeps the excitation frequency 
to the right side.

Moreover, the influence of the Vcnt,Total inside the 
matrix is analysed by considering uniform CNT distribu-
tion in the beam and varying the CNT volume fraction as 
Vcnt,Total = [1%, 2%, 3%]. Figure 4 shows the influence of 
the CNT fibres on the transverse vibration response of the 
imperfect beam model showing that the frequency response 
of the system sweeps to the right side for all the coordi-
nates by increasing the fibre volume fraction. The maximum 
amplitude of the first transverse coordinate does not change 
by this variation but the second and third transverse coordi-
nates lose amplitude.

For the axial motion, the influence of the CNT fibres 
volume fraction is shown in Fig. 5 indicating that increas-
ing Vcnt,Total from 1 to 3 percent leads to lower amplitude 
response for the first and third coordinates while not chang-
ing it for the second coordinate. The frequency response of 
the system sweeps to the right side for all the coordinates by 
increasing Vcnt,Total.

4 � Geometrical imperfection effect 
on nonlinear coupled response

In this section, by defining the problem with the geometrical 
and physical properties as previous section, the influence of 
the geometrical imperfection on the nonlinear forced vibra-
tion response of the system with simply-supported bound-
ary conditions is discussed. For the case of having a beam 
with uniform porosity of α10 = 0.4 with open-cell model as 
[43, 44]

(40)Uniform →

{
�1 = �10
�2 = �20

,

(41)Open-cell solids → �20 = −
√
1 − �10 + 1 ,

without the mass imperfection, the frequency response of 
the beam is presented in Fig. 6 for the first three transverse 
dynamic coordinates of a geometrically perfect beam model 
with respect to non-dimensional excitation frequency param-
eter, and in Figs. 7 and 8 for having geometrical imperfec-
tion as A0 = 0.5 and A0 = 1, respectively. It can be seen that 
by adding the geometrical imperfection to the system, the 
stiffness hardening behaviours of geometrically perfect beam 
model changes to stiffness softening for the given properties.

Moreover, the max amplitude of the first generalised 
coordinate increases first by adding geometrical imperfec-
tion as A0 = 0.5 but decreases after increasing the imperfec-
tion to A0 = 1. However, the second generalised transverse 
coordinate’s maximum amplitude increases by increasing 
the geometrical imperfection indicating a higher coupling 
between modes by having this type of imperfection.

For the axial motion, by considering the geometrical 
imperfection as A0 = 0.5 and A0 = 1, the coupling between the 
equations of motion leads to nonlinear frequency response in 
axial direction which is shown in Figs. 9 and 10 for A0 = 0.5 
and A0 = 1, respectively. For the case of axial dynamic equi-
librium coordinates, increasing the geometrical imperfection 
from 0.5 to 1 leads to higher maximum amplitudes for all the 
first three axial coordinates.

Moreover, for the case of having linear porosity of 
α10 = 0.4 for closed-cell model as [36]

in contrast to the uniform porous model, the coupling 
between the axial and transverse geometrically perfect 
frequency responses exist due to un-symmetric porosity 
through the thickness. Figures 11, 12, 13 show the first three 
transverse dynamic coordinates of linear porous beam model 
having A0 = 0, 0.5 and 1, respectively. It can be seen that for 
this type of porosity, increasing the geometrical imperfec-
tion to A0 = 0.5 and A0 = 1.0 leads to significant change in the 
frequency response from hardening to softening behaviour 
with more complicated responses compared to the uniform 
porosity model; however, the maximum amplitude response 
follows the same variation as uniform porous model.

For the axial coordinates in the linear porous model, fre-
quency-amplitude responses are shown in Figs. 14, 15, 16 
for A0 = 0, 0.5 and 1, respectively. It can be seen that the first 
dynamic equilibrium axial coordinate has higher maximum 
amplitude in uniform model compared to the linear model 
for A0 = 0.5 while this is opposite for A0 = 1. Besides, for 
both linear and uniform porous models, considering the geo-
metrical imperfection sweeps the frequency response peak 
to higher excitation frequencies.

