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Abstract
This work aims to develop a novel and practical equation for predicting the axial load of rectangular concrete-filled steel 
tubular (CFST) columns based on soft computing techniques. More precisely, a dataset containing 880 experimental tests was 
first collected from the available literature for the development of an artificial neural network (ANN) model. An optimization 
strategy was conducted to obtain a final set of ANN’s architecture as well as its weight and bias parameters. The performance 
of the developed ANN was then compared to current codes (AS, EN, AIJ, ACI, AISC, LRFD, and DBJ) and existing empiri-
cal equations. The accuracy of the present model was found superior to the results obtained by others when predicting the 
axial load of rectangular CFST columns. For practical application, an explicit equation and an Excel-based Graphical User 
Interface were derived based on the ANN model. The graphical user interface is provided freely for all interested users, to 
support the design, teaching, and interpretation of the axial behavior of CFST columns.

Keywords Artificial neural networks (ANNs) · Genetic programming (GP) · Machine learning · Metaheuristic algorithms · 
Concrete-filled steel tube

Abbreviations
ANN(s)  Artificial neural network(s)
Ac  Area of concrete core section
As  Area of steel tube section
Asc  Area of composite section
B  Width of tubes section
BPNN  Back propagation neural network
CFST  Concrete filled steel tube
Co  Competitive transfer function
Ec  Concrete modulus of elasticity
Es  Steel modulus of elasticity

f ′
c
  Concrete compressive strength

fy  Steel yield limit
fu  Steel ultimate strength
GP  Genetic programming
GUI  Graphical user interface
H  Height of tubes section
HTS  Hyperbolic tangent sigmoid transfer function
Is  Moment of inertia of steel tube section
Ic  Moment of inertia of concete core section
L  Length of column
Le  Effective length of column
Li  Linear transfer function
LS  Log-sigmoid transfer function
MAPE  Mean absolute percentage error
MSE  Mean square error
N  Axial load capacity
Nb  Buckling capacity of column
Ncr  Elastic critical bucking load
Npl  Squash load
NRB  Normalized radial basis transfer function
PLi  Positive linear transfer function
R  Pearson correlation coefficient
RB  Radial basis transfer function
SM  Soft max transfer function
SSE  Sum square error
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SP  Superplasticizer
SSL  Symmetric saturating linear transfer function
t  Wall thickness of steel tubes
TB  Triangular basis transfer function
�  Confinement factor
�  Concrete density
N

predicted
u   Prediction of axial load of CFST columns

[Iw]  Weight matrix of the hidden layer
[bi]  Bias matrix of the hidden layer
[LW]  Weight matrix of the output layer
[bo]  Bias matrix of the output layer
Bmin, Bmax  Min and max values of width of tubes 

sections
Hmin, Hmax  Min and max values of height of tubes 

sections
tmin, tmax  Min and max values of thickness of tubes 

sections
Lemin, Lemax  Min and max values of effective length of 

column
fymin, fymax  Min and max values of steel yield limit
f ′
0
 , f ′

cmax
  Min and max values of concrete compressive 

strength

1 Introduction

Concrete filled steel tube (CFST) columns have gained 
significant popularity in modern construction [1–4]. They 
constist of a hollow steel section, either hot rolled or cold-
formed or welded, filled with concrete, normally without 
any other longitudinal reinforcement or stirrups. This com-
bination offers a number of advantages. No formwork for 
the casting of concrete is needed, since the hollow section 
serves this purpose, reducing labour costs. Furthermore, the 
steel tube, offers the required confinement conditions for the 
concrete, to deliver its compressive capacity and maintain 
its ductility. On the other hand, the concrete core, blocks the 
potential for any inward movement of the steel tube, enhanc-
ing this way its overall resistance against local buckling. 
Global buckling is enhanced, as well, due to the combined 
contribution to the overall stiffness of the steel and concrete 
parts. More slender steel sections can be used, as a conse-
quence, that would otherwise be susceptible to premature 
instabilities. As a result, a CFST column, achieves increased 
stiffness, strength, and ductility, surpassing the respective 
characteristics of its individual components. Other practical 
advantages include the increased floor space, a hard to dam-
age the final surface, and improved fire resistance. Compared 
to a reinforced concrete construction, however, CFST col-
umns require more complicated beam-to-column joints, that 
must typically be prepared in-shop, as well as anti-corrosion 
finishing for the exposed steel.

Several cross-sectional shapes for CFSTs are in use 
nowadays. Circular hollow sections are quite common, 
due to the excellent confinement conditions they can offer. 
Square or rectangular hollow sections are also increasingly 
used, offering easier manufacturing of the beam to column 
joints, and aesthetics. However, they provide less confine-
ment to the concrete core, compared to the circular tubes. 
Other shapes, such as octagonal, hexagonal or elliptic are 
also in use, though less commonly, Steel and composite 
codes, worldwide facilitate the design of CFSTs, with 
provisions for their axial and flexural capacity, and stabil-
ity. Specifically, available codes include EN1994 [5] in 
Europe, AISC-360 [6] and ACI-318 [7] in North America, 
AIJ [8] in Japan, DBJ13-51 [9] in China and AS4100 [10] 
in Australia. Also, an increasing number of analytical 
models becomes available in the literature for the predic-
tion of CFST behavior. Considering the axial compressive 
capacity, analytical methodologies are proposed, among 
others, by Uy [11], Sakino et al. [12], Han et al. [13], Yu 
et al. [14], Ding et al. [15], Du et al. [16], Wang et al. [17], 
Chen et al. [18].

In recent years, soft computing techniques have gradu-
ally become popular and applied in many different fields 
[19–23]. Artificial neural network (ANN) method uses exist-
ing experimental data to train neural networks to generalize 
and predict the behavior of the same material under different 
testing conditions and has become the most commonly used 
machine learning algorithm [19]. Many studies related to 
ANN applied to the behavior of steel–concrete pipe columns 
subjected to different types of loads have been conducted, 
such as prediction of fire resistance of concrete-filled tubular 
steel columns [24]; prediction of biaxial bending behavior 
of steel–concrete composite beam-columns [25]; concrete-
filled steel tube ultrasonic [26]. Du et al. [27] utilized ANN 
to predict the axial bearing capacity of rectangular CFST 
columns using the parameters such as sectional length and 
width, thickness, steel, and concrete strength. In such a 
study, 305 experimental data were collected, in which 275 
samples were used to train the ANN model, whereas 30 sam-
ples were used for the validation phase. The predicted values 
are more accurate than standards such as ACI and EC4. In 
Wei et al. [28], an ANN model was developed to evaluate 
the seismic properties of high-strength reinforced concrete 
columns with concrete-filled steel tube core. In addition, by 
using neural networks and input parameters such as yield 
limit of steel tube, the compression strength of concrete, 
diameter, and height of circular concrete-filled steel tube, 
and wall thickness of steel tube, a network for strength pre-
diction of columns was proposed with high level of accuracy 
and precision [29]. The results obtained from the literature 
demonstrate that ANN could predict the behavior of con-
crete-filled steel tubes with a high degree of accuracy.
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2  Research significance

The present paper focuses on the prediction of the ultimate 
compressive load of rectangular CFSTs, using an artificial 
neural network approach. Ultimate compressive load rep-
resents the main design variable of a CFST column, under 
axial loading. Numerous literature studies are devoted 
towards its experimental characterization and several ana-
lytical models are proposed either by design codes [5–10] 
or research works, as will be seen later in text. However, in 
a structural design situation, a column is normally expected 
to withstand a more complex loading condition, that may 
include flexural bending, shear and torsion. Nevertheless, 
even in these cases, the compressive capacity remains a 
crucial parameter that affects the final capacity under the 
interaction of loading modes.

While the estimation of the compressive capacity, through 
closed-formed analytical models, is always a sought-after 
solution, sometimes it becomes necessary to look for a 
numerical solution, such as a finite element model. For 
example, the currently available design codes [5–10], place 
certain limits on their application, regarding the use of high-
strength steel and concrete, or the slenderness of the cross-
section. However, due to the excellent confinement condi-
tions, a CFST can offer, the opportunity arises in practice, 
to take advantage of high-strength concrete, in an effective 
and simple manner. Similarly, the inner restraint offered by 
the concrete core, to the steel section, enhances its resist-
ance against local buckling, so that the use of high-strength 
steel and thin-walled sections becomes viable and effective. 
In such cases, the verification of the CFST compressive 
capacity can rely on experimental testing or advanced finite 
element modeling. Both solutions, however, are expensive 
in time and financial resources, and not scalable to every 
structure. A neural network model, on the other hand, if 
trained with a sufficient number of experimental specimens, 
can offer a reliable estimation, that can cover a broad field 
of application, in a scalable manner. The final implementa-
tion of such a model can be of comparable complexity, with 
an analytical methodology. The high number of experimen-
tal tests, available in the literature nowadays, regarding the 
compressive response of CFSTs, facilitates the training of 
a neural network model, in an extended field of applica-
tion, that includes high-strength materials and thin-walled 
sections.

3  Literature review on concrete‑filled steel 
tube columns under axial loading

3.1  Experimental works

Extended experimental work has been conducted in the 
past, helping to establish a solid understanding on the 
mechanisms that contribute to the ultimate response of 
CFSTs under axial compression. Several common aspects 
of their design have been explored in the literature, such 
as, the shape of the tube, its aspect ratio, the column slen-
derness, the load eccentricity, the influence of stiffeners 
as well the use of innovative materials, including high 
strength steel, high strength concrete, and self-consoli-
dating concrete.

Early experimental studies, by Kloppel and Goder [30], 
Furlong [31] and by Knowles and Park [32] report tests on 
circular and square CFSTs. Gardner and Jacobson [33], 
examined rectangular CFSTs with varying aspect ratios. 
Tomii et al. [34] reported a large number of tests for circu-
lar, square and octagonal shaped CFSTs. More recent tests 
on square CFSTs include the works by Uy [35], Varma 
et al. [36], Mursy and Uy [37, 38], Sakino [12], Lam and 
Willimas [39], Tao et al. [40], Yu et al. [14], Aslani et al. 
[41], Liew et al. [2], Dundu [42], Khan et al. [43, 44], 
Xiong et al. [45], Zhu et al. [46], Chen et al. [18].

