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Abstract
Harmony search algorithm (HSA), inspired by the behaviors of music improvisation process, is a widely used metaheuristic to 
solve global optimization problems arises in various fields. The reason of its popularity is its simplicity of algorithm structure 
and good performance. However, the conventional harmony search algorithm (HSA) experiences prone towards the local 
optima, tedious task of tuning parameters, and premature convergence. To overcome all these drawbacks of conventional 
HSA and further improve the precision of numerical results, a new variant of the HSA called modified harmony search 
algorithm (MHSA) is proposed in the present study. This MHSA utilizes the valuable information stored in the harmony 
memory and modifies the search strategy to make an efficient search procedure by adopting a new formulation to the pitch 
adjustment process, randomization process, harmony memory considering rate (HMCR), and pitch adjustment rate (PAR). 
The experimental validation and comparative performance study with conventional HSA, variants of HSA such as adaptive 
harmony search with best based search strategy (ABHS), enhanced self-adaptive global-best harmony search (ESGHS), 
novel self-adaptive harmony search (NSHS), parameter adaptive harmony search (PAHS), Gaussian global-best harmony 
search algorithm (GGHS) and other metaheuristics such as sine cosine algorithm (SCA), grey wolf optimizer (GWO), 
comprehensive learning particle swarm optimization (CLPSO), gbest-guided artificial bee colony (GABC), and covariance 
matrix adaptation evolution strategy (CMA-ES) is conducted on a set of 23 well-known benchmark problems. In addition 
to this benchmarking, the proposed MHSA is also used to solve three structural engineering design problem. The statistical 
test and convergence behaviour analysis are used to analyze the quality of search and significance of improved accuracy. 
The comparison illustrates the superior search efficiency of the proposed MHSA than other algorithms as a global optimizer.

Keywords  Optimization · Harmony search algorithm · Exploration and exploitation

1  Introduction

Meta-heuristic algorithms (MAs) inspired by the phenomena 
of biological or physical are trending tools to solve com-
plex optimization problem. Some well-known examples of 
metaheuristics are genetic algorithm [43], particle swarm 
optimization [19], ant colony optimization [8], artificial bee 
colony algorithm [18], and so on. In the field of metaheuris-
tics, the No Free Lunch theorem [44] plays an important 
role and allows the development of new algorithms by 
claiming the fact that there does not exist and even not 
possible to design a single optimizer, which can solve all 

the optimization problems. Some recently developed but 
efficient optimization algorithms are grey wolf optimizer 
(GWO) [34], monarch butterfly optimization (MBO) [41], 
slime mould algorithm (SMA) [27], moth search algorithm 
(MSA) [40], hunger games search (HGS) [46], Runge–Kutta 
optimizer (RUN) [1], and Harris Hawks optimization (HHO) 
[15].

The concept of evolution in nature has been mimicked by 
many researchers to develop optimization algorithms, which 
can solve the real-world problems where the conventional 
approaches of optimization fail. Harmony search algorithm 
(HSA) is one of the well-known evolutionary algorithms 
developed by Geem et al. [11] from the inspiration of music 
improvisation process. In this algorithm, the population 
of search agents is referred by harmony memory and can-
didate solutions are referred by harmony. HSA has very 
easy implementation process, which involves the memory 
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consideration, pitch adjustment, and random process of gen-
erating new harmony. In the literature, HSA has shown its 
impressive performance in terms of solution quality and con-
vergence rate on several benchmarks and real-life problems 
[38, 42]. Among these benefits, HSA is having relatively 
few and easy mathematical equations, which utilizes all the 
existing harmonies while producing a new harmony.

However, the HSA confronts several challenging and 
serious issues. One issue is parameter tuning of its control 
parameters that remarkably affects its search performance. 
The second and main issue is its prone towards the local 
optima for multimodal problems during the search proce-
dure, which is the cause of inappropriate balance between 
exploitation (intensification) and exploration (diversifica-
tion). The exploration or diversification is a process of dis-
covering new and promising search regions of the search 
space, while the exploitation or intensification refers to the 
process of extracting useful information from the discovered 
search areas.

To overcome the issues of getting trapped at local optima 
and to minimize the efforts of tuning the parameters for the 
search procedure, the present article proposes a compara-
tively efficient and alternative variant of the HSA, called 
modified harmony search algorithm (MHSA). In this pro-
posed variant, the non-linear functions are used to update 
the parameters HMCR and PAR. The parameter HMCR is 
designed based on the dimension of the problem and the 
parameter PAR is chosen as a decreasing exponential func-
tion over the growth of iterations/function evaluations. In 
the MHSA, both the pitch adjustment process and process of 
generating new random memory are modified. The proposed 
study of generating a harmony, which replaces the concept 
of bandwidth, discovers the search space from a wider range 
of search region to a narrower range. The opposition-based 
learning and random generation using uniform distribution 
is used to generate a new harmony, when the HMCR dis-
allow to use the harmony memory. This randomization is 
used to propagate the search in partially opposite regions 
of the search space. It can be noticed from the framework 
of the proposed variant of the HSA that it is not destroying 
the original structure of the algorithm. In this proposal, it 
has been tried to keep the structure of the algorithm simple 
because of the fact that the practitioners are not experts in 
programming and their aim is to apply a simple and efficient 
algorithm for their optimization purposes [7]. Overall, major 
contribution of the proposed study can be summarized as 
follows:

•	 The modified HSA is proposed by adopting non-linear 
nature of the parameters HMCR and PAR, which avoids 
the tedious task of tuning them and maintain the balance 
between exploitation and exploration during the search 
process.

•	 The pitch adjustment process is modified by inspiring the 
search mechanism of the GWO. This integration effec-
tively improves the harmony by providing a balanced 
transition from exploration to exploitation.

•	 In the end, the concept of opposite numbers is used to 
generate a opposite harmony, which explores broader 
area of the search space and helps to speed up the con-
vergence rate.

The rest of the paper is organized as follows: Sect. 2 sum-
marizes the conventional HSA and review some important 
developments of the HSA. In Sect. 3, a new modified variant 
of the HSA called MHSA is presented. Section 4 analyzes 
the performance of the proposed MHSA and compares it 
with developed variants of the HSA and other metaheuris-
tic optimization algorithms. This section also analyzes the 
convergence behaviour of the MHSA and sensibility to the 
harmony memory size. Furthermore, some real structural 
engineering design problems are also solved using the pro-
posed MHSA. Finally, the present work concludes in Sect. 5 
with some future research directions.

2 � Preliminaries

2.1 � Harmony search algorithm

In this section, the basic version of the HS algorithm is intro-
duced. Readers may review the more details of the algo-
rithm from Geem et al. [11]. Similar to other evolutionary 
algorithms, the HS algorithm is also a population-based 
stochastic algorithm, which involves a simple strategy of 
evolving the candidate solution. Its search procedure starts 
with an initialization of harmony memory (HM) using the 
search Eq. (1)

Here, rand(0, 1) is a uniformly distributed random num-
ber from the interval (0, 1), and HMmax

j
 and HMmin

j
 are the 

upper and lower boundary limits for the jth component of 
harmony memory vector. The index i runs over the size of 
the harmony (HMS), and j runs over the dimension (d) of 
the problem or number of components in any harmony, i.e., 
i ∈ 1, 2,… , HMS and j ∈ 1, 2,… , d.

