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Abstract
In this paper, an attempt is made to extend a linear two-dimensional model for stability analysis of the laminated annular 
microplate subject to external excitation. A new approach called hybrid optimization is introduced to solve optimization 
problems with a high sensitive objective function to decline computational costs and increase the predicted optimum results 
accuracy. Regarding this issue, generalized differential quadrature element method (GDQEM), particle swarm optimization 
(PSO), as well as genetic algorithm (GA) methods are coupled to improve the dynamic stability of the annular microsystems 
via finding an optimum frequency and fiber angle of layers simultaneously. Higher-order shear deformation theory (HSDT) 
and Hamilton’s principle are taken into consideration for the exact derivation of the general linear governing equations and 
boundary conditions of the axisymmetric laminated annular plate. Also, modified couple stress theory (MCST) is presented 
for presenting the size-dependency of the current microsystem. The GDQEM is used to solve the governing equations of the 
microsystem via its boundary domains. To enhance the genetic algorithms’ performance for solving equations, the optimizer 
approach of particle swarm has been employed as a GA’s operator. Precise convergence and practicality of the suggested 
mixed-method have been disclosed. Moreover, we would have proven that for achieving the convergence PSO’s and GA’s 
outcomes, we have to apply higher than fifteen iterations.

Keywords Iteration algorithm · Particle swarm optimization · Higher-order shear deformation theory · Annular 
microsystem · Genetic algorithm · Frequency

1 Introduction

A broad range of engineering designers has been considerably 
considering laminated composites since decades ago, for 
instance, in mechanical and civil engineering. composites are 
mainly employed as the elements of heavy-load light-weight 
systems regarding their specific characteristics such as stiff-
ness, high strength, and other functionalities. This kind of 
material can be used in various systems [1–4]. For this matter, 
researchers have been attending to consider laminated com-
posites since a few decades ago. Multifarious structure types, 
including beams, plates, and shells, have been considered to 
be vibrationally analyzed by Mikhasev et  al. [5]. They 

disclosed that shear’s influence has a prominent contribution 
in the laminated structures’ free vibrations, and for exploring 
future researches, they have to be taken into consideration. Ref. 
[6] analyzed the frequency analysis of a laminated micro-sized 
beam employing the modified couple stress (MCS) approach. 
In that reported paper, impacts of physical/geometrically fac-
tors had been considered on the mentioned system’s stability. 
Their presented material can be used in many applications 
such as [7–10]. Sinha [11] reported the laminated plate’s fre-
quency investigation applying numerical and empirical tech-
niques. They, however, revealed that their achieved outcomes 
from the computational approach are in a decent agreement 
with those empirically conducted. spinning Conical FG-
CNTRC shell’s vibrational behaviors have been analyzed by 
Ref. [12]. Then, the complicated equations have been solved 
employing the Kp-Ritz approach. The nonlinear vibration of 
a laminated plate has been scrutinized by Ref. [13]. They dis-
closed that for characterizing a laminated plate, number of 
layers and the ply directions have to be carefully considered, 
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at the same time. It was illustrated that annular plates could be 
applied in a wide range of industrial and engineering practical 
applications [14]. The presented approach in the previous ref-
erence can be a good tool for the analysis of complex systems 
[15–19]. Employing nano-scaled reinforcements for enhancing 
the structures’ mechanical properties have been analyzed since 
decades ago [20–28]. In the dynamic area of the annular plate, 
Civalek et al. [29] applied a first-order-shear-deformation 
(FOSD) approach and a semi computational technique for ana-
lyzing the sector annular plate’s frequency has been investi-
gated with assuming FG material. The mentioned solution 
procedure as a strong solver can be used in many systems such 
as [30–33]. Mohammadimehr et al. [34] reported a study on 
the dynamics and statics characteristics of a thin FG disk sub-
ject to primary pressure and lied in a viscoelastic condition. 
Their problem’s formulation has been extracted by a classical 
approach and GDQ technique has been used as an equation 
solver. Arshid et al. [35] studied the FG smart disk frequency 
response subjected to three types of physical loads through 
applying semi computational technique and thick model. They 
made a formulation regarding electro-magneto-elastic material 
for their study and assumed that the smart disk would be 
located in a thermal area. Their outcome discloses that by rais-
ing the field of the magnet, the system would be stiffer so it 
would be a reason for enhancing the system’s frequency. Also, 
this kind of analysis can be used in many systems [36–39]. 
Employing an FE analysis, Vinyas [40] reported research on 
the electro-magneto-elastic annular and circular FG plate’s 
dynamics through applying a higher-order-shear-deformation 
approach and there was an analysis regarding the influences of 
imperfection on the mode shape and the highest deflection. 
Due to new demand in technology composite structures can 
be used as the main materials in the future [41–43]. Safarpour 
et al. [44] made a formulation on the characterizing the GPLs 
filled an FG annular plate, cylindrical and conical shell 
employing a 3D-elasticity method for presenting dynamic and 
static behavior of the system. they selected the GDQ solver 
approach and they claimed that the GPLs’ geometric proper-
ties have a vital contribution to the structures’ frequency and 
bending behaviors. Also, owing to the new demand in technol-
ogy [45–48], the previous solution procedure is a strong tool 
for solving various complex structures. Dai et al. [49] analyzed 
a dynamics of a spinning CNTs filled annular structure by 
taking into account the influences of hygro-thermal condition, 
natural imperfection in the material, and aggregation phenom-
enon. They selected the GDQ approach as a solver and they 
presented that moisture and spinning velocity would contribute 
significantly to the disk’s frequency. The used method of the 
previous reference can be a good tool for solving complex 
problems such as [50–54]. Eshraghi and Dag [55] employed 
the boundary element approach as a practical technique for 
analyzing the FG disk’s forced vibration. Khouzestani and 
Khorshidvand [56] scrutinized the frequency and bending of 