In the case of a rectangular sections, the aspect ratio, 
H∕B , of the two section sides, affects the concrete confine-
ment conditions. This in turn can negatively affect both 
strength and ductility of the column. Experimental evi-
dence, in this context, is reported by Han [47], who tested 
sections with 1 ≤ H∕B ≤ 1.75 , Liu et  al. [48] and Liu 
[49], who tested high strength CFSTs, with 1 ≤ H∕B ≤ 2 , 
Du et  al. [50] who tested high strength CFSTs, with 
1.17 ≤ H∕B ≤ 1.5 . . On a different approach, Evirgen et al. 
[51] examined different CFSTs shapes including square, 
as well as rectangular ones, with H∕B = 1.67 . The lat-
ter proved much less effective in enhancing the axial lo, 
compared to to the square ones. Similarly, Ibanez et al. 
[52] examined different shapes of high strength CFSTs, 
including rectangular ones, with H∕B = 1.5 , concluding 
that the latter offer reduced confinement levels, compared 
to square and circular sections, with similar section area.

A crucial factor, that determines the behavior of CFSTs, 
under compressive loading, is the width-to-thickness ratio 
B∕t , of the steel tube. Higher values of this ratio, result in 
local buckling phenomena to the steel section, reducing 
the overall column capacity. Rectangular or square tubes 
prove more susceptible to local buckling, compared to 
circular ones. Uy [53] tested square concrete filled box 
columns, with 40 ≤ B∕t ≤ 100 , and proposed slenderness 
limits for the steel section, before local buckling prevents 
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the column from reaching its yield capacity, accounting 
also for residual stresses. Sakino et al. [12] tested square 
CFSTsm with 18.4 ≤ B∕t ≤ 73.9 , as well as circular ones. 
For the square tubes, they proposed a strength reduction 
factor, due to steel tube local buckling. Chitawadagi et al. 
[54], among other parameters, investigated experimen-
tally the width-to-thickness ratio of cold-formed rectan-
gular CFSTs, taking values between 9.4 and 25. It is found 
that larger wall thickness leads to increased load carrying 
capacity, by postponing local buckling. Similar conclu-
sions are drawn by Evirgen et al. [51], who tested circu-
lar, hexagonal, square, and rectangular CFSTs, with four 
B∕t ratios, between 18.75 and 100. Chen et al. [18], who 
tested circular and square CFSTs, with varying B∕t ratio, 
between 13.2 and 48.9, and concrete strength, reported that 
with higher B∕t ratios, local buckling becomes more criti-
cal, resulting in a loss of concrete confinement, though this 
phenomenon is postponed with higher concrete strengths.

An effective measure against local buckling involves the 
use of longitudinal stiffeners. To this end, the performance 
of several inner stiffener layouts, for square CFSTs has been 
investigated by Tao et al. [40, 55] and by Zhu et al. [46], for 
cold-formed steel tubes. Similar investigation for inner, as 
well as outer longitudinal stiffeners, for square and rectangu-
lar CFSTs has been performed by Tao et al. [56]. Ding et al. 
[15] evaluated the axial load carrying response of square 
CFSTs with stiffeners, as well as, three different stirrup 
configurations. They conclude that inner stiffeners improve 
mainly the ductility of the column, however, stirrups were 
able to enhance capacity as well.

More than often, the experimentally tested CFST speci-
mens are short in length, for easier construction and test-
ing. However, the evaluation of the column behavior, under 
global buckling conditions, requires the testing of long spec-
imens. Han and Yao [57], tested rectangular CFSTs with 
varying length-to-width ratio, L∕B , up to 18, under differ-
ent conditions of concrete compaction. Mursi and Uy [38] 
examined long, square, high strength CFSTs, with L∕B tak-
ing values between 11.6 and 27.5. Lue et al. [58] tested rec-
tangular CFSTs with an L∕B ratio equal to 18.55, that failed 
either due to global buckling, local buckling or a combina-
tion of the two. Yu et al. [59] examined the performance of 
circular and square CFSTs, with high-performance concrete, 
using three different lengths and L∕B ratios reaching 30. 
Dundu [42] examined square CFSTs, using both mild and 
high strength steel and L∕B ratios up to 45. Failure modes 
included global buckling mostly, as well as local buckling. 
Also, Khan et al. [43] tested square, high strength CFSTs, 
with three different lengths and varying slenderness that 
failed either due to global or local buckling, or a combina-
tion of both.

Extensive experimental studies investigate the perfor-
mance of high-strength CFSTs. The use of high strength 

concrete (HSC) or ultra-high-strength concrete (UHSC) 
has been investigated by Lam and Williams [39] and Khan 
et al. [43, 44], for square CFSTs, by Liu et al. [48], Liu and 
Gho [60] and Lue et al. [58], for rectangular CFSTs, by Yu 
et al. [59], Liew et al. [2], Xiong et al. [45] and Chen et al. 
[18], for square and circular CFSTs, by Ibanez et al. [52] 
for circular, square and rectangular CFSTs, by Zhu et al. 
[61] for octagonal, circular and square CFSTs. On the other 
hand, experimental tests with high strength steel tubes are 
reported by Liu et al. [48], Sakino et al. [12], Mursi and Uy 
[38], Liu and Gho [60], Aslani et al. [41], Liew et al. [2], 
Dundu [42], Du et al. [16], Xiong et al. [45], Khan et al. [43, 
44]. Other investigations focus on the use of stainless steel 
tubes (Young and Ellobody [62], Uy et al. [63]), the use of 
self-consolidating concrete (Han and Yao [64], Han et al. 
[13], Yu et al. [49]), the preloading of the steel tube (Han 
and Yao [65]).

3.2  Available proposals

The design of CFST columns against axial compression 
is supported by many steel and composite design codes. 
These include European EN1994 [5], American LRFD [66], 
AISC 360 [6] and ACI 318 [7], Japanese AIJ [8], Chinese 
DBJ 13-51-2010 [9], Australian AS5100 [10]. Almost all 
codes restrict their field of application, limiting the range of 
acceptable steel material strength fy , concrete strength f ′

c
 , 

and excluding very slender steel sections. Some codes also 
limit the steel percentage in the composite section. The lim-
its differ greately between codes, as can be seen in Table 1.

Hereafter, a concise description of each of the aforemen-
tioned design codes is made, regarding the estimation of the 
compressive axial capacity of rectangular CFST columns. 
Safety factors are omitted from the presentation here, aiming 
for a more objective comparison between different codes that 
are undertaken in this work. Also, a number of analytical 
methodologies, available in the literature, for the estimation 
of the ultimate axial load of the square of rectangular CFSTs, 
is described in the remaining of this section.

3.2.1  Eurocode EN1994

According to Eurocode 4 [5], the squash load of a CFST 
column, under axial compression, is calculated by combin-
ing the individual resistances of the steel section and the 
concrete core:

The effect of column slenderness is taken into account 
through a reduction factor � , so that the column axial capac-
ity is found as:

(1)N
pl
= fyAs + f

�

c
Ac,
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Factor � is found through buckling curves, provided by 
EN1993 [67], using an effective slenderness �̄� that com-
bines contributions to stiffness from the steel and concrete 
components. The formulas in this case are:

where, Le is the critical buckling length, Is , Ic the moments 
of inertia of the steel section and the concrete core, respec-
tively, Es,Ec the moduli of elasticity for the same compo-
nents. The later can be calculated using the EN1992 [68] 
formula: Ec = 22, 000

(
0.1f

�

c
+ 0.8

)0.3 (in MPa).

3.2.2  AISC 360‑16

American standard AISC360-16 [6], takes into account the 
strength of the steel and concrete parts of CFST columns, 
as well as the slenderness of the column member, provid-
ing the following formula for the calculation of their axial 
compressive capacity:

(2)NEC4 = �N
pl
, with � ≤ 1.

�̄� =

√√√√√
Npl

𝜋2(EI)eff

L2
e

(3)(EI)eff = EsIs + 0.6EcIc

where Nno is related to the strength of the total section, 
depending on its classification against local buckling phe-
nomena, while Ncr is the elastic critical buckling load of the 
member. The former, is found with the following expression:

Loads Npl and Ny are related to the combined plastic and 
yield, respectively, strength of the steel and concrete parts of 
the total section, while �p and �p are classification limits for the 
width-to-thickness ratio, � , of the steel section.

(4)NAISC360 =

⎧⎪⎨⎪⎩

Nno

�
0.658

�
Nno

Ncr

��
, if

Nno

Ncr

≤ 2.25

0.877Ncr, if
Nno

Ncr

> 2.25

,

(5)Nno =

⎧⎪⎨⎪⎩

Npl, if 𝜆 < 𝜆p

Npl −
�
Npl − Ny

� (𝜆−𝜆p)2
(𝜆r−𝜆p)

2 , if 𝜆p ≤ 𝜆 < 𝜆r

9EsAs

𝜆2
+ 0.7f �

c
Ac, if 𝜆 ≥ 𝜆r

.

Table 1  Field of application of various code standards for the design of CFST columns

Asc, As, and Ac are the areas of the total cross section, the steel tube and the concrete core, respectively. H, B are the height and width of the cross 
section, respectively, t is the tube wall thickness. Le is the column effective length

Code f
y
 (MPa) f

′

c
 (MPa) Section slenderness Other

EN1994 [5] 235 ≤ fy ≤ 460 25 ≤ f
′

c
≤ 50 H

t
≤ 52

√
235

fy

0.2 ≤ � ≤ 0.9
{

� =
As fy

Npl

Npl = Asfy + 0.85Acf
�
c

LRFD 1999 [66] fy ≤ 415 21 ≤ f ′
c
≤ 55 H

t
≤

√
3Es

fy
t ≥ B

√
fy

3Es

AISC 360-16 [6] fy ≤ 525 21 ≤ f
′

c
≤ 69 H

t
≤ 5

√
Es

fy

As ≥ 0.01Asc

ACI 318-14 [7] fy ≤ 345 f
′

c
≥ 17.2 H

t
≤

√
3Es

fy

AIJ [8] 235 ≤ fy ≤ 355 18 ≤ f
′

c
≤ 60 H

t
≤ 1.5

735√
min{fy;0.7fu}

Le

B
≤ 50

DBJ13-51-2010 [9] 235 ≤ fy ≤ 420 24 ≤ f
′

c
≤ 70 H

t
≤ 60

√
235

fy

AS5100 [10] fy ≤ 350 25 ≤ f
′

c
≤ 65

H

t

�
fy

250
≤

⎧⎪⎨⎪⎩

45, hot - rolled

40, cold - formed

35, welded
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On the other hand, for the calculation of the elastic buck-
ling load Ncr , that is used in Eq. (4), an effective flexural 
stiffness of the total cross section is employed, equal to:

For the estimation of the modulus of elasticity of concrete 
Ec , an empirical expression is provided by AISC360-16 [6] 
( Ec = 0.043�1.5

√
f
�

c
 , in MPa, where � the density of concrete 

in kg/m3).