After the initialization of harmony, the HS executes its 
search procedure under iterative process. The search opera-
tors, which play a major role in search procedure, are the 
memory consideration, pitch adjustment, and random pro-
cess of generating the harmony. In each iteration of the 
HSA, a new harmony is generated by performing these 
three operations. This newly generated harmony replaces 
the worst harmony of the memory if its fitness is better than 

(1)HMi,j = HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

).
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that fitness; otherwise, it is discarded. This search procedure 
of generating the new harmony is repeated iteratively until 
the termination criteria is not met or maximum number of 
iterations are not reached.

During the generation of new harmony, the memory 
consideration operation is executed with a probability of 
harmony memory considering (accepting) rate (HMCR), 
while the random process of generating the harmony has 
the probability ( 1 − HMCR ). After the harmony mem-
ory consideration process, the pitch adjustment process 
is performed with probability called pitch adjustment 

rand(−1, 1) is a variable drawn randomly form the interval 
(−1, 1).

In the random process of generating the harmony, a new 
harmony is generated randomly within the search space as 
follows:

where umin
j

 and umax
j

 are the allowed lower and upper limits 
for the jth component of the harmony u.

The pseudo-code of the conventional HSA based on the 
above description is provided in Algorithm 1.

(4)uj = umin
j

+ rand(0, 1) × (umax
j

− umin
j

),

rate (PAR). In detail, these processes are described as 
follows:

In the memory consideration process, a random harmony 
from the current harmony memory is selected as follows:

where r1 is an integer selected randomly from [1, HMS] . Dur-
ing the process of pitch adjustment, the randomly selected 
harmony component is adjusted as follows:

where the variable BW is known as bandwidth and it deter-
mines the step size taken during the search procedure, and 

(2)HMrand,j = HMr1,j
, j = 1, 2,… , d,

(3)uj = HMrand,j + rand(−1, 1) × BW, j = 1, 2,… , d,

2.2 � Previous work

The HSA has gained wide attention by the researchers due to 
its simplicity, faster computation, and efficiency. This algo-
rithm has been used widely in various fields [2, 5, 37]. How-
ever, similar to other metaheuristics, the HSA also feels the 
problem of getting trapped at local optima during the search 
procedure, and therefore, many researchers have attempted 
to improve its search efficiency.

2.2.1 � Fine tuning of control parameters

It was clearly explain by the developers of the HSA [11] 
that the parameter HMCR supports to the exploration and 
the parameters PAR and BW helps in exploiting the search 
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space. Therefore, these parameters are crucial and respon-
sible for the better performance of the HSA. Mahdavi et al. 
[32] have modified the search mechanism of the HSA by 
setting up a new formulation of the parameters PAR and 
BW given by

where t indicate the current iteration and T is the maxi-
mum number of iterations. PARmin and PARmax are the 
minimum and maximum values of the parameter PAR , and 
BWmin and BWmax are the minimum and maximum values 
for the parameter BW, respectively. Kumar et al. [26] have 
introduced both linear as well as non-linear settings for the 
parameters HMCR and PAR as follows:

where PHMCRmin and HMCRmax are the minimum and max-
imum values of the parameter HMCR. In Khalili et al. [25], 
the parameter HMCR is updated using Eq. (7)

Several other researchers also tried to improve the search 
performance of the HSA by fine-tuning these control param-
eters [3, 14, 16, 18–23, 29, 36]. Luo et al. [30] have tried 
to modify the search strategy of the HSA by introduced an 
modified variant of the HSA, where the self-adaptive and 
parameter-free approaches are used to fine-tune the param-
eters HMCR and PAR. To improvise the harmony in pitch 
adjustment process, the bandwidth parameter has been 
replaced by additional term called exponential term with 
some constant factor. The random process of generating 
the harmony is also modified and the Gaussian distribution 
is used to generate a new harmony component. This work 
motivates us to develop a new and alternative variant of the 
HSA which is more efficient in determining the better solu-
tion quality, convergence rate and sufficient enough to avoid 
the prone of solutions towards the local optima.

(5)PARt =PARmin +
t

T
× (PARmax − PARmin),

(6)BWt =BWmax × e
t

T
ln

(
BWmin

BWmax

)
,

(7)
HMCRlinear

t
=HMCRmin +

t

T
× (HMCRmax − HMCRmin),

(8)HMCRnon-linear
t

=HMCRmin × e
−

t

T
×ln

(
HMCRmin

HMCRmax

)

,

(9)PARlinear
t

=PARmin +
T − t

T
× (PARmax − PARmin),

(10)PARnon-linear
t

=PARmin × e

t

T
×ln

(
PARmin

PARmax

)

,

(11)HMCRt = 0.9 + 0.2

√
t − 1

t − 1
×
(
1 −

t − 1

T − 1

)
.

2.2.2 � Modifying the pitch adjustment operation

To improvise the harmony, several variants by modifying the 
control parameter BW are proposed in the literature, which 
show the improvement on global optimization problems. 
Chakraborty et al. [6] have introduced a mutation strategy, 
which is used in the DE algorithm, during the pitch adjust-
ment operation. In this, harmony is improvised using the 
following equation:

where HMr1,j
 , HMr1,j

 , and HMr3,j
 are the jth components 

of the randomly selected but different harmonies from the 
current harmony memory. Although, this strategy enhances 
the exploration ability, but sometimes, this leads to the stag-
nation and long perturbation. By inspiring this mutation 
scheme, Guo et al. [12] have introduced DE/Best/1 scheme, 
given by Eq. (13), to improvise the harmony

where HMbest,j is the jth component of the best harmony 
from the current harmony memory. This adjustment weakens 
the diversification of search space when the perturbation is 
very low or the algorithm stagnate at local optima. In some 
cases, this greedy direction of improvisation also leads to 
the premature convergence. El-Abd [9] has proposed a new 
adjustment to improvise the harmony. In his scheme, a tran-
sition from the exploration to exploitation is tried to main-
tain by improvising the harmony initially around the random 
harmony and later around the best harmony. The proposed 
scheme is explained by Eqs. (14) and (15)

where Gaussian(0, 1) is Gaussian distributed random num-
ber with mean 0 and variance 1. rand(−1, 1) is a uniformly 
distributed random number from the interval (−1, 1) . In this 
algorithm, parameter PAR has been linearly decreased and 
the parameter BW is exponentially decreased over the course 
of iterations of the search procedure. In Zou et al. [48], an 
improved HSA is proposed by inspiring the PSO mecha-
nism. The parameters PAR and HMCR are excluded in this 
variant and a genetic mutation probability (pm) is introduced. 
To improvise the harmony, the global best and the worst 
harmony are utilized with the help of Eq. (16)

where HMR,j = (2HMbest,j − HMworst,j).
In Wang and Huang [39], a self-adaptive approach is 

proposed to modify the pitch adjustment process. In this 

(12)uj = HMr1,j
+ rand(0, 1) × (HMr2,j

− HMr3,j
),

(13)uj = HMbest,j + rand(0, 1) × (HMr2,j
− HMr3,j

),

(14)uj =HMrand,j + Gaussian(0, 1) × BW,

(15)uj =HMbest,j + rand(−1, 1) × BW,

(16)uj = HMworst,j + rand(0, 1) × (HMR,j − HMworst,j),
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approach, the bandwidth parameter is modified with the 
help of maximum and minimum values, namely HMmax

j
 and 

HMmin
j

 of the harmony variables. This modification is pre-
sented by Eqs. (17) and (18)

Gao et al. [10] have used the concept of opposition-based 
leaning at the initialization of the harmony to reach the far 
points of the solution space, which may have a greater fit-
ness. The parameter bandwidth is also modified in this vari-
ant based on the following equation:

where x̄j =
1

HMS

∑HMS

k=1
xk,j.

