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Abstract
This is the first time the multidirectional-graded porous panel structure modeled numerically using an equivalent single-
layer higher-order polynomial model considering the cubic variation of extensional displacement to maintain the necessary 
stress/strain. The effect of porosity (even and uneven distributions) and variable grading patterns also included achieving 
the generality. Further, the deflection and stress values, the proposed bidirectional functionally graded (2D-FG) structure, 
are predicted under the variable loadings, i.e. static and dynamic. Three different types of grading pattern, i.e. power-law, 
exponential and sigmoid are introduced by varying the material constituents along their principal material axes (longitudinal 
and transverse). The current numerical solutions (deflection and stress) are obtained through a customized computer code 
(prepared in MATLAB), under the influences of the static and time-dependent loadings utilizing the higher-order finite ele-
ment formulations. The dynamic deflections are obtained through the constant acceleration type Newmark’s time-integration 
steps. The predicted result accuracy is checked by comparing the previously published values in literature and different 
simulation models (ANSYS and ABAQUS). Besides, the batch input technique is adopted for the simulation material mod-
els for both the ANSYS and ABAQUS. Moreover, the python scripting is adopted first time to modify ABAQUS input files 
for the present 2D graded structure. The influential structure input parameter (power-law exponents, thickness ratio, aspect 
ratio, end conditions, geometry and curvature ratio) is varied to compute a few final responses (deflection and stress data) of 
multidirectional FG structure via the derived mathematical model and the final understandings listed the details.

Keywords Functionally graded materials · Static and dynamic loading · HSDT · Grading patterns · Porosity · Python

List of symbols
P(X1, X3)  An effective material prop-

erty of FG structure
Pc and Pm  Corresponding proper-

ties of ceramic and metal, 
respectively

X1 and X3  Random points in the length 
and thickness direction

nx and nz  Power-law exponents in 
the length and thickness 
direction

λ  Porosity index
c and m  Ceramic and Metal 

constituents
Vfc

 and Vfm
  Volume fractions of ceramic 

and metal constituents, 
respectively

A and b  Length and width of the FG 
panel, respectively
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h  Thickness of the FG panel
Rx1 and Rx2  Radius of curvature along X1 

and X3 axes, respectively
X11, X22, X33 and X110

, X220
,X330

  Global and mid-plane 
displacement field 
along X1, X2 and X3 
axes, respectively

�x and �y  Rotation of transverse 
normal about the X2, and X1 
axes, respectively

X∗
110

, X∗
220

, �∗
x
, �∗

y
  Higher-order terms of 

Taylor’s series expansion
X2

3
 and X3

3
  Square and cubic thickness 

coordinates, respectively
�l  Linear strain tensor[
Tl
]
5×20

  Linear thickness coordinate 
matrix{

�l
}
20×1

  Mid-plane strain terms 
matrix

{�0}  Global displacement field 
vector

[N]  Nodal shape function{
�0i

}
  ith node mid-plane displace-

ment field vector{
�l
}
  Mid-plane strain term

[B]20×9  The product form of shape 
functions and the differential 
operators

{�},{�} and 
[
Q
]
  Stress, strain and reduced 

stiffness matrix, respectively
U  Total strain energy
[D]  Material property matrix
Te  Kinetic energy of the FG 

structure
ρ  Mass density{
�̇�
}
  Velocity vector

[m]  Elemental inertia matrix
W  Workdone
q  Applied transverse load
[F]  Force vector
[M]  Mass matrix
[K]  Global stiffness matrix
δ and п  Variation symbol and 

total energy functional, 
respectively

𝛿0  Acceleration vector
Δt  Time-step
T  Total time
α, φ and β0 to β7  Newmark’s integration 

parameters[
⌢

k

]
  Effective stiffness matrix

[
⌢

F

]
  Effective load matrix

w  Actual deflection
w  Non-dimensional deflection
Ec and Em  Modulus of elasticity 

of ceramic and metal, 
respectively

µc and µm  Poisson’s ratio of ceramic 
and metal, respectively

ρc and ρm  Density of ceramic and 
metal, respectively

�  Non-dimensional stress
�  Actual stress
τxy  Actual shear stress
𝜏xy  Non-dimensional shear stress

1 Introduction

The functionally graded materials (FGMs) are nonhomoge-
neous composite materials usually made from the combina-
tion of metals and ceramics. The smooth and continuous var-
iation of the material properties in the FGM is achieved by 
gradually varying the volume fraction of constituent mate-
rials from one surface to another, to eliminate the interface 
problems like debonding and delamination. In present work, 
the variation in the properties of the FGM is achieved math-
ematically using different distribution patterns, i.e. power-
law, exponential and sigmoid [1]. Also, the porosity type of 
defect may reduce the stiffness as well as structural strength 
and consequent performance of the component. Therefore, 
the present mathematical model includes even and uneven 
type of porosity distribution [2] to know its effect on the 
final deflection and stress responses.