3.2.3  LRFD 1999

The older version of American standard LRFD 1999 [66], 
provides a simpler path for the estimation of the axial capac-
ity of CFST columns, compared to AISC 360 [6]. Along 
with its newer counterpart, LRFD 1999, takes into consid-
eration the strength of the steel and concrete components, as 
well as the slenderness of the column member, but without 
accounting for the classification of the steel section against 
local buckling. Specifically, the capacity of the CFST col-
umn, under axial compression, is given by the following 
expression:

where �c is the slenderness of the column given by:

and fmy , Em are effective yield stress and modulus of elastic-
ity, of the composite section, accounting for contributions 
from both the steel and concrete parts:

For the estimation of the modulus of elasticity of concrete 
Ec , an empirical expression is provided by LRFD 1999 [66] 

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Npl = fyAs + 0.85f �
c
Ac

Ny = fyAs + 0.7f
�

c
Ac

� = (H − 2t)∕t

�p = 2.26
�

Es∕fy

�r = 3.00
�

Es∕fy

.

(EI)eff = EsIs + C3EcIc,

(7)C3 = 0.45 +
3Ac

Asc

≤ 0.9.

(8)NLRFD =

{
Asfmy0.658

(𝜆2c), if 𝜆c ≤ 1.5

Asfmy
0.877

𝜆2
c

, if 𝜆c > 1.5
,

(9)�c =

�
Le

�
√
Is∕As

��
fmy

Em

,

(10)
{

fmy = fy + 0.85f
�

c
Ac∕As

Em = Es + 0.4EcAc∕As

.

( Ec = 0.041�1.5
√

f
�

c
 , in MPa, where � the density of concrete 

in kg/m3).

3.2.4  AS 5100

Australian code AS 5100 [10], follows a similar path with 
EN1994 [5], for the calculation of the capacity of a CFST 
columns, under axial compression. The squash load of the 
section is found by combining the individual resistances of 
the steel section and the concrete core. Ignoring safety fac-
tors, this is written as:

The effect of column slenderness is then taken into 
account through a reduction factor ac , so that the column 
axial resistance is found as:

Factor ac depends on a relative column slenderness, 
�r =

√
N
pl
∕N

cr
 , where N

cr
 the elastic critical buckling load 

of the column. The latter is evaluated using an effective flex-
ural stiffness, taking into account both the steel and concrete 
components:

The calculation of factor ac is based on the following 
formulas:

In the above expressions, � represents a geometrical 
imperfection factor, while ab accounts for the impact of 
residual stresses (for tubular sections, not classified as slen-
der, it is, ab = −1).

3.2.5  AIJ

Japanese code AIJ [8] covers the design of circular and 
square CFSTs under axial compression. The axial capac-
ity, for a square section, having width B , can be calculated 
through the following three expressions, which take into 

(11)N
pl
= fyAs + f

�

c
Ac.

(12)NAS5100 = acNpl
, with ac ≤ 1.

(13)N
cr
= �2

EsIs + EcIc

L2
e

.

(14)

a
c
= �

[
1 −

√
1 −

(
90

��

)2

]

� = 90�r + aaab

� =
(�∕90)2+1+�

2(�∕90)2

aa =
2100(90�r−13.5)

8100�2
r
−1377�r+2050

� = 0.00326(13.5 − �) ≥ 0

.
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consideration both the strength of the section and the stabil-
ity of the member, depending on its slenderness:

where, Le the effective length of the member and Nc
b
 , Ns

b
 , 

the buckling capacities of the concrete and steel parts of the 
section, respectively. The first branch in the formula, corre-
sponds to the squash load of the section, while the third one 
to flexural buckling capacity. In both cases, the contributions 
of the steel and concrete parts are evaluated separately and 
then are combined together, in the above formulation. The 
global buckling capacity of the concrete is evaluated using 
the following procedure:

where:

Buckling capacity of the steel tube is evaluated using the 
following procedure:

where:

In the above expressions, �c and �c are the slenderness 
ratios of the concrete and steel parts of the column.

3.2.6  DBJ 13‑51‑2010

Chinese code DBJ 13-10-2010 [9] employs a combined yield 
stress fsc , for the calculation of the squash load of the com-
posite CFST section. The following expression is used for 
rectangular tubes:

(15)

NAIJ =

⎧⎪⎨⎪⎩
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�
c

�
= Npl

�
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�
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b

�
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�
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,
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√
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��
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,
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(20)fsc = f
�

c
(1.18 + 0.85�),

where, � is a confinement factor, expressed through the 
following:

The compressive resistance of the composite section is 
then found as:

3.2.7  ACI 318‑14

American standard ACI 318-14 [7] recommends the fol-
lowing relationship for the ultimate capacity of a CFST 
column (ignoring the accidental eccentricity factor):

The effect of column slenderness is considered in the 
standard, but through a magnification factor for the applied 
moments.

3.2.8  Sakino et al. [12]

Sakino et al. [12] proposed a strength reduction factor, for 
square-shaped tubes, that accounts local buckling phenom-
ena. The ultimate resistance of square CFSTs is given by:

where the influence of steel section slenderness is consid-
ered, through a critical stress �scr:

Factor �U accounts for the scale effects of the concrete 
strength:

where Dc the diameter of an equivalent circle, with same 
sectional area.

3.2.9  Han et al. [13]

Han et al. [13], proposed a numerical and a simplified 
analytical model for the prediction of the nonlinear 
force–deformation curve of circular and square CFST 

(21)� =
Asfy

Acf
�

c

.

(22)NDBJ13−51 = fsc
(
As + Ac

)
.

(23)NACI318 = Asfy + 0.85Acf
�

c
.

(24)NSakino 2004 = As�scr + Ac�Uf
�
c
,

(25)�scr = Sfy ≤ fy,

(26)1

S
= 0.698 + 0.128

(
H

t

)2 fy

Es

4.00

6.97
.

(27)�U = 1.67D−0.112
c

,
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columns, under axial compression. For the latter, the 
capacity of the composite section is estimated through 
combined yield stress:

The formula for fscy , in Eq. (28), is proposed for square 
sections. The authors introduce � = Asfy∕Acf

�

c
 , as a con-

finement factor, with a valid range between 0.1 and 5. The 
expressions proposed by the Chinese code DBJ 13-10-
2010 [9], are identical to the ones proposed by Han et al. 
[13].

3.2.10  Ding et al. [15]

Ding et al. [15] proposed a simplified methodology for the esti-
mation of the compressive capacity of stirrup confined, square, 
CFST columns. For stub columns, their approach results in the 
following relationship:

3.2.11  Wang et al. [17]

Wang et al. [17] proposed a simplified model for the prediction 
of compressive stiffness, the strain at ultimate strength and the 
ultimate axial load of circular and rectangular CFST columns. 
The latter is given by the following formula:

where parameter �� , is a reduction factor accounting for con-
crete confinement demands to the steel section and potential 
local buckling, while parameter �c is an amplification factor 
accounting for concrete confinement. For rectangular tubes, 
these parameters are calibrated to:

where W =
√
H2 + B2 , the diagonal length of the rectangu-

lar tube, and ks a confinement coefficient given by:
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(
As + Ac

)
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3.2.12  Du et al. [16] and Chen et al. [18]

Du et al. [16] proposed a calculation method, which was cali-
brated with experimental CFSTs, using high-strength steel. 
The following expression is proposed:

where k , is an augmentation factor that reflects the enhance-
ment caused by the steel tube to the concrete core, given by:

The same expression was also calibrated by Chen et al. 
[18] for ultra-high-performance concrete. This time the 
augmentation factor, is given by the following equation 
(for square sections):

3.2.13  Tran et al. [69]

Tran et al. [69] developed a neural network model, for 
the prediction of the axial compressive capacity of square 
CFST columns, taking into account the width and thick-
ness of the steel tube, the column length and yield limit of 
the steel and concrete materials. Based on this model, an 
empirical expression was also proposed:

where Q*
u
 is a the capacity, as a function of only the steel tube 

height H , which proved the most sensitive input parameter, 
given by:

and CL , Ct , Cfy
 , Cf ’

c
 correction factors, accounting for the 

other 4 input parameters, calibrated to the following 
formulas:
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4  Materials and methods

4.1  Metaheuristic models

In this section, the basic principles and the constitutive 
rules followed by Artificial Neural Networks (ANNs) will 
be presented, focusing on the specific ANNs type known 
as back-propagation neural networks (BPNNs), as well as 
on other metaheuristic method such as balancing compos-
ite motion optimization (BCMO).

4.1.1  Artificial neural network

Artificial neural network (ANN) is a mathematical com-
putational model that was inspired by the biological neural 
networks in the human brain [70]. By conception, the ANN 
exhibits the ability to learn from observed data and then make 
generalizations [22]. It is efficient in both cases of discrete and 
continuous functions by mapping the relationships between 
input variables and output response [71]. As proved by many 
investigations in the literature, the ANN possesses a strong 
ability to model complex nonlinear problems in civil engi-
neering applications, where conventional techniques fail. For 
example, Ali et al. [72] for estimating the fire capacity of struc-
tural members, Asteris and Mokos [20] for predicting concrete 
compressive strength, and Hasanzadehshooiili et al. [73] for 
investigating buckling capacity of steel arch-shells. Therefore, 
the ANN is the most commonly employed AI-based model in 
civil engineering applications, thanks to its simplicity [74]. 
The ANN model consists of three layers of neurons namely 
input, hidden, and output layers. In such an architecture, each 
node is linked to all of the nodes in the next layer. However, 
there is no connection among the nodes on the same layer. The 
number of nodes in the input layer is the number of input vari-
ables, whereas the number of nodes in the output layer depends 
on the output variables of the considered problem. The infor-
mation about the relationship between the inputs and output is 
represented by the weight and bias parameters. These weights 
and bias are the goal of the optimization problem, in minimiz-
ing errors between observed and predicted data [75–77].