In addition to these variants, some other variants of the 
HSA are also proposed in the literature, where not only the 
algorithm parameters, but the search mechanism is also 
modified. For example, Nehdi et al. [35] have introduced 
a new variant of HSA called dynamical self-adjusted har-
mony search optimization (DSAHS) to dynamically adopt 
the algorithm parameters such as HMCR, PAR, and BW as 
follows:

(17)uj =HMrand,j + rand(0, 1) × (HMmax
j

− HMrand,j),

(18)uj =HMrand,j − rand(0, 1) × (HMrand,j − HMmin
j

).

(19)BWj =
√

𝛾 ⋅ x̄j,

(20)HMCRt = 0.95 + 0.1 × �t

√
t

T
,

(21)PARt = 0.5 + 0.4 × (1 − �t),

(22)BWj,t =
HMM

j
− HMm

j
+ 0.001

10
× exp

(
− 10

t

T

)
,

where HMM
j

 and HMm
j
 are maximum and minimum unknown 

coefficients. The value of �t can be determined as follows:

Based on the above modified parameters, the new harmony 
memory for unknown coefficients is determined as follows:

After that, the new harmony is adjusted using the following 
equation:

In Keshtegar and Sadeq [24], Gaussian global-best harmony 
search algorithm (GGHS) is introduced to deal with complex 
optimization problems. This algorithm is an enhanced ver-
sion of the El-Abd [9], where the Gaussian distributed ran-
dom numbers are used to update the harmony. In the GGHS, 
the harmony is updated in two stages. In the first stage, the 
new harmony is obtained using the following equations:

where Gaussian(0, 1) is a Gaussian distributed random num-
ber with mean 0 and variance 1. The parameter bandwidth 
BWj,t is updated as follows:

where HMM
j

 and HMm
j
 are the maximum and minimum val-

ues of memory component HMj . In the second stage of har-
mony update process, the best harmony is adjusted to obtain 
new harmonies as follows:

where Gaussian(0, �j) is a Gaussian distributed random num-
ber with mean 0 and variance �j . The value of �j and �t is 
obtained as follows:

(23)�t =

√
1 −

t

T
.

(24)̂HMi,j =

{
HMi,j + (2 × rand(0, 1) − 1) × 𝛽t × (HMM − HMm) with probability HMCRt

HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

) with probability (1 − HMCRt).

(25)̂HMi,j =

{
̂HMi,j + (2 × rand(0, 1) − 1) × 𝛽t × BWj,t with probability PARt

̂HMi,j with probability (1 − PARt).

(26)HMnew
i,j

=

{
HMi,j + Gaussian(0, 1) × BWj,t with probability HMCRt

HMmin
j

+ rand(0, 1) × (HMmax
j

− HMmin
j

) with probability (1 − HMCRt).

(27)BWj,t =
|HMM

j
− HMm

j
+ 0.0001|

10
× exp

(
−

10t

T

)
,

(28)

HMnew
i,j

=

{
HMbest,j + �t × Gaussian(0, �j) with probability PARt

HMi,j with probability (1 − PARt).

(29)�j = � ×
(
1 −

t

T

)�

,
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By analyzing all these variants of the HSA, an alterna-
tive variant of the HSA has been proposed in the present 
study with an aim of achieving better quality of transition 
from the exploration to the exploitation with less number 
of parameters. In our approach, the parameter tuning of 
the control parameters of HSA is not needed by the users 
except the step-size control parameter of newly proposed 
pitch adjustment scheme. However, in our experiments, it 
has been tried to provide better transition scheme, so that 
no extra efforts have to be performed by the user. Hence, 
this makes the algorithm very convenient to use for opti-
mization purpose.

(30)� = |HMM
j
− HMm

j
+ 0.0001|,

(31)�t =

√
1 −

t

T
.

3 � Proposed modified harmony search 
algorithm (MHSA)

The search strategy of the conventional HSA is affected by 
the three process, namely, harmony memory consideration, 
pitch adjustment, and random generation of new harmony. In 
our proposal, each process has been modified by either mak-
ing them parameter independent or providing a new efficient 
search procedure.

3.1 � Parameter setting free control parameters

First, a parameter harmony memory considering rate 
(HMCR) has been adopted by a normal random number, 
which is mathematically stated in Eq. (32) [30]

(32)HMCRt = N
(

d

1 + d
,

1

1 + d

)
,
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Fig. 1   Distribution of the parameter HMCR for the dimension 10, 30, and 50, respectively
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where N(�, �2) indicate the Gaussian distribution with mean 
� and variance � . During the search procedure, if the value 
of the HMCR exceeds the range [0, 1], it should be trun-
cated. The dynamic change can be visualized in Fig. 1 for 
different iterations and for the dimension 10, 30, and 50. In 
this figure, the sampling values of the parameter HMCR 
are shown. From this figures, it can be seen that when the 
dimension increases, the values of the parameter approach 
to 1. One of the main advantages of this setting is that it 
avoids the burden of tuning parameter HMCR. It also fol-
lows the suggestion of bigger values of this parameter, so 
that the chance of getting a good harmony from the memory 
by improvisation. On the other hand, this parameter also 
allows the random generation of harmony by the occasional 
exceeding of the uniform distributed random number from 
the parameter value of HMCR.

In the second modification of the MHSA, a parameter 
PAR is modified using a non-linear decreasing exponential 
function, which is given by

where k is parameter that decides that how much iterations 
are devoted to the exploration and how much for the exploi-
tation. In our algorithm, we have fixed this to 0.6 to perform 
exploration and exploitation equally. This newly proposed 
parameter can be visualized in Fig. 2, where this has been 
compared with linear adaptation. This non-linear PAR does 
not change its value suddenly as compared to linear one 
and allows slow rate of change to simulate the non-linear 
process of search in the MHSA. In the first half iterations 
of the MHSA, the value of PAR is higher than the linear 

(33)PARt = exp
(

−t2

(k ⋅ T)2

)
,

PAR, which allows comparatively better diversification in 
the MHSA. After the half of the iterations, the value of the 
PAR is lower than the linear one, which allows more inten-
sification of the discovered promising harmonies. Moreover, 
at the end of the maximum number of iterations, the value of 
the proposed PAR is not approaching to zero as compared to 
the linear PAR and this selection allows to the improvisation 
of the harmony, when the HMCR allows.

