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Abstract
The shear strength parameters (SSPs) of slip soil, which control the stability and evolution process of a landslide, exist some 
uncertainty that should be characterized and considered significantly in the stability analysis. In this paper, a typical reservoir 
landslide with double-sliding zones is taken as a case study. The statistical characteristics of SSPs in sliding zones are first 
analyzed using the geostatistical method and the Copula method, especially the spatial variation features, scales of fluctua-
tion, and correlation of SSPs. Then, random variable models for the shallow sliding zone and nonstationary random field 
models with various vertical scales of fluctuation for the deep sliding zone are established separately. Finally, by employing 
the nonintrusive stochastic finite element program, the fluid–solid numerical simulation of a real hydrological year is car-
ried out to obtain the landslide displacement, element failure probability, and factor of safety. The results demonstrate that 
incorporating spatial variability into the SSPs of slip soil led to a fundamental change in landslide stability and deformation. 
Our study provides some references for the reliability assessment of reservoir landslides considering the uncertainties and 
the spatial variation characteristics of SSP in the sliding zone.

Keywords Reservoir landslide stability · Double-sliding zones · Shear strength parameters · Spatial variability · Non-
intrusive stochastic finite element simulation

1 Introduction

Reservoir landslide is a common type of geological hazard 
in the Three Gorges Reservoir Area (TGRA) and causes 
serious economic losses and casualties [1]. The deforma-
tion and stability analysis of reservoir landslides are very 
important for the prevention and mitigation of disaster. The 
sliding zone is a critical structure that controls the evolu-
tion process and deformation characteristics of a landslide 
and is the result of the differential movement of the sliding 
mass [2, 3]. For the slip soil which goes through the pro-
cess from the original weak rock layer to the shear rupture 

zone, the physical and mechanical properties, especially the 
SSPs, are critical for landslide stability analysis and land-
slide prevention.

With regard to the reservoir landslide, some tests and 
measurements, such as the geological investigation [3, 4], 
laboratory test [5–8], in situ experimental station [3, 9], 
and structural observation [10, 11], have been carried out to 
explore property characteristics of slip soil. Several research 
results show that the microstructure, material composition, 
particle-size distribution, and SSPs in various spatial posi-
tions of the sliding zone varied significantly [8, 12]. And the 
SSPs are related to the material composition, particle-size 
distribution, water content, microstructure, and stress dis-
tribution. The spatial variability of SSPs exists objectively 
in the sliding zones. The random deposition, geological 
movement, hydrogeological environment, and stress distri-
bution are the reason for the spatial variability of property 
characteristics [13, 14]. When considering the significance 
of the SSPs in the sliding zone to the stability and evolution 
process of landslides, it is necessary to investigate the effect 
of the spatial variability on the reservoir landslide stability.
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With the development of the reliability method [15–17], 
random field method [18–22], and Bayesian method [23–25], 
the uncertainty and spatial variability of soil properties have 
been widely studied in slope or landslide engineering. The 
random variable (RV) model and spatial variation model 
are usually established to characterize the variability of soil 
properties. In addition, the effects of variability of soil prop-
erties on slope stability are generally explored. However, for 
the spatial variability of SSPs, many scholars focus on the 
simple slope by building the stationary random field model 
[18, 20] and the nonstationary random field (NSRF) model 
[19, 21]. There are few researches on the spatial variability 
of SSPs of reservoir landslide, especially the sliding zone. 
Most research concerning the variability of SSPs of slip 
zone soil is currently focused on RV models [26, 27], which 
could not consider the inherent spatial variability. The dif-
ficulties and economic costs of excavating and sampling in 
landslide investigations may be the main reason to hinder 
the application of spatial variability.

The characterization of the correlation between cohe-
sion ( c ) and friction angle ( � ) plays an important role in the 
establishment of uncertain models. It has significant effects 
on the stability analyses of a landslide. At present, the c and 
� are usually treated as independent random variables [19, 
21], and same distribution types (e.g., normal distribution, 
lognormal distribution) to simplify the calculation. How-
ever, in geotechnical engineering, the negative correlation 
between c and � exists in some rock and soil mass [12, 28], 
and there are many correlation structures for the SSPs, not 
only the Gaussian [29]. The Copula method, which can iden-
tify the optimal correlation structures of c and � , provides 
a general and flexible way for constructing the joint prob-
ability distribution of multivariate data. Using this method, 
the negative correlation of c and � can be well considered 
in the uncertain models.