the axisymmetric imperfected disk by using the basic shear 
deformation method and variational approach. Their outcomes 
disclosed that as the imperfection raises, the stress field and 
frequency would be reduced. Javani et al. [57] studied thermal 
buckling investigation of a sector GPLs filled FG disk by 
applying a first-order model and a semi computational 
approach. Moreover, they used configurational nonlinearity 
employing von Kármán theory. As they revealed, GPLs would 
boost the critical temperature and buckling load of the imper-
fect disk. Heshmati et al. [58] extracted the equations of a 
sandwich disk considering imperfections as porosities in its 
material and analyzed the natural frequencies by applying the 
FOSD model and Chebyshev theory. They finally asserted that 
porosity’s density in the sandwich disk’s core would indirectly 
affect the structure’s frequency. Since nano science has been 
developed in multifarious industries. Specifically, in the area 
of NEMS and MEMS, size effect consideration to estimate the 
thermomechanical characteristics of the nano-scaled structures 
has become a vital issue [59–69]. Due to the aforementioned 
fact, Bidgoli et al. [70] by applying nonlocal modified strain 
gradient analyzed the vibration characteristics of a micro-
scaled plate which is supposed that the material of the system 
is FG. They, however, revealed that their formulated relation 
has been solved through applying an analytical approach. The 
presented approach in the previous reference can be a good 
tool for the analysis of complex systems [71–74]. Mahinzare 
et al. [75] presented a complete study on the electrically FG 
disk’s dynamics in a thermal condition through using the 
FOSD model and nonlocal-strain-gradient approach. Moreo-
ver, they revealed the influences of the nonlocal-strain-gradient 
model and Eringen on the smart structure’s frequency. they 
selected the GDQ approach as a solver for illustrating their 
outcomes. This kind of analysis can be used in many structures 
and systems such as [76–80]. Arshid et al. [81] applied modi-
fied-strain-gradient, and FOSD models for analyzing stability 
and frequency behavior of a GPLs filled annular micro-scaled 
system. Their extended equations were finally solved through 
using the GDQ technique and they demonstrated that the vis-
coelastic substrate and thermal condition would be able to 
considerably affect the mechanics of the small-sized disk. Pal 
and Das [82] formulated the boundary conditions and motion 
equations of a spinning annular FG micro-scaled system by 
employing modified couple stress, Kirchhoff models, and vari-
ational methods. They assumed that the system lies in a ther-
mal condition and they reported the disk’s shape mode in 
multifarious conditions. EmployingKirchhoff and nonlocal-
strain-gradient models, Huang et  al. [83] scrutinized the 
dynamic characteristics of an annular electrical micro-scaled 
system. They presented the influences of strain gradient on the 
vibration and bending behavior by extracting the equations 
with the lowest potential energy technique. Alinaghizadeh and 
Shariati [84] investigated nonlinear micro-sized sector plate’s 
mechanics by applying MCST. They combined that the system 
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with a viscoelastic substrate and the strain–stress equations 
have been extracted by employing the classical approach. They 
disclosed that size dependency and nonlinearity would have 
the most considerable influences on the annular plate’s bend-
ing. The presented approach in the previous reference can be 
a good tool for the analysis of medical problems [85–90]. 
Mohammadimehr et al. [91] presented a complete analysis on 
the electro-mechanical annular sandwich micro-sized struc-
ture’s buckling in which CNTs have been employed as fillers. 
They assumed the size dependency applying the modified-
strain-gradient model and achieved the BCs and governing 
equations through employing lowest energy approach. They 
revealed that the nonlocal and electric potential impacts would 
contribute significantly to the smart disk’s stability prediction. 
Alipour et al. [92] analyzed one of their study for studying the 
nano/micro annular sandwich system’s statics applying a new 
nonlocal technique called the zigzag approach. the annular 
isotropic rotary micro-sized system’s motion equation through 
multifarious continuum models has been presented by Bagheri 
et al. [93]. They disclosed that the crucial angular velocity 
raises with each raise in the nonlocal factor. Recently, using 
various methods for solving the dynamics of various structures 
has got a lot of attention among the researchers [94, 95]. 
Regarding this issue, stability analysis of various structures is 
investigated by many researchers [96–103]. According to the 
aforementioned literature review, definitely there is no pub-
lished paper amongst researchers’ publications for analyzing 
the dynamic stability of the annular micro systems via finding 
optimum frequency, and fiber angle of layers via GDQE, PSO, 
and GA methods. Thus, in the presented scrutinization, fre-
quency characteristics of an annular micro-scaled plate are 
analyzed by detail. For this matter, PSO, FSE, and GA 
approaches are combined for studying the frequency of an 
annular microplate via finding optimum frequency value. The 
HOSD model has been employed to make the formulation of 
the stress–strain equations. By applying the variational 
approach, the structure’s governing equations are extracted. 
Then, to analyze the impacts of configurational elements of 
the laminated system and mechanics influence on the annular 
plate’s frequency, aparametric study is conducted.