Now, to check the recent investigations in the field of 
FGMs, some relevant articles are reported here. The three-
dimensional (3D) deformation of the simply supported thick 
FG plate under thermoelastic loading is presented in [3]. A 
third-order shear deformation theory (TSDT) is utilized in 
[4] to perform static deformation analysis of a simply sup-
ported FG plate. The large deflection analysis of the SSSS 
graded plate under pressure loading is performed in [5] 
using the finite strip method. The semi-analytical elasticity 
solutions for static deflection and thermal deformations of 
the 2D-FGM beam with various support conditions are pre-
sented in [6] utilizing the state space-based differential quad-
rature method (DQM). The static deflection and free vibra-
tion results of the open cylindrical shell made of 2D-FGM 
are analyzed in [7] utilizing a 2D-generalized DQM. The 
static bending responses of the FG plate are computed in [8] 
by employing the HSDT kinematics. The buckling analy-
sis of FG plate is performed in [9] using an HSDT-based 
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finite strip method. The bending responses of FG and lami-
nated composite shells and panels are computed in [10] by 
employing the generalized DQM in association with the 
first-order shear deformation theory (FSDT). Static deflec-
tion responses of FG plates resting on elastic foundation 
under the hygro-thermo-mechanical loading are evaluated in 
[11] using a four-variable refined plate theory. The nonlinear 
thermal instability of shape memory alloy (SMA) reinforced 
sandwich (FG/SMA/FG) structures, i.e. moving sandwich 
plates with constant speed and the geometrically imperfect 
sandwich cylindrical shells is investigated in [12, 13] utiliz-
ing TSDT and von Karman geometrical nonlinearity. A new 
sinusoidal shear deformation theory is utilized in [14] for 
flexural analysis of FG nano-plates resting on elastic foun-
dation. The thermoelastic deflection and stress responses of 
simply supported FG sandwich plates are computed in [15] 
using Carrera unified formulation (CUF). Nonlinear deflec-
tion responses of thick 2D-FG variable thickness plate rest-
ing on the nonlinear elastic foundation are evaluated in [16] 
using generalized DQM in association with HSDT and von 
Karman nonlinearity. TSDT kinematics is used in [17] for 
flexure and buckling analysis of 2D-FG plates. Bending and 
stress responses of 2D-FG circular beams are computed in 
[18] using Euler–Bernoulli beam theory (EBBT) under the 
action of various loading functions. Further, a non-uniform 
rational B-spline (NURBS) functions are used in [19] to 
compute the free vibrational frequency characteristics of a 
2D-FG Timoshenko beam. The effect of different material 
combinations on the mechanical behavior of sandwich plates 
under high-temperature environment is presented in [20] uti-
lizing the finite element method (FEM) and the FSDT. Static 
bending characteristics of 2D-FG microbeams subjected to 
uniformly distributed load (UDL) under different end sup-
port conditions are studied in [21] using the quasi-3D theory 
based on modified couple stress theory (MCST). Natural 
frequency, buckling and static deflection responses of FG 
plates were evaluated in [22] via moving Kriging interpola-
tion meshfree method combined with the HSDT kinematics. 
Similarly, the TSDT kinematics is adopted in [23] for the 
evaluation of the frequency responses of the 2D-FG beams 
subjected to various support conditions. A meshless total 
Lagrangian corrective smoothed particle method is used 
in [24] for flexural analysis of 2D-FG beams. A quasi-3D 
beam theory in conjunction with MCST is utilized in [25] 
for frequency analysis of FG microbeams. The EBBT and 
Eringen’s nonlocal theory (ENT) is utilized combinedly in 
[26] to perform the natural frequency analysis of the rotating 
2D-FG nano-beams.

In addition, a few more literatures are reported here con-
cerning the dynamic analysis of the graded structure. A 
3D thermomechanical deformation of a simply supported 
FG rectangular plate subjected to time-dependent thermal 
loads is presented in [27]. The HSDT, normal deformable 

plate theory and a meshless local Petrov–Galerkin (MLPG) 
method are utilized in [28] to perform the static deflection 
and free and forced vibration analyses of thick FG plate. The 
3D dynamic responses of simply supported FG and multi-
layered magneto-electro-elastic plate are evaluated in [29] 
using a modified Pagano’s method. The transient thermoe-
lastic responses of two-phase FGMs are obtained in [30] 
using the asymptotic expansion homogenization scheme and 
the FEM. The time-dependent thermo-electro-mechanical 
creep behavior of a thick hollow rotating cylinder made 
of radially polarized piezoelectric material is investigated 
in [31] using a semi-analytical technique based on Men-
delson’s method of the successive elastic solution. A 3D 
static and dynamic analysis of thick FG plates based on the 
MLPG method is performed in [32]. Also, the dynamic, free 
vibration and bending deflections responses of the doubly 
curved FGM panel are performed in [33, 34] utilizing the 
lower-order polynomial kinematic model, i.e. the FSDT. The 
earlier kinematic model was adopted in [35] to predict the 
deflections under the static and the dynamic loadings of the 
FG plate structure by combining the NURBS-based FEM. 
Further, the FGMs and laminated composite structure time-
dependent flexural and stress characteristics are reported in 
[36] using a refined 8-node shell element. The dynamic anal-
ysis of the bidirectionally graded Timoshenko beam under 
the movable load is carried out in [37] using the Timoshenko 
beam theory (TBT) and the EBBT. One-dimensional CUF 
is combined with the mode superposition method in [38] to 
study the dynamic characteristics of the laminated structure. 
A quasi-3D HSDT-based nonlocal elasticity theory is used 
in [39] for the investigation of dynamic characteristics of 
FG nanoplates. Dynamic deflection responses of the 2D-FG 
sandwich beam under moving point load are computed in 
[40] using the FSDT kinematics. The nonlinear dynamic 
responses of 2D-FG beams are reported in [41] based on 
the TBT including von Karman nonlinearity. Also, a finite 
element model in conjunction with CUF is employed in [42] 
for the dynamic characterization of the composite metama-
terials. A CUF is employed in [43] to investigate the large 
deflection and post-buckling load values of the composite 
plate. The nonlinear equilibrium analysis of the U-shaped 
2D lattice structure is presented in [44] utilizing CUF. Fur-
ther, Green–Lagrange nonlinearity in the framework of CUF 
has been adopred to compute the nonlinear frequencies of 
thin structure considering the large displacement in [45]. 
The effect of fiber orientation path on the buckling, free 
vibration and static analysis of variable angle tow panels 
is studied in [46]. The influence of fiber misalignments on 
the buckling performance of variable stiffness composites is 
presented in [47] by employing layerwise models.

Similarly, a few completed research relevant to the 
porous structures is discussed in this paragraph. The ther-
mal buckling load parameter of 2D-FG porous microbeams 
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is investigated in [48] using EBBT and MCST and general-
ized DQM. The flexural bending of porous FG nano-beams 
under the hygro-thermo-mechanical loading is carried out in 
[49] via ENT. The buckling load parameter of graded porous 
sandwich nanoplates is studied in [50] utilizing a higher-
order nonlocal strain gradient theory. The static bending, 
buckling and natural frequencies of porous 2D-FG plates 
are investigated in [51] considering the isogeometric mod-
eling technique in the framework of the FSDT. The eigen-
value (linear and nonlinear) responses of the rotating 2D-FG 
porous micro-beams are computed in [52] using TBT and the 
geometrical distortion modeled via von Karman nonlinear-
ity in association with MCST. The two-dimensional-graded 
porous plate structures reinforced with eccentrically stiff-
ener dynamic responses are computed in [53]. The model 
is derived using the von Karman nonlinear strain and the 
FSDT displacement field kinematics under the moving load.

