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Abstract
Profust reliability analysis, in which the failure state of a load-bearing structure is assumed to be fuzzy, is investigated in 
this paper. A novel active learning method based on the Kriging model is proposed to minimize the number of function 
evaluations. The new method is termed ALK-Pfst. The sign of performance function at a given random threshold determines 
the profust failure probability. Therefore, the expected risk function at an arbitrary threshold is derived as the learning func-
tion of ALK-Pfst. By making full use of the prediction information of Kriging model, the prediction error of profust failure 
probability is carefully derived into a closed-form expression. Aided by the prediction error, the accuracy of Kriging model 
during the learning process can be monitored in real time. As a result, the learning process can be timely terminated with 
little loss of accuracy. Four examples are provided to demonstrate the advantages of the proposed method.
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Abbreviations
RA	� Reliability analysis
PDF	� Probability density function
MCS	� Monte Carlo simulation
IS	� Importance sampling
SS	� Subset simulation
ALK	� Active learning methods based on the Kriging
ERF	� Expected risk function
AK-MCS	� Active learning method combining Kriging 

model and MCS
DS-AK	� Dual-stage adaptive Kriging
ALK-Pfst	� Active learning method based on the Kriging 

model for the profust RA
DoE	� Design of experiments
CDF	� Cumulative distribution function
WSP	� Wrong sign prediction

1  Introduction

Uncertainties are unavoidable in a load-bearing structure, 
and it is crucial to conduct reliability analysis (RA) for the 
structure. In the conventional RA, a probability density func-
tion (PDF) is assigned to input variables and a performance 
function is defined to check whether the structure works or 
fails [1]. And then, the probability of failure, or the failure 
probability, is calculated. Practically, the performance func-
tion is frequently calculated by the finite element analysis 
and RA needs many function evaluations which is very time 
consuming. To minimize the number of function evalua-
tions, quite a lot of methods have been proposed during the 
past decades.

Generally, those methods can be classified into three 
groups[2]. The first group includes the first-order and sec-
ond-order reliability methods [3, 4]. Those methods are quite 
efficient while the accuracy is hard to be guaranteed if the 
performance function is highly nonlinear or has several fail-
ure regions. The second group comprises the crude Monte-
Carlo simulation (MCS) method, the importance sampling 
(IS) methods [5–7] and the subset simulation (SS) method 
[8–10]. The main drawback of those methods is that they 
need quite a lot of function evaluations. The third group 
is the methods based on the surrogate models. The popu-
larly used metamodels are the polynomial chaos expansion 
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models [11, 12], the neural network models [13–15], and the 
Kriging model [16, 17].

State-of-the-art methods in the field of conventional RA 
are the active learning methods based on the Kriging (ALK) 
model [18–20]. By a learning function, optimal training 
points can be recognized and the prediction accuracy can be 
remarkably improved [2, 18, 21]. By a proper stopping con-
dition, the learning process can be timely terminated without 
accuracy sacrifice [22–24]. The famous learning functions 
are U, the expected feasible function, and the expected risk 
function (ERF). The excellent works about the stopping 
conditions can be found in [22, 23, 25–27]. Abundant tests 
verify that ALK model can accurately estimate the failure 
probability with a pretty small number of function evalua-
tions [27, 28].

Although great achievements have been obtained, one 
crucial issue exists in the conventional RA. As stated above, 
the binary state assumption is made to define the perfor-
mance function. This means the state of a structure can only 
be eighter in the fully working state or complete failure state 
[29]. This assumption may violate the reality sometimes. For 
example, when evaluating the risk, it is often classified into 
several classes, such as no risk, weak risk, moderate risk, 
and large risk. And the threshold value between each pair 
of classes is subjectively set [30, 31]. For another example, 
the failure process of plastic materials often has four stages, 
i.e., elasticity, plasticity, necking, and fracture [32]. This 
means there is no distinct discrimination between success 
and failure and the boundary between them is quite ambigu-
ous. In this context, the theory of profust RA is proposed 
[29, 33]. In profust RA, a membership function from the 
fuzzy set theory is assigned to the performance function 
[33]. The membership function measures the possibility that 
the state of a load-bearing structure belongs to the failure 
region. When compared with the traditional RA based on 
the binary-state assumption, the fuzzy-state assumption is 
introduced in profust RA that can reveal the degradation 
process of structure performance [34, 35]. In addition, the 
so-called nonprobabilistic RA with epistemic input uncer-
tainties, described by convex set [21, 36], probability box 
[37], evidence theory [11], and fuzzy set [38–40], were also 
exploited by researchers. However, profust RA is different 
from the nonprobabilistic RA. In profust RA, epistemic 
uncertainty only exists in the output state of a structure. 
Contrarily, in nonprobabilistic RA, epistemic uncertainties 
are assumed in the input variables.

The introduction of fuzzy membership function makes 
the profust RA more complicated than the conventional RA. 
Primary studies on the evaluation of profust failure probabil-
ity were conducted in [33, 41]. Those methods are based on 
the simple linear regression and numerical integral, which 
are not applicable to complicated problems [35]. The pro-
fust failure probability was transformed into the integration 

of failure probability at different thresholds of performance 
function. And then, it can be calculated by Gauss quadrature 
in conjunction with MCS or SS [35]. This is a double-layer 
process. The double-layer problem was transformed into 
a single layer problem and a more concise MCS method 
was presented in [42]. Considering the high efficiency of 
ALK model, the early exploration on how to adapt the ALK 
model to profust RA has been carried out. The active learn-
ing method combining Kriging model and MCS (AK-MCS), 
from the traditional RA, was integrated into the double-layer 
process and single-layer process in [31, 42, 43]. To make 
the ALK model applicable to estimate slightly small failure 
probability, the works of [44, 45] were extended to profust 
RA in [46] and a so-called dual-stage adaptive Kriging (DS-
AK) method was proposed. Other works related to RA with 
fuzzy state can be seen from [47, 48].