These newly proposed parameter values for the HMCR 
and PAR are decreased over the course of iterations, which 
follows the realistic nature of the metaheuristic algorithms.

3.2 � Modification in the pitch adjustment process 
and random generation of harmony

In the third modification of the MHSA, the pitch adjustment 
process is modified, which can be demonstrated by Eq. (34)

where HMrand,j is the jth component of the harmony selected 
by the harmony memory consideration process. The scalars 
Aj and Cj are defined as follows:

where rand(0, 1) is a random number selected from the inter-
val (0,1) and � is a parameter which decreases linearly to 
provide an appropriate transition from the exploration to the 
exploitation. Beside this parameter, the coefficient Cj also 
provides an exploration and exploitation during the search. 
One of the main advantages of this Cj is that it provides a 
diversification of the search space even when the parameter 
Aj fails. This new equation of pitch adjustment process is 
inspired by the encircling behaviour organized by the grey 
wolves in nature [34]. This equation has shown its outper-
form ability of search to explore, exploit, and in maintaining 
an appropriate balance between them.

In the fourth and last modification, the opposite numbers 
are used to generate an opposite harmony, which helps in 
generating a new random harmony. The advantage of this 
opposite harmony is to perform the search far from the cur-
rent search region and to discover more promising regions 
in opposite directions of the current harmonies. In this rand-
omization, a new harmony is generated based on the hybridi-
zation of opposite harmonies and the conventional process 
of the HSA. This can be understood as follows:

(34)uj = HMrand,j + Aj × |Cj ⋅ HMbest,j − HMrand,j|,

(35)Aj = 2 ⋅ � ⋅ rand(0, 1) − �,

(36)Cj = 2 ⋅ rand(0, 1),

(37)

uj =

{
umin
j

+ umax
j

− urand,j rand(0, 1) < 0.5

umin
j

+ rand(0, 1) × (umax
j

− umin
j

) otherwise,
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where umax
j

 and umin
j

 are the allowed upper and lower bounds 
for the jth component of the harmony u, and urand,j is a har-
mony component of a random harmony selected from cur-
rent harmony memory.

In this way, the proposed MHSA updates the harmony. 
First, it initializes the harmony memory and parameters, 
and then repeats the process of improving the harmony and 
memorizing the best harmony until the maximum number 
of iterations are not reached or the termination criteria are 
not fulfilled. The complete search procedure of the proposed 

MHSA can be understood by Algorithm 2. The flowchart for 
the proposed MHSA is provided in Fig. 3.

From this pseudo-code, the complexity of the proposed 
MHSA can be calculated easily. The complexity of the 
improvisation phase is O(d) and for the updating process 
it is O(HMS) . Hence, the overall complexity is equal to 
O
(
(d + HMS) ⋅ T

)
 . This complexity of the MHSA is same 

as the complexity of the conventional HSA, because this 
does not needed ant extra or complicated process during 
the search.

Fig. 3   Flowchart of the pro-
posed MHSA
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Table 1   Unimodal benchmark 
functions

Function name Formula Dim Search range f
min

Sphere F1(x) =
∑d

i=1
x2
i

10, 30, 50 [− 100, 100] 0

Sum squares F2(x) =
∑d

i=1
ix2

i
10, 30, 50 [− 10, 10] 0

Schwefel’s 2.22 F3(x) =
∑d

i=1
�xi� + 

∏d

i=1
�xi� 10, 30, 50 [− 10, 10] 0

Rotated hyper-ellipsoid
F4(x) =

∑d

i=1

�∑i

j−1
xj

�2 10, 30, 50 [− 100, 100] 0

Schewefel 2.21 F5(x) = maxi
{
|xi|, 1 ≤ i ≤ d

}
10, 30, 50 [− 100, 100] 0

Rosenbrock F6(x) =
∑d−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 10, 30, 50 [− 30, 30] 0

Step F7(x) =
∑d

i=1

��
xi + 0.5

��2 10, 30, 50 [− 100, 100] 0

Quartic F8(x) =
∑d

i=1
ix4

i
10, 30, 50 [− 1.28, 1.28] 0

Noise F9(x) =
∑d

i=1
ix4

i
+ random[0, 1) 10, 30, 50 [− 1.28, 1.28] 0

Sum-power F10(x) =
∑d

i=1
�xi�i+1 10, 30, 50 [− 1, 1] 0
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4 � Experimental results

In this section, the performance of the proposed MHSA is 
evaluated and analyzed on a set of 23 benchmark test func-
tions, which are unimodal and multimodal in nature. This 
variety of difficulty level will help to analyze the exploration 
and exploitation abilities of the proposed algorithm. The list 
of benchmark test problems is presented in Tables 1 and 2 
with the search range and optimal solution. In this study, the 
performance comparison of the MHSA is performed with 
the conventional HSA, variants of MHSA, and some other 
algorithms. Hence, the comparison section is divided into 
two parts. In the first part, the MHSA is compared with con-
ventional HSA on 10-, 30-, and 50-dimensional problems. In 

the second part, the variants of the HSA which are developed 
in the literature and other algorithms are compared with the 
MHSA.

4.1 � Comparison of the MHSA with conventional 
HSA

This section compares the results of the MHSA with the con-
ventional HSA on 10-, 30-, and 50-dimensional problems, 
which are given in Tables 1 and 2. The results are obtained 
by conducting 30 independent trials of each algorithm with 
104 × d function evaluations. Size of the harmony memory 
is fixed to 5 for the proposed MHSA and conventional HSA. 
In this experiment, the mean and standard deviation value of 
the set of objective function values obtained over 30 runs are 

Table 2   Multimodal benchmark functions

Function name Formula Dim Search range f
min

Schwefel 2.26 F11(x) =
∑d

i=1
−xi sin

�√
�xi�

�
10, 30, 50 [− 500, 500] − 418.9829 × d

Rastrigin F12(x) = 
∑d

i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

� 10, 30, 50 [− 5.12, 5.12] 0

Ackley
F13(x) = −20 exp

⎛
⎜
⎜
⎝
−0.2

���� 1

d

d�

i=1

x2
i

⎞
⎟
⎟
⎠
− exp

�
1

d

d�

i=1

cos
�
2�xi

�
�

+ 20 + e

10, 30, 50 [− 32, 32] 0

Griewank F14(x) =
1

4000

∑d

i=1
x2
i
−
∏d

i=1
cos

�
xi√
i

�
+ 1 10, 30, 50 [− 600, 600] 0

Penalized
F15(x) =

𝜋

d

�
10 sin

�
𝜋y1

�
+

d−1�

i=1

(yi − 1)2
�
1 + 10 sin2(𝜋yi+1)

�
+ (yd − 1)2

�

+

n�

i=1

u(xi, 10, 100, 4), where yi = 1 +
xi + 1

4
and

u(xi, a, k,m) =

⎧
⎪
⎨
⎪
⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

10, 30, 50 [− 50, 50] 0

Penalized 2
F16(x) = 0.1

{
sin2(3�x1) +

d∑

i=1

(
xi − 1

)2[
1 + sin2(3�xi + 1)