Huangtupo No. 1 riverside sliding mass (No. 1 landslide) 
is the sublandslide of the Huangtupo landslide [3–5, 8–10], 
which is the largest reservoir landslide in TGRA. Multistage 
geological investigations and a large in situ experimental 
station have been applied to the No. 1 landslide. Researches 
on the sliding zone of No. 1 landslide, including the evolu-
tion characteristics [3], macro-and micro-structural behavior 
[7, 8, 10], creep properties [30], shear strength [8, 9, 30, 
31], and deformational characteristics [3, 4, 31], have been 
extensively investigated. These studies show that the spatial 
variability of the sliding zone exists objectively in the No. 
1 landslide. In addition, a preliminary study of the spatial 
variability of the sliding zone based on the laboratory test 
and fractal dimension has been explored by Lu et al. [8]. 
However, for the consideration of the spatial variability of 
SSPs, there is no research on the deformation and stability 
analysis of the No. 1 landslide.

This paper presents a framework for uncertain model 
construction of sliding zone and stability analysis of res-
ervoir landslide. A series of analyses and comparisons are 
performed to explore the effect of SSPs uncertainty of slip 
soil on the No. 1 landslide stability. First, statistical char-
acteristics, spatial trend characteristics, and scales of fluc-
tuation (SOFs) are analyzed and evaluated for the SSPs in 
sliding zones. Secondly, the construction processes of slid-
ing zone models are designed with the consideration of the 
uncertainty and the correlation of SSPs. On this basis, a 
nonintrusive numerical simulation program about the model 
database input and database output is provided. The numeri-
cal simulation of uncertain models is carried out under a 
hydrological year condition. Finally, parameter variation 
characteristics, landslide surface displacements, factor of 
safety (FS), and element failure probabilities (EFPs) are 
explored for various uncertain models. A few concluding 
remarks are presented.

2  Methodology

2.1  Copula method

Copulas are multivariate distribution functions that couple 
a multivariate distribution to its one-dimensional marginal 
distribution. According to Sklar’s theorem, a bivariate dis-
tribution, F(c,�) , can be expressed in terms of a Copula 
function C

(

u1, u2;�
)

.

where � is a Copula parameter describing the dependence 
between c and � , it can be calculated from the Kendall rank 
correlation coefficient � determined by the Eq. (2). The mar-
ginal distributions u1 = F1(c)  and u2 = F2(�).

From Eq. (1), the bivariate probability density function 
f (c,�) of c and � can be obtained as

where D
(

u1, u2;�
)

= �2C
(

u1, u2;�
)/

�u1�u2 is a Copula 
density function, f1(c) and f2(�) is the marginal density 
functions of c and � . The best-fit Copula can be identified 
by using the Akaike Information Criterion (AIC) and the 
Bayesian Information Criterion (BIC) [28, 29]. A Copula 
corresponding to the smallest AIC value and BIC value is 
the best-fit Copula.

(1)F(c,�) = C
[

F1(c),F1(�);�
]

= C
(

u1, u2;�
)

,

(2)� = 4∫
1

0 ∫
1

0

C
(

u1, u2;�
)

dC
(

u1, u2;�
)

− 1.

(3)f (c,�) = D
(

u1, u2;�
)

f1(c)f2(�),
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2.2  Random field method

According to the spatial variation characteristics of rock and 
soil structures and properties, the rock and soil properties xi , 
at any location i , can be divided conveniently into a deter-
ministic trend component ti and a residual component �i as 
follows [13]:

An NSRF model needs to be established once the trend 
component ti changes obviously with locations i[19, 21]. 
It is related to the loading history and depositional condi-
tions. After the trend component is removed, the residual 
component �i can be characterized by a probability density 
function with zero mean and standard deviation SD� . And 
the SD� can be evaluated as

where n is the number of data points [14].
In this study, considering the change of the trend compo-

nent along the horizontal direction, a 2D NSRF model of c 
and � in the deep sliding zone is built. According to formula 
(4), the spatial variability of soil properties Hc,�(x, y) can be 
described by

where x , y are the coordinates in the 2-D domain. Hc,�

0
(x, y) 

is a stationary random field with the mean uHc,�

0
 and the 

standard deviation �Hc,�

0
 of c and � . bc,�(x) is a deterministic 

trend function regard to the distance x . Among them, the 
�Hc,�

0
 is equal to the standard deviation SD� of the residual 

component, the uHc,�

0
 and the bc,�(x) can be determined by 

fitting the trend component.
The midpoint method is employed to discretize the sta-

tionary random field Hc,�

0
(x, y) , because of its construct 

conveniently and function effectively [21]. During the cal-
culation process, some common autocorrelation functions 
can calculate the correlation coefficient �

(

�x, �y
)

 of soil 
properties at the centroids of elements. Taking the Gauss-
ian autocorrelation function as an example, �

(

�x, �y
)

 can be 
characterized by:

(4)xi = ti + �i.