This paper aims at proposing a more efficient method 
for profust RA based on the ALK model. The ERF given 
an arbitrary threshold of performance function is deduced 
and a new learning function is proposed for profust RA. 
The new learning function makes the learning process more 
robust than existing methods. The prediction error for pro-
fust failure probability is derived into a closed-form formula 
by making full use of the uncertain information of Kriging 
model and Central Limit Theorem. In this way, the learning 
process can be timely terminated compared with the exist-
ing methods. The proposed method is shorted as ALK-Pfst 
because it is an active learning method based on the Kriging 
model for the profust RA.

This paper is organized as follows. The theory of pro-
fust RA is briefly explained in Sect. 2. AK-MCS method is 
reviewed in Sect. 3. Section 4 is dedicated to our proposed 
method. The performance of the proposed method is dem-
onstrated by four case studies in Sect. 5. Conclusions are 
made in the last section.

2 � Profust reliability analysis

Denote the performance function of a structure as Y = G(�) , 
where X =

[
X1,X2,… ,XnX

]
 is the vector of random vari-

ables. The joint PDF of random variables is f
�
(�) . In tradi-

tional RA, binary state is assumed and it is deemed that the 
structure belongs to the ‘fully working’ state or ‘completely 
failed’ state. The failure probability is defined as

in which I[⋅] is an indicator function of an event with value 
1 if the event is true and 0 otherwise.

In profust RA, a fuzzy state is introduced to describe 
the gradual transition from fully working state to 

(1)PF = ∫Rn

I[G(�) < 0]f
�
(�)d�,
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completely failed state. A membership function 𝜇F̃(Y) 
is used to measure the possibility of a structure belongs 
to the failure state. 𝜇F̃(Y) monotonically decreases from 
1 to 0 with respect to Y  . A larger 𝜇F̃(Y) means a larger 
possibility that the structure belongs to the failure state. 
𝜇F̃(Y) = 0 indicates that the structure is totally safe while 
𝜇F̃(Y) = 1 means the structure completely fails. Several 
kinds of membership functions have been proposed so 
far. The most widely used ones are the linear membership 
function, the normal membership function, and the Cauchy 
membership function [43]. They are mathematically given 
in Eqs. (2)–(4).

1.	 Linear membership function

2.	 Normal membership function

3.	 Cauchy membership function

where 
[
a1, a2

]
 , 
[
b1, b2

]
 , and 

[
c1, c2

]
 are parameters. The pro-

fust failure probability is defined as

Introduce an index variable � with � ∈ [0, 1] , then it can 
be proved that [33, 43]

Because 𝜇F̃(Y) is a monotonical function, it can be eas-
ily obtained that

(2)𝜇F̃(Y) =

⎧
⎪⎨⎪⎩

1 Y ≤ a1�
y − a2

���
a1 − a2

�
a1 < Y < a2

0 Y ≥ a2

(3)𝜇F̃(Y) =

⎧⎪⎨⎪⎩

1 Y ≤ b1

exp
�
−
�
Y − b1

�2
∕b2

�
Y > b1

(4)𝜇F̃(Y) =

⎧⎪⎨⎪⎩

1 Y ≤ c1

c2

��
c2 + 10

�
Y − c1

�2�
Y > c1

(5)PF̃ = ∫Rn

𝜇F̃[G(�)]f�(�)d�.

(6)

1

∫
0

I
(
𝜇F̃[G(�)] < 𝜆

)
E𝜆 =

𝜇F̃[G(�)]

∫
0

I
(
𝜇F̃[G(�)] < 𝜆

)
d𝜆 +

1

∫
𝜇F̃[G(�)]

I
(
𝜇F̃[G(�)] < 𝜆

)
d𝜆

=

𝜇F̃[G(�)]

∫
0

1d𝜆 +

1

∫
𝜇F̃[G(�)]

0d𝜆 =

𝜇F̃[G(�)]

∫
0

1d𝜆 = 𝜇F̃[G(�)].

where 𝜇−1

F̃
(𝜆) is the inverse function of 𝜇F̃(Y) . Substituting 

Eq. (7) into Eq. (5), there is

In Refs. [35, 43, 46], the inner integration was put out-
side, i.e.,

Then, the outer one-dimensional integral can be solved 
by Gauss quadrature.

where l is the number of Gauss points; �k and �k are the kth 
quadrature point and weight. With MCS, one can obtain the 
first estimator of PF̃ , i.e.,

in which �(i) is the ith simulated sample of MCS.
However, the utilization of Gauss quadrature makes the 

calculation as a double-stage process. One must calculate 
the failure probability at l different thresholds. Moreover, 
the performance functions with l different thresholds are 
totally correlated which is detrimental for us to estimate the 

prediction error of P̂F̃ according to the predication informa-
tion of Kriging model.

Actually, Eq. (8) can be calculated in an integrated way 
by treating � as a uniformly distributed variable in [0,1], i.e.,

(7)

𝜇F̃[G(�)] =

1

∫
0

I
(
𝜇F̃[G(�)] < 𝜆

)
d𝜆 =

1

∫
0

I
[
G(�) < 𝜇−1

F̃
(𝜆)

]
d𝜆,

(8)PF̃ = ∫Rn

⎡⎢⎢⎣

1

∫
0

I
�
G(�) < 𝜇−1

F̃
(𝜆)

�
d𝜆

⎤⎥⎥⎦
f
�
(�)d�.