]
+

}

+ 0.1
{
(xd − 1)2

[
1 + sin2(2�xd)

]}
+

d∑

i=1

u(xi, 5, 100, 4)

10, 30, 50 [− 50, 50] 0

Alpine F17(x) =
∑d

i=1
�xi sin(xi) + 0.1xi� 10, 30, 50 [− 10, 10] 0

Inverted cosine 
mixture

F18(x) =
∑d

i=1
0.1n −

�
0.1

∑d

i=1
cos(5�xi) −

∑d

i=1
x2
i

�
10, 30, 50 [− 1, 1] 0

Stretched V-sine F19(x) =
∑d−1

i=1
(x2

i
+ 2x2

i+1
)0.25 × [1 + sin(50(x2

i
+ x2

i+1
)0.1)2 10, 30, 50 [− 10, 10] 0

Elliptic F20(x) =
∑d

i=1
(106)(i−1)∕(d−1)x2

i
10, 30, 50 [− 100, 100] 0

Easom F21(x) = (−1)d+1
∏d

i=1
cos(xi) × exp(−

∑d

i=1
(xi − �)2) 10, 30, 50 [− 100, 100] 0

Salomon
F22(x) = 1 − cos

�
2�

�
(
∑d

i=1
x2
i
)
�
+ 0.1

�
(
∑d

i=1
x2
i
)

10, 30, 50 [− 100, 100] 0

Schafer
F23(x) = 0.5 +

sin2

�√
(
∑d

i=1
x2
i
)

�
−0.5

1+0.001

�
∑d

i=1
x2
i

�2

10, 30, 50 [− 100, 100] 0
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Initial harmony memory for the MHSA
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Fig. 4   Search history of the proposed MHSA, while solving the Rastrigin problem 
(
optima ∶ ▪, HM ∶ ◊

)

Table 3   Comparison of results on 10, 30 and 50-dimensional unimodal benchmark problems

Test function Result Dim 10 Dim 30 Dim 50

HSA MHSA Stat. out. HSA MHSA Stat. out. HSA MHSA Stat. out.

F1 Mean 1.43E − 08 0 1.21E − 12 8.28E − 05 0 1.21E − 12 8.17E + 00 0 1.212E − 12
Std 9.02E − 09 0 + 1.48E − 05 0 + 2.84E + 00 0 +

F2 Mean 6.46E − 08 0 1.21E − 12 9.14E − 04 0 1.21E − 12 2.89E − 02 0 1.212E − 12
Std 3.87E − 08 0 + 1.77E − 04 0 + 5.83E − 03 0 +

F3 Mean 2.59E − 04 0 1.21E − 12 2.86E − 02 0 1.21E − 12 2.07E − 01 0 1.212E − 12
Std 7.27E − 05 0 + 3.00E − 03 0 + 7.14E − 02 0 +

F4 Mean 1.08E + 00 1.75E − 203 3.02E − 11 9.06E + 02 5.61E − 62 3.02E − 11 7.13E + 03 1.54E − 29 3.02E − 11
Std 2.49E + 00 0 + 3.00E + 02 3.07E − 61 + 1.60E + 03 5.26E − 29 +

F5 Mean 2.66E − 04 4.88E − 226 3.02E − 11 1.29E + 00 6.37E − 181 3.02E − 11 6.89E + 00 1.38E − 137 3.02E − 11
Std 8.03E − 05 0 + 2.29E − 01 0 + 7.17E − 01 7.53E − 137 +

F6 Mean 7.30E + 00 3.68E + 00 2.34E − 01 6.34E + 01 2.23E + 01 4.64E − 03 3.32E + 02 4.26E + 01 3.02E − 11
Std 7.23E + 00 4.62E − 01 ≈ 4.24E + 01 1.35E + 00 + 1.28E + 02 2.11E + 00 +

F7 Mean 1.20E − 08 4.50E − 09 9.53E − 07 8.73E − 05 1.67E − 02 8.48E − 09 7.84E + 00 9.99E − 02 3.02E − 11
Std 5.90E − 09 4.09E − 09 + 1.39E − 05 6.34E − 02 – 3.13E + 00 1.41E − 01 +
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calculated and presented in Tables 3 and 4. In these tables, 
the better results are highlighted in bold face. 

In Table 3, the results are shown for the unimodal prob-
lems, and in Table 4, the results on multimodal problems 
are presented. These results are also compared by Wilcoxon 
rank sum test at 5% significance level to analyze the sig-
nificant difference between the conventional HSA and the 
proposed MHSA. These statistical results are indicated by 
‘stat. out.’ which provide the p value and the outcome of the 
results. The outcomes ‘ +∕ = ∕− ’ indicate that the proposed 
MSA is significantly better, equal, or worst than the conven-
tional HSA. By comparing the results on unimodal test func-
tions, it can be analyzed that in all the problems with varying 
dimension size, the proposed MHSA has significantly out-
performed the conventional HSA except for 10-dimensional 
F6. In this problem, the proposed MHSA provides better 
value of mean and standard deviation of objective function 
values than the conventional HSA, but this improvement is 
not statistically significant. The low value of standard devia-
tions shows the robustness of results in all the problems by 
the proposed MHSA. Moreover, on the functions F1, F2, 
and F3, the MHSA is able to provide the optima irrespective 
of the dimension, while the conventional HSA is unable to 
locate the optima even for a single problem. On multimodal 
problems F8, F10, F12, F14, F17, F18, F20, and F21, the 
proposed MHSA locate the global optima, while the con-
ventional HSA is able to do this only for F21. Obviously, 
these results demonstrate the better exploration ability by 
the MHSA as compared to the conventional HSA. The sta-
tistical outcomes demonstrate that in most of the problems, 
the MHSA has obtained significantly better results than the 
conventional HSA. As an example to show the search history 
of the MHSA, Fig. 4 is plotted. In this figure, the harmonies 
of the HM are shown for 2-dimensional Rastrigin function 
(F12). The figures show that, initially, the harmonies are 
diversified and after some iterations, they try to converge the 
optima and finally at iteration 500, and they all converge to 
the global optima (0) of the problem.

Overall analysis conclude that the proposed MHSA 
improves the exploitation as well as the exploration ability 
of the conventional HSA using the modified search mecha-
nism. On some cases like on problem F6, which is complex 
and have massive local optima, the algorithm is unable to 
achieve the global optima. Although the results are better 
than the conventional HSA, but the proposed approaches are 
not sufficient enough to determine the near optimal solution. 
One reason for this may be the proposed pitch adjustment 
process, which is inspired by the encircling behavior of the 
GWO. In this approach, at later iterations of the algorithm, 
the coefficient A is unable to explore the search space, and 
therefore, when the best solution trapped at local optima, 
then there are high chances that the whole harmony mem-
ory may stuck at local optima. On some highly non-linear 

problems, this reason may affect the performance of the 
algorithm, and therefore, in future research work, this short-
coming can be reduced using other evolutionary operators 
like mutation.