(5)SD� =

√

√

√

√

1

n − 1

n
∑

i=1

(

�i
)2
,

(6)Hc,�(x, y) = H
c,�

0
(x, y) + bc,�(x)x,

(7)�
(

�x, �y
)

= exp

(

−�

(

�2
x

�2
h

+
�2
y

�2
v

))

,

where �x, �y are the horizontal and vertical absolute dis-
tances, respectively, and �h , �v are the horizontal and verti-
cal SOFs, respectively.

Autocorrelation distance (or SOF) is used to describe the 
spatial extent within which soil properties show a significant 
correlation [32]. In order to assess the SOF, the autocorrela-
tion function (ACF) method [33] is adopted in this paper. By 
fitting the sample ACF data curves with different analyti-
cal ACF models, the optimal analytical ACF model can be 
determined, and the analytical ACF model parameter is the 
autocorrelation distance.

2.3  Construction procedures for uncertain models

In order to explore the effect of the randomness and spatial 
variability of SSPs on the stability of the No. 1 landslide, the 
NSRF model of the deep sliding zone and the RV model of 
the shallow sliding zone are constructed separately in this 
study. And due to the randomness and the spatial variability 
of input parameters, the finite element software needs to 
run many times. Some input parameters in study regions are 
different for different elements. Therefore, we developed an 
interface for ABAQUS software using MATLAB software. 
The basic implementation procedures, as can be observed 
in Fig. 1, are as follows:

(1) Generate the independent standard normal distribu-
tion variable � by using the Latin hypercube sampling tech-
n i q u e . � = [

�
c
, ��

]T
=

[

�
c
=

(

�
c,1, �c,2,⋯ , �

c,n

)T
, �� =

(

��,1, ��,2,⋯ , ��,n
)T
]

 . 
Where n is the number of elements of the sliding zone.

(2) Identify the optimal Copula function of SSPs data in 
two sliding zones from Gaussian, Frank, Plackett, and No.16 
Copulas with the AIC and BIC criteria.

(3) Obtain the dependent standard uniform variable U 
from � based on the optimal Copula function and the Copula 
parameter �.

(4) Based on the above steps, the RV and NSRF models 
can be obtained using the following steps.

The basic construction step of the RV model is below:

(a) Translate the dependent standard uniform random vari-
able U into the random variable H with the distribution 
of c and � based on the equivalent possibility transfor-
mation rule.

U =
[

U
c
,U�

]T
=

[

U
c
=

(

U
c,1,Uc,2,… ,U

c,n

)T
,

U� =

(

U�,1,U�,2,… ,U�,n

)T
]

.
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Fig. 1  Schematic diagram of the calculation and analysis flow
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  The basic construction steps of the NSRF model are 
below:

(b) Translate the dependent standard uniform random 
variable U into the dependent normal random variable 
� =

[

�c, ��
]T.

(c) Calculate the correlation coefficient matrix consisted 
of correlation coefficients �

(

�x, �y
)

 between any two 
elements. And obtain the lower triangular matrix L0 
by factoring the correlation coefficient matrix with the 
Cholesky decomposition algorithm.

  Generate the dependent standard normal random 
field Γ using the formula Γ = �L0 , and translate the 
dependent standard normal random field Γ into the 
real distribution random field of c and � based on the 
equivalent possibility transformation rule. By the end 

H =
[

H
c
,H�

]T
=

[

H
c
=

(

H
c,1,Hc,2,… ,H

c,n

)T
,

H� =

(

H�,1,H�,2,… ,H�,n

)T
]

.

of this step, the stationary random field model Hc,�

0
(x, y) 

can be obtained.
  Calculate the NSRF model Hc,�(x, y) by Eq. (6).

The basic steps of the noninvasive stochastic finite ele-
ment are described as follows:

(1) Build a 2D landslide finite element model in ABAQUS 
CAE using Part, Property, Boundary, Load, Step, Mesh, 
and Job modules. Save the model input database to an 
initial INP source file (e.g., Job-1.inp). Then, extract 
the center coordinates of elements in the sliding zone.

(2) Generate input parameters (e.g., c and � ) through the 
process in Sect. 2.3. Then, modify the material section 
of the initial INP source file. And generate the complete 
INP source files.

(3) Call ABAQUS kernel in batch based on the MATLAB 
platform, the INP source files and user subroutines files 
(e.g., Job-1.for) can run in a loop. And generate the 
ODB source files for each Job.