2  Mathematical modeling

A laminated annular system is shown in Fig. 1. The inner, 
and outer radius of the microsystem is shown with  Ri and  Ro, 
respectively. Also, 

−

� is fiber angle of the laminated material.
In the current research, the displacement fields can be 

given as follows [104]
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Fig. 1  A schematic view of laminated annular microsystem
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As it is already mentioned, the equations written by Eq. (3) 
would be stress–strain constitutive equations for the Lth ortho-
tropic lamina, which could be referred to as material in x,y, and 
z directions. In Eq. (3), 

−

� would be fiber orientation angle and 
Qij would be written as [105, 106]:

So, the strain components of the laminated layers can be 
given by:
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2.1  Hamilton’s principle

For obtaining the nonlinear governing equations and general 
boundary equations of the system, we used Hamilton’s prin-
ciple as follows [107, 108]:

The strain formulations of the current system can be given 
as below [109–112]:
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where:

The variation of the work done can be given as below:

where q can be given as below:

The kinetic energy’s first variation would be given as:
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For general boundary conditions have:

2.2  Modified couple stress theory

For considering the size-dependency, MCST with one length 
scale parameter is presented. As studied in Ref. [113] for 
considering the MCST, the strain energy can be expressed as 
follows:

The parameters that are introduced in Eq. (15) presented in 
Ref. [113]. Besides, � s

ij
 and mij parameters can be given by:

In Eq. (16), l represents the length scale parameter of the 
current microstructure. Finally, by combining the Eq. (15) 
into motion equations of the classical plate, the motion equa-
tions and boundary conditions of the annular microplate can 
be obtained.

2.3  Procedure to obtain the solution

GDQEM would be one of the most reliable computational 
approaches which is known for its convergence and accuracy. 
GDQE approach can be used for solving many systems such 
as [114–117]. The first assumption in this is as follows [118]:
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In the present study, a non-uniform set of seeds is selected 
through r and � orientations as follows [119]:

In which (el)R , and (el)� refer to the number of elements 
along with radius and angle directions, respectively. To solve 
the nonlinear governing equations, we divided the time-dis-
placement fields of these equations to time, and displace-
ment fields, separately, so:
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After applying the GDQEM, have:

here, b and d are, respectively, the boundary and domain 
nodes. Ultimately, displacement fields, and frequency 
characteristics of the system would be achieved by using 
GDQEM and solving the following equation,

where

(22c)�
�

0
(R, �, t) = �

�

0
(R, �)ei�t

(22d)�
�

R
(R, �, t) = �

�

R
(R, �)ei�t

(22e)�
�

�
(R, �, t) = �

�

�
(R, �)ei�t

(23)
{[ [

Mdd

] [
Mdb

]
[
Mbd

] [
Mbb

]
]
�2
n
+

[ [
Kdd

] [
Kdb

]
[
Kbd

] [
Kbb

]
]}{

�d

�b

}
= 0

(24)K∗ +M∗�2
n
= 0

(25a)K∗ =
[
Kbd

]
−
[
Kbb

][
Kdb

]−1[
Kdd

]

(25b)M∗ =
[
Mbd

]
−
[
Mbb

][
Kdb

]−1[
Kdd

]

Fig. 2  Flowchart of iteration 
process
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3  Results and discussion

To reveal the global annular laminated plate’s highest 
frequency, particle swarm optimization (PSO)[120] and 
combined genetic algorithms (GAs) approaches [121] are 
applied. This combined approach is modified to overcome 
the disadvantages of the classical optimization approach and 
to enhance the genetic algorithms optimizer [121]. Some 
researchers used computer modeling for the analysis of vari-
ous systems [122–127]. The introduced hybrid technique’s 
solution process to maximize the crucial angular speed of 
the system is reported as Fig. 2.

More information in the PSO and GAs approaches may 
be found in Ref. [121].

In Fig.  3, the convergence of the combined intro-
duced optimizer with multifarious keeping, percent has 
been shown. Using an optimization algorithm can solve 
complex equations [128–131]. The population number is 
assumed 65 in this diagram and the optimizers. According 
to the mentioned figure it would be quite proven that just 
after a few iterations numbers, the method has been con-
verged and optimum outcomes have been achieved. Then, 
it is clear that by raising the population keeping percent 
more swift solution convergency would be likely to be 
obtained. In other words, the PSO approach has revised 
the GAs solution process. Moreover, the current opti-
mization’s flowchart would be reported as Fig. 4. From 
Fig. 4 can be found that a computer simulation is a strong 
tool for modeling a structure [132–136]. As well as this, 
genetic algorithm is a strong tool for simulating a struc-
ture [137–141]. In Table 1 effects of a/b ratio and angle-
ply of layers to maximize phase speed of nano-scaled 

plate are studied. As may be seen, the optimum amount 
of angle-ply in the laminated layers would be � = 37.5

◦ . 
This would be due to the amount of phase speed in this 
angle-ply would be close to the highest amount of this 
factor in � = 45

◦ . It should be note that, the optimiza-
tion algorithm method can be a good tool for solving the 
complex structures and systems [142–146]. According to 
the mentioned table, it would be clear that by raising  Ro/
Ri ratio the optimum phase speed of the system would be 
declined.

4  Parametric results

In the presented section, a complete analysis has been con-
ducted to illustrate the influences of different factors on the 
annular laminated micro-sized plate’s frequency. The mate-
rial characteristics of the laminated system have been illus-
trated in Table 2.

5  Validation study

The accuracy of the current results with the outcomes of 
published articles for different mode numbers, boundary 
conditions, and radius ratios are tabulated in Tables 3, 4, 5, 
and 6. As can be observed, the outputs of these tables show 
a good agreement between the outcomes of current research 
and Refs. [147–150] that the discrepancy is less than 2 per-
cent. As well as the accuracy of the linear mode, for the cor-
rectness of the nonlinear frequency of the clamped annular 
plate made of isotropic material, Table 6 is presented. As can 
be seen, there is excellent accordance between the results of 
current research and mentioned References.

6  Results and discussion

The influences of elasticity modulus ratio ( E1∕E2 ) and mate-
rial length scale factor ( l∕h ) on the frequency of the lami-
nated structure are reported in Fig. 5. According to Fig. 5 
as the Young’s modulus ratio increases the frequency of the 
current structure improves, exponentially and the mentioned 
impact is more considerable at the higher value of the mate-
rial length scale parameter. In addition, it is true that the 
material length scale parameter has a positive impact on the 
dynamic responses of the structure but this impact is negli-
gible when the Young’s modulus ratio parameter is small. 
In addition, for a higher value of Young’s modulus ratio the 
impact of material length scale parameter on the frequency 
of the current structure is much more remarkable than in the 
lower value of the E1∕E2 parameter.