(9)

PF̃ =

1

∫
0

[
∫Rn

I

(
G(�) < 𝜇−1

F̃
(𝜆)

)
f
�
(�)d�

]
d𝜆

=

1

∫
0

E

[
I

(
G(�) < 𝜇−1

F̃
(𝜆)

)]
d𝜆.

(10)PF̃ ≈

l∑
k=1

𝜔kE
[
I
(
G(�) < 𝜇−1

F̃

(
𝜆k
))]

,

(11)P̂F̃ ≈

l∑
k=1

[
𝜔k

1

NMC

NMC∑
i=1

I
(
G
(
�
(i)
)
< 𝜇−1

F̃

(
𝜆k
))]

,
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in which fΛ(�) is the PDF of � . Then, another unbiased esti-
mator can be obtained as [31, 42]

in which �(i) is the ith simulated sample of � . This estimator 
is quite direct and the calculation is a single stage process.

3 � Reminder of AK‑MCS

To reduce the number of function evaluations, AK-MCS 
was investigated in [31, 42, 43], and is briefly presented in 
this section. AK-MCS was firstly proposed in the field of 
traditional RA. It can be easily adapted to the profust RA by 
modifying its learning function.

In Kriging model, G(�) is expressed by a prior Gaussian 
process. Given a design of experiments (DoE), parameters 
of the Gaussian process can be updated and the posterior 
Gaussian process can be utilized to make predictions at 
unknown positions. At an unknown point, the prediction is 
given as GP(�) ∼ N

(
�G(�), �G(�)

)
 , in which �G(�) is the pre-

dicted mean and �2
G
(�) is the predicted variance.

The profust failure probability is mainly determined by 
I
(
G(�) < 𝜇−1

F̃
(𝜆)

)
 , i.e., the sign of G(�) − 𝜇−1

F̃
(𝜆) . Learning 

function U was modified in [31, 42, 43] to find the point at 
which the sign of G(�) − 𝜇−1

F̃
(𝜆) has the largest probability 

to be wrongly predicted according to the information 
GP(�) ∼ N

(
�G(�), �G(�)

)
 . The modified U is given as

(12)

PF̃ =

1

∫
0

∫Rn

I
(
G(�) < 𝜇−1

F̃
(𝜆)

)
f
�
(�)d�d𝜆

= ∫Rn+1

I
(
G(�) < 𝜇−1

F̃
(𝜆)

)
f
�
(�)fΛ(𝜆)d�d𝜆

= E
[
I
(
G(�) < 𝜇−1

F̃
(𝜆)

)]
,

(13)P̃F̃ =
1

NMC

NMC∑
i=1

I
[
GP

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]
,

(14)U(x|𝜆 ) =
||||||
𝜇G(x) − 𝜇−1

F̃
(𝜆)

𝜎G(x)

||||||
.

Then, AK-MCS can be adapted to profust RA in the 
framework of double-stage MCS or single-stage MCS. For 
simplicity, AK-MCS in the framework of single-stage MCS 
is termed as AK-MCS#1 and in the framework of double-
stage MCS is termed AK-MCS#2.

However, learning function U is very local [45, 49]. If 
the boundary between failure and working state has multiple 
branches, the ALK model based on the learning function 
U tends to sequentially approximate those branches. This 
generates potential risk that the learning process is termi-
nated when only several branches are finely approximated. 
Moreover, because there is no estimation technique on the 
prediction error of PF̃ , the stopping condition of AK-MCS 
must be defined very conservative. The learning process is 
not stopped until the minimum value of U(x|� ) among the 
samples of MCS is larger than 2. As a result, quite a lot of 
training points are wasted by AK-MCS.

4 � ALK‑Profust

To overcome the drawbacks of AK-MCS, ALK-Profust is 
developed in this section. When compared with AK-MCS, 
twofold improvements exist in ALK-Profust. A learning cri-
terion modified from ERF, which is more robust than U, is 
put forward. A new stopping criterion measuring the predic-
tion error of P̂F̃ is derived and the learning process can be 
timely terminated with little accuracy sacrifice.

4.1 � Learning criterion

In this paper, ERF [21] is modified as the acquisition func-
tion. The profust failure probability is mainly determined by 
I
(
G(�) < 𝜇−1

F̃
(𝜆)

)
 . The predicted mean �G(�) is frequently 

utilized to replace GP(�) and a determinate prediction for 
I
[
GP(�) < 𝜇−1

F̃
(𝜆)

]
 is obtained. Actually, the prediction is 

uncertain because GP(�) is uncertain. Our goal is to find the 
point with the largest expectation of r isk that 
I
[
𝜇G(�) < 𝜇−1

F̃
(𝜆)

]
 violates I

[
GP(�) < 𝜇−1

F̃
(𝜆)

]
.