The extensive reviews of the past contributions indicate 
that most of them follow the power-law (PWL) type of 
grading pattern and information related to the SIG and the 
EXP kind are too small. Also, a few articles focused on the 
modeling and computation of structural responses consider-
ing the porosity type of defects within the graded structure. 
Additionally, the research related to the grading in different 
directions is also limited in number. Therefore, the present 
work aims to develop an inclusive material model math-
ematically comprising various grading patterns (PWL, SIG 
and EXP) along with two different directions (longitudinal 
and thickness), types of porosity and distribution (even and 
uneven through-thickness) for the computation of structural 
responses (flexural strength and stress). Also, the model is 
generic to take care the influences of geometrical shapes 
(plate, cylindrical, elliptical, spherical and hyperbolic) on 
the static and dynamic deflection responses of 2D-FG panel 
structure under the variable loading intensities. To achieve 
the desired objective, the necessary governing equation is 
formulated mathematically in association with displace-
ment type isoparametric finite element (FE) technique and 
Newmark’s integration scheme. The solutions are predicted 
through an in-house MATLAB code using the prepared 
mathematical formulation and a few simulation models via 
the available commercial FE tools (ANSYS and ABAQUS). 
Moreover, the simulation model input parameter files are 
prepared through the batch techniques (ANSYS parametric 
language code, APDL and python scripting for ABAQUS). 
The present finite element formulation validity established 
by comparing the results with previously published data. 
The derived model comprehensiveness is discussed by solv-
ing altered numerical examples through the influential input 
parameters, i.e., power-law exponents, thickness ratio, aspect 
ratio, end conditions, geometrical shapes and curvature ratio, 
on the flexural and stress data of the 2D-FG structure under 
static and time-dependent loadings.

2  Mathematical formulation

2.1  Material properties of FGM

The effective property of 2D-FG material calculation is pro-
vided by considering the material grading along with the 
thickness (X3-axis) and longitudinal directions (X1-axis). The 
variations of elastic properties are achieved via a Voigt’s 
micromechanical model in conjunction with the individual 
volume fractions each material constituent. The expressions 
for three types of grading pattern, i.e. PWL, EXP and SIG 
are presented in the following subsections for the numerical 
computation of bidirectional material properties.

2.1.1  PWL‑FGM

A bidirectional elastic property variation [54] according to 
PWL grading along the transverse and length directions can 
be written as:

Now, the desired porosity comprising even and uneven 
type of distribution patterns [54] are represented by the 
Eqs. (2) and (3), respectively.

where, P
(
X1,X3

)
 is the required final property (Poisson’s 

ratio, modulus of elasticity and density) of the 2D-FG struc-
ture in the X1 and X3 directions, and Pm and Pc are the 
respective properties of the metal and ceramic constituents. 
Also, ‘X1’ and ‘X3’ denote the random point in the length 
and transverse direction, ‘nx’ and ‘nz’ represent power expo-
nents along the length and thickness direction, ‘λ’ and ‘h’ 
are the porosity index and the thickness, respectively. Also, 
the ceramic and metal volume fractions are represented as 
Vfc

=
(
0.5 +

X3

h

)nz
(

X1

a

)nx
 and Vfm

= 1 − Vfc
 , respectively.

Now, the geometry of the bidirectional FG panel is shown in 
Fig. 1 whereas the material grading along the length and thickness 
direction is shown in Fig. 2. Also, Fig. 3 shows the porosity distri-
butions patterns (even and uneven) whereas Fig. 4 represents the 
variation of ceramic volume fraction along the length and thickness 
direction of the FG structure according to PWL-FGM method.

2.1.2  SIG‑FGM

The variation of properties of bidirectional-graded structural 
panel is obtained using the extended PWL-FGM steps to 

(1)P
(
X1,X3

)
= (Pc − Pm)Vfc

+ Pm.

(2)P
(
X1,X3

)
= (Pc − Pm)Vfc

+ Pm − 0.5� × (Pc + Pm),

(3)

P
(
X1,X3

)
= (Pc − Pm)Vfc

+ Pm − 0.5� × (Pc + Pm)

(
1 −

2||X3
||

h

)
,
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achieve the SIG kind of pattern distributions and presented 
in following Eqs. (4) and (5).

Now, the effect of porosity distribution patterns (even and 
uneven kind) on the effective material properties of SIG-
FGM structure is obtained using the subsequent steps as 
shown in the below equations:

The bidirectional variation in the volume fraction of 
ceramic constituent for SIG-FGM is presented in Fig. 5.

(4)P
(
X1,X3

)
= (Pc − Pm)

[
1 − 0.5

(
1 −

2X3

h

)nz
](

X1

a

)nx

+ Pm for 0 ≤ X3 ≤ h∕2.

(5)P
(
X1,X3

)
= (Pc − Pm)

[
0.5

(
1 +

2X3

h

)nz
](

X1

a

)nx

+ Pm for − h∕2 ≤ X3 ≤ 0

(6)P
(
X1,X3

)
= (Pc − Pm)

[
1 − 0.5

(
1 −

2X3

h

)nz
](

X1

a

)nx

+ Pm − 0.5� × (Pc + Pm) for 0 ≤ X3 ≤ h

2

(7)P
(
X1,X3

)
= (Pc − Pm)

[
0.5

(
1 +

2X3

h

)nz
](

X1

a

)nx

+ Pm − 0.5� × (Pc + Pm) for −
h

2
≤ X3 ≤ 0,

(8)P
(
X1,X3

)
= (Pc − Pm)

[
1 − 0.5

(
1 −

2X3

h

)nz
](

X1

a

)nx

+ Pm − 0.5� × (Pc + Pm)

(
1 −

2||X3
||

h

)
for 0 ≤ X3 ≤ h

2
,

(9)P
(
X1,X3

)
= (Pc − Pm)

[
0.5

(
1 +

2X3

h

)nz
](

X1

a

)nx

+ Pm − 0.5� × (Pc + Pm)

(
1 −

2||X3
||

h

)
for −

h

2
≤ X3 ≤ 0.

2.1.3  EXP‑FGM

In this subsection, the material property of the 2D-FG struc-
ture using EXP distribution pattern is described by the equa-
tion given below as:

Similarly, the material properties of EXP-FGM in asso-
ciation with the porosity distribution patterns of even and 
uneven kind are calculated using the Eqs. (11) and (12) as:

Now, the ceramic volume fraction distribution using 
EXP-FGM method in the length and thickness directions is 
presented in Fig. 6.

2.2  Displacement field kinematics

The geometrical dimension (refer to Fig. 1) of a 2D-FG 
panel, i.e. the length (a), width (b) and thickness (h) are 

along its principal material axes (X1, X2 and X3), respec-
tively. Also, the radii of curvatures at the mid-plane of the 

(10)P
(
X1,X3

)
= Pc × e

−
1

2
ln

(
Pc

Pm

)(
1−

2X3

h

)(
X1

a

)
.

(11)P
(
X1,X3

)
= Pc × e

(
−

1

2
ln

(
Pc

Pm

)(
1−

2X3

h

)(
X1

a

)
−0.5�×ln

(
Pc

Pm

))
,

(12)
P
(
X1,X3

)
= Pc × e

(
−

1

2
ln

(
Pc

Pm

)(
1−

2X3

h

)(
X1

a

)
−0.5�×ln

(
Pc

Pm

)(
1−

2|X3|
h

))
.