The structure of an ANN model composes of three layers 
including input (variables), hidden (functional layer), and out-
put layers (network’s outcomes). These layers are connected 
by the artificial computational neurons, which compute the 
weight parameters of the model. For a problem with one out-
put response, the following nonlinear function is generalized 
by the ANN model [78–80]:

where X is the input vector and Y is the predicted variable. 
The function f could be fully detailed, as follows [21, 81]:

(40)f ∶ X ∈ ℝ
N
↦ Y ∈ ℝ

1,

where IW, fh and bi are the weight matrix, activation function 
and bias vector of the hidden layer; whereas LW, fo and bo are 
the weight matrix, activation function and bias vector of the 
output layer, respectively.

4.1.2  Other metaheuristic method: balancing composite 
motion optimization

Balancing composite motion optimization (BCMO) is a 
novel population-based optimization technique, proposed 
by Le-Duc et al. [82]. The method is described as simple 
without following any natural or human behaviors [82]. 
The main idea of BCMO is that the searching motions of 
the population are equalized following a composite man-
ner. In other words, a candidate solution can move in both 
global and local space, which is assumed Cartesian. The 
movement in the local space allows the candidate to find if 
there are any better solutions in the local region, whereas the 
other movement in the global space is useful in exploring 
sufficiently the search space. In terms of concept, a math-
ematical, probabilistic model for ensuring the equalization 
controls these movements. This concept allows obtaining a 
self-balance of the method during the optimization process, 
as the motions of a candidate solution are equalized in both 
exploration and exploitation. The performance of BCMO 
was checked against various classical benchmark functions 
such as unimodal, multimodal, as well as noisy quartic [83]. 
The BCMO method consists of the following main steps:

• Initialization: in this step, the population is initialized in 
the search space following a uniform distribution. The 
objective function is then evaluated and sorted for rank-
ing all initial individuals.

• Determination of instant global point: in this step, an 
instant global point is determined based on both the best 
individual of the previous iteration and individual trial 
vector.

• Determination of the best individual: in this step, the 
best individual is assigned to be the instant global point 
determined previously.

• Calculation of the global movement in the search space 
for each individual.

• Calculation of the movement of each individual in the 
local region.

• Updating of the population: the position of each indi-
vidual is updated, ready for the next iteration.

• Ranking of all individuals by their objective function 
values.

• Reaching of stopping condition, post-processing of 
results: if the maximum iteration is reached, the algo-

(41)X ↦ f (X) = fo
(
LW ×

(
fh
(
bi + IW × X

))
+ bo

)
,
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rithm is stopped. The final population is stored for post-
processing.

As recommended by Le-Duc et al. [82], the BCMO can 
be applied in various optimization problems because of the 
following reasons:

• The only parameter of BCMO to be controlled is its 
population size; therefore, it can be quickly employed 
for solving various types of optimization problems,

• BCMO is developed based on the mechanism of both 
mutation and crossover. Therefore, the individuals in the 
population are implicitly balanced based on the proposed 
random probabilistic model. Such self-organizing char-
acteristics allow BCMO to be efficient in solving many 
other optimization problems.

Finally, more details on the BCMO method could be con-
sulted in Le-Duc et al. [82].

4.2  Experimental database

A database of experimental tests, available in the literature, 
for rectangular or square concrete-filled steel tube columns 
has been constructed and is presented herein. A number of 
65 different literature sources have been collected, amount-
ing to 880 individual experimental specimens, as presented 
in Table 2. A generalized experimental setup is shown in 
Fig.  1. The geometric configuration of each specimen 
depends on 4 parameters:

• the tube section external dimensions, H and B (with 
H ≥ B),

• the tube wall thickness, t,
• and the column effective length, Le.

Furthermore, three more parameters, relevant to the steel 
and concrete materials are recorded for each test:

• modulus of elasticity of the steel, Es,
• yield limit of the steel fy,
• and the cylinder strength of the concrete f ′

c
.

Together, these 4 geometric and the 3 material param-
eters are considered the input variables of each experimen-
tal test. The effective length Le coincides with the physical 
length L , for short columns. For long columns, however, its 
value depends on the end support conditions of the speci-
men. When both ends are pinned, it is taken Le = L . In other 
cases, different effective lengths are reported in the sources, 
and these values are assigned to Le.

Table 2  Data from experiments published in literature

Nr. References Number of 
samples

Axial load (kN)

1 Zhang [84] 50 66,000–280,000
2 Lu et al. [85] 6 206,100–487,200
3 Guo [86] 6 34,700–178,500
4 Liu and Gho [60] 14 156,600–399,600
5 Liu et al. [48] 6 149,000–421,000
6 Liu [49] 10 165,700–282,800
7 Ye Zaili [87] 45 115,000–270,000
8 Guo et al. [88] 8 63,500–178,500
9 Wei and Han [89] 20 88,200–205,800
10 Zhang and Zhou [90] 36 58,800–132,300
11 Tomii and Sakino [91] 8 49,740–66,700
12 Inai and Sakino [92] 46 115,300–778,000
13 Nakahara and Sakino [93] 4 389,900–664,500
14 Lu and Kennedy [94] 4 190,600–420,800
15 Yamamoto [95] 16 41,100–649,400
16 Lam and Williams [39] 15 68,000–200,000
17 Han and Yao [64] 6 228,400–259,400
18 Matsui et al. [96] 5 114,300–159,800
19 Wei and Han [89] 8 75,420–208,250
20 Furlong [31] 10 48,800–160,136
21 Grauers [97] 14 144,000–268,000
22 Schnider [98] 11 81,900–206,900
23 Chung et al. [99] 5 114,400–159,800
24 Han [47] 4 74,000–88,000
25 Ghannam et al. [100] 14 49,100–124,800
26 Han and Yao [64] 5 198,600–228,000
27 Guo et al. [101] 10 155,800–263,600
28 Luo [102] 28 60,000–174,000
29 Liu and Gho [60] 12 172,500–22,910
30 Liu et al. [48] 15 142,500–297,000
31 Liu [49] 12 173,500–212,400
32 Ye [103] 23 106,800–270,000
33 Knowles and Park [32] 6 35,586–51,155
34 Lin [104] 12 55,800–126,800
35 Shakir-Khalil and Mouli [105] 14 85,000–137,000
36 Matsui and Tsuda [106] 5 114,346–159,750
37 Han and Yao [57] 19 55,200–114,000
38 Han and Yang [107] 4 49,000–82,500
39 Han and Yao [65] 6 64,000–81,600
40 Ghannam et al. [100] 24 24,000–124,800
41 Han and Yao [64] 11 198,600–259,400
42 Sakino et al. [12] 46 115,300–899,000
43 Yu et al. [59] 10 46,600–122,000
44 Aslani et al. [41] 12 136,700–388,200
45 Du et al. [16] 6 309,000–357,500
46 Du et al. [50] 8 196,000–315,000
47 Dundu [42] 27 10,540–151,626
48 Khan et al. [43] 39 28,600–632,900
49 Khan et al. [44] 16 163,600–750,600
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Table 3, presents a statistical analysis on the values these 
variables take in the database, which includes their mini-
mums and maximums, their mean average and the stand-
ard deviation. Considering material properties, it can be 
seen that a vast range of steel yield limits is covered, which 
includes mild and high strength steels too (maximum value 
835 MPa). Similarly, a very wide range of concrete strengths 
from 8.51 to 151 MPa is present in the database. Regarding 
geometry, the database includes both short and slender col-
umns, as well as, compact and thin-walled ones. The output 
variable from each experimental test, is the ultimate axial 

compressive force, N  , that was recording during testing 
(depicted schematically in Fig. 1). Table 3 presents the range 
of N throughout the whole database. A quite extended sam-
ple of ultimate axial compressive forces is included, ranging 
from 105 kN up to 7780 kN.

Table 4 presents the correlation between all variables, 
both input and output, in the database. Specifically, the Pear-
son correlation coefficient R , is shown between the values 
of every pair of variables in the database. Figure 2 displays 
a graphical representation of the correlation coefficients. 
Regarding input parameters, a high coefficient is generally 
unwanted, since it implies a linear relationship between the 
involved variables, resulting in a reduced generality of the 
database. Except for the high coefficient, between B and H 
(which is expected for the rectangular tubes that are practi-
cally available), it can be seen, that the correlation coef-
ficient is indeed low for all other pairs of input parameters 
( < 0.5 ), which means that the input variables are indeed suf-
ficiently scattered. The stronger correlations exist between 
the steel and concrete strengths, fy and f ′

c
 , with R = 0.48 , 

and between the steel strength fy and the tube thickness t  , 
with R = 0.43 . For the remaining pairs the coefficient is 
quite lower.

Regarding the correlation between the input parameters 
and the output, the lower coefficients are found for the col-
umn length Le , and for the modulus of elasticity of steel, Es . 
These parameters are related with the failure of the column 
due to flexural buckling and they are considered irrelevant 
when material strength determines failure. In this context, 
the low coefficients between the output and the Le , Es param-
eters, indicate that most of the test columns in the database, 
are not very slender, so that buckling failure would be criti-
cal. On the other hand, the stronger correlations between 
input and output parameters are found for the tube dimen-
sions B and H , with coefficients 0.67 and 0.63, respectively.

Figures 3, 4 and 5 demonstrate the scatter of the input and 
output variables in the database. More specifically, for each 
variable, a scatter plot is presented, depicting, for all the 
available tests, the values the variable takes and the respec-
tive values of the output (the ultimate axial force N). Also, 
for each variable, a histogram is shown, that groups the total 
number of tests, in predetermined sub-ranges. Regarding the 
steel tube dimensions, B and H , it can be seen that most 
of the specimens involve lower values of sectional width 
and height, with most dominant, the 100.1–150 mm value 
range. For higher values, the number of specimens gradu-
ally decreases. In particular, a quite low number of avail-
able specimens is found for the 250.1–300 mm range, which 
highlights the need for more experimental testing in this 
particular area. Similarly, for the tube thickness t  , most of 
the specimens involve values at the lower ranges, with more 
than half in between the 3.01–6.00 mm range. Very few 
specimens are available for thicknesses greater than 9 mm.