(42)Linear →

{
�1(x) = �10(1 + x)

�2(x) = �20(1 + x)
,
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5 � Porosity imperfection effect on nonlinear 
coupled response

For the given properties at Sect. 3, the influence of imperfec-
tion porosity type on the nonlinear frequency response of 
the system is analysed in this section. To this end, for linear 
porous closed-cell model, the porosity parameter is varied 
as α10 = [0.0, 0.1, 0.2] by having geometrical imperfection of 
A0 = 0.5 and the transverse frequency response coordinates 
are shown in Fig. 17. Similarly, for non-symmetric closed-
cell porous model as [36]

the same analysis it done and the results are shown in Fig. 18 
for the transverse frequency responses; it can be seen that 
for transverse motion, the maximum amplitude-frequency 
response coordinates do not change significantly in mag-
nitude for the non-symmetric model. For the linear porous 
model, increasing the porosity term from 0 to 0.2 slightly 
increases the peak of the amplitude response for the first 
transverse coordinate. Besides, the frequency response of 
the beam model sweeps to left by increasing the porosity 
parameter.

For the axial motion, increasing the porosity term from 
0 to 0.2 leads to higher coupling between the first two axial 
coordinates in both the linear (Fig. 19) and un-symmetric 
(Fig. 20) porous models by decreasing the max value for 
the amplitude of the first axial coordinate and increasing 
the amplitude of the second one. The third coordinate loses 
amplitude in both porous models by increasing the poros-
ity of the system. Similar to the transverse coordinates, the 
frequency response of the beam model sweeps to left by 
increasing the porosity parameter and the porosity effect in 
non-symmetric closed-cell porous model is considerably 
lower than the linear porous closed-cell model.

6 � Mass imperfection effect on nonlinear 
coupled response

Another important imperfection in manufacturing and oper-
ating CNT strengthened beams is mass imperfection. In this 
section, the influence of having mass imperfection and its 
position on the nonlinear dynamic response of the system 
is shown.

(43)Non-symmetric →

⎧
⎪⎨⎪⎩

�1(x) = �10 cos
�
�x

a
−

�

4

�

�2(x) = �20 cos
�
�x

a
−

�

4

� ,

6.1 � Mass imperfection position effect

For the case of having a beam with symmetric porous 
α10 = 0.2 closed-cell model, geometrical imperfection 
A0 = 0.3 and mass imperfection of M = 10 is considered; the 
rest of the properties are as defined at Sect. 3. For this CNT 
strengthened beam model, the influence of the position of 
the mass imperfection is analysed by having x0 = [0.0, 0.3, 
0.5] and shown in Fig. 21 for transverse dynamic equilib-
rium coordinates; it can be seen that the position of the mass 
imperfection has a significant effect in varying the nonlinear 
frequency response in which for x0 = 0.5, the amplitudes of 
all the first three coordinates increase significantly.

For the axial motion, the dynamic equilibrium coordi-
nates are shown in Fig. 22 by having x0 = [0.0, 0.3, 0.5]; 
it can be seen that moving the position of the mass imper-
fection from 0 to 0.5 increases the amplitudes of the first 
and third axial coordinates but decreases the amplitude of 
the second coordinate. It should also be mentioned that 
increasing the position of the mass imperfection from 0 to 
0.5 sweeps the frequency response of the beam model to 
the left side.

6.2 � Mass imperfection weight effect

The influence of the mass imperfection weight is analysed by 
having CNT strengthened beam model with non-symmetric 
closed-cell porosity with α10 = 0.3, geometry imperfection 
A0 = 0.5 and the mass imperfection position 0.5. Results are 
shown in Fig. 23 for transverse dynamic equilibrium coor-
dinates; it can be seen that increasing the mass imperfection 
weight sweeps the curves to the left side and increases the 
peak and nonlinearity in the first and third coordinates of the 
transverse response.