Fig. 1  The geometry of the FGM panel with bidirectional grading
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panel along their principal material directions are denoted 
by RX1 and RX2. The material displacement field model has 
been expressed below using the HSDT polynomial [55–57]:

(13)

X11 = X110
+ X3�x + X2

3
X∗
110

+ X3

3
�∗
x

X22 = X220
+ X3�y + X2

3
X∗
220

+ X3

3
�∗
y

X33 = X330

⎫⎪⎬⎪⎭
,

where, X11, X22, X33 and X110
, X220

, X330
 are the global and 

mid-plane displacement fields in the X1, X2, and X3 direc-
tions, respectively. �x, �y are the rotations of transverse nor-
mal about X2, and X1 axes, respectively. The higher-order 
terms of Taylor’s series expansion are denoted by 

Fig. 2  Material grading along 
the length and thickness direc-
tion

Fig. 3  Porosity distribution along the thickness direction

Fig. 4  Variation of ceramic volume fraction of PWL-FGM in the 
length and thickness directions for nz = nx = 2

Fig. 5  Variation of ceramic volume fraction of SIG-FGM in the 
length and thickness directions for nz = nx = 2
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X∗
110

, X∗
220

, �∗
x
, �∗

y
 while X2

3
 and X3

3
 are the square and cubic 

thickness coordinates, respectively.
Now, the strain–displacement relation of the 2D-FG 

model is presented in Green–Lagrange sense as [58]

where, �l denotes linear strain tensor and.

Further, the linear strain tensor can be expressed in the 
form:

(14){�} = �l =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

X11,X1

X22,X2

X11,X2
+ X22,X1

X11,X3
+ X33,X1

X22,X3
+ X33,X2

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�X1X1

�X2X2

�X1X2

�X1X3

�X2X3

⎫⎪⎪⎪⎬⎪⎪⎪⎭

,

X11,X1
=

�X11

�X1

+
X33

RX1

;X11,X2
=

�X11

�X2

; X11,X3
=

�X11

�X3

;

X22,X1
=

�X22

�X1

;X22,X2
=

�X22

�X2

+
X33

RX2

; X22,X3
=

�X22

�X3

;

X33,X1
=

�X33

�X1

−
X11

RX1

;X33,X2
=

�X33

�X2

−
X22

RX2

.

or

where, 
[
Tl
]
5×20

 denotes linear thickness coordinate matrix 
and 

{
�l
}
20×1

 denotes mid-plane strain vector.
Next, the generalized form of the stress–strain relation 

[55] for the bidirectional FG structure is written as:

where, stress and strain vectors are denoted by {σ} and 
{ε}, respectively, whereas [ ̄Q ] denotes the reduced stiffness 
matrix.

After obtaining the stress and strain values of the FG 
structure, the total strain energy can be calculated using the 
below expression

Further, the energy functional can be rearranged by put-
ting Eqs. (16) and (17) in Eq. (18) as:

here,

(15)

�
�l
�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�0
X1

�0
X2

�0
X1X2

�0
X1X3

�0
X2X3

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

+ X3

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k1
X1

k1
X2

k1
X1X2

k1
X1X3

k1
X2X3

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

+ X2

3

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k2
X1

k2
X2

k2
X1X2

k2
X1X3

k2
X2X3

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

+ X3

3

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

k3
X1

k3
X2

k3
X1X2

k3
X1X3

k3
X2X3

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,

(16)

{
�l
}
=
[
Tl
]{
�l
}
=
{
�0
}
+ X3

{
k1
}
+ X2

3

{
k2
}
+ X3

3

{
k3
}
,
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�
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,

(18)U =
1

2

h∕2

∫
−h∕2

(
∬ {�}T{�}dX1dX2

)
dX3,

(19)U =
1

2 ∬
{
�l
}T

[D]
{
�l
}
dX1dX2,

Fig. 6  Variation of ceramic volume fraction of EXP-FGM in the 
length and thickness direction
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Also, the expression of kinetic energy for the FG model 
can be obtained using the relation given below as:

where, ρ denotes mass density, the velocity vector is denoted 
by 

{
�̇�
}
 and [m] denotes elemental inertia matrix, which is 

given by

2.3  Finite element formulation

The nine-noded (nine degrees of freedom each node) isopar-
ametric quadrilateral Lagrangian element is utilized for the 
modeling of a proposed mathematical model. The finite ele-
ment representation for mid-plane displacement vector with 
the help of shape functions [59] is expressed as:

where, [N] denotes shape function, 
{
�0i

}
 denotes ith node 

mid-plane displacement vector, which can be written as:

Thus allowing the mid-plane strain vector to be expressed 
as:

where, [B]20×9 is the product of the differential operators and 
shape functions.

Next, the expression for work done due to the mechanical 
load (q) applied externally is given by:

[D] =

h∕2

∫
−h∕2

[
Tl
]T
[Q]dX3.

(20)Te =
1

2 ∫
v

𝜌
{
�̇�
}T{

�̇�
}
dV ,

(21)

Te =
1

2 ∫
A

(
∫

0.5h

−0.5h

{
�̇�0
}T[

f
]T
𝜌
[
f
]{
�̇�0
}
dX3

)
dA

=
1

2 ∫
A

{
�̇�0
}T

[m]
{
�̇�0
}
dA,

[m] =

h∕2

∫
−h∕2

[
f
]T
�
[
f
]
dX3.

(22)
{
�0
}
=

9∑
i=1

[N]
{
�0i

}
,

{
�0i

}
=
{
X110i

X220i
X330i

�xi
�yi

X∗
110i

X∗
220i

�∗
xi
�∗
yi

}T

.

(23)
{
�l
}
= [B]

{
�0i

}
,

where, q and {F} are the load intensity and the correspond-
ing force vector, respectively.

Also, the mass [M] and stiffness matrix [k] can be 
expressed as

2.4  Governing equation

The variational form of the total energy functional is used 
to compute the static bending responses of the FG struc-
ture. The structural equilibrium equation in the final form is 
expressed below as:

where, δ and п denote variation symbol and the total energy 
functional, respectively. The total stiffness, displacement 
and force vectors are used to rearrange the equation into a 
matrix form as:

where, [K] denotes the global stiffness matrix.
Now, the time-dependent bending values are evaluated 

usually by solving the static equilibrium equation at a par-
ticular time (t) comprising damping and inertia forces [60]. 
The damping and inertia forces are the functions of veloc-
ity and acceleration, respectively. The damping effect is not 
considered in the present work; thus, the governing equilib-
rium equation for the time-dependent analysis of the current 
system is given below as:

where, 𝛿0 denotes the acceleration vector.
Further, the total time (T) integrated with the time inter-

val of Δt utilizing the Newmark’s technique to solve the 
expression of transient analysis. Also, the necessary tran-
sient equation is obtained using the Newmark’s integration 
parameters (α, φ and β0 to β7) as in [60]. The effective stiff-
ness matrix at any particular time instant (t) is given by

(24)W = ∫
A

{
�0
}T

qdA,

(25)W =
{
�0
}T

{F},

(26)[M] = ∬ [N]T [N]�dX1dX2,

(27)[k] = ∬ [B]T [D][B]dX1dX2.

