
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562
https://doi.org/10.1007/s00366-021-01467-8

ORIGINAL ARTICLE

Enhanced harmony search algorithm with non‑linear control
parameters for global optimization and engineering design problems

Shubham Gupta1

Received: 6 March 2021 / Accepted: 30 June 2021 / Published online: 28 July 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Harmony search algorithm (HSA), inspired by the behaviors of music improvisation process, is a widely used metaheuristic to
solve global optimization problems arises in various fields. The reason of its popularity is its simplicity of algorithm structure
and good performance. However, the conventional harmony search algorithm (HSA) experiences prone towards the local
optima, tedious task of tuning parameters, and premature convergence. To overcome all these drawbacks of conventional
HSA and further improve the precision of numerical results, a new variant of the HSA called modified harmony search
algorithm (MHSA) is proposed in the present study. This MHSA utilizes the valuable information stored in the harmony
memory and modifies the search strategy to make an efficient search procedure by adopting a new formulation to the pitch
adjustment process, randomization process, harmony memory considering rate (HMCR), and pitch adjustment rate (PAR).
The experimental validation and comparative performance study with conventional HSA, variants of HSA such as adaptive
harmony search with best based search strategy (ABHS), enhanced self-adaptive global-best harmony search (ESGHS),
novel self-adaptive harmony search (NSHS), parameter adaptive harmony search (PAHS), Gaussian global-best harmony
search algorithm (GGHS) and other metaheuristics such as sine cosine algorithm (SCA), grey wolf optimizer (GWO),
comprehensive learning particle swarm optimization (CLPSO), gbest-guided artificial bee colony (GABC), and covariance
matrix adaptation evolution strategy (CMA-ES) is conducted on a set of 23 well-known benchmark problems. In addition
to this benchmarking, the proposed MHSA is also used to solve three structural engineering design problem. The statistical
test and convergence behaviour analysis are used to analyze the quality of search and significance of improved accuracy.
The comparison illustrates the superior search efficiency of the proposed MHSA than other algorithms as a global optimizer.

Keywords Optimization · Harmony search algorithm · Exploration and exploitation

1 Introduction

Meta-heuristic algorithms (MAs) inspired by the phenomena
of biological or physical are trending tools to solve com-
plex optimization problem. Some well-known examples of
metaheuristics are genetic algorithm [43], particle swarm
optimization [19], ant colony optimization [8], artificial bee
colony algorithm [18], and so on. In the field of metaheuris-
tics, the No Free Lunch theorem [44] plays an important
role and allows the development of new algorithms by
claiming the fact that there does not exist and even not
possible to design a single optimizer, which can solve all

the optimization problems. Some recently developed but
efficient optimization algorithms are grey wolf optimizer
(GWO) [34], monarch butterfly optimization (MBO) [41],
slime mould algorithm (SMA) [27], moth search algorithm
(MSA) [40], hunger games search (HGS) [46], Runge–Kutta
optimizer (RUN) [1], and Harris Hawks optimization (HHO)
[15].

The concept of evolution in nature has been mimicked by
many researchers to develop optimization algorithms, which
can solve the real-world problems where the conventional
approaches of optimization fail. Harmony search algorithm
(HSA) is one of the well-known evolutionary algorithms
developed by Geem et al. [11] from the inspiration of music
improvisation process. In this algorithm, the population
of search agents is referred by harmony memory and can-
didate solutions are referred by harmony. HSA has very
easy implementation process, which involves the memory

 * Shubham Gupta
 shubham.gupta@ntu.edu.sg

1 School of Electrical and Electronic Engineering, Nanyang
Technological University, Singapore 639798, Singapore

http://orcid.org/0000-0002-3779-2932
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01467-8&domain=pdf

S3540 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

consideration, pitch adjustment, and random process of gen-
erating new harmony. In the literature, HSA has shown its
impressive performance in terms of solution quality and con-
vergence rate on several benchmarks and real-life problems
[38, 42]. Among these benefits, HSA is having relatively
few and easy mathematical equations, which utilizes all the
existing harmonies while producing a new harmony.

However, the HSA confronts several challenging and
serious issues. One issue is parameter tuning of its control
parameters that remarkably affects its search performance.
The second and main issue is its prone towards the local
optima for multimodal problems during the search proce-
dure, which is the cause of inappropriate balance between
exploitation (intensification) and exploration (diversifica-
tion). The exploration or diversification is a process of dis-
covering new and promising search regions of the search
space, while the exploitation or intensification refers to the
process of extracting useful information from the discovered
search areas.

To overcome the issues of getting trapped at local optima
and to minimize the efforts of tuning the parameters for the
search procedure, the present article proposes a compara-
tively efficient and alternative variant of the HSA, called
modified harmony search algorithm (MHSA). In this pro-
posed variant, the non-linear functions are used to update
the parameters HMCR and PAR. The parameter HMCR is
designed based on the dimension of the problem and the
parameter PAR is chosen as a decreasing exponential func-
tion over the growth of iterations/function evaluations. In
the MHSA, both the pitch adjustment process and process of
generating new random memory are modified. The proposed
study of generating a harmony, which replaces the concept
of bandwidth, discovers the search space from a wider range
of search region to a narrower range. The opposition-based
learning and random generation using uniform distribution
is used to generate a new harmony, when the HMCR dis-
allow to use the harmony memory. This randomization is
used to propagate the search in partially opposite regions
of the search space. It can be noticed from the framework
of the proposed variant of the HSA that it is not destroying
the original structure of the algorithm. In this proposal, it
has been tried to keep the structure of the algorithm simple
because of the fact that the practitioners are not experts in
programming and their aim is to apply a simple and efficient
algorithm for their optimization purposes [7]. Overall, major
contribution of the proposed study can be summarized as
follows:

• The modified HSA is proposed by adopting non-linear
nature of the parameters HMCR and PAR, which avoids
the tedious task of tuning them and maintain the balance
between exploitation and exploration during the search
process.

• The pitch adjustment process is modified by inspiring the
search mechanism of the GWO. This integration effec-
tively improves the harmony by providing a balanced
transition from exploration to exploitation.

• In the end, the concept of opposite numbers is used to
generate a opposite harmony, which explores broader
area of the search space and helps to speed up the con-
vergence rate.

The rest of the paper is organized as follows: Sect. 2 sum-
marizes the conventional HSA and review some important
developments of the HSA. In Sect. 3, a new modified variant
of the HSA called MHSA is presented. Section 4 analyzes
the performance of the proposed MHSA and compares it
with developed variants of the HSA and other metaheuris-
tic optimization algorithms. This section also analyzes the
convergence behaviour of the MHSA and sensibility to the
harmony memory size. Furthermore, some real structural
engineering design problems are also solved using the pro-
posed MHSA. Finally, the present work concludes in Sect. 5
with some future research directions.

2 Preliminaries

2.1 Harmony search algorithm

In this section, the basic version of the HS algorithm is intro-
duced. Readers may review the more details of the algo-
rithm from Geem et al. [11]. Similar to other evolutionary
algorithms, the HS algorithm is also a population-based
stochastic algorithm, which involves a simple strategy of
evolving the candidate solution. Its search procedure starts
with an initialization of harmony memory (HM) using the
search Eq. (1)

Here, rand(0, 1) is a uniformly distributed random num-
ber from the interval (0, 1), and HMmax

j
 and HMmin

j
 are the

upper and lower boundary limits for the jth component of
harmony memory vector. The index i runs over the size of
the harmony (HMS), and j runs over the dimension (d) of
the problem or number of components in any harmony, i.e.,
i ∈ 1, 2,… , HMS and j ∈ 1, 2,… , d.

After the initialization of harmony, the HS executes its
search procedure under iterative process. The search opera-
tors, which play a major role in search procedure, are the
memory consideration, pitch adjustment, and random pro-
cess of generating the harmony. In each iteration of the
HSA, a new harmony is generated by performing these
three operations. This newly generated harmony replaces
the worst harmony of the memory if its fitness is better than

(1)HMi,j = HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

).

S3541Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

that fitness; otherwise, it is discarded. This search procedure
of generating the new harmony is repeated iteratively until
the termination criteria is not met or maximum number of
iterations are not reached.

During the generation of new harmony, the memory
consideration operation is executed with a probability of
harmony memory considering (accepting) rate (HMCR),
while the random process of generating the harmony has
the probability (1 − HMCR). After the harmony mem-
ory consideration process, the pitch adjustment process
is performed with probability called pitch adjustment

rand(−1, 1) is a variable drawn randomly form the interval
(−1, 1).

In the random process of generating the harmony, a new
harmony is generated randomly within the search space as
follows:

where umin
j

 and umax
j

 are the allowed lower and upper limits
for the jth component of the harmony u.

The pseudo-code of the conventional HSA based on the
above description is provided in Algorithm 1.

(4)uj = umin
j

+ rand(0, 1) × (umax
j

− umin
j

),

rate (PAR). In detail, these processes are described as
follows:

In the memory consideration process, a random harmony
from the current harmony memory is selected as follows:

where r1 is an integer selected randomly from [1, HMS] . Dur-
ing the process of pitch adjustment, the randomly selected
harmony component is adjusted as follows:

where the variable BW is known as bandwidth and it deter-
mines the step size taken during the search procedure, and

(2)HMrand,j = HMr1,j
, j = 1, 2,… , d,

(3)uj = HMrand,j + rand(−1, 1) × BW, j = 1, 2,… , d,

2.2 Previous work

The HSA has gained wide attention by the researchers due to
its simplicity, faster computation, and efficiency. This algo-
rithm has been used widely in various fields [2, 5, 37]. How-
ever, similar to other metaheuristics, the HSA also feels the
problem of getting trapped at local optima during the search
procedure, and therefore, many researchers have attempted
to improve its search efficiency.

2.2.1 Fine tuning of control parameters

It was clearly explain by the developers of the HSA [11]
that the parameter HMCR supports to the exploration and
the parameters PAR and BW helps in exploiting the search

S3542 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

space. Therefore, these parameters are crucial and respon-
sible for the better performance of the HSA. Mahdavi et al.
[32] have modified the search mechanism of the HSA by
setting up a new formulation of the parameters PAR and
BW given by

where t indicate the current iteration and T is the maxi-
mum number of iterations. PARmin and PARmax are the
minimum and maximum values of the parameter PAR , and
BWmin and BWmax are the minimum and maximum values
for the parameter BW, respectively. Kumar et al. [26] have
introduced both linear as well as non-linear settings for the
parameters HMCR and PAR as follows:

where PHMCRmin and HMCRmax are the minimum and max-
imum values of the parameter HMCR. In Khalili et al. [25],
the parameter HMCR is updated using Eq. (7)

Several other researchers also tried to improve the search
performance of the HSA by fine-tuning these control param-
eters [3, 14, 16, 18–23, 29, 36]. Luo et al. [30] have tried
to modify the search strategy of the HSA by introduced an
modified variant of the HSA, where the self-adaptive and
parameter-free approaches are used to fine-tune the param-
eters HMCR and PAR. To improvise the harmony in pitch
adjustment process, the bandwidth parameter has been
replaced by additional term called exponential term with
some constant factor. The random process of generating
the harmony is also modified and the Gaussian distribution
is used to generate a new harmony component. This work
motivates us to develop a new and alternative variant of the
HSA which is more efficient in determining the better solu-
tion quality, convergence rate and sufficient enough to avoid
the prone of solutions towards the local optima.

(5)PARt =PARmin +
t

T
× (PARmax − PARmin),

(6)BWt =BWmax × e
t

T
ln

(
BWmin

BWmax

)
,

(7)
HMCRlinear

t
=HMCRmin +

t

T
× (HMCRmax − HMCRmin),

(8)HMCRnon-linear
t

=HMCRmin × e
−

t

T
×ln

(
HMCRmin

HMCRmax

)

,

(9)PARlinear
t

=PARmin +
T − t

T
× (PARmax − PARmin),

(10)PARnon-linear
t

=PARmin × e

t

T
×ln

(
PARmin

PARmax

)

,

(11)HMCRt = 0.9 + 0.2

√
t − 1

t − 1
×
(
1 −

t − 1

T − 1

)
.