To validate the capacity of the proposed MHSA, the next 
subsection provides a comparison of the MHSA to the other 
variants of the HSA developed in the literature.

4.2 � Comparison of the MHSA with other variants 
of the HSA

In this section, different variants of the HSA developed in the 
literature are used to compare the performance of the pro-
posed MHSA. The comparison is performed on the same set 
of benchmark problems and same setting of function evalu-
ations as fixed in the previous subsection. Table 5 reports 
the mean and standard deviation of objective function values 
yields by the MHSA and other variants of HSA such as adap-
tive harmony search with best based search strategy (ABHS) 
[12], enhanced self-adaptive global-best harmony search 
(ESGHS) [30], novel self-adaptive harmony search (NSHS) 

Fig. 5   Comparison of average error values between proposed MHSA 
and other variants of HSA for 10-dimensional problems

Fig. 6   Comparison of average error values between proposed MHSA 
and other variants of HSA for 50-dimensional problems
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[29], parameter adaptive harmony search (PAHS) [26], and 
Gaussian global-best harmony search algorithm (GGHS) 
[24] on 30-dimensional test problems. In the table, the bet-
ter results are highlighted in bold face. In the  same table, the 
statistical outcomes obtained by applying the Wilcoxon rank 

sum test between the proposed MHSA and its competitive 
algorithm are also presented. The symbols ‘ +∕ = ∕− ’ are 
used to demonstrate that the MHSA is better, equal, or worse 
than its competitive algorithm. Moreover, the bottom part 
of the table provides the rank sum and overall rank (rank) 

Fig. 7   Convergence curves for unimodal test functions
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of the algorithms to pick up the best performer algorithm. 
The rank sum is the number which denotes the sum of the 

rank for each test problem obtained by ascending order of 
the objective function values.

Fig. 8   Convergence curves for multimodal test functions
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It can also be seen from Table 5 that the proposed MHSA 
is significantly better than the ABHS on all of the test 
problems except F21. In this problem, all the algorithms 
MHSA, ABHS, ESGHS, NSHS, PAHS, and GGHS pro-
vide the global optimal solution. The comparison between 
the ESGHS and MHSA shows that the proposed MHSA 
provides better results than the ESGHS in all the prob-
lems except F7 and F16. The NSHS algorithm is better 
than the MHSA on F7 and F15. When the comparison is 
performed between the PAHS and MHSA, the outperform 
search ability of the MHSA can be verified. The comparison 
with the GGHS shows that the proposed MHSA is better 
in all the problems except F7, F11, F15, and F16. The sta-
tistical results also validate this improvement in the search 
strategy of the proposed MHSA as compared to the other 
algorithms. The ranking of the algorithms shows that the 
proposed MHSA is the best performer algorithm than the 
ABHS, ESGHS, NSHS, PAHS, and GGHS. The methods 
next to the MHSA are GGHS, ESGHS, NSHS, ABHS, and 
PAHS, respectively.

To observe the impact of the proposed MHSA in solving 
the benchmark problems with dimensions 10 and 50, and 
to compare it with the other variants of HSA, Figs. 5 and 6 
are presented. The experiments are carried out with same 
parameter setting as used for solving 30-dimensional prob-
lems. In Figs. 5 and 6, the average error has been reported 
for each of the optimization method over 23 problems. Also, 
the obtained average error data have been shown with the 
bars in the figure, which clearly demonstrate that the pro-
posed MHSA is superior to all other variants of the HSA.

To analyze and compare the convergence rate among the 
algorithms ABHS, ESGHS, NSHS, PAHS, conventional 
HSA, and the proposed MHSA, the convergence curves 
are plotted in Figs. 7 and 8 corresponding to unimodal and 
multimodal benchmark problems. These variants are used 
for comparison of convergence rate because of their similar 
in structure. In these figures, each chart corresponds to one 
test functions that is used in the experiments. The horizon-
tal axis represents the number of function evaluations and 
the vertical axis represents the the best value of the objec-
tive function obtained so far. Figure 7 clearly demonstrates 
that in most of the test functions, the ABHS, conventional 
HSA, PAHS, and NSHS algorithms exhibit similar search 
behavior during the search procedure. In problem F1 and 
F23, the convergence behavior of the ESGHS is better than 
ABHS, NSHS, conventional HSA, and PAHS. On the other 
hand, in all of the problems, the convergence behavior of 
the proposed MHSA is better than all other variants of the 
HSA and this shows a better global search performance 
of the MHSA. In problems F1, F2, F17, and F20, the pro-
posed MHSA shows outperformed convergence rate and 
locates the optima within 1∕5th of the total number of func-
tion evaluations. Hence, the convergence behavior analysis 

demonstrates the better convergence rate of the MHSA not 
only than conventional HSA but than other variants such as 
ABHS, ESGHS, NSHS, and PAHS.

4.3 � Effect of the harmony memory size

To analyze the performance of the proposed MHSA on 
varying the harmony memory size HMS, the results cor-
responding to the harmony memory size 5, 10, 20, and 50 
are calculated on benchmark test problems given in Tables 1 
and 2. This experiment is conducted by repeating the pro-
posed MHSA 30 times independently on 30-dimensional 
problems. The Wilcoxon rank sum test at 5% significance 
level is used to signify the difference in results. These statis-
tical results are shown in symbols ‘ +∕ = ∕− ’ to indicate that 
the MHSA with 5 harmony memory size is better, equal, or 
worse than the same algorithm but with harmony memory 
sizes 10, 20, or 50. From Table 6, it can be observed that on 
almost all of the test functions, the proposed HMSA is either 
performing equal or significantly outperforming other cases 
with different harmony sizes. The statistical outcomes show 
that increment in the harmony memory size of the MHSA 
degrades its solution accuracy in most of the test problems. 
The average rank and overall rank calculated based on sort-
ing the mean objective function values also demonstrate that 
the HMSA with harmony memory size 5 is superior, while 
the next are MHSA with 10, 20, and 50 harmony memory 
sizes, respectively.

4.4 � Comparison of the MHSA with other 
metaheuristics

In this section, the performance of the MHSA is compared 
with some other metaheuristic algorithms such as sine 
cosine algorithm (SCA) [33], grey wolf optimizer (GWO) 
[34], comprehensive learning particle swarm optimiza-
tion (CLPSO) [28, 31], gbest-guided artificial bee colony 
(GABC) [47], and covariance matrix adaptation evolution 
strategy (CMA-ES) [13]. The SCA and GWO are two rela-
tively new metaheuristic algorithms. SCA is inspired from 
the mathematical features of sine and cosine trigonometric 
functions and the GWO is inspired by the social and hunting 
behavior of grey wolves in nature. The original versions of 
these algorithms are used in this section to compare the per-
formance of the proposed MHSA. The GABC is an extended 
version of the artificial bee colony algorithm, when the best 
solution obtained so far is used to guide the search proce-
dure. The CLPSO is an improved version of the conventional 
particle swarm optimization (PSO), where the best positions 
of other particles are used to update the position of current 
particle. The reason of employing this concept in the PSO 
was to enhance the exploration ability of particles by learn-
ing from others particles and to avoid the particles to prone 
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towards the local optima during the search procedure. The 
CMA-ES is an adaptive method of the evolution strategy. 
This method is well popular among the researchers because 
of their search abilities.