Table 2  (continued)

Nr. References Number of 
samples

Axial load (kN)

50 Mursi and Uy [38] 4 183,500–395,000
51 Vrcelj and Uy [108] 8 26,900–68,400
52 Xiong et al. [45] 5 653,600–727,600
53 Zhu et al. [46] 6 273,000–398,000
54 Lue et al. [58] 22 128,130–219,640
55 Liew et al. [2] 5 653,600–727,600
56 Chen et al. [18] 9 98,700–205,100
57 Ibañez et al. [52] 6 82,450–188,250
58 Zhu and Chan [61] 7 345,200–629,800
59 Uy [53] 5 95,000–251,900
60 Uy [11] 8 111,400–458,100
61 Tao et al. [40] 4 199,300–319,000
62 Tao et al. [55] 6 214,000–408,000
63 Cederwall et al. [109] 14 138,000–268,000
64 Chen and Jin [110] 6 198,000–236,000
65 Han et al. [13] 24 31,800–340,000

Total 880 10,540–778,000

Fig. 1  Rectangular concrete-filled steel tube columns under uniaxial 
compressive loading
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Regarding the column effective length Le , a strong prefer-
ence for lengths below 1 m is observed. The distribution of 
the specimens to larger lengths is almost uniform though, 
except for the higher range (> 3 m). The preference for 
smaller lengths downgrades the member stability as a possi-
ble failure mode and explains the small correlation between 

the column length and the output axial load, mentioned ear-
lier. Continuing to steel yield limit fy , a rather broad scat-
ter of its value can be seen, throughout the specimens. The 
majority of the specimens feature fy values between 201 
and 400 MPa, which are typical for mild steel grades. How-
ever, there is a considerable number of specimens involv-
ing high-strength steels, particularly in the ranges over 
700 MPa. On the other hand, the steel modulus of elasticity 
Es demonstrates a predominant presence of specimens in 
the 191–200 GPa range. Many specimens are stacked in key 
Es values, indicating a possible reference to nominal mate-
rial properties, rather than measured ones. Regarding the 
concrete strength f ′

c
 , a broad scatter of its value is observed. 

Most specimens feature concrete strengths in the range 
21–40 MPa, followed closely by the 41–60 range. The num-
ber of specimens decreases gradually for larger f ′

c
 values.

4.3  Sensitivity analysis of the parameters 
affecting the axial load capacity of CSFT based 
on the experimental database

In general, sensitivity analysis (SA) of a numerical model is 
a technique used to determine if the output of the model is 
affected by changes in the input parameters. This provides 

Table 3  The input and 
output parameters used in the 
development of BPNNs (all 
datasets)

Nr. Variable Symbol Units Category Statistics

Min Average Max STD

1 Width of tubes section B mm Input 60.00 139.30 324.00 52.35
2 Height of tubes section H mm Input 60.00 152.42 324.00 49.89
3 Thickness of tubes t mm Input 0.70 4.34 10.30 1.78
4 Effective length of column Le mm Input 60.00 940.99 3600.00 832.96
5 Steel yield limit fy MPa Input 192.40 404.11 835.00 167.09
6 Steel modulus of elasticity Es Gpa Input 171.74 201.12 232.00 6.82
7 Concrete compressive strength f ′

c
MPa Input 8.50 51.28 150.97 29.31

8 Axial load N kN Output 105.40 2066.21 7780.00 1569.91

Table 4  Correlation matrix of 
the variables

Variables Input Output

B H t Le fy Es f ′
c

Input
 B 1.00
 H 0.86 1.00
 t 0.12 0.11 1.00
 Le − 0.03 − 0.02 − 0.09 1.00
 fy 0.05 − 0.01 0.43 0.12 1.00
 Es 0.14 0.03 0.05 0.07 0.25 1.00
  f ′
c

− 0.06 − 0.10 0.21 0.06 0.48 0.14 1.00
Output
 N 0.67 0.63 0.53 − 0.13 0.55 0.13 0.41

Fig. 2  Correlogram of the variables (input and output parameters)
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feedback as to which input parameters are the most signifi-
cant, and thus, by removing the insignificant ones, the input 
space will be reduced, and subsequently the complexity 
of the model, as well as the time required for its training, 

will be also reduced. To identify the effects of model inputs 
on the outputs, the SA can be conducted on the database. 
Sometimes, the results of SA helps researchers/designers 
to remove one or more input parameters from the database 

Fig. 3  Histograms of the parameters: length of tubes section (B); height of tubes section (H); thickness of tubes section (t)
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Fig. 4  Histograms of the parameters: effective length of steel tube column (Le); steel yield limit (fy); steel modulus of elasticity (Es)
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Fig. 5  Histograms of the parameters: concrete compressive strength ( f ′
c
 ); axial load (N)

Fig. 6  Sensitivity analysis of 
axial load capacity of rectan-
gular concrete-filled steel tube 
columns
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to obtain better analyses with a higher level of performance 
prediction. To perform the SA, the cosine amplitude method 
(CAM), which has been used by many researchers [111–113] 
was selected and implemented. In CAM, data pairs will be 
used to construct a data array, X, as follows:

Variable xi in array, X , is a vector of length m, defined 
as:

The relationship between Rij (strength of the relation) and 
datasets of Xi and Xj is presented by the following equation:

The relative strength of effect (RSE) values Rij between 
the compressive strength and the input parameters are shown 
in Fig. 6. This analysis reveals that, the width and the height 
of the steel tubes cross-section have the greatest influence 
on axial load capacity values, with strength values of 0.8889 
and 0.8754 respectively, followed by steel yield limit, fy 
(0.8626), thickness of tube walls, t (0.8584), concrete com-
pressive strength, f ′

c
 (0.8136), steel modulus of elasticity, Es 

(0.7986) and, the parameter with the lowest influence on 
axial load capacity seems to be the effective column length, 
Le (0.5460).

4.4  Performance indices

Three different statistical parameters were employed to eval-
uate the performance of the derived model as well as the 
available in the literature formulae, including the root mean 
square error (RMSE), the mean absolute percentage error 
(MAPE), and the coefficient of determination (R2). Lower 
RMSE and MAPE values represent more accurate predic-
tion results (a null value indicates a perfect fit), while higher 
R2 values represent a better fit between the analytical and 
predicted values (a unit value indicates a perfect fit). The 
aforementioned statistical parameters have been calculated 
by the following expressions [114]:

(42)X =
{
x1, x2, x3,… , xi,… , xn

}
.

(43)xi =
{
xi1, xi2, xi3,… , xim

}
.

(44)Rij =

∑m

k=1
xikxjk�∑m

k=1
x2
ik

∑m

k=1
x2
ik

.

(45)RMSE =

√√√√1

n

n∑
i=1

(
xi − yi

)2
,

(46)MAPE =
1

n

n∑
i=1

||||
xi − yi

xi

||||,

where, n denotes the total number of datasets, and xi and yi 
represent the predicted and target values, respectively.

The reliability and accuracy of the developed neural net-
works were evaluated using R2 and RMSE. RMSE presents 
information on the short term efficiency which is a bench-
mark of the difference of predicated values in relation to 
the experimental values. The lower the RMSE, the more 
accurate the evaluation is. The R2 measures the variance 
that is interpreted by the model, which is the reduction of 
variance when using the model. R2 values ranges from 0 
to 1 while the model has healthy predictive ability when it 
is near 1 and is not currently analyzing, when it is near 0. 
These performance metrics are a good measure of the overall 
predictive accuracy.

It should be highlighted that, amongst the statistical indi-
ces available, the majority of researchers use the R2, in order 
to evaluate the effectiveness of the developed computation 
model. The R2, is a measure of the linear correlation between 
two variables X and Y. For forecasting models, such as AI 
models, X and Y represent the predicted and target values, 
respectively. According to the Cauchy–Schwarz inequality 
[115], the coefficient R has a value between + 1 and − 1. The 
further away R is from zero, the stronger the linear relation-
ship is between the two variables. The sign of R corresponds 
to the direction of the relationship. If R is positive, then as 
one variable increases, the other tends to also increase. If R 
is negative, then as one variable increases, the other tends 
to decrease. A perfect linear relationship (R = − 1 or R = 1) 
means that one of the variables can be perfectly explained 
by a linear function of the other. As aforementioned, the 

(47)R2 = 1 −

�∑n
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�
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�2
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�
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Fig. 7  Correlation coefficient between two variables X and Y 
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reliability of a model’s forecasting ability increases as the 
R2 value approached + 1. Despite the fact that this index is 
widely used by the majority of researchers, it is in fact the 
most unreliable amongst the available statistical indices, an 
observation which can be illustrated through the following 
example. Supposed that a model predicts a constant value Χ 
for all data, in accordance to the following function:

where, c is a constant. This would result in the model fore-
casting the constant value c for any target value, as depicted 
in Fig. 7.

Often, the Pearson correlation coefficient is used to cal-
culate the slope of the linear relationship between two vari-
ables, in accordance to the following linear expression:

When two forecasting models present different R val-
ues, as well as different slope values, comparison between 
the models is impossible. Even more so, when evaluat-
ing neural networks developed through different architec-
tures. Therefore, the following new engineering index, the 

(48)X = c,

(49)X = aY + c.

a20-index, has been recently proposed [20, 116–125] for 
the reliability assessment of the developed SC techniques:

where, M is the number of dataset sample and m20 is the 
number of samples with a value of (experimental value)/
(predicted value) ratio, between 0.80 and 1.20. Note that for 
a perfect predictive model, the values of a20-index values 
are expected to be the unit value. The proposed a20-index 
has the advantage of a physical engineering meaning, as it 
declares the amount of the samples that satisfy the predicted 
values with a deviation of ± 20%, compared to experimental 
values.

5  Methodology

Methodology for predicting axial load of CFST columns can 
be divided into the following four main steps:

Step 1: Dataset preparation: the data were randomly split 
into 3 parts: the first 66.70% of data values (587 samples) 
were used for training the models, while the remaining 16.60 

(50)a20 − index =
m20

M

Table 5  Training parameters of 
ANN models

Parameter Value Matlab function

Training algorithm Levenberg–Marquardt algorithm trainlm
Normalization Minmax in the range 0.10–0.90 mapminmax
Number of hidden layers 1
Number of neurons per hidden layer 1–50 by step 1
Control random number generation 10 different random generation rand(seed, generator), where 

generator range from 1 to 10 
by step 1

Training goal 0
Epochs 250
Cost function Mean square error (MSE)

Sum square error (SSE)
mse
sse

Transfer functions Hyperbolic tangent sigmoid 
transfer function (HTS)

Log-sigmoid transfer function 
(LS)

Linear transfer function (Li)
Positive linear transfer function 

(PLi)
Symmetric saturating linear 

transfer function (SSL)
Soft max transfer function (SM)
Competitive transfer function 

(Co)
Triangular basis transfer function 

(TB)
Radial basis transfer function 

(RB)
Normalized radial basis transfer 

function (NRB)

tansig
logsig
purelin
poslin
satlins
softmax
compet
tribas
radbas
radbasn
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and 16.70% of data (146 and 147 samples, respectively) 
were taken for validating and testing the models.