2.2.2 Modifying the pitch adjustment operation

To improvise the harmony, several variants by modifying the
control parameter BW are proposed in the literature, which
show the improvement on global optimization problems.
Chakraborty et al. [6] have introduced a mutation strategy,
which is used in the DE algorithm, during the pitch adjust-
ment operation. In this, harmony is improvised using the
following equation:

where HMr1,j
 , HMr1,j

 , and HMr3,j
 are the jth components

of the randomly selected but different harmonies from the
current harmony memory. Although, this strategy enhances
the exploration ability, but sometimes, this leads to the stag-
nation and long perturbation. By inspiring this mutation
scheme, Guo et al. [12] have introduced DE/Best/1 scheme,
given by Eq. (13), to improvise the harmony

where HMbest,j is the jth component of the best harmony
from the current harmony memory. This adjustment weakens
the diversification of search space when the perturbation is
very low or the algorithm stagnate at local optima. In some
cases, this greedy direction of improvisation also leads to
the premature convergence. El-Abd [9] has proposed a new
adjustment to improvise the harmony. In his scheme, a tran-
sition from the exploration to exploitation is tried to main-
tain by improvising the harmony initially around the random
harmony and later around the best harmony. The proposed
scheme is explained by Eqs. (14) and (15)

where Gaussian(0, 1) is Gaussian distributed random num-
ber with mean 0 and variance 1. rand(−1, 1) is a uniformly
distributed random number from the interval (−1, 1) . In this
algorithm, parameter PAR has been linearly decreased and
the parameter BW is exponentially decreased over the course
of iterations of the search procedure. In Zou et al. [48], an
improved HSA is proposed by inspiring the PSO mecha-
nism. The parameters PAR and HMCR are excluded in this
variant and a genetic mutation probability (pm) is introduced.
To improvise the harmony, the global best and the worst
harmony are utilized with the help of Eq. (16)

where HMR,j = (2HMbest,j − HMworst,j).
In Wang and Huang [39], a self-adaptive approach is

proposed to modify the pitch adjustment process. In this

(12)uj = HMr1,j
+ rand(0, 1) × (HMr2,j

− HMr3,j
),

(13)uj = HMbest,j + rand(0, 1) × (HMr2,j
− HMr3,j

),

(14)uj =HMrand,j + Gaussian(0, 1) × BW,

(15)uj =HMbest,j + rand(−1, 1) × BW,

(16)uj = HMworst,j + rand(0, 1) × (HMR,j − HMworst,j),

S3543Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

approach, the bandwidth parameter is modified with the
help of maximum and minimum values, namely HMmax

j
 and

HMmin
j

 of the harmony variables. This modification is pre-
sented by Eqs. (17) and (18)

Gao et al. [10] have used the concept of opposition-based
leaning at the initialization of the harmony to reach the far
points of the solution space, which may have a greater fit-
ness. The parameter bandwidth is also modified in this vari-
ant based on the following equation:

where x̄j =
1

HMS

∑HMS

k=1
xk,j.

In addition to these variants, some other variants of the
HSA are also proposed in the literature, where not only the
algorithm parameters, but the search mechanism is also
modified. For example, Nehdi et al. [35] have introduced
a new variant of HSA called dynamical self-adjusted har-
mony search optimization (DSAHS) to dynamically adopt
the algorithm parameters such as HMCR, PAR, and BW as
follows:

(17)uj =HMrand,j + rand(0, 1) × (HMmax
j

− HMrand,j),

(18)uj =HMrand,j − rand(0, 1) × (HMrand,j − HMmin
j

).

(19)BWj =
√

𝛾 ⋅ x̄j,

(20)HMCRt = 0.95 + 0.1 × �t

√
t

T
,

(21)PARt = 0.5 + 0.4 × (1 − �t),

(22)BWj,t =
HMM

j
− HMm

j
+ 0.001

10
× exp

(
− 10

t

T

)
,

where HMM
j

 and HMm
j
 are maximum and minimum unknown

coefficients. The value of �t can be determined as follows:

Based on the above modified parameters, the new harmony
memory for unknown coefficients is determined as follows:

After that, the new harmony is adjusted using the following
equation:

In Keshtegar and Sadeq [24], Gaussian global-best harmony
search algorithm (GGHS) is introduced to deal with complex
optimization problems. This algorithm is an enhanced ver-
sion of the El-Abd [9], where the Gaussian distributed ran-
dom numbers are used to update the harmony. In the GGHS,
the harmony is updated in two stages. In the first stage, the
new harmony is obtained using the following equations:

where Gaussian(0, 1) is a Gaussian distributed random num-
ber with mean 0 and variance 1. The parameter bandwidth
BWj,t is updated as follows:

where HMM
j

 and HMm
j
 are the maximum and minimum val-

ues of memory component HMj . In the second stage of har-
mony update process, the best harmony is adjusted to obtain
new harmonies as follows:

where Gaussian(0, �j) is a Gaussian distributed random num-
ber with mean 0 and variance �j . The value of �j and �t is
obtained as follows:

(23)�t =

√
1 −

t

T
.

(24)̂HMi,j =

{
HMi,j + (2 × rand(0, 1) − 1) × 𝛽t × (HMM − HMm) with probability HMCRt

HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

) with probability (1 − HMCRt).

(25)̂HMi,j =

{
̂HMi,j + (2 × rand(0, 1) − 1) × 𝛽t × BWj,t with probability PARt

̂HMi,j with probability (1 − PARt).

(26)HMnew
i,j

=

{
HMi,j + Gaussian(0, 1) × BWj,t with probability HMCRt

HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

) with probability (1 − HMCRt).

(27)BWj,t =
|HMM

j
− HMm

j
+ 0.0001|

10
× exp

(
−

10t

T

)
,

(28)

HMnew
i,j

=

{
HMbest,j + �t × Gaussian(0, �j) with probability PARt

HMi,j with probability (1 − PARt).

(29)�j = � ×
(
1 −

t

T

)�

,

S3544 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

By analyzing all these variants of the HSA, an alterna-
tive variant of the HSA has been proposed in the present
study with an aim of achieving better quality of transition
from the exploration to the exploitation with less number
of parameters. In our approach, the parameter tuning of
the control parameters of HSA is not needed by the users
except the step-size control parameter of newly proposed
pitch adjustment scheme. However, in our experiments, it
has been tried to provide better transition scheme, so that
no extra efforts have to be performed by the user. Hence,
this makes the algorithm very convenient to use for opti-
mization purpose.

(30)� = |HMM
j
− HMm

j
+ 0.0001|,

(31)�t =

√
1 −

t

T
.

3 Proposed modified harmony search
algorithm (MHSA)

The search strategy of the conventional HSA is affected by
the three process, namely, harmony memory consideration,
pitch adjustment, and random generation of new harmony. In
our proposal, each process has been modified by either mak-
ing them parameter independent or providing a new efficient
search procedure.

3.1 Parameter setting free control parameters

First, a parameter harmony memory considering rate
(HMCR) has been adopted by a normal random number,
which is mathematically stated in Eq. (32) [30]

(32)HMCRt = N
(

d

1 + d
,

1

1 + d

)
,

0 100 200 300 400 500
Iterations

0.6

0.7

0.8

0.9

1

1.1

1.2

H
M

C
R

t

Dimension 10

0 100 200 300 400 500

Iterations

0.85

0.9

0.95

1

H
M

C
R

T

Dimension 30

0 100 200 300 400 500

Iterations

0.92

0.94

0.96

0.98

1

H
M

C
R

t

Dimension 50

Fig. 1 Distribution of the parameter HMCR for the dimension 10, 30, and 50, respectively

S3545Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

where N(�, �2) indicate the Gaussian distribution with mean
� and variance � . During the search procedure, if the value
of the HMCR exceeds the range [0, 1], it should be trun-
cated. The dynamic change can be visualized in Fig. 1 for
different iterations and for the dimension 10, 30, and 50. In
this figure, the sampling values of the parameter HMCR
are shown. From this figures, it can be seen that when the
dimension increases, the values of the parameter approach
to 1. One of the main advantages of this setting is that it
avoids the burden of tuning parameter HMCR. It also fol-
lows the suggestion of bigger values of this parameter, so
that the chance of getting a good harmony from the memory
by improvisation. On the other hand, this parameter also
allows the random generation of harmony by the occasional
exceeding of the uniform distributed random number from
the parameter value of HMCR.

In the second modification of the MHSA, a parameter
PAR is modified using a non-linear decreasing exponential
function, which is given by

where k is parameter that decides that how much iterations
are devoted to the exploration and how much for the exploi-
tation. In our algorithm, we have fixed this to 0.6 to perform
exploration and exploitation equally. This newly proposed
parameter can be visualized in Fig. 2, where this has been
compared with linear adaptation. This non-linear PAR does
not change its value suddenly as compared to linear one
and allows slow rate of change to simulate the non-linear
process of search in the MHSA. In the first half iterations
of the MHSA, the value of PAR is higher than the linear

(33)PARt = exp
(

−t2

(k ⋅ T)2

)
,

PAR, which allows comparatively better diversification in
the MHSA. After the half of the iterations, the value of the
PAR is lower than the linear one, which allows more inten-
sification of the discovered promising harmonies. Moreover,
at the end of the maximum number of iterations, the value of
the proposed PAR is not approaching to zero as compared to
the linear PAR and this selection allows to the improvisation
of the harmony, when the HMCR allows.

These newly proposed parameter values for the HMCR
and PAR are decreased over the course of iterations, which
follows the realistic nature of the metaheuristic algorithms.

3.2 Modification in the pitch adjustment process
and random generation of harmony

In the third modification of the MHSA, the pitch adjustment
process is modified, which can be demonstrated by Eq. (34)

where HMrand,j is the jth component of the harmony selected
by the harmony memory consideration process. The scalars
Aj and Cj are defined as follows:

where rand(0, 1) is a random number selected from the inter-
val (0,1) and � is a parameter which decreases linearly to
provide an appropriate transition from the exploration to the
exploitation. Beside this parameter, the coefficient Cj also
provides an exploration and exploitation during the search.
One of the main advantages of this Cj is that it provides a
diversification of the search space even when the parameter
Aj fails. This new equation of pitch adjustment process is
inspired by the encircling behaviour organized by the grey
wolves in nature [34]. This equation has shown its outper-
form ability of search to explore, exploit, and in maintaining
an appropriate balance between them.

In the fourth and last modification, the opposite numbers
are used to generate an opposite harmony, which helps in
generating a new random harmony. The advantage of this
opposite harmony is to perform the search far from the cur-
rent search region and to discover more promising regions
in opposite directions of the current harmonies. In this rand-
omization, a new harmony is generated based on the hybridi-
zation of opposite harmonies and the conventional process
of the HSA. This can be understood as follows:

(34)uj = HMrand,j + Aj × |Cj ⋅ HMbest,j − HMrand,j|,

(35)Aj = 2 ⋅ � ⋅ rand(0, 1) − �,

(36)Cj = 2 ⋅ rand(0, 1),

(37)

uj =

{
umin
j

+ umax
j

− urand,j rand(0, 1) < 0.5

umin
j

+ rand(0, 1) × (umax
j

− umin
j

) otherwise,
0 100 200 300 400 500

Number of iterations

0

0.2

0.4

0.6

0.8

1

V
al

u
e

o
f

p
it

ch
 a

d
ju

st
 r

at
e

(P
A

R
)

Comparion of linear and proposed pith adjustment rate

linear PAR
proposed non-lienar PAR

Fig. 2 Proposed non-linear PAR

S3546 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

where umax
j

 and umin
j

 are the allowed upper and lower bounds
for the jth component of the harmony u, and urand,j is a har-
mony component of a random harmony selected from cur-
rent harmony memory.