If 𝜇G(�) − 𝜇−1

F̃
(𝜆) < 0 , we define a risk indicator function 

to measure the risk that GP(�) − 𝜇−1

F̃
(𝜆) > 0 as

(15)R(x|𝜆 ) = max
((

GP(x) − 𝜇−1

F̃
(𝜆)

)
, 0
)
.
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Because R(x|� ) is also an uncertain variable, its expecta-
tion is calculated as follows.

in which fGP

(
GP(x)

)
 is the PDF of GP(x) . Let g =

GP(x)−�G(x)

�G(x)
 , 

and we have

in which �(⋅) and Φ(⋅) are the PDF and cumulative dis-
tribution function (CDF) of standard normal distribution. 
If 𝜇G(�) − 𝜇−1

F̃
(𝜆) > 0 , the risk that GP(�) − 𝜇−1

F̃
(𝜆) < 0 is 

defined as

and the expected risk is obtained as

Combining Eqs. (16) and (19), the uniform expression 
of modified ERF can be obtained as:

in which 𝜇G̃(x) = 𝜇G(x) − 𝜇−1

F̃
(𝜆).

The modified ERF reveals the expected risk that the 
sign of G(�) given an arbitrary threshold predicted by �G(�) 
violates that predicted by GP(�) . The point at which the 
modified ERF is maximized should be added into the DoE. 

(16)E[R(x|𝜆 )] =
+∞

∫
𝜇−1

F̃
(𝜆)

(
GP(x) − 𝜇−1

F̃
(𝜆)

)
fGP

(
GP(x)

)
dGP,

(17)

E[R(x|𝜆 )] = ∫
+∞

𝜇−1
F̃

(𝜆)−𝜇G(x)

𝜎G (x)

[
𝜎G(x)g + 𝜇G(x) − 𝜇−1

F̃
(𝜆)

]
𝜙(g)dg

= ∫
+∞

𝜇−1
F̃

(𝜆)−𝜇G(x)

𝜎G (x)

𝜎G(x)g𝜙(g)dg + ∫
+∞

𝜇−1
F̃

(𝜆)−𝜇G(x)

𝜎G (x)

(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

)
𝜙(g)dg

= −𝜙(g)𝜎G(x)
||+∞𝜇−1

F̃
(𝜆)−𝜇G(x)

𝜎G (x)

+ Φ(g)
(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

)||||
+∞

𝜇−1
F̃

(𝜆)−𝜇G(x)

𝜎G (x)

= 𝜙

(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

𝜎G(x)

)
𝜎G(x) + Φ

(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

𝜎G(x)

)(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

)
,

(18)R(x|𝜆 ) = min
((

GP(x) − 𝜇−1

F̃
(𝜆)

)
, 0
)
,

(19)
E[R(x|𝜆 )] =

𝜇−1

F̃
(𝜆)

∫
−∞

(
𝜇−1

F̃
(𝜆) − GP(x)

)
fGP

(
GP(x)

)
dGP

= 𝜙

(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

𝜎G(x)

)
𝜎G(x) − Φ

(
−
𝜇G(x) − 𝜇−1

F̃
(𝜆)

𝜎G(x)

)(
𝜇G(x) − 𝜇−1

F̃
(𝜆)

)
.

(20)

E[R(x|𝜆 )] = −sign
(
𝜇
G̃
(x)

)
𝜇
G̃
(x)

Φ

(
−sign

(
𝜇
G̃
(x)

)𝜇
G̃
(x)

𝜎
G
(x)

)

+ 𝜎
G
(x)𝜙

(
𝜇
G̃
(x)

𝜎
G
(x)

)
,

Among the candidate points 
(
�
(i), �(i)

)(
i = 1,… ,NMC

)
 , the 

best next training point is obtained by

4.2 � Stopping criterion

Denote the profust failure probability obtained from GP(�) 
as P̂F̃ and that from �G(�) as P̂′

F̃ . Apparently, P̂F̃ fully 
considers the prediction information of Kriging model, 
while P̂′

F̃ only considers the predicted mean. The discrep-
ancy between them can measure the prediction accuracy of 

(21)�
(∗) = �

(k), k = arg
NMC

max
i=1

E
[
R
(
�
(i)|||�

(i)
)]

.

profust failure probability. The prediction (relative) error 
of the profust failure probability can be given as

in which NF̃ is the predicted number of failure samples con-
sidering prediction uncertainty of Kriging model and N′

F̃
 is 

that without such consideration. They are given as

and

(22)𝜀F̃ =

|||P̂F̃ − P̂�
F̃
|||

P̂F̃

=

|||NF̃ − N�

F̃

|||
NF̃

,

(23)NF̃ =

NMC∑
i=1

I
[
GP

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]
,
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The numerator in Eq. (22) has an upper bound which is 
given as

in which N
WSP

 is the number of points at which the signs 
of GP(�) − 𝜇−1

F̃
(𝜆) and 𝜇G(�) − 𝜇−1

F̃
(𝜆) are different, i.e., the 

number of points with wrong sign prediction (WSP).
B e c a u s e  GP

(
�
(i)
)
 i s  a  r a n d o m  va r i a b l e , 

I
{[

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)][
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)]
< 0

}
 is also 

r a n d o m .  S p e c i f i c a l l y , 
I
{[

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)][
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)]
< 0

}
 fol-

lows the Bernoulli distribution.
According to the prediction information that 

GP(�) ∼ N
(
�G(�), �G(�)

)
 , the probability of a point with 

WSP can be obtained as [22]

Then ,  t he  expec t a t i on  and  va r i ance  o f 
I
[(

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))(
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))
< 0

]
 can be 

obtained as:

Recall that N
WSP

 is the summation of NMC random 
variables obeying the Bernoulli distribution. Accord-
ing to the Central Limit Theorem [50], if NMC → ∞ and 
GP

(
�
(i)
)(
i = 1, 2,… ,NMC

)
 are mutually independent, N

WSP
 

in distribution converges to such a normal distribution as

(24)N�

F̃
=

NMC∑
i=1

I
[
𝜇G

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]

(25)

|||NF̃ − N�

F̃

||| =
||||||

NMC∑
i=1

(
I
[
GP

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]
− I

[
𝜇G

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)])||||||
≤

NMC∑
i=1

||||I
[
GP

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]
− I

[
𝜇G

(
�
(i)
)
< 𝜇−1

F̃

(
𝜆(i)

)]||||

=

NMC∑
i=1

||||I
{[

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)][
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

)]
< 0

}||||
= N

WSP
,

(26)PWSP(��𝜆 ) = Φ

⎛⎜⎜⎝
−

���𝜇G(�) − 𝜇−1

F̃
(𝜆)

���
𝜎G(�)

⎞⎟⎟⎠
.