Step 2: Building models: parametric studies, including 
with or without normalization of data, number of neurons in 
hidden layer, activation functions, with or without Young’s 
modulus of steel, etc, were conducted for developing the 
machine learning models.

Step 3: Validating models: the ANN model was validated 
using the validating dataset, using different performance 
indices such as a-20 index, RMSE, MAPE, VAF, and R.

Step 4: Comparing models: the performance of the devel-
oped model was compared with different standards and 
existing empirical equations.

Step 5: Proposed explicit equation and Graphical User 
Interface: an explicit equation for the prediction of axial load 
of CFST columns was proposed in a matrix form, together 
with an Excel-based Graphical User Interface (appended to 
this paper), for a practical application purpose.

6  Results and discussion

6.1  ANN models

6.1.1  Development of ANN models

Based on the above, different architecture ANNs were devel-
oped and trained. More specifically, during the development 
and training of the ANN models the following steps (which 
are summarized in Table 5) were followed:

• The 880 datasets comprising the database used for the 
training and development of the ANN models were 
divided into three separate sets. Specifically, 587 of 880 
(66.70%) datasets were designated as Training datasets, 
146 (16.60%) as Validation datasets, while 147 (16.70%) 
datasets were used as Testing datasets.

• During the training phase of the ANNs, the above data-
sets were used with and without normalization. In the 
case were normalization of the data was conducted, the 
minmax normalization technique in the range [0.10, 
0.90] was implemented.

• The Levenberg–Marquardt algorithm [126] was used for 
the training of the ANNs.

• 10 different initial values of weights and biases were 
applied for each architecture.

• ANNs with only one hidden layer were developed and 
trained.

• The number of neurons per hidden layer ranged from 1 
to 250, by an increment step of 1.

• Two functions, the mean square error (MSE) and sum 
square error (SSE) functions, were used as cost function, 
during the training and validation process.

• 10 functions, as presented in Table 5, were used as trans-
fer or activation functions.

Table 6  Cases of variables used for the estimation of the axial load 
capacity of the rectangular concrete-filled steel tube columns

Input parameters Case

Variable Symbol I II

Width of tubes section B √ √
Hight of tubes section H √ √
Thickness of tubes t √ √
Length of steel tube column Le √ √
Steel yield limit fy √ √
Steel modulus of elasticity Es √
Concrete compressive strength f ′

c
√ √

Number of input parameters 6 7

Table 7  Optimum architectures for the two cases of variables (input parameters) investigated for the estimation of axial load capacity

The optimum ANN models are highlighted in bold
HTS hyperbolic tangent sigmoid transfer function, SSL symmetric saturating linear transfer function, PLi positive linear transfer function, LS 
log-sigmoid transfer function, TB triangular basis transfer function

Case Input 
param-
eters

Normaliza-
tion tech-
nique

Cost function Transfer function Random number Architectures Epochs Testing

Hidden layer Output layer Number Best RMSE R

I 6 Minmax MSE LS HTS 5 200.000 6-27-1 8 176.23 0.9943
6 – MSE SSL HTS 6 200.000 6-50-1 14 178.79 0.9942

II 7 Minmax MSE TB HTS 10 200.000 7-49-1 6 185.98 0.9936
7 – MSE PLi HTS 4 200.000 7-26-1 18 189.12 0.9934

Total 800.000



S3301Engineering with Computers (2022) 38 (Suppl 4):S3283–S3316 

1 3

The above steps resulted in the development of 100.000 
different ANNs. It is worth noting that only the use of 10 
different transfer function results in 100 different ANNs, 
for each architecture with the same number of neurons, as a 
result of 100 (=  102) different dual combinations of the 10 
transfer functions investigated.

6.1.2  Optimum parameters for modelling the axial load 
capacity

Regarding the simulation of the axial load capacity of the 
rectangular concrete-filled steel tube columns, it is particu-
larly important to select the main parameters which affect 
its obtained value. In the present section, four different cases 
are examined (Table 6), regarding the parameters, which will 
be taken into account as influencing, for the development of 
axial load capacity.

As stated in Table 6, case scenario I is the reference sce-
nario, where the six (6) basic input parameters, influencing 
axial load capacity, are taken into consideration. Namely, 
the parameters: the width of tubes section (B), the height 
of tubes section (H), the thickness of tubes (t), the length 

of steel tube column (Le), the steel yield limit (fy) and the 
concrete compressive strength ( f ′

c
 ). In case scenario II, the 

input parameters are increased to seven (7), to also include 
the steel modulus of elasticity (Es).

To evaluate which of the two above cases is the most 
appropriate for the most accurate prediction of axial load 
capacity, and taking into account the steps, described in the 
previous section, 400.000 ANNs were developed, trained 
and evaluated. The optimum architectures are presented in 
Table 7.

Results presented in Table 7, highlight no important effect 
of steel modulus of elasticity (Es) on the value of axial load 
capacity of concrete-filled steel tube columns, in accordance 
with the same finding of sensitivity analysis, which has been 
presented in the previous section (Fig. 6). At this point, it 
is worth noting that for both two cases examined, the best 
results were obtained with normalization of the data, using 
minmax technique (Table 7).

Table 8  Architectures of top ten ANNs based on testing datasets root mean square error (RMSE)

The optimum ANN models are highlighted in bold
HTS hyperbolic tangent sigmoid transfer function, LS log-sigmoid transfer function, Li linear transfer function, SSL symmetric saturating linear 
transfer function, NRB normalized radial basis transfer function, TB triangular basis transfer function, PLi positive linear transfer function

No. Architecture Normalization Cost function Transfer functions Performance indices

Testing datasets Training datasets All datasets

Hidden layer Output layer R RMSE R RMSE R RMSE

1 6-27-1 Yes MSE LS HTS 0.9943 176.2339 0.9908 215.3893 0.9905 216.5574
2 6-21-1 Yes SSE PLi Li 0.9942 178.1174 0.9902 222.6431 0.9904 218.0874
3 6-45-1 Yes MSE SSL HTS 0.9941 178.4951 0.9936 178.7402 0.9925 191.4369
4 6-50-1 No MSE SSL HTS 0.9942 178.7871 0.9939 175.6975 0.9928 188.7249
5 6-50-1 Yes MSE SSL HTS 0.9939 181.2483 0.9950 158.3002 0.9934 179.7871
6 6-44-1 No MSE PLi HTS 0.9939 181.3502 0.9951 157.4483 0.9935 178.5243
7 6-25-1 No SSE PLi HTS 0.9940 181.4870 0.9896 229.9024 0.9900 223.7804
8 6-29-1 No MSE HTS HTS 0.9939 182.4162 0.9921 198.9121 0.9912 208.1290
9 6-29-1 Yes MSE HTS HTS 0.9939 183.1231 0.9923 196.7459 0.9913 207.0108
10 6-32-1 No MSE PLi Li 0.9938 183.2975 0.9924 194.9897 0.9914 205.3350
11 6-31-1 No MSE NRB HTS 0.9938 183.3872 0.9933 184.4182 0.9920 198.9206
12 6-39-1 Yes SSE PLi HTS 0.9938 183.4050 0.9930 187.6736 0.9918 201.0234
13 6-16-1 No SSE LS HTS 0.9939 183.5259 0.9901 223.8782 0.9898 224.6635
14 6-27-1 Yes MSE SSL HTS 0.9938 183.8195 0.9918 203.1842 0.9911 209.4659
15 6-39-1 Yes MSE PLi HTS 0.9938 183.8531 0.9934 182.4338 0.9923 194.1510
16 6-31-1 No SSE LS SSL 0.9939 184.0563 0.9929 190.2670 0.9922 196.4918
17 6-13-1 No MSE NRB SSL 0.9938 184.1135 0.9919 201.6073 0.9912 207.8569
18 6-23-1 No MSE LS Li 0.9937 184.3599 0.9929 188.7762 0.9920 198.3063
19 6-17-1 No MSE HTS SSL 0.9938 184.3716 0.9918 202.2703 0.9914 205.0166
20 6-38-1 Yes MSE TB SSL 0.9937 184.5597 0.9928 190.1783 0.9922 195.8466
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6.1.3  Optimum ANN models

In this section, the key points process for the development 
of the optimum ANN model for the prediction of the axial 
load capacity (N) of concrete-filled steel tube columns are 
presented in detail. Based on the previous investigation, the 
best input parameters are those corresponding to Case I. 
Therefore, using only six input parameters (excluding the 
steel modulus of elasticity), a plethora of different ANN 
models have been trained and developed with the following 
parameters:

• six (6) input parameters, for the modelling of axial load 
capacity which is the only output parameter,

• use of datasets with and without normalization technique 
(minmax in the range 0.10–0.90),

• architectures with only one hidden layer,
• neurons per hidden layer from 1 to 50 by step 1,
• use two cost functions. Namely, mean square error (MSE) 

and sum square error (SSE), and
• use as activation functions in hidden and output layer, 

100 different combinations, based on the ten functions 
presented in Table 5.
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Fig. 8  The architecture of the optimum 6-27-1 ANN

Table 9  Summary of prediction 
capability of the optimum 
6-27-1 BPNN

Model Datasets Performance indices

a20-index R RMSE MAPE VAF

BPNN 6-27-1 Training 0.8893 0.9908 215.3893 0.0934 98.1637
Testing 0.8980 0.9943 176.2339 0.0886 98.8641
Validating 0.8493 0.9837 254.7015 0.0184 96.7387
All 0.8841 0.9905 216.5574 0.0954 98.1024
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Fig. 9  Experimental vs predicted axial load for the optimum 6-27-1 BPNN
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The above parameters result in the development of 
400.000 different architectures of ANN models. The top 
20 architectures, based on the value of RMSE, for Testing 
Datasets, are presented in Table 8. All the top 20 ANN mod-
els have excellent performance, with values of R greater 
than 0.9930. Among them, the optimum ANN model, based 
on the value of RMSE of Testing Datasets, is the BPNN 
6-27-1 model that corresponds to a NN structure with 27 
neurons and the use of minmax normalization technique in 
the range 0.10–0.90 (Fig. 8). On the other hand, even though 
the BPNN 6-17-1 model presents slightly lower performance 
indices, it is superior in terms of simplicity, as the hidden 
layer contains only 17 neurons, without using any normali-
zation technique, in contrast to the 27 neurons of the (statis-
tically) optimum ANN.