Fig. 3  Convergency of the current hybrid technique for phase speed 
of a sandwich plate for multifarious keeping percent
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Fig. 4  The flowchart of optimization approach



S3260 Engineering with Computers (2022) 38 (Suppl 4):S3251–S3268

1 3

Frequency response of the current structure versus 
applied external load ( F ) is presented in Fig. 6 for various 
material length scale parameter. By having attention to Fig. 6 
we can report that as the applied external load increases the 
frequency of the system decreases and the mentioned issue 
will continue till the buckling load appears. Also, increasing 
material length scale parameter is a reason for improving 
dynamic and static behavior or frequency and buckling load 
of the structure.

One of the aims of this study is displayed in Fig. 7 for 
investigation of the influences of radial mode number ( n ) on 
the frequency of the current structure. As Fig. 7 points out 
that it is true that increasing material length scale parameter 
has a positive impact on the dynamic information of the 
structure, but this impact can be bolded in the bigger radial 
mode numbers. Also, as the radial mode number increases, 
the frequency of the current structure improves.

The impacts of radius ratio ( ro∕ri ) and material length 
scale parameters on the frequency of the current structure 
are reported in Fig. 8. According to Fig. 8 as the radius ratio 
increases, the frequency of the current structure decreases 
exponentially. In addition, in the lower value of the radius 
ratio, the material length scale parameter has a positive 
impact on the frequency of the structure, but in the higher 
value of the radius ratio, we can ignore the impact of l∕h on 
the frequency of the current system.

In Fig. 9, influences of layers’ angle-ply to maximize 
displacement of annular micro-scaled plates have been ana-
lyzed in detail. As it would be seen, the optimum amount of 
angle-ply in the laminated layers would be � = 37.5

◦ . This 
would be due to the amount of displacement in this angle-ply 
would be close to minimizing the amount of this factor in 
� = 45

◦ . According to the mentioned table, it would be clear 
that by raising the angle-ply, the structure’s displacement 
would be smoother than less amount of it. Furthermore, as 
the mode number rises, the displacement field would be 
declined.

7  Conclusion

A general formulation was carried out to model linear 
vibrations of the laminated annular plate via higher order 
shear deformation theory in the current research. Also, 
characteristics of the frequency of an annular microplate 
made of laminated composite layers in the framework 
of MCST were investigated. The GDQE approach is 
employed to solve the governing equations of the micro-
scaled structure through its boundary domains. For rais-
ing the performance of genetic algorithms to solve the 
problem, the particle swarm optimizer had been added as 
a GA’s operator. The proposed mixed approach’s conver-
gency, accuracy, and applicability have been illustrated. 
Moreover, we demonstrate that for achieving the conver-
gence outcome of the GA, PSO, and, we must assume 
higher than 23 iterations. Then, the most highlighted 
outcomes of this study would be as:

for the higher value of elasticity modulus ratio, the impact 
of material length scale parameter on the frequency of the 
annular microplate is much more remarkable than in the 
less amount of the E1∕E2 parameter
as the radial mode number increases, the frequency of the 
current structure improves
in the lower value of the radius ratio, the material length 
scale parameter has a positive impact on the frequency of 
the structure, but in the higher value of the radius ratio, 
we can ignore the impact of l∕h on the frequency of the 
current system.
the influence of the types of layering has to be assumed 
more than the influence of the number of layers on the 
annular laminate micro-scaled plate’s amplitude

Table 1  Optimum fibers orientations (Degree) and frequency (MHz) 
of annular microplate with different angle-ply of layers and  Ro/Ri

Ro/Ri θ=0° θ=10° θ=20° θ=37.5° θ=45°

2 1460 1471 1496 1599 1610
3 1359 1368 1379 1452 1460
4 1100 1120 1131 1231 1235
5 945 950 961 981 988

Table 2  Material properties of 
unidirectional glass fiber in a 
polyester resin matrix

Material properties E1 E2 G12 G13 G23 �s �s

Values 24.51GPa 7.77GPa 3.34 GPa 3.34 GPa 1.34 GPa 1800 kg/m3 0.078

Table 3  Comparison of the first five dimensionless frequencies of an 
isotropic circular plate with clamped boundary condition and conver-
gence and accuracy of DQ method is shown respect to the number 
of grid points. Dimensionless frequency ω* = ωr2 