Similarly, for the axial motion, the results for axial coor-
dinates are shown in Fig. 24 indicating that all the three axial 
coordinates show higher peak of amplitude by increasing the 
weight of the mass imperfection.

7 � Conclusions

A comprehensive analysis on the nonlinear dynamics of 
imperfect beams strengthened with CNT fibres was pre-
sented in this study for the first time by grading the CNTs 
through the length of the beam. The beam was assumed with 
geometrical and mass imperfection together with porosity 
imperfection. The geometrical imperfection was presented 
by assuming a slight curve in the beam and the porosity 
was assumed to vary through the thickness of the beam. 
The porosity was modelled by assuming open cell, closed 
cell and simple form of the formulation, and the varia-
tion through the thickness was presented using a uniform, 
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un-symmetric, symmetric and linear variations. The coupled 
axial and transverse equations of motion were presented. 
They show nonlinear coupling due to porosity, imperfec-
tions and large deformations. The equations of motion were 
solved using a combination of the Galerkin scheme and a 
dynamic equilibrium technique. By examining the nonlinear 
dynamic behaviour of the system, the following outcomes 
were obtained:

•	 For the studied case, geometric imperfection has a sig-
nificant effect in varying the nonlinear behaviour from 
hardening to softening.

•	 For the symmetric beam, the axial/transverse coupling is 
insignificant while for an un-symmetric beam, the axial/
transverse coupling is relevant and both the axial and 
transverse coordinates show rich nonlinear dynamics.

•	 The type of the porosity and its variation has a direct 
effect in the nonlinear response of the system for both 
the axial and transverse coordinates.

•	 The system shows high sensitivity to the mass imper-
fection and its position. Increasing the mass weight and 
moving it to the middle of the beam shifts the resonance 
towards smaller frequency.

•	 It is shown that the CNTs have a significant effect on the 
nonlinear response of imperfect beams and decrease the 
max value for the amplitude of the first coordinate of 
both axial and transverse motions.

•	 The distribution of the CNTs have also been examined. 
An increase of the nonuniformity of CNT grading shifts 
the resonance towards larger frequency.

Imperfection in the system lead to complicated nonlinear 
frequency response. This shows the importance of consider-
ing these imperfections to accurately model the beam struc-
ture. This investigation can be extended to different types of 
fibre-reinforced structures.

Appendix A

For a hollow beam model, by having a geometrical imper-
fection and neglecting the shear deformation, the nonzero 
stress-deformation and strain-deformation terms are written 
as [36]

where E is the Young’s modulus, v is the Poisson ratio, w 
and u are the transverse and axial displacements in z and 
x directions and w0 is the geometrical imperfection. It is 
assumed that the Young’s modulus and the Poisson ratio 
vary as a function of the position (x, z) within the beam, as 
a consequence of the porosity and the functionally graded 
distribution of the CNT along the length. Since the CNT vol-
ume fraction varies along the length and the porosity varies 
along the thickness of the beam, the Young’s modulus and 
density are defined as [35]

where subscripts m and CNT denote the matrix and CNT prop-
erties, V is the volume fraction and e1 is the effective coef-
ficient indicating the efficiency of CNTs in strengthening 
the Young’s modulus of the composite. Parameters α1 and 
α2 are the porosity terms affecting the Young’s modulus and 
density terms respectively with porosity coefficients α10 and 
α20 which for closed-cell cellular models, open-cell solids 
and simplified models are related together by [42, 43]
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where α1 and α2 can vary in the thickness direction following 
a specific function which will be discussed further. Besides, 
the CNT volume fraction varies through the length as [36]

where the subscripts R and L denote the right and left ends 
of the beam and k is the variation power term. The potential 
and kinetic energy terms are written as [36]

In Eq. (A7), δd is the Dirac delta function, M represents 
the lumped mass imperfection, and x0 is the axial position 
of M.
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