In this way, the proposed MHSA updates the harmony.
First, it initializes the harmony memory and parameters,
and then repeats the process of improving the harmony and
memorizing the best harmony until the maximum number
of iterations are not reached or the termination criteria are
not fulfilled. The complete search procedure of the proposed

MHSA can be understood by Algorithm 2. The flowchart for
the proposed MHSA is provided in Fig. 3.

From this pseudo-code, the complexity of the proposed
MHSA can be calculated easily. The complexity of the
improvisation phase is O(d) and for the updating process
it is O(HMS) . Hence, the overall complexity is equal to
O
(
(d + HMS) ⋅ T

)
 . This complexity of the MHSA is same

as the complexity of the conventional HSA, because this
does not needed ant extra or complicated process during
the search.

Fig. 3 Flowchart of the pro-
posed MHSA

Evaluate the objective function value of each harmony in HM

Determine the best harmony

Compute the values of the parameter HMCR using eq. (32)

Compute the opposite harmony using
opposition-based learning (using eq. (37))

Evaluate the fitness of New Harmony

() <

Set the parameters HMS and Initialize the Harmony Memory (HM)

Start

End

Initialize the iteration counter = 1

Select the random harmony from HM as a
new harmony

Compute the values of the parameter PAR
using eq. (33)

() <

Perform the pitch adjustment process using
eq. (34)

Replace the New Harmony with worst
harmony if its fitness is better

< ?

Yes No

Yes

No

Yes

No

S3547Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Table 1 Unimodal benchmark
functions

Function name Formula Dim Search range f
min

Sphere F1(x) =
∑d

i=1
x2
i

10, 30, 50 [− 100, 100] 0

Sum squares F2(x) =
∑d

i=1
ix2

i
10, 30, 50 [− 10, 10] 0

Schwefel’s 2.22 F3(x) =
∑d

i=1
�xi� +

∏d

i=1
�xi� 10, 30, 50 [− 10, 10] 0

Rotated hyper-ellipsoid
F4(x) =

∑d

i=1

�∑i

j−1
xj

�2 10, 30, 50 [− 100, 100] 0

Schewefel 2.21 F5(x) = maxi
{
|xi|, 1 ≤ i ≤ d

}
10, 30, 50 [− 100, 100] 0

Rosenbrock F6(x) =
∑d−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 10, 30, 50 [− 30, 30] 0

Step F7(x) =
∑d

i=1

��
xi + 0.5

��2 10, 30, 50 [− 100, 100] 0

Quartic F8(x) =
∑d

i=1
ix4

i
10, 30, 50 [− 1.28, 1.28] 0

Noise F9(x) =
∑d

i=1
ix4

i
+ random[0, 1) 10, 30, 50 [− 1.28, 1.28] 0

Sum-power F10(x) =
∑d

i=1
�xi�i+1 10, 30, 50 [− 1, 1] 0

S3548 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

4 Experimental results

In this section, the performance of the proposed MHSA is
evaluated and analyzed on a set of 23 benchmark test func-
tions, which are unimodal and multimodal in nature. This
variety of difficulty level will help to analyze the exploration
and exploitation abilities of the proposed algorithm. The list
of benchmark test problems is presented in Tables 1 and 2
with the search range and optimal solution. In this study, the
performance comparison of the MHSA is performed with
the conventional HSA, variants of MHSA, and some other
algorithms. Hence, the comparison section is divided into
two parts. In the first part, the MHSA is compared with con-
ventional HSA on 10-, 30-, and 50-dimensional problems. In

the second part, the variants of the HSA which are developed
in the literature and other algorithms are compared with the
MHSA.

4.1 Comparison of the MHSA with conventional
HSA

This section compares the results of the MHSA with the con-
ventional HSA on 10-, 30-, and 50-dimensional problems,
which are given in Tables 1 and 2. The results are obtained
by conducting 30 independent trials of each algorithm with
104 × d function evaluations. Size of the harmony memory
is fixed to 5 for the proposed MHSA and conventional HSA.
In this experiment, the mean and standard deviation value of
the set of objective function values obtained over 30 runs are

Table 2 Multimodal benchmark functions

Function name Formula Dim Search range f
min

Schwefel 2.26 F11(x) =
∑d

i=1
−xi sin

�√
�xi�

�
10, 30, 50 [− 500, 500] − 418.9829 × d

Rastrigin F12(x) =
∑d

i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

� 10, 30, 50 [− 5.12, 5.12] 0

Ackley
F13(x) = −20 exp

⎛
⎜
⎜
⎝
−0.2

���� 1

d

d�

i=1

x2
i

⎞
⎟
⎟
⎠
− exp

�
1

d

d�

i=1

cos
�
2�xi

�
�

+ 20 + e

10, 30, 50 [− 32, 32] 0

Griewank F14(x) =
1

4000

∑d

i=1
x2
i
−
∏d

i=1
cos

�
xi√
i

�
+ 1 10, 30, 50 [− 600, 600] 0

Penalized
F15(x) =

𝜋

d

�
10 sin

�
𝜋y1

�
+

d−1�

i=1

(yi − 1)2
�
1 + 10 sin2(𝜋yi+1)

�
+ (yd − 1)2

�

+

n�

i=1

u(xi, 10, 100, 4), where yi = 1 +
xi + 1

4
and

u(xi, a, k,m) =

⎧
⎪
⎨
⎪
⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

10, 30, 50 [− 50, 50] 0

Penalized 2
F16(x) = 0.1

{
sin2(3�x1) +

d∑

i=1

(
xi − 1

)2[
1 + sin2(3�xi + 1)

]
+

}

+ 0.1
{
(xd − 1)2

[
1 + sin2(2�xd)

]}
+

d∑

i=1

u(xi, 5, 100, 4)

10, 30, 50 [− 50, 50] 0

Alpine F17(x) =
∑d

i=1
�xi sin(xi) + 0.1xi� 10, 30, 50 [− 10, 10] 0

Inverted cosine
mixture

F18(x) =
∑d

i=1
0.1n −

�
0.1

∑d

i=1
cos(5�xi) −

∑d

i=1
x2
i

�
10, 30, 50 [− 1, 1] 0

Stretched V-sine F19(x) =
∑d−1

i=1
(x2

i
+ 2x2

i+1
)0.25 × [1 + sin(50(x2

i
+ x2

i+1
)0.1)2 10, 30, 50 [− 10, 10] 0

Elliptic F20(x) =
∑d

i=1
(106)(i−1)∕(d−1)x2

i
10, 30, 50 [− 100, 100] 0

Easom F21(x) = (−1)d+1
∏d

i=1
cos(xi) × exp(−

∑d

i=1
(xi − �)2) 10, 30, 50 [− 100, 100] 0

Salomon
F22(x) = 1 − cos

�
2�

�
(
∑d

i=1
x2
i
)
�
+ 0.1

�
(
∑d

i=1
x2
i
)

10, 30, 50 [− 100, 100] 0

Schafer
F23(x) = 0.5 +

sin2

�√
(
∑d

i=1
x2
i
)

�
−0.5

1+0.001

�
∑d

i=1
x2
i

�2

10, 30, 50 [− 100, 100] 0

S3549Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Initial harmony memory for the MHSA

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2
Harmony memory for the MHSA at iteration 100

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

Harmony memory for the MHSA at iteration 200

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

Harmony memory for the MHSA at iteration 500

-5 -4 -3 -2 -1 0 1 2 3 4 5

x
1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x 2

Fig. 4 Search history of the proposed MHSA, while solving the Rastrigin problem
(
optima ∶ ▪, HM ∶ ◊

)

Table 3 Comparison of results on 10, 30 and 50-dimensional unimodal benchmark problems

Test function Result Dim 10 Dim 30 Dim 50

HSA MHSA Stat. out. HSA MHSA Stat. out. HSA MHSA Stat. out.

F1 Mean 1.43E − 08 0 1.21E − 12 8.28E − 05 0 1.21E − 12 8.17E + 00 0 1.212E − 12
Std 9.02E − 09 0 + 1.48E − 05 0 + 2.84E + 00 0 +

F2 Mean 6.46E − 08 0 1.21E − 12 9.14E − 04 0 1.21E − 12 2.89E − 02 0 1.212E − 12
Std 3.87E − 08 0 + 1.77E − 04 0 + 5.83E − 03 0 +

F3 Mean 2.59E − 04 0 1.21E − 12 2.86E − 02 0 1.21E − 12 2.07E − 01 0 1.212E − 12
Std 7.27E − 05 0 + 3.00E − 03 0 + 7.14E − 02 0 +

F4 Mean 1.08E + 00 1.75E − 203 3.02E − 11 9.06E + 02 5.61E − 62 3.02E − 11 7.13E + 03 1.54E − 29 3.02E − 11
Std 2.49E + 00 0 + 3.00E + 02 3.07E − 61 + 1.60E + 03 5.26E − 29 +

F5 Mean 2.66E − 04 4.88E − 226 3.02E − 11 1.29E + 00 6.37E − 181 3.02E − 11 6.89E + 00 1.38E − 137 3.02E − 11
Std 8.03E − 05 0 + 2.29E − 01 0 + 7.17E − 01 7.53E − 137 +

F6 Mean 7.30E + 00 3.68E + 00 2.34E − 01 6.34E + 01 2.23E + 01 4.64E − 03 3.32E + 02 4.26E + 01 3.02E − 11
Std 7.23E + 00 4.62E − 01 ≈ 4.24E + 01 1.35E + 00 + 1.28E + 02 2.11E + 00 +

F7 Mean 1.20E − 08 4.50E − 09 9.53E − 07 8.73E − 05 1.67E − 02 8.48E − 09 7.84E + 00 9.99E − 02 3.02E − 11
Std 5.90E − 09 4.09E − 09 + 1.39E − 05 6.34E − 02 – 3.13E + 00 1.41E − 01 +

S3550 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Ta
bl

e
4

 C
om

pa
ris

on
 o

f r
es

ul
ts

 o
n

10
, 3

0
an

d
50

-d
im

en
si

on
al

 m
ul

tim
od

al
 b

en
ch

m
ar

k
pr

ob
le

m
s

Te
st

fu
nc

tio
n

Re
su

lt
D

im
 1

0
D

im
 3

0
D

im
 5

0

H
SA

M
H

SA
St

at
. o

ut
.

H
SA

M
H

SA
St

at
. o

ut
.

H
SA

M
H

SA
St

at
. o

ut
.

F8
M

ea
n

3.
07

E
−

 16
0

1.
21

E
−

 12
7.

44
E

−
 09

0
1.

21
E

−
 12

5.
21

E
−

 07
0

1.
21

E
−

 12
St

d
3.

77
E

−
 16

0
+

2.
00

E
−

 09
0

+
1.

48
E

−
 07

0
+

F9
M

ea
n

2.
94

E
−

 03
1.

80
E

−
 04

3.
02

E
−

 11
1.

77
E

−
 02

2.
14

E
−

 04
3.

02
E

−
 11

9.
64

E
−

 02
2.

57
E

−
 04

3.
02

E
−

 11
St

d
1.

11
E

−
 03

1.
34

E
−

 04
+

5.
14

E
−

 03
8.

45
E

−
 05

+
2.

35
E

−
 02

9.
27

E
−

 05
+

F1
0

M
ea

n
2.

45
E

−
 12

0
1.

21
E

−
 12

8.
58

E
−

 12
0

1.
21

E
−

 12
1.

91
E

−
 11

0
1.

21
E

−
 12

St
d

3.
44

E
−

 12
0

+
1.

36
E

−
 11

0
+

2.
33

E
−

 11
0

+
F1

1
M

ea
n

−
 4.

19
E

+
 03

−
 4.