Furthermore, in Table 9 and Fig. 9, a detailed presen-
tation of the performance of the optimum ANN model, 
including the a20-index, is presented. It is clearly highi-
lited that the developed optimum model, based on all the 
5 used performance indices, is a reliable tool for the pre-
diction of the steel tubes axial load capacity. Specifically, 

the value of a 20-index is equal to 0.8980, for the case 
of testing datasets. In physical terms, this means that for 
89.80% of the samples, the predicted values of the axial 
load satisfy a deviation of ± 20%, compared to experimen-
tal values.

Based on the results presented in Table 8, the following 
key findings have been revealed, regarding the transfer 
functions of the best 20 ANN models:

• The most appropriate transfer functions for the hidden 
layer, are the log-sigmoid transfer function (LS), the 
positive linear transfer function (PLi), the normalized 
radial basis transfer function (NRB) and the hyperbolic 
tangent sigmoid transfer function (HTS).

• Concerning the output layers, the most appropriate func-
tions seem to be the hyperbolic tangent sigmoid transfer 
function (HTS), the linear transfer function (Li) and the 
symmetric saturating linear transfer function (SSL).

Fig. 10  Evolution of performance indices over 9 ×  105 iterations: a R, b RMSE, c MAPE and d VAF
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Fig. 11  Verification of global optimum provided by the BCMO. The 
surfaces of RMSE show unique optimal solution, which minimizes 
the value of RMSE: a between weight parameters N°1 and N°2, b 

between weight parameters N°1 and N°3, c between weight param-
eters N°2 and N°3, d between weight parameters N°3 and N°4. Opti-
mal points obtained by BCMO are marked by black cross

Table 10  Summary of 
prediction capability of the 
optimum 6-27-1 BPNN and 
6-27-1 BPNN optimized by 
BCMO

Model Datasets Performance indices

a20-index R RMSE MAPE VAF

BPNN 6-27-1 Training 0.8893 0.9908 215.3893 0.0934 98.1637
Testing 0.8980 0.9943 176.2339 0.0886 98.8641
Validating 0.8493 0.9837 254.7015 0.0184 96.7387
All 0.8841 0.9905 216.5574 0.0954 98.1024

BPNN 6-27-1 opti-
mized by BCMO

Training 0.9097 0.9938 176.2639 0.0818 98.7655
Testing 0.9252 0.9956 154.6635 0.0754 99.1181
Validating 0.9178 0.9922 176.2791 0.0876 98.4472
All 0.9136 0.9939 172.8461 0.0817 98.7864
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Fig. 12  Experimental vs predicted axial load for the optimum 6-27-1 BPNN and 6-27-1 BPNN-BCMO
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6.2  Optimization of BPNN 6‑27‑1 model by BCMO 
algorithm

In this section, the BPNN 6-27-1 model, obtained previously, 
is optimized using the BCMO algorithm. The weights and 
bias of the BPNN 6-27-1 model were employed directly, as 
initial values of the optimization problem. It is noted, that 
there were 217 optimizable parameters of the BPNN 6-27-1 
model (6 input variables, 27 neurons in the hidden layer and 
one output variable). The BCMO algorithm was conducted 
using a population size of 50, as recommended by Duong 
et al. [22], for an optimization problem with six design varia-
bles. A maximum number of 9 ×  105 iterations was employed, 
as the stopping criterion, during optimization by BCMO. 
Figure 10 presents the evaluation of performance indices R, 
RMSE, MAPE, and VAF, during the optimization process. 
Performance indices for training, validating and testing data-
sets, as well as, for all datasets, are included. It is seen that the 
selection of 9 ×  105 iterations is significant to obtain optimized 
results, with respect to all performance criteria.

Weight and bias parameters obtained at the last iteration 
were extracted for constructing the final prediction model. 
This model was then used as a numerical prediction function, 

investigating parametrically the deviation of performance cri-
teria, in function weight parameters. This parametric study 
could be helpful to verify if the results provided by the BCMO 
algorithm are unique, i.e. if the BCMO allowed reaching the 
global optimum of the problem. For illustration purposes, 
only the four first weight parameters are plotted. Figure 11a 
presents the evolution of RMSE, while varying weight param-
eters (N°1 and N°2), from their lowest to highest values. In 
the same context, Fig. 11b–d present the evolution of RMSE, 
while varying weight parameters (N°1 and N°3), (N°2 and 
N°3), and (N°3 and N°4), from their lowest to highest values. 
It can be seen, that the global optimum points of these RMSE 
surfaces match the final set provided by the BCMO algorithm. 
This remark confirms that the BCMO technique succesfully 
reached the global optimum of the optimization problem, pro-
viding this way the final prediction model.

Finally, in Table 10 and Fig. 12, a detailed presentation 
of the performance of the BPNN 6-27-1-BCMO model, 
including a comparison with the BPNN 6-27-1 model, is 
presented. It is clearly highlighted that the BPNN 6-27-1-
BCMO model exhibits a better performance than the BPNN 
6-27-1 model.

Table 11  Ranking of developed 
soft computing models BPNN 
6-27-1-BCMO and BPNN 
6-27-1 against available 
procedures in design codes, 
based on RMSE values for the 
case of testing datasets

The optimum ANN models are highlighted in bold

Ranking nr. Model Performance indices

a20-index R RMSE MAPE VAF

1 BPNN 6-27-1-BCMO 0.9252 0.9956 154.6635 0.0754 99.1181
2 BPNN 6-27-1 0.8980 0.9943 176.2339 0.0886 98.8641
3 AS5100 0.8027 0.9874 285.1261 0.1242 97.0324
4 EN1994 0.7959 0.9850 309.9281 0.1350 96.6501
5 AIJ 0.7007 0.9786 355.7377 0.1646 95.7565
6 LRFD 1999 0.6939 0.9854 357.8763 0.1752 97.0717
7 ACI 318 0.7007 0.9761 372.1980 0.1668 95.2549
8 AISC 360 0.6395 0.9823 403.2383 0.2043 96.4523
9 DBJ13-51-2010 0.7211 0.9769 646.9670 0.1722 89.9696

Table 12  Ranking of developed 
soft computing models BPNN 
6-27-1-BCMO and BPNN 
6-27-1 against available 
procedures in design codes, 
based on RMSE values for 
the case of testing datasets, 
considering application limits

The optimum ANN models are highlighted in bold

Ranking Model Specimens Performance indices

a20-index R RMSE MAPE VAF

1 BPNN 6-27-1-BCMO 147 0.9252 0.9956 154.6635 0.0754 99.1181
2 BPNN 6–27-1 147 0.8980 0.9943 176.2339 0.0886 98.8641
3 EN1994 41 0.7805 0.9655 176.7084 0.1250 92.9883
4 ACI 318 34 0.6765 0.9627 212.6337 0.1757 92.2856
5 AS5100 26 0.6923 0.9247 227.3580 0.1696 85.4272
6 LRFD 1999 42 0.5952 0.9505 233.3417 0.1799 89.3785
7 AIJ 38 0.5789 0.9441 256.1764 0.1964 87.7249
8 DBJ13-51-2010 60 0.7000 0.9505 278.2699 0.1658 89.1560
9 AISC 360 88 0.5682 0.9642 392.1038 0.2148 90.7890
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Fig. 13  Comparison of devel-
oped soft computing models 
BPNN 6-27-1-BCMO and 
BPNN 6-27-1 (top row) against 
available procedures in design 
codes
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6.3  Comparison with code standards

In Table 11 the performance of the optimum BPNN 6-27-1 
model and of its optimized BPNN 6-27-1-BCMO version is 
compared with the available methodologies in design codes 
[5–10], that were described earlier in text. For the calcula-
tions, the design formulas are applied without safety factors. 
Only the specimens in the Testing Dataset are included in 
the results presented in Table 11. The models are sorted 
according to their RMSE (mean square) index. A signifi-
cantly improved performance is observed for the BPNN 
6-27-1 model, scoring about 38% smaller RMSE index 
from the next model, that is the Australian AS5100 [10] 
one. Also, the performance for the other indices is clearly 
improved. The performance of the BPNN 6-27-1-BCMO 
model, however, is even better, in every index, achieving a 
12% smaller RMSE, compared to its non-optimized variant 
(or 46% compared to the most performant code). The a20-
index is also significantly improved.

Comparing between the codes, it is found that AS5100 
[10] manages to offer a better performance overall, closely 
followed by the Eurocode EN1994 [5]. Japanese AIJ [8] and 
the American LRFD 1999 [66] are following with approxi-
mately 25% higher RMSE index, compared to the Australian 
code. The newer American AISC360 [6] falls further behind, 
having 41% higher RMSE index, however, its correlation 
coefficient R is better. For the Chinese code DBJ13-51-2010 
[9], the RMSE index is much worse than the others. This 
could be attributed to the missing of any calculation for sta-
bility phenomena, however, a similar performance cannot be 
seen for the ACI 318 [7] code, which also misses stability 
calculations, but manages to achieve comparable to others 
performance, despite its simplicity.

The performance indices shown in Table 11 involve all 
the specimens in the Testing Dataset. However, every code 
places some limits for its field of application. Table 1, ear-
lier in the text, presents these limits for every code. Not all 
specimens in the Testing Dataset satisfy these limits. It is 

interesting, to compare the different codes, only for those 
specimens that meet their respective field of application. 
Table 12, presents the performance indices, for such a sub-
set in the Testing Dataset (different subset for each code), as 
well as the number of specimens in the subset. More inclu-
sive proves the American AISC 360 [6] code, which covers, 
in its field of application 88 out of 147 specimens, more 
than any other code. On the other hand, it is the code with 
the worst RMSE, as well as a20-index. Less inclusive is 
the Australian AS5100 [10] code, with only 26 out of 147, 
specimens satisfying its requirements. All the codes achieve 
improved RMSE indices compared to the complete testing 
dataset, but their remaining indices deteriorate. Despite this 
improvement, the proposed ANN models, outperform all 
codes, in every index, while covering the complete Testing 
Dataset. Between the different codes, EN1994 [5] achieves 
the best RMSE index, very close to the BPNN 6-27-1 model. 
Also, its other performance indices are also better. Ameri-
can ACI 318 [7], despite its simplicity, manages to perform 
better than most other codes, achieving the second better 
RMSE index.