(28)�Π = �(U −W) = 0,

(29)[K]
{
�0
}
= {F}

(30)[M]𝛿0 + [k]𝛿0 = [F],
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Likewise, the effective load matrix considering the incre-
ment of time step t + Δt is given by:

Also, the expressions to calculate the displacement, 
velocity and acceleration are given in the below equations:

To compute the static and dynamic bending and stress 
values, different kinds of boundary conditions are utilized 
and presented in the below lines:

• Clamped:

X110
= X220

= X330
= �x = �y = X∗

110
= X∗

220
= �∗

x
= �∗

y
= 0 for 

both X1 = 0, a and X2 = 0, b.

• Simply supported:

X220
= X330

= �y = X∗
220

= �∗
y
= 0 at X1 = 0, a and

X110
= X330

= �x = X∗
110

= �∗
x
= 0 at X2 = 0, b

Also, the combination of the clamped and simply sup-
ported end conditions helped to achieve a few more end 
conditions which are used in present work and mentioned 
below:

• CCCC: all sides are clamped.
• SCSC: two opposite sides (X2 = 0, b) are clamped 

whereas X1 = 0, a are simply supported
• CFCF: two opposite sides (X1 = 0, a) are clamped 

whereas X2 = 0, b are free.
• SSSS: all sides simply supported.

2.5  Procedure for simulation modeling (ANSYS 
and ABAQUS)

In the present analysis, the bending and stress responses of 
the 2D-FGM are computed under the static and dynamic 
loadings for the verification purpose only. In this regard, the 
simulation softwares, i.e. ANSYS and ABAQUS are used to 
prepare a bidirectional FG model. A batch input technique 

(31)
[

⌢

k

]
= [k] + 𝛽0[M].

(32)t+Δt

[
⌢

F

]
= t+Δt[F] + [M]

(
𝛽 t
0
𝛿0 + 𝛽 t

2
�̇�0 + 𝛽 t

3
𝛿0
)
.

(33)
[

⌢

k

]t+Δt
𝛿0 =

t+Δt

[
⌢

F

]
,

(34)t+Δt�̇�0 =
t�̇�0 + 𝛽 t

6
𝛿0 + 𝛽 t+Δt

7
𝛿0,

(35)t+Δt𝛿0 = 𝛽0
(
t+Δt𝛿0 −

t𝛿0
)
− 𝛽 t

2
�̇�0 − 𝛽 t

3
𝛿0.

method is used in ANSYS whereas the input method using 
python coding is utilized in the ABAQUS. For the develop-
ment of the FG model, a shell element has been utilized 
with six degrees of freedom at each node. Also, the ANSYS 
and ABAQUS adopt FSDT kinematics for the modeling of 
the structural component. The procedure for the develop-
ment of the bidirectional-graded model is presented below 
in detailed using three major sub-steps.

Step 1 Preprocessing
In this step, the required geometrical input data, i.e. 

length, width and thickness for the development of the 
2D-FG model have been given. Also, to achieve the smooth 
variation of the material properties through the thickness, 
the finite number of layers (≤ 100) is defined here. The prop-
erties of metals and ceramics have also been provided here 
as per the defined relations.

Step 2 Solution
In the second step, the required load and the necessary 

boundary conditions have been applied to the structure.
Step 3 Postprocessing
Lastly, the bending and stress responses under static and 

dynamic loading conditions for the bidirectional-graded 
structure are evaluated via the inbuilt solution technique 
available in ANSYS and ABAQUS. Additionally, a few 
Python scripts related to batch input file prepared for modifi-
cation in the ABAQUS platform are provided in Appendix 1.

3  Results and discussion

After the successful development of the higher-order finite 
element formulation, a home-made computer code has been 
prepared for the evaluation of the structural responses. To 
check the accuracy of this model, a convergence and veri-
fication study has been carried out. Also, the bending and 
stress data of the bidirectional-graded structure under the 
influence of several design parameters, i.e., power-law expo-
nents, thickness ratio, aspect ratio, end conditions, geom-
etry and curvature ratio are computed considering static and 
dynamic loading conditions.

3.1  Convergence and verification

The convergence and verification of the present higher-order 
FE model are checked in this subsection by evaluating the 
static and dynamic results. For convergence study, the static 
and dynamic bending responses of the SSSS bidirectional 
FG plate made of Alumina  (Al2O3) and Aluminum (Al) are 
computed and presented in Figs. 7 and 8, respectively. It can 
be seen from the figures that the (6 × 6) mesh is sufficient 
for the computation of the static and dynamic responses. 
The material properties of the  Al2O3 and Al constituents 
are given below:
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Ceramic-Al2O3: Ec = 380 GPa; ρc = 380 kg/m3; µc = 0.3
Metal-Al: Em = 70 GPa; ρc = 2700 kg/m3; µm = 0.3.
Also, the non-dimensional form used for the computation 

of deflection responses is:

where, w denotes the central deflection and q denotes the 
load intensity (1 N/m2).

Now, the verification of the current bidirectional FG 
model is presented here by comparing the current bending 
and stress data with the previously published and simula-
tion data (ANSYS and ABAQUS). In the first case, the non-
dimensional deflection responses of the bidirectional square 
FG plate for different values of power-law exponents (nx 
and nz) are computed for SSSS boundary condition under 
the UDL (1 N/m2) and matched with Do et al.  [17], and the 
simulation (ANSYS and ABAQUS) results (Table 1). The 
verification study shows that the current deflection values 
are very close to the published as well as simulation data 
and the percentage difference between the deflection values 
is very small. For the calculation of static deflection data, the 
graded plate made of three different materials is used with 
the following material properties.

Modulus of elasticity: E1 = 205.1 GPa, E2 = 70 GPa, 
E3 = 151 GPa.

Poisson’s ratio: µ1 = µ2 = µ3 = 0.3
Also, the non-dimensional form used here is expressed 

as: w̄ =
10wE3h3

qa4
.