19
E

+
 03

3.
02

E
−

 11
−

 1.
26

E
+

 04
−

 1.
26

E
+

 04
5.

57
E

−
 10

−
 2.

09
E

+
 04

−
 2.

09
E

+
 04

1.
86

E
−

 06
St

d
1.

94
E

−
 09

4.
46

E
−

 04
–

1.
02

E
−

 02
1.

59
E

−
 03

+
8.

44
E

+
 00

4.
91

E
+

 01
+

F1
2

M
ea

n
2.

67
E

−
 06

0
1.

21
E

−
 12

1.
53

E
−

 02
0

1.
21

E
−

 12
1.

14
E

+
 00

0
1.

21
E

−
 12

St
d

2.
12

E
−

 06
0

+
3.

29
E

−
 03

0
+

7.
66

E
−

 01
0

+
F1

3
M

ea
n

1.
42

E
−

 04
2.

43
E

−
 15

1.
41

E
−

 11
6.

61
E

−
 03

4.
56

E
−

 15
1.

72
E

−
 12

5.
72

E
−

 01
4.

56
E

−
 15

1.
72

E
−

 12
St

d
3.

51
E

−
 05

1.
79

E
−

 15
+

6.
13

E
−

 04
6.

49
E

−
 16

+
3.

49
E

−
 01

6.
49

E
−

 16
F1

4
M

ea
n

5.
42

E
−

 02
0

1.
21

E
−

 12
3.

28
E

−
 02

0
1.

21
E

−
 12

1.
10

E
+

 00
0

1.
21

E
−

 12
St

d
2.

30
E

−
 02

0
+

2.
97

E
−

 02
0

+
2.

91
E

−
 02

0
+

F1
5

M
ea

n
1.

90
E

−
 09

3.
18

E
−

 09
1.

91
E

−
 01

5.
74

E
−

 07
1.

55
E

−
 09

3.
02

E
−

 11
5.

38
E

−
 03

6.
60

E
−

 09
3.

02
E

−
 11

St
d

4.
28

E
−

 09
7.

30
E

−
 09

≈
1.

13
E

−
 07

6.
44

E
−

 10
+

2.
10

E
−

 03
1.

96
E

−
 09

+
F1

6
M

ea
n

3.
66

E
−

 04
3.

66
E

−
 04

5.
01

E
−

 02
5.

14
E

−
 03

3.
16

E
−

 08
3.

02
E

−
 11

2.
90

E
−

 01
7.

80
E

−
 03

3.
02

E
−

 11
St

d
2.

01
E

−
 03

2.
01

E
−

 03
≈

5.
57

E
−

 03
2.

02
E

−
 08

+
9.

31
E

−
 02

2.
17

E
−

 02
+

F1
7

M
ea

n
2.

47
E

−
 04

1.
97

E
−

 09
2.

37
E

−
 12

1.
04

E
−

 02
0

1.
21

E
−

 12
3.

16
E

−
 01

0
1.

21
E

−
 12

St
d

1.
58

E
−

 04
9.

74
E

−
 09

+
8.

05
E

−
 03

0
+

1.
05

E
−

 01
0

+
F1

8
M

ea
n

1.
65

E
−

 07
0

1.
21

E
−

 12
8.

76
E

−
 04

0
1.

21
E

−
 12

6.
46

E
−

 03
0

1.
21

E
−

 12
St

d
9.

21
E

−
 08

0
+

1.
13

E
−

 04
0

+
7.

77
E

−
 04

0
+

F1
9

M
ea

n
1.

52
E

−
 06

8.
93

E
−

 22
3

3.
02

E
−

 11
1.

37
E

−
 01

3.
06

E
−

 93
3.

02
E

−
 11

2.
27

E
+

 01
2.

29
E

−
 57

3.
02

E
−

 11
St

d
7.

63
E

−
 07

0
+

1.
53

E
−

 01
9.

58
E

−
 93

+
5.

60
E

+
 00

1.
25

E
−

 56
+

F2
0

M
ea

n
1.

14
E

−
 03

0
1.

21
E

−
 12

2.
10

E
+

 01
0

1.
21

E
−

 12
4.

12
E

+
 03

0
1.

21
E

−
 12

St
d

1.
60

E
−

 03
0

+
1.

00
E

+
 01

0
+

1.
75

E
+

 03
0

+
F2

1
M

ea
n

0
0

≈
0

0
≈

0
0

≈

St
d

0
0

N
A

0
0

N
A

0
0

N
A

F2
2

M
ea

n
5.

30
E

−
 01

9.
99

E
−

 02
2.

79
E

−
 11

1.
23

E
+

 00
1.

03
E

−
 01

3.
02

E
−

 11
2.

39
E

+
 00

1.
47

E
−

 01
3.

02
E

−
 11

St
d

1.
34

E
−

 01
8.

31
E

−
 10

+
1.

49
E

−
 01

1.
83

E
−

 02
+

2.
43

E
−

 01
5.

07
E

−
 02

+
F2

3
M

ea
n

8.
61

E
−

 02
9.

72
E

−
 03

2.
60

E
−

 11
2.

91
E

−
 01

1.
06

E
−

 02
3.

02
E

−
 11

4.
34

E
−

 01
2.

16
E

−
 02

3.
02

E
−

 11
St

d
3.

38
E

−
 02

5.
72

E
−

 11
+

3.
55

E
−

 02
5.

02
E

−
 03

+
2.

00
E

−
 02

1.
39

E
−

 02
+

S3551Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

calculated and presented in Tables 3 and 4. In these tables,
the better results are highlighted in bold face.

In Table 3, the results are shown for the unimodal prob-
lems, and in Table 4, the results on multimodal problems
are presented. These results are also compared by Wilcoxon
rank sum test at 5% significance level to analyze the sig-
nificant difference between the conventional HSA and the
proposed MHSA. These statistical results are indicated by
‘stat. out.’ which provide the p value and the outcome of the
results. The outcomes ‘ +∕ = ∕− ’ indicate that the proposed
MSA is significantly better, equal, or worst than the conven-
tional HSA. By comparing the results on unimodal test func-
tions, it can be analyzed that in all the problems with varying
dimension size, the proposed MHSA has significantly out-
performed the conventional HSA except for 10-dimensional
F6. In this problem, the proposed MHSA provides better
value of mean and standard deviation of objective function
values than the conventional HSA, but this improvement is
not statistically significant. The low value of standard devia-
tions shows the robustness of results in all the problems by
the proposed MHSA. Moreover, on the functions F1, F2,
and F3, the MHSA is able to provide the optima irrespective
of the dimension, while the conventional HSA is unable to
locate the optima even for a single problem. On multimodal
problems F8, F10, F12, F14, F17, F18, F20, and F21, the
proposed MHSA locate the global optima, while the con-
ventional HSA is able to do this only for F21. Obviously,
these results demonstrate the better exploration ability by
the MHSA as compared to the conventional HSA. The sta-
tistical outcomes demonstrate that in most of the problems,
the MHSA has obtained significantly better results than the
conventional HSA. As an example to show the search history
of the MHSA, Fig. 4 is plotted. In this figure, the harmonies
of the HM are shown for 2-dimensional Rastrigin function
(F12). The figures show that, initially, the harmonies are
diversified and after some iterations, they try to converge the
optima and finally at iteration 500, and they all converge to
the global optima (0) of the problem.

Overall analysis conclude that the proposed MHSA
improves the exploitation as well as the exploration ability
of the conventional HSA using the modified search mecha-
nism. On some cases like on problem F6, which is complex
and have massive local optima, the algorithm is unable to
achieve the global optima. Although the results are better
than the conventional HSA, but the proposed approaches are
not sufficient enough to determine the near optimal solution.
One reason for this may be the proposed pitch adjustment
process, which is inspired by the encircling behavior of the
GWO. In this approach, at later iterations of the algorithm,
the coefficient A is unable to explore the search space, and
therefore, when the best solution trapped at local optima,
then there are high chances that the whole harmony mem-
ory may stuck at local optima. On some highly non-linear

problems, this reason may affect the performance of the
algorithm, and therefore, in future research work, this short-
coming can be reduced using other evolutionary operators
like mutation.

To validate the capacity of the proposed MHSA, the next
subsection provides a comparison of the MHSA to the other
variants of the HSA developed in the literature.

4.2 Comparison of the MHSA with other variants
of the HSA

In this section, different variants of the HSA developed in the
literature are used to compare the performance of the pro-
posed MHSA. The comparison is performed on the same set
of benchmark problems and same setting of function evalu-
ations as fixed in the previous subsection. Table 5 reports
the mean and standard deviation of objective function values
yields by the MHSA and other variants of HSA such as adap-
tive harmony search with best based search strategy (ABHS)
[12], enhanced self-adaptive global-best harmony search
(ESGHS) [30], novel self-adaptive harmony search (NSHS)

Fig. 5 Comparison of average error values between proposed MHSA
and other variants of HSA for 10-dimensional problems

Fig. 6 Comparison of average error values between proposed MHSA
and other variants of HSA for 50-dimensional problems

S3552 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Ta
bl

e
5

 C
om

pa
ris

on
 o

f m
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

va
lu

es
 o

bt
ai

ne
d

by
 th

e
pr

op
os

ed
 M

H
SA

 a
nd

 o
th

er
 v

ar
ia

nt
s o

f t
he

 H
SA

 fo
r 3

0-
di

m
en

si
on

al
 b

en
ch

m
ar

k
pr

ob
le

m
s

Te
st

fu
nc

-
tio

n

A
B

H
S

ES
G

H
S

N
SH

S
PA

H
S

G
G

H
S

M
H

SA

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d

F1
3.

90
E

−
 02

2.
94

E
−

 02
+

1.
14

E
−

 16
8

0.
00

E
+

 00
+

8.
54

E
−

 05
5.

33
E

−
 05

+
5.

12
E

−
 01

1.
74

E
−

 01
+

2.
88

E
−

 12
8.

55
E

−
 13

+
0

0
F2

6.
79

E
−

 03
6.

86
E

−
 03

+
3.

87
E

−
 16

1.
78

E
−

 16
+

1.
74

E
−

 06
5.

36
E

−
 07

+
7.

73
E

−
 02

3.
51

E
−

 02
+

5.
92

E
−

 11
1.

39
E

−
 11

+
0

0
F3

5.
08

E
−

 02
1.

77
E

−
 02

+
2.

03
E

−
 08

4.
06

E
−

 09
+

2.
60

E
−

 03
4.

84
E

−
 04

+
2.

57
E

−
 01

4.
80

E
−

 02
+

6.
48

E
−

 06
1.

44
E

−
 06

+
0

0
F4

1.
15

E
+

 03
6.

99
E

+
 02

+
1.

61
E

−
 02

7.
05

E
−

 03
+

3.
55

E
−

 02
1.

46
E

−
 02

+
1.

26
E

+
 03

4.
24

E
+

 02
+

4.
06

E
−

 03
7.

27
E

−
 03

+
5.

61
E

−
 62

3.
07

E
−

 61
F5

1.
26

E
+

 00
4.

61
E

−
 01

+
2.

84
E

−
 03

7.
50

E
−

 04
+

1.
25

E
−

 02
3.

24
E

−
 03

+
2.

00
E

+
 00

3.
97

E
−

 01
+

4.
53

E
−

 01
1.

05
E

−
 01

+
6.

37
E

−
 18

1
0

F6
6.

70
E

+
 01

3.
88

E
+

 01
+

4.
53

E
+

 01
2.

78
E

+
 01

+
7.

63
E

+
 01

8.
88

E
+

 01
+

1.
17

E
+

 02
3.

05
E

+
 01

+
3.

14
E

+
 01

4.
26

E
+

 01
+

2.
23

E
+

 01
1.

35
E

+
 00

F7
4.

12
E

−
 02

2.
83

E
−

 02
+

2.
47

E
−

 33
5.

01
E

−
 33

–
8.