(27)E
{
I
[(

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))(
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))
< 0

]}
= PWSP

(
�
(i)|𝜆 (i)

)
,

(28)Var
{
I
[(

GP

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))(
𝜇G

(
�
(i)
)
− 𝜇−1

F̃

(
𝜆(i)

))
< 0

]}
= PWSP

(
�
(i)|||𝜆

(i)
)(

1 − PWSP

(
�
(i)|||𝜆

(i)
))

.

with the mean and variance

(29)N
WSP

∼ N

(
�
NWSP

,
(
�
NWSP

)2
)
,

Similarly, if NMC → ∞ and GP

(
�
(i)
)(
i = 1, 2,… ,NMC

)
 

are totally independent,N
F̃
 in distribution will also converges 

to such a normal distribution as:

with the mean and variance

(30)

⎧⎪⎪⎨⎪⎪⎩

�
NWSP

=

NMC�
i=1

PWSP

�
�
(i)����

(i)
�

�
�
NWSP

�2

=

NMC�
i=1

PWSP

�
�
(i)����

(i)
��

1 − PWSP

�
�
(i)����

(i)
�� .

(31)N
F̃
∼ N

(
𝜇
NF̃
,
(
𝜎
NF̃

)2
)
,

(32)

⎧⎪⎪⎨⎪⎪⎩

𝜇
N
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=

NMC�
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�
�
(i)���𝜆
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�
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𝜎
NF̃

�2

=

NMC�
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�
�
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��

1 − Pfail

�
�
(i)���𝜆

(i)
�� ,
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in which P
fail
(�|� ) is the probability of GP(�) < 𝜇−1

F̃
(𝜆) , 

which is given as:

In summary, the upper bound of Eq. (22) is obtained as:

and the error limit 𝜀̂F̃ on the right hand has two normal vari-
ables. At a confidence level 1 − � , the confidence interval 
is given as:

in which F−1(⋅) is the inverse CDF of 𝜀̂F̃ . It is hard to obtain 
the confidence interval in an analytic way. MCS can be uti-
lized instead. The upper bound of 𝜀̂F̃ can be estimated by the 
following procedures [51].

(33)

P
fail
(�|𝜆 ) = P

{
GP(�) < 𝜇−1

F̃
(𝜆)

}
= Φ

(
−
𝜇G(�) − 𝜇−1

F̃
(𝜆)

𝜎G(�)

)
.

(34)𝜀F̃ ≤ N
WSP

NF̃

= 𝜀̂F̃,

(35)𝜀̂F̃ ∈
[
F−1

(
𝛼

2

)
,F−1

(
1 −

𝛼

2

)]
,

(A1) Generate N� independently and identically distributed 
samples for N

WSP
 and N

F̃
.

(A2) Calculate 𝜀̂(i)
F̃

 
(
i = 1,… ,N�

)
 at the samples of N

WSP
 

and N
F̃
.

(A3) Sort 𝜀̂(i)
F̃

 from the smallest to the largest. Let 𝜀̂(i)
s∶l

 (
i = 1,… ,N�

)
 be the sorted values. And the upper bound of 

confidence interval can be estimated as

and there is

in which ⌊⋅⌋ is the ceiling (or round-up) function.
In theory, if 𝜀̄

F̃
 is smaller than a prescribed threshold � , 

i.e., 𝜀̄
F̃
≤ 𝛾 , the learning process can be stopped. How-

ever, it should be reminded that the correlation among 
GP

(
�
(i)
)(
i = 1, 2,… ,NMC

)
 is neglected. If the correlation 

is considered, N
WSP

 and N
F̃
 in distribution “asymptotically” 

converge to normal distribution as NMC → ∞ [10, 52]. This 
means the estimator in Eq. (36) is a little biased. Therefore, a 
more conservative criterion is utilized in this paper. At the kth 
iteration, the stopping condition is given as:

in which Nr is a constant and k ≥ Nr ; 𝜀̄
(l)

F̃
 is the value of 𝜀̄

F̃
 

in the lth iteration. If Eq. (38) is satisfied, it means 𝜀̄
F̃
 has 

been consistently smaller than � during the last Nr iterations 
and the estimated error is very stable. In this paper, � = 2% 
and Nr = 5 are used.

5 � Summary of ALK‑Pfst

The flowchart of the proposed method is shown in Fig. 1, 
and the concrete procedures are explained as follows.

	(B1)	 Generate NMC samples for � and �.
	(B2)	 Define the initial DoE.