√
�h∕D where D is 

flexural rigidity D =  Eh3/12(1 − ν2)

�∗
1

�∗
2

�∗
3

�∗
4

�∗
5

Ref. [147] 10.216 39.771 89.103 - -
Ref. [148] 10.216 39.771 89.104 158.184 247.006
Ref [149] 10.2158 39.7711 89.1041 - -
Current 

research 
(C.R)

10.1110 39.2749 89.6582 158.1109 246.9966
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Table 4  Comparison of non-
dimensional natural frequency 
of the annular plate for different 
axisymmetric vibration mode 
number, and inner radius to 
outer radius ratio for simply-
simply boundary condition. (h/
Ri = 0.001)

Ri/Ro Axisymmetric vibration mode number
Simply-Simply

1 2 3 4 5

Ref. [150] 0.1 14.485 51.781 112.99 198.44 308.21
C.R 0.1 14.4257 50.9571 112.3096 197.6453 307.4021
Ref. [150] 0.2 16.780 63.370 140.60 248.62 387.44
C.R 0.2 16.0313 62.4648 139.6548 247.6486 386.4917
Ref. [150] 0.3 21.079 81.735 182.53 323.56 504.84
C.R 0.3 20.5176 81.1001 181.8785 322.9098 504.2238
Ref. [150] 0.4 28.122 110.56 247.69 439.61 686.32
C.R 0.4 27.6773 110.070 247.2045 439.1442 685.9137
Ref. [150] 0.5 40.043 158.64 356.06 632.39 987.60
C.R 0.5 39.6762 158.246 355.6866 632.0644 987.4015

Table 5  Comparison of non-
dimensional natural frequency 
of the annular plate for different 
axisymmetric vibration mode 
number, and inner radius to 
outer radius ratio for clamped-
simply boundary condition. (h/
Ri = 0.001)

Ri/Ro Axisymmetric vibration mode number
clamped-Simply

1 2 3 4 5

Ref. [150] 0.1 17.789 60.143 126.88 218.05 333.63
C.R 0.1 17.3622 59.4812 126.2196 217.3044 333.1126
Ref. [150] 0.2 22.714 76.542 161.22 276.78 423.20
C.R 0.2 22.4456 76.1638 160.9355 276.5130 423.2341
Ref. [150] 0.3 29.977 100.42 211.12 362.12 553.41
C.R 0.3 29.8039 100.1971 211.0576 362.1408 553.8186
Ref. [150] 0.4 41.193 137.15 287.88 493.44 753.80
C.R 0.4 41.0947 137.0520 288.0207 493.7325 754.6383
Ref. [150] 0.5 59.819 198.04 415.12 711.12 1086.0
C.R 0.5 59.7969 198.0706 415.5107 711.7848 1087.5

Table 6  Comparison of non-
dimensional natural frequency 
of the annular plate for different 
axisymmetric vibration mode 
number, and inner radius to 
outer radius ratio for clamped–
clamped boundary condition. 
(h/Ri = 0.001)

Ri/Ro Axisymmetric vibration mode number
clamped–clamped

1 2 3 4 5

Ref. [150] 0.1 27.280 75.364 148.21 245.47 367.14
C.R 0.1 26.8273 74.8619 147.7355 245.3039 366.8225
Ref. [150] 0.2 34.609 95.738 188.14 311.40 465.53
C.R 0.2 34.3567 95.5770 188.1490 311.8589 466.0269
Ref. [150] 0.3 45.345 125.36 246.14 407.20 608.54
C.R 0.3 45.2147 125.4243 246.4927 408.1579 609.6949
Ref. [150] 0.4 61.871 170.89 335.34 554.59 828.64
C.R 0.4 61.8443 171.1903 336.0716 556.1585 830.5878
Ref. [150] 0.5 89.248 246.33 483.16 798.89 1193.5
C.R 0.5 89.3413 246.9347 484.4291 801.3773 1196.6
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Fig. 5  Frequency of the current system versus E
1
∕E

2
 value for vari-

ous l∕h parameter

Fig. 6  Frequency of the current system versus F value for various l∕h 
parameter

Fig. 7  Frequency of the current system versus radial mode number 
for various l∕h

Fig. 8  The impacts of ro∕ri and l∕h parameters on the frequency of 
the current system
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Fig. 9  Effects of different laminated patterns and angle ply on the deflection and deformation of the annular microplate
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as the mode number raises, the displacement field would 
be declined
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