28
E

−
 05

4.
56

E
−

 05
–

5.
18

E
−

 01
1.

63
E

−
 01

+
5.

20
E

−
 12

1.
36

E
−

 12
–

1.
67

E
−

 02
6.

34
E

−
 02

F8
4.

49
E

−
 10

9.
48

E
−

 10
+

4.
55

E
−

 12
4.

37
E

−
 12

+
1.

71
E

−
 15

4.
66

E
−

 16
+

1.
09

E
−

 08
1.

44
E

−
 08

+
3.

01
E

−
 23

1.
13

E
−

 23
+

0
0

F9
1.

66
E

−
 02

1.
03

E
−

 02
+

5.
75

E
−

 03
2.

01
E

−
 03

+
1.

59
E

−
 03

5.
60

E
−

 04
+

2.
65

E
−

 02
9.

00
E

−
 03

+
9.

01
E

−
 03

3.
40

E
−

 03
+

2.
14

E
−

 04
8.

45
E

−
 05

F1
0

1.
76

E
−

 08
3.

25
E

−
 08

+
1.

89
E

−
 09

3.
21

E
−

 09
+

3.
97

E
−

 09
1.

13
E

−
 09

+
4.

53
E

−
 08

6.
56

E
−

 08
+

2.
86

E
−

 20
2.

92
E

−
 20

+
0

0
F1

1
−

 1.
26

E
+

 04
8.

91
E

−
 02

+
−

 8.
48

E
+

 03
5.

07
E

+
 02

+
−

 1.
26

E
+

 04
2.

16
E

−
 04

–
−

 1.
26

E
+

 04
5.

33
E

−
 01

+
−

 1.
26

E
+

 04
1.

29
E

−
 12

–
−

 1.
26

E
+

 04
1.

59
E

−
 03

F1
2

1.
84

E
−

 02
1.

19
E

−
 02

+
1.

75
E

−
 07

7.
72

E
−

 08
+

1.
68

E
−

 05
2.

04
E

−
 06

+
2.

13
E

−
 01

8.
21

E
−

 02
+

8.
56

E
−

 10
1.

67
E

−
 10

+
0

0
F1

3
5.

34
E

−
 02

2.
65

E
−

 02
+

1.
57

E
−

 04
2.

22
E

−
 04

+
9.

10
E

−
 04

2.
02

E
−

 04
+

2.
43

E
−

 01
5.

86
E

−
 02

+
1.

57
E

−
 06

1.
88

E
−

 07
+

4.
56

E
−

 15
6.

49
E

−
 16

F1
4

9.
70

E
−

 02
5.

57
E

−
 02

+
5.

33
E

−
 03

8.
64

E
−

 03
+

4.
49

E
−

 03
4.

44
E

−
 03

+
5.

38
E

−
 01

1.
30

E
−

 01
+

1.
28

E
−

 02
4.

04
E

−
 03

+
0

0
F1

5
1.

95
E

−
 04

2.
46

E
−

 04
+

6.
91

E
−

 03
2.

63
E

−
 02

+
5.

30
E

−
 10

6.
94

E
−

 11
–

3.
00

E
−

 03
4.

05
E

−
 03

+
9.

74
E

−
 14

9.
13

E
−

 14
–

1.
55

E
−

 09
6.

44
E

−
 10

F1
6

3.
93

E
−

 03
4.

53
E

−
 03

+
1.

35
E

−
 32

5.
57

E
−

 48
–

3.
66

E
−

 04
2.

01
E

−
 03

+
2.

22
E

−
 02

1.
10

E
−

 02
+

5.
86

E
−

 13
4.

71
E

−
 13

–
3.

16
E

−
 08

2.
02

E
−

 08
F1

7
3.

24
E

−
 03

1.
53

E
−

 03
+

8.
13

E
−

 09
4.

16
E

−
 09

+
5.

01
E

−
 02

2.
40

E
−

 02
+

1.
09

E
−

 02
2.

05
E

−
 03

+
3.

76
E

−
 06

9.
61

E
−

 07
+

0
0

F1
8

5.
56

E
−

 05
4.

46
E

−
 05

+
2.

01
E

−
 05

8.
14

E
−

 06
+

6.
40

E
−

 07
7.

73
E

−
 08

+
3.

33
E

−
 04

1.
91

E
−

 04
+

5.
16

E
−

 11
1.

89
E

−
 11

+
0

0
F1

9
1.

18
E

+
 01

1.
08

E
+

 01
+

1.
28

E
−

 10
4.

52
E

−
 11

+
1.

97
E

−
 07

4.
82

E
−

 08
+

7.
73

E
+

 00
1.

99
E

+
 00

+
2.

05
E

−
 09

1.
74

E
−

 09
+

3.
06

E
−

 93
9.

58
E

−
 93

F2
0

3.
32

E
+

 03
3.

09
E

+
 03

+
1.

78
E

−
 04

1.
95

E
−

 04
+

2.
21

E
+

 03
8.

42
E

+
 02

+
2.

17
E

+
 04

1.
64

E
+

 04
+

8.
07

E
−

 04
1.

69
E

−
 03

+
0

0
F2

1
0

0
≈

0
0

0
0

≈
0

0
≈

0
0

≈
0

0
F2

2
1.

19
E

+
 00

2.
24

E
−

 01
+

3.
13

E
−

 01
3.

46
E

−
 02

+
2.

27
E

−
 01

4.
50

E
−

 02
+

1.
36

E
+

 00
2.

23
E

−
 01

+
3.

20
E

−
 01

8.
37

E
−

 02
+

1.
03

E
−

 01
1.

83
E

−
 02

F2
3

3.
06

E
−

 01
6.

63
E

−
 02

+
9.

31
E

−
 02

2.
55

E
−

 02
+

5.
00

E
−

 01
7.

16
E

−
 05

+
3.

30
E

−
 01

3.
31

E
−

 02
+

1.
17

E
−

 01
2.

18
E

−
 02

+
1.

06
E

−
 02

5.
02

E
−

 03
R

an
k

su
m

10
7

63
81

12
8

58
31

R
an

k
5

3
4

6
2

1

S3553Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

[29], parameter adaptive harmony search (PAHS) [26], and
Gaussian global-best harmony search algorithm (GGHS)
[24] on 30-dimensional test problems. In the table, the bet-
ter results are highlighted in bold face. In the same table, the
statistical outcomes obtained by applying the Wilcoxon rank

sum test between the proposed MHSA and its competitive
algorithm are also presented. The symbols ‘ +∕ = ∕− ’ are
used to demonstrate that the MHSA is better, equal, or worse
than its competitive algorithm. Moreover, the bottom part
of the table provides the rank sum and overall rank (rank)

Fig. 7 Convergence curves for unimodal test functions

S3554 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

of the algorithms to pick up the best performer algorithm.
The rank sum is the number which denotes the sum of the

rank for each test problem obtained by ascending order of
the objective function values.

Fig. 8 Convergence curves for multimodal test functions

S3555Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

It can also be seen from Table 5 that the proposed MHSA
is significantly better than the ABHS on all of the test
problems except F21. In this problem, all the algorithms
MHSA, ABHS, ESGHS, NSHS, PAHS, and GGHS pro-
vide the global optimal solution. The comparison between
the ESGHS and MHSA shows that the proposed MHSA
provides better results than the ESGHS in all the prob-
lems except F7 and F16. The NSHS algorithm is better
than the MHSA on F7 and F15. When the comparison is
performed between the PAHS and MHSA, the outperform
search ability of the MHSA can be verified. The comparison
with the GGHS shows that the proposed MHSA is better
in all the problems except F7, F11, F15, and F16. The sta-
tistical results also validate this improvement in the search
strategy of the proposed MHSA as compared to the other
algorithms. The ranking of the algorithms shows that the
proposed MHSA is the best performer algorithm than the
ABHS, ESGHS, NSHS, PAHS, and GGHS. The methods
next to the MHSA are GGHS, ESGHS, NSHS, ABHS, and
PAHS, respectively.

To observe the impact of the proposed MHSA in solving
the benchmark problems with dimensions 10 and 50, and
to compare it with the other variants of HSA, Figs. 5 and 6
are presented. The experiments are carried out with same
parameter setting as used for solving 30-dimensional prob-
lems. In Figs. 5 and 6, the average error has been reported
for each of the optimization method over 23 problems. Also,
the obtained average error data have been shown with the
bars in the figure, which clearly demonstrate that the pro-
posed MHSA is superior to all other variants of the HSA.

To analyze and compare the convergence rate among the
algorithms ABHS, ESGHS, NSHS, PAHS, conventional
HSA, and the proposed MHSA, the convergence curves
are plotted in Figs. 7 and 8 corresponding to unimodal and
multimodal benchmark problems. These variants are used
for comparison of convergence rate because of their similar
in structure. In these figures, each chart corresponds to one
test functions that is used in the experiments. The horizon-
tal axis represents the number of function evaluations and
the vertical axis represents the the best value of the objec-
tive function obtained so far. Figure 7 clearly demonstrates
that in most of the test functions, the ABHS, conventional
HSA, PAHS, and NSHS algorithms exhibit similar search
behavior during the search procedure. In problem F1 and
F23, the convergence behavior of the ESGHS is better than
ABHS, NSHS, conventional HSA, and PAHS. On the other
hand, in all of the problems, the convergence behavior of
the proposed MHSA is better than all other variants of the
HSA and this shows a better global search performance
of the MHSA. In problems F1, F2, F17, and F20, the pro-
posed MHSA shows outperformed convergence rate and
locates the optima within 1∕5th of the total number of func-
tion evaluations. Hence, the convergence behavior analysis

demonstrates the better convergence rate of the MHSA not
only than conventional HSA but than other variants such as
ABHS, ESGHS, NSHS, and PAHS.

4.3 Effect of the harmony memory size

To analyze the performance of the proposed MHSA on
varying the harmony memory size HMS, the results cor-
responding to the harmony memory size 5, 10, 20, and 50
are calculated on benchmark test problems given in Tables 1
and 2. This experiment is conducted by repeating the pro-
posed MHSA 30 times independently on 30-dimensional
problems. The Wilcoxon rank sum test at 5% significance
level is used to signify the difference in results. These statis-
tical results are shown in symbols ‘ +∕ = ∕− ’ to indicate that
the MHSA with 5 harmony memory size is better, equal, or
worse than the same algorithm but with harmony memory
sizes 10, 20, or 50. From Table 6, it can be observed that on
almost all of the test functions, the proposed HMSA is either
performing equal or significantly outperforming other cases
with different harmony sizes. The statistical outcomes show
that increment in the harmony memory size of the MHSA
degrades its solution accuracy in most of the test problems.
The average rank and overall rank calculated based on sort-
ing the mean objective function values also demonstrate that
the HMSA with harmony memory size 5 is superior, while
the next are MHSA with 10, 20, and 50 harmony memory
sizes, respectively.

4.4 Comparison of the MHSA with other
metaheuristics

In this section, the performance of the MHSA is compared
with some other metaheuristic algorithms such as sine
cosine algorithm (SCA) [33], grey wolf optimizer (GWO)
[34], comprehensive learning particle swarm optimiza-
tion (CLPSO) [28, 31], gbest-guided artificial bee colony
(GABC) [47], and covariance matrix adaptation evolution
strategy (CMA-ES) [13]. The SCA and GWO are two rela-
tively new metaheuristic algorithms. SCA is inspired from
the mathematical features of sine and cosine trigonometric
functions and the GWO is inspired by the social and hunting
behavior of grey wolves in nature. The original versions of
these algorithms are used in this section to compare the per-
formance of the proposed MHSA. The GABC is an extended
version of the artificial bee colony algorithm, when the best
solution obtained so far is used to guide the search proce-
dure. The CLPSO is an improved version of the conventional
particle swarm optimization (PSO), where the best positions
of other particles are used to update the position of current
particle. The reason of employing this concept in the PSO
was to enhance the exploration ability of particles by learn-
ing from others particles and to avoid the particles to prone

S3556 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Ta
bl

e
6

 R
es

ul
ts

 o
f t

he
 p

ro
po

se
d

H
M

SA
 o

n
di

ffe
re

nt
 h

ar
m

on
y

m
em

or
y

si
ze

 5
, 1

0,
 1

5
an

d
50

Te
st

fu
nc

tio
n

H
M
S
=
5

H
M
S
=
1
0

H
M
S
=
2
0

H
M
S
=
5
0

M
ea

n
St

d
M

ea
n

St
d

St
at

. o
ut

.
M

ea
n

St
d

St
at

. o
ut

.
M

ea
n

St
d

St
at

. o
ut

.