(36)w̄ =
10wEch3

qa4
,
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Fig. 7  Convergence (Static bending responses) of bidirectional SSSS 
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Further, the verification for non-dimensional stress 
responses is presented in Table 2, by comparing the cur-
rent values with the published data [61] and the simula-
tion results. It can be seen from the table that the present 
results are very close to the published data and the simula-
tion values and the percentage difference between the stress 
responses are negligible (≤ 3.622%). For the computation of 
the stress values, a UDL (1 N/m2) is applied on the  Al2O3-Al 
power-law graded plate under SSSS conditions. The non-
dimensional form used in this case is given below:

where, σx is the actual stress.
Additionally, the time-dependent bending results of the 

SSSS graded plate are computed by applying a UDL (5 N/
cm2) and matched with the published data [36] and the simu-
lation results, i.e. ANSYS and ABAQUS (Fig. 9). It can be 
seen from the verification that the responses computed using 
MATLAB are very close to the published and the simulation 

(37)�x =
�xh

qa

(
a

2
,
b

2
,
h

2

)
,

results. The input parameters used in this case of verifica-
tion are:

Ec = 151 GPa, Em = 70 GPa, µc = µm = 0.3 and 
ρc = ρm = 8 ×  10–6 N  s2/cm4.

3.2  Parametric study

The convergence and verification show that the static and 
dynamic results (deflection ad stress) of the bidirectional-
graded structure considering porosity can be calculated with 
the required accuracy utilizing the present model. Hence, 
few examples are discussed in the subsections below to study 
the effect of different input parameters (power-law expo-
nents, thickness ratio, aspect ratio, end conditions, geometry 
and curvature ratio) on the static and dynamic responses of 
the graded structures. For this purpose, alumina  (Al2O3) and 
aluminum (Al) are used as ceramic and metal constituents 
of the bidirectional FG structure, respectively. The details of 
the material properties of  Al2O3-Al constituents are provided 
in Sect. 3.1.

3.3  Static analysis

In this subsection, the static deflection and stress results of 
the bidirectional-graded structure are presented in the non-
dimensional form by applying a UDL (1 N/m2). The non-
dimensional form used for the computation of deflection 
responses is given in Eq. (36) whereas the stresses can be 
converted into the non-dimensional form using the follow-
ing expressions:

Now, the influence of the power exponents on the dimen-
sionless bending responses of the bidirectional FG structure 
is presented (Table 3) considering various kind of porosity 
distribution patterns (even and uneven). It is observed from 
the results that the increase in the exponent value reduces 
the structural stiffness and the deflection results follow an 
upward slope. This is because the volume fraction of metal 
within the graded structure increases with increase in power 

�x =
�x × h

q × a
; �y =

�y × h

q × a
and �xy =

�xy × h

q × a
.
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Fig. 8  Convergence (time-dependent bending responses) of bidirec-
tional PWL-FGM SSSS plate (a/b = 1, h = 0.01, nx = nz = 2)

Table 2  Effect of power 
exponent (nz) on the non-
dimensional stress values 
of SSSS FG plate (a/b = 1, 
h = 0.01)

Power-law 
exponent 
(nz)

Daouadji 
et al. [61] 
(1)

Present 
(MATLAB) 
(2)

Present 
(ANSYS) 
(3)

Present 
(PYTHON) 
(4)

% differ-
ence (1 
and 2)

% differ-
ence (1 
and 3)

% differ-
ence (1 and 
4)

0 2.8932 2.8595 2.9256 2.8632 1.1648 1.1216 1.0369
1 4.4745 4.4560 4.4522 4.4290 0.4135 0.4968 1.0169
2 5.2296 5.2182 5.1741 5.1468 0.2180 1.0603 1.5833
3 5.6108 5.5968 5.5283 5.4992 0.2495 1.4690 1.9890
5 6.1504 6.1230 6.0223 5.9908 0.4455 2.0821 2.5950
10 7.3689 7.3190 7.1392 7.1020 0.6772 3.1167 3.6220
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exponent. This, in turn, lowers the structural stiffness and 
allows the panel to deflect more. Also, when the power-law 
exponent in the transverse direction is equal to one (nz = 1), 
the deflection observed for SIG-FGM and PWL-FGM 
is same for all other input parameters. Further, it is well 
known that the overall stiffness of the structure may reduce 
due to the porosity, therefore, an increase in porosity index 
increases deflection parameter.

In the second example, the non-dimensional deflection 
responses of the bidirectional porous FG plate are computed 
and presented in Table 4, for CCCC boundary condition con-
sidering various aspect ratio values (b/a = 0.5, 1, 2). The 
overall stiffness of the present FG panel is decreased with an 
increase in the aspect ratio because stiffness and length are 
inversely related. Therefore, the non-dimensional bending 
data follow an upward slope when the aspect ratio increases. 
It can also be seen from the table that the maximum deflec-
tion values are observed in PWL-FGM case while compared 
to the SIG-FGM and EXP-FGM.

Further, the effect of various end conditions (SCSC, 
CCCC, CFCF and SSSS) on the dimensionless deflection 
values of the bidirectional spherical panel considering 
porosities (even and uneven) is presented in Table 5. The 
relative displacement of the clamped structure is lower than 
the other structures. Therefore, the minimum deflection is 
observed in the CCCC condition whereas the maximum 
deflection is observed in the SSSS case.

Now, the influence of the thickness ratio (a/h) on 
the dimensionless stress values of the bidirectional FG 

hyperbolic panel is presented in Table 6 considering SSSS 
boundary condition and variable porosity distribution pat-
terns. The overall stiffness of the structure is reduced with 
the reduction in thickness and therefore the corresponding 
stress values are increasing, which can also be observed 
from the results presented in Table 6.

Next, the non-dimensional stress results of the SSSS bidi-
rectional FG porous structure are presented in Table 7 con-
sidering various geometrical shapes (cylindrical, spherical 
and elliptical). It is clear from the table that the maximum 
stresses induced in the spherical panels whereas the mini-
mum stress values are observed in the cylindrical case.

3.4  Dynamic analysis

In this subsection, the bending and stress responses of the 
bidirectional-graded structure are computed under the action 
of a UDL (1 N/m2). In the first example, the effect of various 
geometrical shapes (cylindrical, elliptical and spherical) on 
the time-dependent bending data of the bidirectional porous 
FG SSSS panel is shown in Figs. 10, 11 and 12 for PWL-
FGM, SIG-FGM and EXP-FGM, respectively. It can be seen 
from the figures that the maximum deflection is observed 
in cylindrical structures whereas the minimum deflection is 
observed in spherical panels. Also, the deflection observed 
in the porous FG structures is more than that of the FG struc-
ture without porosity.