(36)𝜀̄
F̃
= 𝜀̂

(N𝛼)
s∶l

,

(37)N� =
⌊
N�

(
1 −

�

2

)⌋
,

(38)
k∑

l=(k−Nr+1)

I
[
𝜀̄
(l)

F̃
≤ 𝛾

]
= Nr,

Fig. 1   Flowchart of ALK-Pfst

Table 1   Results of different methods (Sect. 5.1)

Cov coefficient of variation, Ncall number of function calls
a The results come from [46]

Method MCS DS-AKa AK-MCS#2a AK-MCS#1 ALK-Pfst

Ncall 5 × 105 228 444 65.6 58.3
P̃F̃

0.00191 0.00186 0.00185 0.00186 0.00186
Cov 3.23% 2.53% 2.73% 3.28% 3.28%
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1.	 The number of initial training points is defined 12. 
The number should be enlarged for high-dimen-
sional problems.

2.	 Latin hypercube sampling is utilized to generate 
those training points. The lower and upper bounds 
are chosen as 

[
�X − 5�X , �X + 5�X

]
 with �X and �X 

the mean and standard variation of �.
3.	 Evaluate the performance function at those points 

and construct an initial Kriging model with the DoE.

	(B3)	 Obtain the optimal training point by Eq. (21).
	(B4)	 According to the prediction information of Kriging 

model, obtain the distributions of N
WSP

 and N
F̃
.

	(B5)	 Based on the procedures in (A1)– (A3), obtain the 
upper bound of 𝜀̂F̃ in the current stage.

	(B6)	 If the stopping condition in Eq. (38) is satisfied, 
continue to Step (B8). Otherwise, evaluate the per-
formance function at �(∗) . Add �(∗) into the DoE and 
update the Kriging model. Go to Step (B3).

	(B7)	 Estimate the profust failure probability based on the 
Kriging model.

6 � Numerical examples

6.1 � A mathematical problem

The first example has four unconnected failure regions and 
it is employed to demonstrate the performance of ALK-Pfst 
for problems with multiple failure regions. The performance 
function is defined as

in which � =
[
x1, x2

]
 are two independent random variables 

obeying the standard normal distribution. Fuzzy failure state 
is assumed and is described by a linear membership func-
tion (as shown in Eq. (2)) with parameters a1 = − 0.1, a2 = 0.

The results of different methods are given in Table 1. The 
results of DS-AK and AK-MCS are duplicated from [46]. 

(39)G(�) = min

⎧
⎪⎪⎨⎪⎪⎩

3 +

�
x1 − x2

�2
10

±

�
x1 − x2

�
√
2

7√
2
∓
�
x1 − x2

� ,

Fig. 2   Boxplots of true relative 
error and Ncall VS error thresh-
old γ (Example 5.1)
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Fig. 3   DoE of training points 
obtained by U and modified 
ERF in an extreme situation

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6
G(x)=0
G(x)+0.1=0
Initial Training Point
Added Training Point

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6
G(x)=0
G(x)+0.1=0
Initial Training Point
Added Training Point



S3119Engineering with Computers (2022) 38 (Suppl 4):S3111–S3124	

1 3

The proposed method is performed 20 times and the data are 
averaged results. It can be seen that the proposed method is 
more efficient than other methods. Note that the number of 
candidate points of the proposed method is kept the same 
as MCS. The Cov of ALK-Pfst (3.28%) is a little larger than 
DS-AK and AK-MCS while it is acceptable in practice.

To demonstrate the robustness of ALK-Pfst, the efficiency 
and accuracy varying with the prescribed error threshold � is 
illustrated by boxplots (Fig. 2). At each value of � , ALK-Pfst 
is tested 20 independent times. The best, mean, and worst 
performances of the proposed method can be clearly seen 
in the figure. Generally, along with the decreasing of � , the 
number of function evaluations increases and the accuracy 
becomes higher. The proposed method is quite robust if � 
is set as 2%.

Also note that learning function U can also be utilized in 
ALK-Pfst. However, U is not robust which may cause the 
early stop of learning process. In one test, learning function 
U is utilized in the ALK-Pfst method and the comparison of 
training points obtained by U and ERF is given in Fig. 3. It 
can be seen that the boundary of failure and safety has four 
branches and the upper left one is coarsely approximated by 
U. This may be because rare initial training points are placed 
around the upper left branch. U is too local which tends to 
find new training points around existing training points. In 
contrast, all the four branches are finely approximated by the 
modified ERF in this test. The modified ERF is more robust 
than U and is more proper to ALK-Pfst.

According to the membership function, the region in 
which G(�) > 0 is the totally safe region, the region in which 
G(�) < −0.1 is the complete failure region and the region 
where −0.1 ≤ G(�) ≤ 0 is the fuzzy failure region. As shown 
in Fig. 3, the region bounded by G(�) + 0.1 = 0 and G(�) = 0 

is the fuzzy failure region. The existence of fuzzy failure 
region is the main difference between the profust RA and 
the traditional RA. If the fuzzy failure region is ignored and 
treated as the failure region, the failure probability of G(�) < 0 
calculated by MCS will be 0.0022. That is larger than the pro-
fust failure probability.

6.2 � A nonlinear oscillator

The second example is a nonlinear oscillator taken from [46, 
53]. Several methods have been used to solve this problem. 
The performance of the proposed method is compared with 
other methods to show its advantage. The performance func-
tion is defined as:

where �0 =

√(
w1 + w2

)
∕m . Six variables exist in this 

example and they are given in Table 2. The membership 
function of the failure state is assumed as the Cauchy form 
with parameters c1 = −0.1 and c2 = 0.001.