F1
0

0
0

0
≈

0
0

≈
5.

39
E

−
 17

4
0

+
F2

0
0

0
0

≈
0

0
≈

4.
16

E
−

 17
7

0
+

F3
0

0
0

0
≈

7.
67

E
−

 25
7

0
+

6.
03

E
−

 12
9

1.
62

E
−

 12
8

+
F4

5.
61

E
−

 62
3.

07
E

−
 61

1.
38

E
−

 23
6.

63
E

−
 23

+
1.

03
E

−
 10

3.
17

E
−

 10
+

3.
79

E
−

 03
1.

05
E

−
 02

+
F5

6.
37

E
−

 18
1

0
6.

29
E

−
 80

3.
45

E
−

 79
+

2.
15

E
−

 42
9.

42
E

−
 42

+
7.

77
E

−
 21

1.
11

E
−

 20
+

F6
2.

23
E

+
 01

1.
35

E
+

 00
2.

19
E

+
 01

6.
96

E
−

 01
≈

2.
27

E
+

 01
2.

86
E

−
 01

+
2.

42
E

+
 01

7.
02

E
−

 02
+

F7
1.

67
E

−
 02

6.
34

E
−

 02
8.

33
E

−
 03

4.
56

E
−

 02
+

1.
74

E
−

 07
5.

76
E

−
 08

+
7.

77
E

−
 07

1.
92

E
−

 07
+

F8
0

0
0

0
≈

0
0

≈
9.

52
E

−
 23

1
0

+
F9

2.
14

E
−

 04
8.

45
E

−
 05

2.
48

E
−

 04
1.

18
E

−
 04

≈
4.

46
E

−
 04

1.
92

E
−

 04
+

6.
48

E
−

 04
2.

65
E

−
 04

+
F1

0
0

0
0

0
≈

0
0

≈
1.

51
E

−
 30

4
0

≈

F1
1

−
 1.

26
E

+
 04

1.
59

E
−

 03
−

 1.
26

E
+

 04
4.

83
E

+
 01

+
−

 1.
26

E
+

 04
8.

62
E

−
 03

+
−

 1.
26

E
+

 04
2.

67
E

−
 02

+
F1

2
0

0
0

0
≈

0
0

≈
0

0
≈

F1
3

4.
56

E
−

 15
6.

49
E

−
 16

1.
28

E
−

 14
1.

09
E

−
 14

+
1.

44
E

−
 14

9.
89

E
−

 15
+

4.
27

E
−

 14
7.

59
E

−
 14

+
F1

4
0

0
0

0
≈

8.
21

E
−

 04
3.

38
E

−
 03

≈
0

0
≈

F1
5

1.
55

E
−

 09
6.

44
E

−
 10

2.
83

E
−

 09
1.

81
E

−
 09

+
5.

14
E

−
 09

1.
38

E
−

 09
+

2.
15

E
−

 08
7.

35
E

−
 09

+
F1

6
3.

16
E

−
 08

2.
02

E
−

 08
4.

73
E

−
 08

4.
62

E
−

 08
+

7.
33

E
−

 04
2.

79
E

−
 03

+
3.

59
E

−
 07

9.
63

E
−

 08
+

F1
7

0
0

0
0

≈
2.

39
E

−
 24

0
0

+
1.

51
E

−
 11

8
8.

14
E

−
 11

8
+

F1
8

0
0

0
0

≈
0

0
≈

0
0

≈

F1
9

3.
06

E
−

 93
9.

58
E

−
 93

3.
09

E
−

 44
1.

53
E

−
 43

+
2.

13
E

−
 21

6.
46

E
−

 21
+

6.
21

E
−

 08
7.

01
E

−
 08

+
F2

0
0

0
0

0
≈

0
0

≈
5.

10
E

−
 17

4
0

+
F2

1
0

0
0

0
≈

0
0

≈
0

0
≈

F2
2

1.
03

E
−

 01
1.

83
E

−
 02

1.
13

E
−

 01
3.

46
E

−
 02

+
1.

03
E

−
 01

1.
83

E
−

 02
+

9.
99

E
−

 02
5.

71
E

−
 10

–
F2

3
1.

06
E

−
 02

5.
02

E
−

 03
1.

15
E

−
 02

6.
98

E
−

 03
+

1.
26

E
−

 02
8.

38
E

−
 03

+
9.

72
E

−
 03

4.
80

E
−

 11
–

R
an

k
su

m
29

40
49

58
R

an
k

1
2

3
4

S3557Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

towards the local optima during the search procedure. The
CMA-ES is an adaptive method of the evolution strategy.
This method is well popular among the researchers because
of their search abilities.

All these algorithms compare the performance of the
MHSA by comparing the mean and standard deviation of
objective function values. The parameter setting used by all
the algorithms is presented in Table 7. The stopping criteria
for each algorithm are fixed to 104 × d function evaluations
(FEV). All the algorithms are executed 30 times indepen-
dently, and the mean and standard deviation of objective
function values is recorded, which are presented in Table 8.
In this table, the best results are highlighted in bold face. The
statistical analysis of results is also performed to signify the
difference in results and the ranking of all the algorithms is
also done to select the best performer algorithm among all
the compared methods. From the table, it can be seen that
the SCA performs very poor as compared to the MHSA,
because it has not provided significantly better results on any
of the problem. The CLPSO has performed better than the
MHSA only on F6, F7, and F15, the GWO has performed
better than the MHSA on F4, F9, F19, and F22. The CMA-
ES performs significantly better than the MHSA for F4, F6,
F7, F15, and F19. The GABC provides better results than the
MHSA on F6, F7, F11, F15, and F16 due to their global-best
guidance ability. The ranking of the algorithms demonstrates
that the proposed MHSA is overall best performer algorithm,
while the GWO, CMA-ES, CLPSO, SCA, and GABC are
the next methods, respectively.

To analyze the performance of the proposed MHSA and
to compare it with other metaheuristics for other dimensions
of the problems, the experiments are carried out on 10- and
50-dimensional benchmark problems. The parameter set-
tings are adopted same as used for solving 30-dimensional
problems. The experimental results are obtained in terms
of average error over all the 23 benchmark problems. These
results are shown in Figs. 9 and 10, where the average error
is indicated on each bar of the algorithms. From these fig-
ures, it can be easily concluded that the proposed MHSA

provides better optimization results on the considered bench-
mark set. Hence, the proposed MHSA can be considered as a
better optimizer than other comparative algorithms.

4.5 Illustrative examples

In this section, to evaluate the performance of the proposed
MHSA, three well-known benchmark structural engineering
design problems are used. For this, different variants of the
HSA and conventional HSA are simultaneously compared
with the proposed MHSA to analyze its search performance.
The harmony size for all the problems is fixed to 5 as sug-
gested in Subsect. 4.3. One of the interesting features of
this section is the employed constraint handling mechanism,
where neither the penalty approach nor any other constraint
handling is applied. In this approach, first, the value of the
objective function and constraints are evaluated on har-
monies, and then, the violation is recorded corresponding
to each harmony. In this way, the better harmony can be
recognized easily, which will be the one that having lesser
constraint violation value. In the situation, where more than
one harmonies are recognized as feasible one, i.e., having
zero value of constraint violation, then the one having better
objective fitness is picked as a best harmony of the mem-
ory. In this way, the constraints are tackled in the proposed
MHSA, conventional HSA, and other variants. Obviously,
this mechanism of handling the constraints does not involve
any parameters. This mechanism evaluates the search strat-
egy of the MHSA directly to the constrained problems by
just picking the best one in terms of constraint violation
value. For a general form of the optimization problem

the constraint violation corresponding to the harmony X̂ can
be calculated as follows:

where

(38)min F(X), X = (x1, x2,… , xd) ∈ ℝ
d,

(39)

s.t. gj(X) ≤ 0, j = 1, 2,… , J

hk(X) = 0, k = 1, 2,… ,K

xmin
i

≤ xi ≤ xmax
i

,

(40)violX̂ =

J∑

j=1

Gj(X̂) +

K∑

k=1

Hk(X̂),

(41)Gj(X̂) =

{
gj(X) gj(X) > 0

0 otherwise,

(42)Hk(X̂) =

{|||hk(X̂)
|||
|||hk(X̂)

||| − 𝜖 > 0

0 otherwise,

Table 7 Parameter setting for algorithms

Algo-
rithm

Parameters

CLPSO
N = 30, FEV = 104 × D,PCi

= 0.05 + 0.45 ×
exp

(
10(i−1)

N−1

)
−1

exp(10)−1

GWO N = 30, FEV = 104 × D, a = 2 − t
(

2

T

)

CMA-ES N = 30, FEV = 104 × D

GABC N = 30, FEV = 104 × D, limit = D ∗ (N∕2)

SCA N = 30, FEV = 104 × D, r1 = a − t
(

a

T

)

S3558 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

Ta
bl

e
8

 C
om

pa
ris

on
 o

f m
ea

n
an

d
st

an
da

rd
 d

ev
ia

tio
n

va
lu

es
 o

bt
ai

ne
d

by
 th

e
pr

op
os

ed
 M

H
SA

 a
nd

 o
th

er
 m

et
ah

eu
ris

tic
 a

lg
or

ith
m

s

Te
st

fu
nc

-
tio

n

C
LP

SO
G

W
O

C
M

A
-E

S
G

A
B

C
SC

A
M

H
SA

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d
St

at
.

ou
t.

M
ea

n
St

d

F1
3.

80
E

−
 49

1.
31

E
−

 48
+

0
0

≈
0

0
≈

3.
44

E
−

 25
2.

21
E

−
 25

+
5.

30
E

−
 53

2.
74

E
−

 52
+

0
0

F2
2.

71
E

−
 50

3.
82

E
−

 50
+

0
0

≈
0

0
≈

4.
70

E
−

 26
2.

75
E

−
 26

+
1.

11
E

−
 55

5.
74

E
−

 55
+

0
0

F3
9.

96
E

−
 31

9.
61

E
−

 31
+

0
0

≈
1.

93
E

−
 22

3
0

+
1.

68
E

−
 13

3.
94

E
−

 14
+

1.
21

E
−

 57
5.

71
E

−
 57

+
0

0
F4

3.
32

E
+

 02
1.

55
E

+
 02

+
5.

2E
 −

 17
9

0
–

0
0

–
1.

19
E

+
 04

1.
84

E
+

 03
+

3.
29

E
+

 01
9.

80
E

+
 01

+
5.

61
E

−
 62

3.
07

E
−

 61
F5

5.
16

E
+

 01
7.

96
E

+
 00

+
2.

8E
 −

 15
2

8.
1E

 −
 15

2
+

5.
08

E
−

 16
2

8.
01

E
−

 16
2

+
1.

16
E

+
 01

1.
12

E
+

 00
+

4.
63

E
−

 03
1.

97
E

−
 02

+
6.

37
E

−
 18

1
0

F6
1.

33
E

+
 01

2.
13

E
+

 01
–

26
.2

65
29

0.
72

30
04

+
3.

04
E

−
 27

6.
43

E
−

 28
–

1.
96

E
−

 01
2.

19
E

−
 01

–
2.