Also, the effect of boundary conditions (CCCC, SCSC 
and CFCF) on the transient bending responses of the bidi-
rectional-graded hyperbolic panel is shown for PWL-FGM 
in Fig. 13, for SIG-FGM in Fig. 14 and for EXP-FGM in 
Fig. 15. The results indicate the minimum deflections for 
the clamped boundaries while the maximum under the 
CFCF kind of end support, respectively, irrespective of the 
assigned known structure material and/or geometry-related 
input variables.

Next, the effect of curvature ratio (R/a) on the dimension-
less stress values of the bidirectional cylindrical FG panels 
is presented in different graphs, i.e. Figure 16 (PWL-FGM), 
Fig. 17 (SIG-FGM) and Fig. 18 (EXP-FGM), respectively. 
The results show that the bending responses are following 
an upward path for the greater values of the curvature ratio. 
This is because the flexural stiffness of the curved structure 
is more than that of the flat structure, which shows high 
deflection. The non-dimensional form used here is expressed 
below as:

�xx =
�xx × h2

q × a2
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4  Conclusion

The deflection and stress values of the bidirectional FG 
structure are evaluated numerically under the static and 
dynamic loading conditions and utilizing an HSDT model 
including the porosity effect. The Newmark’s constant accel-
eration time-integration scheme is utilized to derive the nec-
essary governing equation. An isoparametric FE formulation 
is used for the evaluation of static and dynamic responses 
via own MATLAB-based computer code. The correctness of 
the model has been checked by matching the present results 
with the simulation results and the published data. The 

verification study indicates the correctness of the present 
higher-order FE model. A parametric study is then carried 
out to study the influence of various design parameters on 
the structural responses of the bidirectional-graded model. 
Based on this study, a few important outcomes are listed 
below in a pointwise manner:

• The SIG-FGM structure shows stiffer characteristics 
among all three types of FGMs, hence, show least deflec-
tion and stress values, whereas the PWL-FGM is a most 
flexible one which shows highest deflection and stress 
results when the effect of porosity is not considered.

Table 4  Effect of aspect ratio 
(b/a) on the dimensionless 
bending responses of CCCC 
bidirectional porous FG plate 
(a = 1, h = 0.1, nx = nz = 2)

Type of FGM Aspect ratio 
(b/a)

Porosity index (λ) and distribution

Even Uneven

0 0.1 0.2 0 0.1 0.2

PWL-FGM 0.5 0.0988 0.1291 0.1908 0.0988 0.1090 0.1228
1 0.5971 0.7842 1.1754 0.5971 0.6478 0.7126
2 1.1499 1.5114 2.2712 1.1499 1.2442 1.3637

SIG-FGM 0.5 0.0886 0.1128 0.1583 0.0886 0.0964 0.1063
1 0.5473 0.7030 1.0057 0.5473 0.5886 0.6393
2 1.0574 1.3604 1.9528 1.0574 1.1354 1.2304

EXP-FGM 0.5 0.0902 0.0982 0.1068 0.0902 0.0932 0.0963
1 0.5493 0.5978 0.6506 0.5493 0.5643 0.5795
2 1.0590 1.1525 1.2542 1.0590 1.0869 1.1153

Table 5  Effect of boundary 
conditions on the non-
dimensional bending values 
of the bidirectional porous FG 
spherical panel (a/b = 1, h = 0.1, 
nx = nz = 2, R = 1)

Type of FGM Boundary 
condition

Porosity index (λ) and distribution

Even Uneven

0 0.1 0.2 0 0.1 0.2

PWL-FGM CCCC 0.1865 0.2398 0.3386 0.1865 0.2068 0.2325
SCSC 0.2833 0.3643 0.5138 0.2833 0.3145 0.3540
CFCF 0.3384 0.4346 0.6109 0.3384 0.3760 0.4236
SSSS 0.4267 0.5472 0.7667 0.4267 0.4753 0.5367

SIG-FGM CCCC 0.1633 0.2030 0.2696 0.1633 0.1786 0.1974
SCSC 0.2477 0.3077 0.4079 0.2477 0.2712 0.3000
CFCF 0.2952 0.3661 0.4836 0.2952 0.3234 0.3579
SSSS 0.3707 0.4585 0.6026 0.3707 0.4069 0.4513

EXP-FGM CCCC 0.1695 0.1845 0.2007 0.1695 0.1758 0.1823
SCSC 0.2574 0.2801 0.3048 0.2574 0.2671 0.2770
CFCF 0.3073 0.3344 0.3639 0.3073 0.3190 0.3310
SSSS 0.3870 0.4212 0.4583 0.3870 0.4021 0.4176
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• Conversely, the porosity shows the least effect on the 
EXP-FGM, i.e., under the influence of porosity, the 
deflection and stresses observed in the EXP-FGM are 
least. In this case, also, the maximum stress and deflec-
tion results are obtained for the PWL-FGM.

• The PWL-FGM and SIG-FGM show same results when 
the power exponent in the thickness direction is equal to 
one i.e. nz = 1.

• The uneven porosity distribution pattern shows a lesser 
variation in the results (deflection and stress) when com-
pare it to the even type of porosity distribution.

• Various design parameters (power-law exponents, thick-
ness ratio, aspect ratio, end conditions, geometry and cur-
vature ratio) show a considerable effect on the deflection 
and stress values of the bidirectional porous FG structure.

Table 6  Effect of thickness ratio 
(a/h) on the stress responses 
of bidirectional SSSS porous 
FG hyperbolic panel (a = 0.1, 
b = 0.05, nx = nz = 2, R = 1)

Type of FGM Thickness 
ratio (a/h)

Stress Porosity index (λ) and distribution

Even Uneven

0 0.1 0.2 0 0.1 0.2

PWL-FGM 5 �̄�x 0.4445 0.4748 0.5411 0.4445 0.4672 0.4925
�̄�y 0.9383 1.0006 1.1364 0.9383 0.9863 1.0398
𝜏xy 0.0019 0.0021 0.0024 0.0019 0.0020 0.0021

10 �̄�x 0.8868 0.9425 1.0662 0.8868 0.9286 0.9738
�̄�y 1.8339 1.9436 2.1860 1.8339 1.9184 2.0092
𝜏xy 0.0035 0.0037 0.0041 0.0035 0.0036 0.0038

20 �̄�x 1.8440 1.9615 2.2237 1.8440 1.9315 2.0264
�̄�y 3.6536 3.8668 4.3389 3.6536 3.8182 3.9934
𝜏xy 0.0064 0.0067 0.0075 0.0064 0.0067 0.0070