The results of different methods are given in Table 3. 
Again, it can be seen that the proposed method is apparently 
more efficient than other methods in this example. Only 
about 35 function evaluations are cost while very accurate 
results are obtained by ALK-Pfst. Although the performance 
function is very simple, DS-AK and AK-MCS#2 need quite 
a lot of function calls. That is because they should approxi-
mate the boundary of failure and safety at different thresh-
olds. With the same size of candidate points, about 20 more 

(40)G(�) = 3r −

||||||
2F1

m�2
0

sin

(
�2
0
t1

2

)||||||
,

Table 2   Random variables of the nonlinear oscillator

Variable Distribution Mean Cov

m Normal 1 0.05
w
1

Normal 1 0.1
w
2

Normal 0.1 0.01
r Normal 0.5 0.05
t
1

Normal 1 0.2
F
1

Normal 1 0.2

Table 3   Results of the nonlinear oscillator with different methods

a The results come from [46]

Method MCS DS-AKa AK-MCS#2a AK-MCS#1 ALK-Pfst

Ncall 105 91 179 56.5 35.0
P̃F̃

0.0164 0.0160 0.0156 0.0163 0.0166
Cov 2.45% 1.30% 1.31% 2.45% 2.44%
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Fig. 4   Evolution of predicted failure probability and estimated error 
(Example 5.2)
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function evaluations are needed by AK-MCS#1 than ALK-
Pfst. That is because the stopping condition of AK-MCS#1 
is very conservative.

The learning processes of ALK-Pfst and AK-MCS#1 are 
given in Fig. 4. It can be seen that along with the absorp-
tion of new training points, the prediction accuracy of both 
methods is improved. However, after absorbing 20 ones, 
little improvement occurs. However, AK-MCS#1 continues 

learning and a quantity of training points are added. The 
prediction error estimated by Eq. (36) during the learning 
process is given in Fig. 4. It can be seen that the proposed 
technique properly estimates the error of Kriging model. 
Aided by the error estimated technique, the proposed method 
timely terminates the learning process and only several addi-
tional points are added.

Also note that randomness exists in the proposed method. 
In addition, the parameter of prescribed error threshold γ will 
influent the accuracy and efficiency of the proposed method. 
To demonstrate the robustness and variation, the performance 
variation of 20 runs along with different error thresholds is 
offered in Fig. 5. In this figure, the information on the mean 
and worst accuracy (efficiency) can be obtained. It can be seen 
that, the efficiency will degenerate if the stopping condition 
becomes stricter. In general, the estimated error is smaller 
than the true error. However, the fact reverses sometimes in 
the worst case. Therefore, it is recommended to set the error 
threshold as a little small for conservation.

Fig. 5   Boxplots of true relative 
error and Ncall VS error thresh-
old γ (Example 5.2)
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Table 4   Random variables of the creep–fatigue failure problem

Variable Distribution Mean Standard 
deviation

Nc Lognormal 5490 1098
Nf Lognormal 17,100 3420
nc Lognormal 549 109.8
nf Lognormal 400 800
�
1

Normal 0.42 0.084
�
2

Normal 6.0 1.2

Table 5   Results of Example 5.3 
with different methods

a The results come from [42]

Case Method MCS SSa ISa AK-MCS#1a ALK-Pfst

Case 1 (a1 = 0, a2 = 0.1) Ncall 4.800 4.899 × 10–4 4.756 4.75 × 10–4 4.791
P̃F̃(× 10–4) 2 × 106 6 × 104 4000 155 78.5
Cov 3.23% 4.84% 3.71% 3.24% 3.23%

Case 2 (b1 = 0, b2 = 0.052) Ncall 2 × 106 6 × 104 4000 132 78.6
P̃F̃(× 10–4) 4.107 4.031 4.124 4.086 4.077
Cov 3.49% 4.20% 3.46% 3.49% 3.50%

Case 3 (c1 = 0, c2 = 0.001) Ncall 2 × 106 6 × 104 4000 228 76.7
P̃F̃(× 10–4) 7.064 6.672 7.123 7.008 7.046
Cov 2.66% 3.20% 2.86% 2.67% 2.66%
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6.3 � A creep–fatigue failure problem

The third example is obtained from [42]. The proposed method 
is compared with methods in [42] in efficiency and accuracy. 
The performance function in this example describes the creep- 
and fatigue behaviors of a material. It is obtained from fitting 
the experimental data which is given as[42, 54]

(41)

G(�) = 2 − exp
(
−�1Dc

)
+

exp
(
�1
)
− 2

exp
(
−�2

)
− 1

(
exp

(
−�2Dc

)
− 1

)
− Df,

where Dc is the amount of creep damage and Df is that 
of fatigue damage; �1 and �2 are parameters which can be 
obtained by experimental data. Only one level of creep and 
fatigue loading is assumed in this example. Therefore, the 
damage can be computed by

in which nc is the number of creep loading cycles and Nc is 
the total number of cycles to creep failure at the creep load-
ing level. Similarly, the fatigue damage can be obtained by

in which nf is the number of fatigue loading cycles and Nf 
is the total number of cycles to fatigue failure at the fatigue 
loading level. Six random variables exist in this example, 
and they are given in Table 4. The failure state is assumed 
to be fuzzy. Three kinds of membership functions are con-
sidered, as shown in Table 5.