All these algorithms compare the performance of the 
MHSA by comparing the mean and standard deviation of 
objective function values. The parameter setting used by all 
the algorithms is presented in Table 7. The stopping criteria 
for each algorithm are fixed to 104 × d function evaluations 
(FEV). All the algorithms are executed 30 times indepen-
dently, and the mean and standard deviation of objective 
function values is recorded, which are presented in Table 8. 
In this table, the best results are highlighted in bold face. The 
statistical analysis of results is also performed to signify the 
difference in results and the ranking of all the algorithms is 
also done to select the best performer algorithm among all 
the compared methods. From the table, it can be seen that 
the SCA performs very poor as compared to the MHSA, 
because it has not provided significantly better results on any 
of the problem. The CLPSO has performed better than the 
MHSA only on F6, F7, and F15, the GWO has performed 
better than the MHSA on F4, F9, F19, and F22. The CMA-
ES performs significantly better than the MHSA for F4, F6, 
F7, F15, and F19. The GABC provides better results than the 
MHSA on F6, F7, F11, F15, and F16 due to their global-best 
guidance ability. The ranking of the algorithms demonstrates 
that the proposed MHSA is overall best performer algorithm, 
while the GWO, CMA-ES, CLPSO, SCA, and GABC are 
the next methods, respectively.

To analyze the performance of the proposed MHSA and 
to compare it with other metaheuristics for other dimensions 
of the problems, the experiments are carried out on 10- and 
50-dimensional benchmark problems. The parameter set-
tings are adopted same as used for solving 30-dimensional 
problems. The experimental results are obtained in terms 
of average error over all the 23 benchmark problems. These 
results are shown in Figs. 9 and 10, where the average error 
is indicated on each bar of the algorithms. From these fig-
ures, it can be easily concluded that the proposed MHSA 

provides better optimization results on the considered bench-
mark set. Hence, the proposed MHSA can be considered as a 
better optimizer than other comparative algorithms.

4.5 � Illustrative examples

In this section, to evaluate the performance of the proposed 
MHSA, three well-known benchmark structural engineering 
design problems are used. For this, different variants of the 
HSA and conventional HSA are simultaneously compared 
with the proposed MHSA to analyze its search performance. 
The harmony size for all the problems is fixed to 5 as sug-
gested in Subsect. 4.3. One of the interesting features of 
this section is the employed constraint handling mechanism, 
where neither the penalty approach nor any other constraint 
handling is applied. In this approach, first, the value of the 
objective function and constraints are evaluated on har-
monies, and then, the violation is recorded corresponding 
to each harmony. In this way, the better harmony can be 
recognized easily, which will be the one that having lesser 
constraint violation value. In the situation, where more than 
one harmonies are recognized as feasible one, i.e., having 
zero value of constraint violation, then the one having better 
objective fitness is picked as a best harmony of the mem-
ory. In this way, the constraints are tackled in the proposed 
MHSA, conventional HSA, and other variants. Obviously, 
this mechanism of handling the constraints does not involve 
any parameters. This mechanism evaluates the search strat-
egy of the MHSA directly to the constrained problems by 
just picking the best one in terms of constraint violation 
value. For a general form of the optimization problem

the constraint violation corresponding to the harmony X̂ can 
be calculated as follows:

where

(38)min F(X), X = (x1, x2,… , xd) ∈ ℝ
d,

(39)

s.t. gj(X) ≤ 0, j = 1, 2,… , J

hk(X) = 0, k = 1, 2,… ,K

xmin
i

≤ xi ≤ xmax
i

,

(40)violX̂ =

J∑

j=1

Gj(X̂) +

K∑

k=1

Hk(X̂),

(41)Gj(X̂) =

{
gj(X) gj(X) > 0

0 otherwise,

(42)Hk(X̂) =

{|||hk(X̂)
|||
|||hk(X̂)

||| − 𝜖 > 0

0 otherwise,

Table 7   Parameter setting for algorithms

Algo-
rithm

Parameters

CLPSO
N = 30, FEV = 104 × D,PCi

= 0.05 + 0.45 ×
exp

(
10(i−1)

N−1

)
−1

exp(10)−1

GWO N = 30, FEV = 104 × D, a = 2 − t
(

2

T

)

CMA-ES N = 30, FEV = 104 × D

GABC N = 30, FEV = 104 × D, limit = D ∗ (N∕2)

SCA N = 30, FEV = 104 × D, r1 = a − t
(

a

T

)
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where xmin
i

 and xmax
i

 are the lower and upper bounds for a 
harmony component xi of X. Symbols j and k indicate the 
number of inequality and equality constraints, respectively, 
in the optimization problem. The symbol � is predefined tol-
erance parameter, which has been fixed to 10−4 in the present 
study.

The description of the constrained engineering design 
problems is presented as follows.

4.5.1 � Compression spring design

The objective of this problem [4] is to minimize the weight 
of a tension/compression spring with some constraints such 
as surge frequency, shear stress, and minimum deflection. In 
this problem, three decision variables, namely, wire diameter 
(d), mean coil diameter (D), and the number of active coils 
(N), are involved. Mathematically, the problem can be stated 
as follows:

where X = (x1, x2, x3, x4) = (d,D,N) ∈ ℝ
3

(43)min f1(X) = (x3 + 2)x2
1
x2,

w h e r e  0.05 ≤ x1 ≤ 2.00  ,  0.25 ≤ x2 ≤ 1.30  ,  a n d 
2.00 ≤ x3 ≤ 15.00.

The numerical results in terms of mean, median, mini-
mum (best), and maximum (worst) and standard deviation 
values of the weights recorded over 30 trails are presented in 
Table 9 for the proposed MHSA. In this table, the results of 
the conventional HSA, ABHS, ESGHS, PAHS and GGHS 
are also reported and the best results are highlighted in bold 
face in order to compare the search efficacy of the MHSA. 
The statistical outcomes along with the p values are also 
shown in the same table, which clearly demonstrate the 
superior and significantly better search ability if the MHSA 
than other variants of the HSA and conventional HSA.

4.5.2 � Pressure vessel design

In this problem [17], the goal is to minimize the cost of cylin-
drical pressure vessel, which is closely related to material, 
structure, and welding. The ends of the pressure vessel are 
covered. In this problem, “the thickness of the shell ( TSH)”,  
“head ( THD)”, “inner radius (R)”, and “range of cross-section 
minus head (L)” are needed to be optimized. Mathemati-
cally, the problem is stated as follows:

where X = (x1, x2, x3, x4) = (TSH, THD,R, L) ∈ ℝ
4

where 0 ≤ x1, x2 ≤ 99 , 10 ≤ x3, x4 ≤ 200.