SIG-FGM 5 �̄�x 0.4097 0.4313 0.4779 0.4097 0.4298 0.4524
�̄�y 0.8652 0.9093 1.0045 0.8652 0.9077 0.9555
𝜏xy 0.0018 0.0019 0.0021 0.0018 0.0019 0.0020

10 �̄�x 0.8160 0.8557 0.9446 0.8160 0.8530 0.8937
�̄�y 1.6871 1.7647 1.9389 1.6871 1.7620 1.8439
𝜏xy 0.0032 0.0033 0.0036 0.0032 0.0033 0.0035

20 �̄�x 1.6964 1.7803 1.9690 1.6964 1.7739 1.8589
�̄�y 3.3584 3.5086 3.8495 3.3584 3.5043 3.6626
𝜏xy 0.0058 0.0061 0.0066 0.0058 0.0061 0.0064

EXP-FGM 5 �̄�x 0.4567 0.4567 0.4567 0.4567 0.4656 0.4746
�̄�y 0.9638 0.9638 0.9638 0.9638 0.9827 1.0016
𝜏xy 0.0019 0.0019 0.0019 0.0019 0.0020 0.0020

10 �̄�x 0.9125 0.9125 0.9125 0.9125 0.9298 0.9471
�̄�y 1.8875 1.8875 1.8875 1.8875 1.9228 1.9583
𝜏xy 0.0036 0.0036 0.0036 0.0036 0.0036 0.0037

20 �̄�x 1.8974 1.8974 1.8974 1.8974 1.9335 1.9697
�̄�y 3.7619 3.7619 3.7619 3.7619 3.8318 3.9020
𝜏xy 0.0065 0.0065 0.0065 0.0065 0.0067 0.0068
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Table 7  Effect of geometry 
on the dimensionless stress 
responses of SSSS porous 
2D-FG structure (a = 0.1, 
b = 0.05, h = 0.01 nx = nz = 2, 
R = 1)

Type of FGM Geometry Stress Porosity index (λ) and distribution

Even Uneven

0 0.1 0.2 0 0.1 0.2

PWL-FGM Cylindrical �̄�x 0.9034 0.9611 1.0894 0.9034 0.9466 0.9935
�̄�y 1.8336 1.9435 2.1863 1.8336 1.9181 2.0089
𝜏xy 0.0034 0.0036 0.0041 0.0034 0.0036 0.0038

Spherical �̄�x 0.9202 0.9800 1.1128 0.9202 0.9648 1.0135
�̄�y 1.8333 1.9433 2.1864 1.8333 1.9178 2.0086
𝜏xy 0.0034 0.0036 0.0041 0.0034 0.0036 0.0038

Elliptical �̄�x 0.9118 0.9705 1.1010 0.9118 0.9556 1.0034
�̄�y 1.8335 1.9434 2.1863 1.8335 1.9179 2.0087
𝜏xy 0.0034 0.0036 0.0041 0.0034 0.0036 0.0038

SIG-FGM Cylindrical �̄�x 0.8313 0.8725 0.9644 0.8313 0.8696 0.9117
�̄�y 1.6870 1.7648 1.9392 1.6870 1.7621 1.8440
𝜏xy 0.0032 0.0033 0.0036 0.0032 0.0033 0.0035

Spherical �̄�x 0.8469 0.8895 0.9845 0.8469 0.8863 0.9299
�̄�y 1.6869 1.7647 1.9392 1.6869 1.7620 1.8440
𝜏xy 0.0031 0.0033 0.0036 0.0031 0.0033 0.0034

Elliptical �̄�x 0.8391 0.8810 0.9744 0.8391 0.8779 0.9207
�̄�y 1.6870 1.7647 1.9392 1.6870 1.7620 1.8440
𝜏xy 0.0032 0.0033 0.0036 0.0032 0.0033 0.0035

EXP-FGM Cylindrical �̄�x 0.9294 0.9294 0.9294 0.9294 0.9471 0.9649
�̄�y 1.8872 1.8872 1.8872 1.8872 1.9225 1.9579
𝜏xy 0.0035 0.0035 0.0035 0.0035 0.0036 0.0037

Spherical �̄�x 0.9465 0.9465 0.9465 0.9465 0.9647 0.9829
�̄�y 1.8868 1.8868 1.8868 1.8868 1.9221 1.9575
𝜏xy 0.0035 0.0035 0.0035 0.0035 0.0036 0.0036

Elliptical �̄�x 0.9379 0.9379 0.9379 0.9379 0.9559 0.9739
�̄�y 1.8870 1.8870 1.8870 1.8870 1.9223 1.9577
𝜏xy 0.0035 0.0035 0.0035 0.0035 0.0036 0.0037
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Fig. 10  Effect of geometrical shapes on the time-dependent central deflection of the PWL-FGM panel (a/b = 1, h = 0.01, R = 10, nz = nx = 2)
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Fig. 11  Effect of geometrical shapes on the time-dependent central deflection of the SIG-FGM panel (a/b = 1, h = 0.01, R = 10, nz = nx = 2)

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5  Cylindrical  Elliptical  Spherical

C
en

tra
l d

ef
le

ct
io

n 
(µ

m
) 

Time (sec)

(a) No porosity

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5

0.6 λ=0.1  Cylindrical  Elliptical  Spherical
λ=0.2  Cylindrical  Elliptical  Spherical

C
en

tra
l d

ef
le

ct
io

n 
(µ

m
) 

Time (sec)
(b) Even

0.000 0.005 0.010 0.015 0.020
0.0

0.1

0.2

0.3

0.4

0.5
λ=0.1  Cylindrical  Elliptical  Spherical
λ=0.2  Cylindrical  Elliptical  Spherical

C
en

tra
l d

ef
le

ct
io

n 
(µ

m
) 

Time (sec)

(c) Uneven

Fig. 12  Effect of geometrical shapes on the time-dependent central deflection of the EXP-FGM panel (a/b = 1, h = 0.01, R = 10)
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Fig. 13  Effect of boundary conditions on the time-dependent central deflection of the PWL-FGM hyperbolic panel (a/b = 1, h = 0.01, R = 10, 
nz = nx = 2)
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Fig. 14  Effect of boundary conditions on the time-dependent central deflection of the SIG-FGM hyperbolic panel (a/b = 1, h = 0.01, R = 10, 
nz = nx = 2)
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Fig. 15  Effect of boundary conditions on the time-dependent central deflection of the EXP-FGM hyperbolic panel (a/b = 1, h = 0.01, R = 10)
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Fig. 16  Effect of curvature ratio (R/a) on the time-dependent stress of the PWL-FGM cylindrical panel (a/b = 1, h = 0.01, nz = nx = 2)
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