In Fig. 13, the scatter plots for the experimental vs, pre-
dicted axial load, for the specimens in the testing dataset, 
are presented, for the BPNN 6-27-1-BCMO and BPNN 
6-27-1 models, as well as, for the models recommended by 
the available design codes [5–10]. For the latter, the points in 
gray color represent specimens that do not satisfy the respec-
tive code field of application. The ANN models appear to 
converge to the experimental values, much more closely than 
the design code models, throughout the entire range of axial 
loads. Commenting on the performance of different codes, 
it appears that EN1994 [5] and AS5100 [10] produce an 
almost balanced output, around the experimental mean. A 
potential for widening their field of application can there-
fore be seen from these results. On the other hand, AISC 
360 [6] as well as, AIJ [8] and LRFD 1999 [66], to a less 
extent, appear to underestimate the load values, particularly 
for the lower end of the load range. DBJ13-51-2010 [9], to 

Table 13  Ranking of developed 
soft computing models BPNN 
6-27-1-BCMO and BPNN 
6-27-1 against available in 
literature proposals, based on 
RMSE values for the case of 
testing datasets

The optimum ANN models are highlighted in bold

Ranking nr. Model Performance indices

a20-index R RMSE MAPE VAF

1 BPNN 6-27-1-BCMO 0.9252 0.9956 154.6635 0.0754 99.1181
2 BPNN 6-27-1 0.8980 0.9943 176.2339 0.0886 98.8641
3 Sakino et al. [12] 0.7143 0.9755 368.3479 0.1522 95.1517
4 Wang et al. [17] 0.7823 0.9769 385.5632 0.1383 94.6920
5 Chen et al. [18] 0.8027 0.9782 414.2149 0.1362 94.4842
6 Ding et al. [15] 0.7619 0.9759 559.9997 0.1543 91.1910
7 Tran et al. [69] 0.4898 0.9447 620.7456 0.2487 88.0165
8 Han et al. [13] 0.7211 0.9769 646.9670 0.1722 89.9696
9 Du et al. [50] 0.6531 0.9751 675.5214 0.1757 89.0297
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Fig. 14  Comparison of devel-
oped soft computing models 
BPNN 6-27-1-BCMO and 
BPNN 6-27-1 (top row) against 
available proposals in the 
literature
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the contrary, overestimates the load values, throughout the 
available load range.

6.4  Comparison with other models 
from the literature

In Table 13, the performance of the BPNN 6-27-1-BCMO and 
BPNN 6-27-1 models is compared against available methodolo-
gies in the literature [12, 13, 15–18, 69], presented earlier. Only 
the specimens in the testing dataset are included. The models 
are sorted accorded to their RMSE (mean square) index. It is 
observed that the proposed ANN models, outperform all other 
models, achieving significantly improved performance indices 
(about 58% smaller RMSE for the BPNN 6-27-1-BCMO, com-
pared to the higher sorted one, from Sakino et al. [12]). The 
models proposed by Sakino et al. [12] and Wang et al. [17], 
both of which take into account the section slenderness, appear 
to perform better that the others, particularly in terms of RMSE. 
The model of Chen et al. [18], achieves the higher a20-index, 
among the analytical models, though it is still considerably 
lower, compared to the ANN models.

In Fig. 14, the scatter plots for the experimental vs, pre-
dicted axial load, for the specimens in the Testing Dataset, are 
presented, for the BPNN 6-27-1-BCMO and BPNN 6-27-1 
models, as well as for the examined literature models. Again, 
the proposed models seem to converge considerably better to 
the experimental values. The models by Sakino et al. [12], 
Wang et al. [17] and Chen et al. [18], appear to produce a 
rather balanced output, around the experimental mean, com-
pared to the other models. The models by Han et al. [13] 
(which employs the same formulation with Chinese code 
DBJ13-51-2010 [9]), by Ding et al. [15] and by Du et al. [16] 

consistently overestimate the load value. On the other hand, 
the model by Tran et al. [69], appears to significantly overes-
timate the axial load for the lower end of the load range, while 
underestimating it for the upper end.

6.5  Proposed explicit equation and graphical user 
interface

In this section, we present the close form of the explicit equa-
tions for the prediction of axial load of CFST columns, based 
on the optimal machine learning model, presented previously. 
It is not convenient for engineers/researchers to use machine 
learning models in practice, because such a “black-box” model 
composes of weights and bias, together with activation func-
tions. Thus, explicit equations based on the developed machine 
learning model should be derived for a direct and efficient 
application. The proposed mathematic calculation for the pre-
diction of axial load of CFST columns is presented in a matrix 
form in Eq. (51):

where 
[
xn
]
 is a 6 × 1 input vector; 

[
IW

]
 is a 27 × 6 matrix con-

taining weights of the hidden layer; 
[
LW

]
 is a 1 × 27 vector 

containing weights of the output layer; 
[
bi
]
 is a 27 × 1 vector 

containing bias of the hidden layer; and 
[
bo
]
 is a 1 × 1 vector 

containing bias of the output layer. Vector 
[
xn
]
 is given by:

(51)
Npredicted
u

= tansig
([
LW

]
×
[
logsig

([
IW

]
×
[
xn
]
+
[
bi
])]

+
[
bo
])
,

Fig. 15  Excel-based Graphical User Interface for prediction of axial load of CFST columns based on the optimal machine learning model
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where

Minimum and maximum values of input variables are 
given in Table 3. On the other hand, 

[
IW

]
 , 
[
LW

]
 , 
[
bi
]
 and 

[
bo
]
 

are given by:

(52)
�
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�
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5

2
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�
IW

�
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⎡
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−0.6842 −5.8840 6.0732 −0.2371 2.3141 −1.1916

4.4341 −6.9129 −0.2506 −2.7163 −1.9236 5.1724

−6.1348 −1.4091 1.9660 −2.3765 0.2505 1.0817

−1.7979 −2.2308 −0.5994 5.8943 3.2321 −1.1338

2.2898 2.8668 −1.7847 −0.5836 1.2450 −1.8966

−2.0614 6.1328 2.1043 −1.9921 −3.2341 3.6724

−0.3125 1.6238 1.8828 2.7811 −1.4969 −0.0494

1.7406 −0.6431 −2.0980 1.5658 −0.3078 −3.1920

5.1810 −0.3230 4.6036 1.0361 4.1943 0.9496

5.7311 0.1348 −2.7615 −1.7411 −6.4058 −0.7156

1.9401 0.7519 −6.5444 −7.1657 5.8021 5.2713

−7.1872 −5.0112 4.0393 4.0989 −0.1379 5.9474

5.0587 1.6659 −1.9654 3.9619 −2.3001 −7.0451

4.4040 4.4280 −3.1617 3.3130 −3.4476 −6.3119

−3.1581 0.7416 1.0388 4.4699 1.7863 −5.3506

4.6719 −7.1352 −1.9883 0.0733 −2.7178 −1.8665

0.4226 0.3173 −2.8865 4.6372 −4.6964 −1.8046

−4.4317 3.4197 −7.1785 5.4733 −1.8705 4.7364

−1.9748 −0.2925 0.7026 −5.8795 −2.9754 −3.4682

1.4463 0.3188 2.7898 −1.6934 2.8816 −1.8081

−0.3032 5.8290 −4.9297 −2.3103 2.1232 −1.0433

−0.9655 −3.3258 −3.6768 −4.5653 2.4464 −2.6838

−0.0849 2.5787 −3.7486 −3.0462 2.8743 0.5642

3.6757 −4.3359 −0.6372 2.3030 3.2193 0.9106

−2.2291 −2.0756 −3.3454 −3.8062 1.1501 −4.1052

3.7204 4.2145 1.9023 −0.2873 −1.0326 −2.1055

−5.5265 −1.7746 6.1162 0.6304 0.6606 1.9640

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

For practical purposes, an Excel-based Graphical User 
Interface (GUI) was developed, incorporing the prediction of 
axial load of CFST columns, using Eq. (51). Figure 15, pre-
sents a screenshot of this GUI (also appended to this paper 
as supplemenraty material). Since it is provided freely, all 
interested users can download it for practical application. 
The use of the GUI is straightforward. After selecting the 
value of input variables (or using the scrollbars), the predic-
tion of axial load will be displayed directly. With a simple 
matrix form, the proposed model can be used in practice. 
Moreover, if more experimental data are available in the 
future, the model can be improved (i.e. for a wider range 
of data).

7  Conclusions

The research, presented in this paper, proposes a robust 
numerical tool, for the estimation of the capacity of rec-
tangular CFST columns, under axial compressive load. The 
steps for the setup, training, validation, optimization, and 
testing of the proposed model are presented in detail. The 
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model is evaluated against a wide range of available design 
codes and methodologies from the literature. The following 
conclusions summarize the developed methodology and the 
obtained results presented in the paper:

• An experimental dataset was collected from the available 
literature, for the development of computational predic-
tive models, including two categories of input variables 
for each specimen: the geometric dimensions and the 
mechanical properties of steel and concrete materials. 
In total, 880 specimens were collected, covering an 
extended field of the input variables, that include among 
others, high strength materials, long columns and slender 
steel tubes;

• An optimization procedure was performed to obtain a 
final set of ANN model including its architecture, activa-
tion function, cost function, weight, and bias parameters;

• The developed ANN model was compared in perfor-
mance to current codes and standards (AS, EN, AIJ, ACI, 
AISC, LRFD and DBJ), and existing empirical equations 
in the literature, using various performance indices such 
as R, RMSE, MAPE, and VAF. The performance of the 
proposed ANN model was significantly better in every 
performance index;

• It is found that the proposed model, produces a quite 
balanced prediction of the compressive capacity, over the 
entire field of input variables in the testing dataset that is 
significantly broader, compared to the application limits 
of available design codes.

• An Excel-based Graphical User Interface that impements 
the proposed optimum model was developed and is pro-
vided freely for researcher/engineer/interested users.

The results of the present work could simplify the design 
of CFST columns. The optimum model proposed in this 
study facilitates the quick and accurate prediction of the 
axial compressive capacity of rectangular CFST columns, 
for practical design applications, covering a wide range 
of the input variables, including high strength steel, high 
strength concrete, slender sections, and long columns.
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