74
E

+
 01

7.
72

E
−

 01
+

2.
23

E
+

 01
1.

35
E

+
 00

F7
0

0
–

0.
41

68
22

0.
28

91
71

+
2.

87
E

−
 30

6.
60

E
−

 31
–

3.
45

E
−

 25
2.

30
E

−
 25

–
3.

62
E

+
 00

2.
85

E
−

 01
+

1.
67

E
−

 02
6.

34
E

−
 02

F8
5.

39
E

−
 80

2.
95

E
−

 79
+

0
0

≈
0

0
≈

3.
96

E
−

 54
5.

82
E

−
 54

+
3.

90
E

−
 58

2.
14

E
−

 57
+

0
0

F9
8.

07
E

−
 03

4.
25

E
−

 03
+

6.
89

E
−

 05
4.

56
E

−
 05

–
9.

56
E

−
 02

3.
32

E
−

 02
+

3.
29

E
−

 02
7.

92
E

−
 03

+
1.

93
E

−
 03

1.
84

E
−

 03
+

2.
14

E
−

 04
8.

45
E

−
 05

F1
0

5.
41

E
−

 86
2.

96
E

−
 85

+
0

0
≈

3.
87

E
−

 38
9.

52
E

−
 38

+
5.

86
E

−
 32

9.
98

E
−

 32
+

4.
20

E
−

 77
2.

30
E

−
 76

+
0

0
F1

1
−

 1.
23

E
+

 04
1.

36
E

+
 02

+
−

 59
89

.0
6

76
3.

57
4

+
−

 1.
18

E
+

 02
4.

08
E

−
 14

+
−

 1.
26

E
+

 04
4.

76
E

−
 12

–
−

 4.
46

E
+

 03
2.

51
E

+
 02

+
−

 1.
26

E
+

 04
1.

59
E

−
 03

F1
2

4.
64

E
−

 01
6.

78
E

−
 01

+
0

0
≈

1.
86

E
+

 01
4.

32
E

+
 00

+
1.

89
E

−
 15

1.
04

E
−

 14
+

3.
39

E
−

 01
1.

86
E

+
 00

+
0

0
F1

3
2.

18
E

−
 01

4.
73

E
−

 01
+

7.
52

E
−

 15
1.

23
E

−
 15

+
7.

76
E

−
 15

9.
01

E
−

 16
+

2.
49

E
−

 12
6.

99
E

−
 13

+
1.

40
E

+
 01

8.
43

E
+

 00
+

4.
56

E
−

 15
6.

49
E

−
 16

F1
4

2.
37

E
−

 03
9.

46
E

−
 03

≈
0.

00
02

5
0.

00
13

68
≈

0
0

≈
7.

34
E

−
 12

3.
42

E
−

 11
+

1.
40

E
−

 15
7.

68
E

−
 15

+
0

0
F1

5
1.

57
E

−
 32

5.
57

E
−

 48
–

0.
02

98
83

0.
01

13
13

+
1.

61
E

−
 31

5.
51

E
−

 32
–

1.
47

E
−

 26
1.

28
E

−
 26

–
3.

43
E

−
 01

7.
24

E
−

 02
+

1.
55

E
−

 09
6.

44
E

−
 10

F1
6

1.
10

E
−

 03
3.

35
E

−
 03

+
0.

37
75

54
0.

18
58

24
+

3.
66

E
−

 04
2.

01
E

−
 03

+
6.

84
E

−
 25

8.
82

E
−

 25
–

1.
97

E
+

 00
1.

22
E

−
 01

+
3.

16
E

−
 08

2.
02

E
−

 08
F1

7
1.

25
E

−
 07

2.
19

E
−

 07
+

0
0

≈
1.

72
E

−
 16

6.
50

E
−

 17
+

1.
13

E
−

 06
2.

93
E

−
 06

+
2.

36
E

−
 31

1.
06

E
−

 30
+

0
0

F1
8

1.
48

E
−

 17
8.

11
E

−
 17

+
0

0
≈

6.
40

E
−

 02
1.

00
E

−
 01

+
0

0
≈

0
0

≈
0

0
F1

9
1.

95
E

−
 01

8.
96

E
−

 02
+

7E
 −

 22
4

0
–

0
0

–
2.

33
E

+
 02

2.
61

E
+

 01
+

5.
54

E
−

 06
2.

98
E

−
 05

+
3.

06
E

−
 93

9.
58

E
−

 93
F2

0
3.

35
E

−
 44

1.
80

E
−

 43
+

0
0

≈
0

0
≈

2.
31

E
−

 20
3.

12
E

−
 20

+
1.

78
E

−
 53

9.
11

E
−

 53
+

0
0

F2
1

0
0

≈
0

0
≈

0
0

≈
0

0
≈

0
0

≈
0

0
F2

2
3.

90
E

−
 01

5.
47

E
−

 02
+

0.
09

98
73

2.
45

E
−

 13
–

3.
97

E
−

 01
4.

14
E

−
 02

+
9.

33
E

−
 01

1.
03

E
−

 01
+

1.
13

E
−

 01
3.

46
E

−
 02

+
9.

99
E

−
 02

4.
01

E
−

 11
F2

3
1.

17
E

−
 01

3.
03

E
−

 02
+

0.
01

06
33

0.
00

50
22

+
9.

72
E

−
 03

1.
69

E
−

 17
–

3.
29

E
−

 01
3.

49
E

−
 02

+
1.

15
E

−
 02

6.
98

E
−

 03
+

1.
06

E
−

 02
5.

02
E

−
 03

R
an

k
su

m
79

52
56

87
81

40

R
an

k
4

2
3

6
5

1

S3559Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

where xmin
i

 and xmax
i

 are the lower and upper bounds for a
harmony component xi of X. Symbols j and k indicate the
number of inequality and equality constraints, respectively,
in the optimization problem. The symbol � is predefined tol-
erance parameter, which has been fixed to 10−4 in the present
study.

The description of the constrained engineering design
problems is presented as follows.

4.5.1 Compression spring design

The objective of this problem [4] is to minimize the weight
of a tension/compression spring with some constraints such
as surge frequency, shear stress, and minimum deflection. In
this problem, three decision variables, namely, wire diameter
(d), mean coil diameter (D), and the number of active coils
(N), are involved. Mathematically, the problem can be stated
as follows:

where X = (x1, x2, x3, x4) = (d,D,N) ∈ ℝ
3

(43)min f1(X) = (x3 + 2)x2
1
x2,

w h e r e 0.05 ≤ x1 ≤ 2.00 , 0.25 ≤ x2 ≤ 1.30 , a n d
2.00 ≤ x3 ≤ 15.00.

The numerical results in terms of mean, median, mini-
mum (best), and maximum (worst) and standard deviation
values of the weights recorded over 30 trails are presented in
Table 9 for the proposed MHSA. In this table, the results of
the conventional HSA, ABHS, ESGHS, PAHS and GGHS
are also reported and the best results are highlighted in bold
face in order to compare the search efficacy of the MHSA.
The statistical outcomes along with the p values are also
shown in the same table, which clearly demonstrate the
superior and significantly better search ability if the MHSA
than other variants of the HSA and conventional HSA.

4.5.2 Pressure vessel design

In this problem [17], the goal is to minimize the cost of cylin-
drical pressure vessel, which is closely related to material,
structure, and welding. The ends of the pressure vessel are
covered. In this problem, “the thickness of the shell (TSH)”,
“head (THD)”, “inner radius (R)”, and “range of cross-section
minus head (L)” are needed to be optimized. Mathemati-
cally, the problem is stated as follows:

where X = (x1, x2, x3, x4) = (TSH, THD,R, L) ∈ ℝ
4

where 0 ≤ x1, x2 ≤ 99 , 10 ≤ x3, x4 ≤ 200.

(44)s.t. 1 −
x3
2
x3

71785x4
1

≤ 0,

(45)
4x2

2
− x1x2

12566x3
1
x2 − x4

1

−
1

5108x2
1

≤ 0,

(46)1 −
140.45x1

x2
2
x3

≤ 0,

(47)
x1 + x2

1.5
− 1 ≤ 0,

(48)

min f
2
(X) = 0.6224x

1
x
3
x
4
+ 1.7781x2

1
x
3

+ 3.1661x2
1
x
4
+ 19.84x2

1
x
3
,

(49)s.t. − x1 + 0.0193x3 ≤ 0,

(50)− x3 + 0.00954x3 ≤ 0,

(51)− �x2
3
x4 −

4

3
�x3

3
+ 12, 96, 000 ≤ 0,

(52)x4 − 240 ≤ 0,

Fig. 9 Comparison of average error values between proposed MHSA
and other metaheuristics for 10-dimensional problems

Fig. 10 Comparison of average error values between proposed
MHSA and other metaheuristics for 50-dimensional problems

S3560 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

The numerical results obtained by the MHSA are pre-
sented in Table 9 along with the results of other algorithms.
In the table, better results are highlighted in bold face. It
can be observed from this table that the proposed MHSA
provides significantly better results as compared to the con-
ventional HSA and other variants of the HSA. The obtained
p values and statistical outcomes by the Wilcoxon rank
sum test validate this fact. The less standard value of the
MHSA than other algorithms also verifies the robustness
of the results. Therefore, to minimize the cost of pressure
vessel, the proposed MHSA can be preferred over other
algorithms.

4.5.3 Three‑bar truss design

This problem, which considers a three-bar planner truss
structure, was introduced by Nowcki [45], where the volume
of a bar truss is minimized with constraints applied on stress
of each truss member. This can be achieved by optimizing
the cross-sectional area which is formulated mathematically
as follows:

(53)

min f3(x1, x2) = L × (2
√
x1x1 + x2),X = (x1, x2) = (A1,A2),

where 0 ≤ x1, x2 ≤ 1 L = 100 cm, �,P = 2KN/cm2.
The optimization results are presented in Table 9, where

the better results are highlighted in bold face. In the same
table, the comparison of results obtained from the MHSA is
performed with the conventional HSA, other variants of the
HSA such as ABHS, ESGHS, PAHS, and GGHS with same
parameter setting, and same constraint handling technique
used for the MHSA. The obtained p values and statistical
outcomes by the Wilcoxon rank sum test verify that the
proposed MHSA performs significantly superior than the
conventional HSA, ABHS, PAHS, and GGHS. The com-
parison between the MHSA and ESGHS shows that both the
algorithms are significantly similar to provide the optimum
value of the cross-sectional area for three-bar truss structure.

(54)s.t.

√
2x1 + x2√

2x2
1
+ 2x1x2

P − � ≤ 0,

(55)
x2√

2x2
1
+ 2x1x2

P − � ≤ 0,

(56)
1

x1 +
√
2x2

P − � ≤ 0,

Table 9 Comparison of results
on constrained engineering
design problems

Algorithm Mean Median Best Worst Std FEV p value Stat. out.