(44)s.t. 1 −
x3
2
x3

71785x4
1

≤ 0,

(45)
4x2

2
− x1x2

12566x3
1
x2 − x4

1

−
1

5108x2
1

≤ 0,

(46)1 −
140.45x1

x2
2
x3

≤ 0,

(47)
x1 + x2

1.5
− 1 ≤ 0,

(48)

min f
2
(X) = 0.6224x

1
x
3
x
4
+ 1.7781x2

1
x
3

+ 3.1661x2
1
x
4
+ 19.84x2

1
x
3
,

(49)s.t. − x1 + 0.0193x3 ≤ 0,

(50)− x3 + 0.00954x3 ≤ 0,

(51)− �x2
3
x4 −

4

3
�x3

3
+ 12, 96, 000 ≤ 0,

(52)x4 − 240 ≤ 0,

Fig. 9   Comparison of average error values between proposed MHSA 
and other metaheuristics for 10-dimensional problems

Fig. 10   Comparison of average error values between proposed 
MHSA and other metaheuristics for 50-dimensional problems
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The numerical results obtained by the MHSA are pre-
sented in Table 9 along with the results of other algorithms. 
In the table, better results are highlighted in bold face. It 
can be observed from this table that the proposed MHSA 
provides significantly better results as compared to the con-
ventional HSA and other variants of the HSA. The obtained 
p values and statistical outcomes by the Wilcoxon rank 
sum test validate this fact. The less standard value of the 
MHSA than other algorithms also verifies the robustness 
of the results. Therefore, to minimize the cost of pressure 
vessel, the proposed MHSA can be preferred over other 
algorithms.

4.5.3 � Three‑bar truss design

This problem, which considers a three-bar planner truss 
structure, was introduced by Nowcki [45], where the volume 
of a bar truss is minimized with constraints applied on stress 
of each truss member. This can be achieved by optimizing 
the cross-sectional area which is formulated mathematically 
as follows:

(53)

min f3(x1, x2) = L × (2
√
x1x1 + x2),X = (x1, x2) = (A1,A2),

where 0 ≤ x1, x2 ≤ 1 L = 100 cm, �,P = 2KN/cm2.
The optimization results are presented in Table 9, where 

the better results are highlighted in bold face. In the same 
table, the comparison of results obtained from the MHSA is 
performed with the conventional HSA, other variants of the 
HSA such as ABHS, ESGHS, PAHS, and GGHS with same 
parameter setting, and same constraint handling technique 
used for the MHSA. The obtained p values and statistical 
outcomes by the Wilcoxon rank sum test verify that the 
proposed MHSA performs significantly superior than the 
conventional HSA, ABHS, PAHS, and GGHS. The com-
parison between the MHSA and ESGHS shows that both the 
algorithms are significantly similar to provide the optimum 
value of the cross-sectional area for three-bar truss structure.

(54)s.t.

√
2x1 + x2√

2x2
1
+ 2x1x2

P − � ≤ 0,

(55)
x2√

2x2
1
+ 2x1x2

P − � ≤ 0,

(56)
1

x1 +
√
2x2

P − � ≤ 0,

Table 9   Comparison of results 
on constrained engineering 
design problems

Algorithm Mean Median Best Worst Std FEV p value Stat. out.

Compression spring design problem
 MHSA 0.0128345 0.0127995 0.0126861 0.0136802 0.0001732 40000 NA NA
 HSA 0.0145712 0.0142970 0.0127946 0.0171970 0.0013578 40000 4.20E − 10 +
 ABHS 0.0159747 0.0159368 0.0129420 0.0197169 0.0018282 40000 5.49E − 11 +
 ESGHS 0.0159423 0.0163954 0.0127165 0.0183882 0.0021504 40000 2.83E − 08 +
 PAHS 0.0163342 0.0171540 0.0128944 0.0187377 0.0021084 40000 8.99E − 11 +
 GGHS 0.0142752 0.0142138 0.0127946 0.0160065 0.0008740 40000 3.75E − 09 +

Pressure vessel design problem
 MHSA 6308.2549 6111.8340 6064.0094 7544.9743 443.6219 40000 NA NA
 HSA 7210.9737 7354.4882 6429.4540 7557.6150 359.8187 40000 2.60E − 08 +
 ABHS 7121.8395 7343.9307 6173.6463 7588.1223 475.5281 40000 2.19E − 08 +
 ESGHS 6944.4932 7333.1461 6062.1890 7544.5357 575.1279 40000 6.34E − 05 +
 PAHS 7113.2841 7328.2965 6173.0881 7567.3171 427.8528 40000 6.01E − 08 +
 GGHS 6860.3532 6746.6684 6454.9921 7820.2118 386.4812 40000 2.27E − 06 +

Three-bar truss design problem
 MHSA 263.95377 263.93247 263.89631 264.11574 0.06459 20000 NA NA
 HSA 264.40546 264.01413 263.89731 266.57837 0.69138 20000 3.00E − 03 +
 ABHS 264.68805 264.15548 263.90636 268.69102 1.10957 20000 1.25E − 05 +
 ESGHS 263.96838 263.94919 263.89610 264.33365 0.08816 20000 5.90E − 01 ≈

 PAHS 264.26629 264.23222 263.93320 265.27965 0.32957 20000 9.83E − 08 +
 GGHS 264.17496 264.25206 263.93999 264.32097 0.14624 20000 7.65E − 06 +



S3561Engineering with Computers (2022) 38 (Suppl 4):S3539–S3562	

1 3

5 � Conclusions and future research 
directions

This paper proposes a modified variant of the harmony 
search algorithm, called MHSA, for solving global opti-
mization problems. In the direction of improvement; first, 
a parameter-free approach has been proposed for the har-
mony memory considering rate (HMCR) and pitch adjust-
ment rate (PAR), which are considered base factors for the 
performance of the HSA. These parameters are adopted as 
non-linear in nature to mimic the non-linearity of the search 
process. The main advantage of using this approach is that 
the user does not need to worry about the fine-tune setting 
of these core control parameters. Second, the improvisation 
process is modified, based on inspiring the encircling mech-
anism of the well-known grey wolf optimizer, to effectively 
increase the diversification and intensification of the search 
space by the harmony, and to provide a better transition from 
exploration to exploitation. In the last step, the random gen-
eration of harmony process is modified to maintain the ran-
domness and to speed up the convergence rate by the help of 
partial opposite harmonies. The impact of all these strategies 
in improving the search efficiency of the conventional HSA 
is validated through a standard and well-known collection 
of benchmark set of 23 problems and three structural real 
engineering design problems. The statistical and conver-
gence analysis has verified the significant improvement in 
the search procedure of the proposed MHSA and introduced 
it as a superior global optimizer than the conventional HSA, 
other variants such as ABHS, ESGHS, NSHS, PAHS, and 
GGHS, and other metaheuristics such as CLPSO, GWO, 
CMA-ES, GABC, and SCA. The engineering design prob-
lems also demonstrate the significantly superior performance 
of the proposed MHSA than conventional HSA and other 
variants of the HSA.

The present study can be extended for binary, discrete, 
multi-objective, and many-objective optimization tasks by 
integrating necessary operators. Future research may also 
include the validation on other complex benchmark prob-
lems and real-world application problems like vehicle sched-
uling, aircraft streamline modeling problems, feature selec-
tion, and some others.
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