The results of different methods are given in Table 5. 
ALK-Pfst is performed 10 times and average results are 
listed in this table. Advanced sampling methods, i.e., SS and 

(42)Dc =
nc

Nc

,

(43)Df =
nf

Nf

,
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Fig. 6   Evolution of predicted P̃
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 and estimated error (Example 5.3)
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Fig. 7   Geometry model and finite element model of the missile wing [49]

Table 6   Random variables of the missile wing structure

Variables Distribution Mean Standard 
deviation

s1 ~ s2 (mm) Normal 1 0.05
r3 ~ r6 (mm) Normal 2 0.1
t1 ~ t5 (mm) Normal 2 0.1
P (MPa) Normal 0.18 0.009
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IS, offers very accurate results with fewer function evalua-
tions than MCS. In addition, the proposed method is remark-
ably more efficient than other methods. Especially, ALK-Pfst 
saves 60–150 function evaluations than AK-MCS#1.

In one test of Case 3, ALK-Pfst and AK-MCS#1 are 
implemented with the same candidate points and initial 
training points. The varying processes of the predicted 
P̃F̃ are given in Fig. 6. It can be seen that both methods 
in accuracy can converge to the true value along with 
the involvement of new training points. However, in 
AK-MCS#1, after the predicted accuracy has been very 
high, a very large number of redundant training points 
are involved. In contrast, only several additional training 
points are added by the proposed method. The evolution-
ary process of estimated error in the proposed method is 
also given in the figure. The estimated error gradually 
becomes smaller and smaller during the process. By moni-
toring the prediction error of P̃F̃ , the learning process can 
be timely terminated and a large quantity of function calls 
can be saved without loss of accuracy.

6.4 � Engineering application: a missile wing

A missile wing[49], comprising ribs, spars, and skins, is 
investigated in this example. The performance function is 
implicit and the finite element software is required to solve 
it. The application of the proposed method to practical 
engineering problems can be verified in this example. The 
detailed geometry and finite element model of the wing are 
shown in Fig. 7. The Young’s modulus of the skins is 70 GPa 
and that of the ribs and spars is 120 GPa. The wing is fixed 
on the main boy of missile by a mount. During cruise of the 
missile, the upper skin of the wing is subject to a uniform air 
pressure P. The thicknesses of the skins, the ribs from No. 
3 to 5, and the spars are denoted as si (i = 1, 2), ri(i = 3, 4, 5, 
6), and ti(i = 1, 2,⋯, 5).

To maintain the flight accuracy of the missile, the maximum 
deflection of the wing should not exceed 11 mm according to the 
design requirement. Therefore, the performance function of this 
problem is defined as

in which x =
[
s1, s2, r3,… , r6, t1,… , t5,P

]
 is the vector of 

random variables and Δ is the maximum deflection of the 

(44)G(x) = 11 − Δ(x),

wing. Considering that the design requirement—the deflec-
tion should not exceed 11 mm—is subjectively prescribed, 
fuzzy failure state is assumed in this problem. A linear mem-
bership functions with parameters a1 = 0 and a2 = 0.1 are 
used here to describe the failure state. The distributions of 
the twelve random variables are listed in Table 6.

The results of different methods are given in Table 7. 
Note that, one time of finite element analysis needs about 
27 s on a workstation with an Intel® Xeon E5-2650 v4 CPU 
and 32 GB RAM. Therefore, it is very hard to obtain the 
true P̃F̃ by MCS. Therefore, 500 training points uniformly 
distributed throughout a rather large space are generated 
and a “global” Kriging model is built to approximate the 
true performance function. MCS with 105 samples is used to 
estimate P̃F̃ based on the global Kriging model. In addition, 
the solution is regarded as the benchmark of other methods. 
AK-MCS#1 and ALK-Pfst are run ten independent times, and 
the average results are outlined in the table. Table 7 shows 
that both methods have very high accuracy while ALK-Pfst 
doubles the efficiency compared with AK-MCS#1.

The traditional RA is also performed based on the global 
Kriging model. If the epistemic uncertainty in the failure 
state is ignored, the failure probability will be 0.0107 which 
is smaller than P̃F̃ in this example. If the epistemic uncer-
tainty exists while the wing is designed according to the 
traditional RA, the design may be a little ideal which may 
not satisfy the requirement of profust RA.

7 � Conclusion

Profust RA is researched and a new method based on the 
ALK model is proposed in this paper. The new method is 
termed ALK-Pfst. In ALK-Pfst, two main contributions are 
made: (1) a modified ERF is proposed as the learning func-
tion. The new learning function measures the expected risk 
that Kriging model wrongly predicts the sign of performance 
function given an arbitrary threshold. The new learning 
function makes the learning process more robust. (2) The 
prediction error of profuse failure probability is deduced 
based on the Kriging prediction information and the Central 
Limit Theorem. With the prediction error, the accuracy of 
Kriging model can be monitored in real time and the learn-
ing process can be timely stopped.

Four examples are utilized to investigate the performance 
of the proposed method and other state-of-the-art methods. 
The results validate the efficiency and robustness of ALK-
Pfst outperform other methods with little loss of accuracy. 
However, it should be noted that high-dimensional problems 
and problems with small failure probabilities are not tested 
in this paper. For high-dimensional problems, exploring the 
optimal parameters of Kriging model by a global optimi-
zation algorithm will take a long time [55]. For problems 

Table 7   Results of Example 5.4 with different methods

Method Global Kriging AK-MCS#1 ALK-Pfst

Ncall 500 52.1 25.1
P̃F̃

0.0136 0.0137 0.0137
Cov 2.69% 2.69% 2.68%
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with small failure probabilities, Kriging model should make 
predictions at a large population of candidate samples [49], 
which is also pretty time demanding. To overcome those 
problems, the fusion of the ALK model with dimensionality 
reduction techniques [55] and importance sampling methods 
[49] will be our future research emphases.
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