Compression spring design problem
 MHSA 0.0128345 0.0127995 0.0126861 0.0136802 0.0001732 40000 NA NA
 HSA 0.0145712 0.0142970 0.0127946 0.0171970 0.0013578 40000 4.20E − 10 +
 ABHS 0.0159747 0.0159368 0.0129420 0.0197169 0.0018282 40000 5.49E − 11 +
 ESGHS 0.0159423 0.0163954 0.0127165 0.0183882 0.0021504 40000 2.83E − 08 +
 PAHS 0.0163342 0.0171540 0.0128944 0.0187377 0.0021084 40000 8.99E − 11 +
 GGHS 0.0142752 0.0142138 0.0127946 0.0160065 0.0008740 40000 3.75E − 09 +

Pressure vessel design problem
 MHSA 6308.2549 6111.8340 6064.0094 7544.9743 443.6219 40000 NA NA
 HSA 7210.9737 7354.4882 6429.4540 7557.6150 359.8187 40000 2.60E − 08 +
 ABHS 7121.8395 7343.9307 6173.6463 7588.1223 475.5281 40000 2.19E − 08 +
 ESGHS 6944.4932 7333.1461 6062.1890 7544.5357 575.1279 40000 6.34E − 05 +
 PAHS 7113.2841 7328.2965 6173.0881 7567.3171 427.8528 40000 6.01E − 08 +
 GGHS 6860.3532 6746.6684 6454.9921 7820.2118 386.4812 40000 2.27E − 06 +

Three-bar truss design problem
 MHSA 263.95377 263.93247 263.89631 264.11574 0.06459 20000 NA NA
 HSA 264.40546 264.01413 263.89731 266.57837 0.69138 20000 3.00E − 03 +
 ABHS 264.68805 264.15548 263.90636 268.69102 1.10957 20000 1.25E − 05 +
 ESGHS 263.96838 263.94919 263.89610 264.33365 0.08816 20000 5.90E − 01 ≈

 PAHS 264.26629 264.23222 263.93320 265.27965 0.32957 20000 9.83E − 08 +
 GGHS 264.17496 264.25206 263.93999 264.32097 0.14624 20000 7.65E − 06 +

S3561Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

5 Conclusions and future research
directions

This paper proposes a modified variant of the harmony
search algorithm, called MHSA, for solving global opti-
mization problems. In the direction of improvement; first,
a parameter-free approach has been proposed for the har-
mony memory considering rate (HMCR) and pitch adjust-
ment rate (PAR), which are considered base factors for the
performance of the HSA. These parameters are adopted as
non-linear in nature to mimic the non-linearity of the search
process. The main advantage of using this approach is that
the user does not need to worry about the fine-tune setting
of these core control parameters. Second, the improvisation
process is modified, based on inspiring the encircling mech-
anism of the well-known grey wolf optimizer, to effectively
increase the diversification and intensification of the search
space by the harmony, and to provide a better transition from
exploration to exploitation. In the last step, the random gen-
eration of harmony process is modified to maintain the ran-
domness and to speed up the convergence rate by the help of
partial opposite harmonies. The impact of all these strategies
in improving the search efficiency of the conventional HSA
is validated through a standard and well-known collection
of benchmark set of 23 problems and three structural real
engineering design problems. The statistical and conver-
gence analysis has verified the significant improvement in
the search procedure of the proposed MHSA and introduced
it as a superior global optimizer than the conventional HSA,
other variants such as ABHS, ESGHS, NSHS, PAHS, and
GGHS, and other metaheuristics such as CLPSO, GWO,
CMA-ES, GABC, and SCA. The engineering design prob-
lems also demonstrate the significantly superior performance
of the proposed MHSA than conventional HSA and other
variants of the HSA.

The present study can be extended for binary, discrete,
multi-objective, and many-objective optimization tasks by
integrating necessary operators. Future research may also
include the validation on other complex benchmark prob-
lems and real-world application problems like vehicle sched-
uling, aircraft streamline modeling problems, feature selec-
tion, and some others.

References

 1. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H (2021).
RUN beyond the metaphor: An efficient optimization algorithm
based on Runge Kutta method. Expert Syst Appl 181:115079.
https:// doi. org/ 10. 1016/j. eswa. 2021. 115079

 2. Al-Betar MA, Awadallah MA, Khader AT, Abdalkareem ZA
(2015) Island-based harmony search for optimization problems.
Expert Syst Appl 42(4):2026–2035

 3. Alatas B (2010) Chaotic harmony search algorithms. Appl Math
Comput 216(9):2687–2699

 4. Arora JS (1989). Introduction to optimum design. New York:
McGraw-Hill

 5. Assad A, Deep K (2016) Applications of harmony search algo-
rithm in data mining: a survey. In: Proceedings of fifth inter-
national conference on soft computing for problem solving.
Springer, pp 863–874

 6. Chakraborty P, Roy GG, Das S, Jain D, Abraham A (2009) An
improved harmony search algorithm with differential mutation
operator. Fundam Inform 95(4):401–426

 7. Das S, Suganthan PN (2010) Differential evolution: a survey of
the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

 8. Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization.
IEEE Comput Intell Mag 1(4):28–39

 9. El-Abd M (2013) An improved global-best harmony search algo-
rithm. Appl Math Comput 222:94–106

 10. Gao L-Q, Li S, Kong X, Zou D-X et al (2014) On the iterative
convergence of harmony search algorithm and a proposed modi-
fication. Appl Math Comput 247:1064–1095

 11. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic opti-
mization algorithm: harmony search. Simulation 76(2):60–68

 12. Guo Z, Yang H, Wang S, Zhou C, Liu X (2018) Adaptive har-
mony search with best-based search strategy. Soft Comput
22(4):1335–1349

 13. Hansen N, Ostermeier A (2001) Completely derandomized self-
adaptation in evolution strategies. Evol Comput 9(2):159–195

 14. Hasanipanah M, Keshtegar B, Thai DK, Troung NT (2020) An
ANN-adaptive dynamical harmony search algorithm to approxi-
mate the flyrock resulting from blasting. Eng Comput 1–13.
https:// doi. org/ 10. 1007/ s00366- 020- 01105-9

 15. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H
(2019) Harris hawks optimization: algorithm and applications.
Future Gen Comput Syst 97:849–872

 16. Jaberipour M, Khorram E (2010) Two improved harmony search
algorithms for solving engineering optimization problems. Com-
mun Nonlinear Sci Numer Simul 15(11):3316–3331

 17. Kannan BK, Kramer SN (1994). An augmented Lagrange multi-
plier based method for mixed integer discrete continuous optimi-
zation and its applications to mechanical design. 405–411. https://
doi. org/ 10. 1115/1. 29193 93

 18. Karaboga D, Basturk B (2007) A powerful and efficient algorithm
for numerical function optimization: artificial bee colony (ABC)
algorithm. J Glob Optim 39(3):459–471

 19. Kennedy J, Eberhart R (1995) Particle swarm optimization. In:
Proceedings of ICNN’95-international conference on neural net-
works, vol 4, pp 1942–1948

 20. Keshtegar B, Etedali S (2018) Nonlinear mathematical mod-
eling and optimum design of tuned mass dampers using adaptive
dynamic harmony search algorithm. Struct Control Health Monit
25(7):e2163

 21. Keshtegar B, Hao P, Wang Y, Hu Q (2018) An adaptive response
surface method and gaussian global-best harmony search algo-
rithm for optimization of aircraft stiffened panels. Appl Soft Com-
put 66:196–207

 22. Keshtegar B, Hao P, Wang Y, Li Y (2017a) Optimum design of
aircraft panels based on adaptive dynamic harmony search. Thin
Walled Struct 118:37–45

 23. Keshtegar B, Ozbakkaloglu T, Gholampour A (2017b) Modeling
the behavior of FRP-confined concrete using dynamic harmony
search algorithm. Eng Comput 33(3):415–430

 24. Keshtegar B, Sadeq MO (2017) Gaussian global-best harmony
search algorithm for optimization problems. Soft Comput
21(24):7337–7349

https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1007/s00366-020-01105-9
https://doi.org/10.1115/1.2919393
https://doi.org/10.1115/1.2919393

S3562 Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562

1 3

 25. Khalili M, Kharrat R, Salahshoor K, Sefat MH (2014) Global
dynamic harmony search algorithm: GDHS. Appl Math Comput
228:195–219

 26. Kumar V, Chhabra JK, Kumar D (2014) Parameter adaptive har-
mony search algorithm for unimodal and multimodal optimization
problems. J Comput Sci 5(2):144–155

 27. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime
mould algorithm: a new method for stochastic optimization.
Future Gen Comput Syst 111:300–323

 28. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehen-
sive learning particle swarm optimizer for global optimization of
multimodal functions. IEEE Trans Evol Comput 10(3):281–295

 29. Luo K (2013) A novel self-adaptive harmony search algorithm. J
Appl Math 2013. https:// doi. org/ 10. 1155/ 2013/ 653749

 30. Luo K, Ma J, Zhao Q (2019) Enhanced self-adaptive global-best
harmony search without any extra statistic and external archive.
Inf Sci 482:228–247

 31. Mahadevan K, Kannan P (2010) Comprehensive learning particle
swarm optimization for reactive power dispatch. Appl Soft Com-
put 10(2):641–652

 32. Mahdavi M, Fesanghary M, Damangir E (2007) An improved har-
mony search algorithm for solving optimization problems. Appl
Math Comput 188(2):1567–1579

 33. Mirjalili S (2016) SCA: a sine cosine algorithm for solving opti-
mization problems. Knowl Based Syst 96:120–133

 34. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46–61

 35. Nehdi ML, Keshtegar B, Zhu SP (2019)Nonlinear modeling for
bar bond stress using dynamical self-adjusted harmony search
optimization. EngComput. 1–12. https:// doi. org/ 10. 1007/
s00366- 019- 00831-z

 36. Ouyang H-B, Gao L-Q, Li S, Kong X-Y, Wang Q, Zou D-X (2017)
Improved harmony search algorithm: LHS. Appl Soft Comput
53:133–167

 37. Salcedo-Sanz S, Pastor-Sánchez A, Del Ser J, Prieto L, Geem Z-W
(2015) A coral reefs optimization algorithm with harmony search

operators for accurate wind speed prediction. Renew Energy
75:93–101

 38. Shahraki A, Ebrahimi SB (2015) A new approach for forecasting
enrollments using harmony search algorithm. J Intell Fuzzy Syst
28(1):279–290

 39. Wang C-M, Huang Y-F (2010) Self-adaptive harmony search
algorithm for optimization. Expert Syst Appl 37(4):2826–2837

 40. Wang G-G (2018) Moth search algorithm: a bio-inspired
metaheuristic algorithm for global optimization problems. Memet
Comput 10(2):151–164

 41. Wang G-G, Deb S, Cui Z (2019) Monarch butterfly optimization.
Neural Comput Appl 31(7):1995–2014

 42. Wang Y, Liu Y, Feng L, Zhu X (2015) Novel feature selection
method based on harmony search for email classification. Knowl
Based Syst 73:311–323

 43. Whitley D (1994) A genetic algorithm tutorial. Stat Comput
4(2):65–85

 44. Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67–82

 45. Nowcki H. Optimization in pre-contract ship design. In: Fujita Y,
Lind K, Williams TJ (eds) Computer Applications in the Auto-
mation of Shipyard Operation and Ship Design, vol 2. North-
Holland, Elsevier, New York, pp 327–338

 46. Yang Y, Chen H, Heidari AA, Gandomi AH (2021) Hunger games
search: visions, conception, implementation, deep analysis, per-
spectives, and towards performance shifts. Expert Syst Appl
177:114864

 47. Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algo-
rithm for numerical function optimization. Appl Math Comput
217(7):3166–3173

 48. Zou D, Gao L, Wu J, Li S (2010) Novel global harmony
search algorithm for unconstrained problems. Neurocomputing
73(16–18):3308–3318

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1155/2013/653749
https://doi.org/10.1007/s00366-019-00831-z
https://doi.org/10.1007/s00366-019-00831-z

	Enhanced harmony search algorithm with non-linear control parameters for global optimization and engineering design problems
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Harmony search algorithm
	2.2 Previous work
	2.2.1 Fine tuning of control parameters
	2.2.2 Modifying the pitch adjustment operation

	3 Proposed modified harmony search algorithm (MHSA)
	3.1 Parameter setting free control parameters
	3.2 Modification in the pitch adjustment process and random generation of harmony

	4 Experimental results
	4.1 Comparison of the MHSA with conventional HSA
	4.2 Comparison of the MHSA with other variants of the HSA
	4.3 Effect of the harmony memory size
	4.4 Comparison of the MHSA with other metaheuristics
	4.5 Illustrative examples
	4.5.1 Compression spring design
	4.5.2 Pressure vessel design
	4.5.3 Three-bar truss design

	5 Conclusions and future research directions
	References