Fig. 2  Location and a plane view of the study area, a China, b Huangtupo landslide, c No. 1 landslide
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(4) Call PYTHON scripts based on the MATLAB platform 
to extract the Ftrial , displacements, stress, and strain 
data.

3  Case study

3.1  Study area and data collection

The Huangtupo landslide, located on the south bank of the 
Yangtze River in the TGRA, is situated in Badong County, 
Hubei Province, China. As shown in Fig. 2, the Huangtupo 
landslide is subdivided into four regional landslides, namely, 
No. 1 riverside sliding mass, No. 2 riverside sliding mass, 
Garden Spot landslide, and Substation landslide [3–5]. The 
No. 1 landslide has a length of 770 m from north to south 
and a width of 480 m from east to west. Current literatures 
show that the No. 1 landslide has the poorest stability and 
largest deformation [3]. And the No. 1 landslide composed 
of two sublandslides underwent at least two movement peri-
ods. The formation timing of the shallow sliding zone is 
about 40 ka or 50 ka (ka stands for a thousand years), the 
formation timing of the deep sliding zone is approximately 
100 ka.

To study the No. 1 landslide geological model with dou-
ble sliding zones, the cross section A–A´, which has been 
proved and used by some researchers [31, 34], is selected as 
the studied profile. As shown in Fig. 3, branch No.3 passes 
through the two sliding zones with A and B points. Point 
A is about 23–33 m away from the main tunnel. Point B is 
about 135–140 m away from the main tunnel. The research 
results show that the dips and dip directions of sliding zones 
in the two points are very different [3, 34]. And the two 
inclinometer profiles of boreholes, HZK5 and BDZK5, are 
drawn to show the position of significant deformation. It can 
be seen that two points with depths of 55 m and 76 m have 
a relatively large displacement in the borehole HZK5. And 
the borehole BDZK5 shows that locations with depths of 
41 m and 63 m have a relatively large displacement. These 
results imply that the No. 1 landslide has a double-sliding 
zone in the A–A´ cross section. The investigation data show 
that the thickness of the deep sliding zone is between 0.2 
and 10.0 m, and the thickness of the shallow sliding zone is 
between 0.2 m and 8.0 m.

In the past years, investigations from the Hubei Survey 
and Design Institute for Geohazard Engineering [35] and 
the Three Gorges Research Center for Geohazards of the 
China University of Geosciences [36] have been carried out 

Fig. 3  A–A´ geological profile of the No. 1 landslide
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in the No. 1 landslide in detail. Some test data of SSPs in 
double-sliding zones are obtained [9, 30, 31, 35–37]. The 
data obtained from systematic investigations and laboratory 
tests are collected in Table 1. The data obtained from direct 
shear tests or triaxial tests provide valuable information to 
study spatial variation characteristics of SSPs.

3.2  Statistical analysis

As can be seen from Fig. 2, the collected data are dispersed 
in the No. 1 landslide, and most sampling points are located 
in the deep sliding zone. The plane position of data is illus-
trated in Fig. 4.

In Fig. 4, the x- and y axis represent the plane coordinate. 
The z axis represents the value of c or � . There is a clear 
trend that the c increases along the sliding direction, while 

the � decreases. And the trend can be estimated by a low-
order polynomial using the ordinary least squares method. 
The change of soil materials by location is summarized. At 
the leading edge of the landslide, the material of the deep 
sliding zone is silty clay with gravel or breccia, the cohesion 
ranges from 88 to 222 kPa, and the internal friction angle 
ranges from 9° to 19°. In the middle part of the landslide, 
the material of the sliding zone is silty clay with gravel, the 
cohesion ranges from 43 to 100 kPa, and the internal fric-
tion angle ranges from 9° to 18°. At the trailing edge of the 
landslide, the material of the sliding zone is silty clay with 
gravel, the cohesion ranges from 10 to 54 kPa, and the inter-
nal friction angle ranges from 8° to 26.6°. Taken together, 
these results suggest that c and � of the deep slip soil have a 
regional trend in the sliding direction [8], this trend should 
be considered to build a geological model of the landslide.

Table 1  Data of SSP in sliding 
zones

Note: The various corner marks (HI, CI, Li, Hua, Tan, Li 2018) denote data sources from literatures (HIGH 
[35], CISPD [36], Li et al. [30], Hua, [37], Tan, [9], Li et al. [31]) respectively

Location Test sites c/KPa �∕◦ Test sites c/KPa �∕◦ Test sites c/KPa �∕◦

Deep sliding zone Tj3HI 222 15 HZK7HI 100 9 HZK13HI 80 12
Tj3HI 124 19 HZK7HI 70 18 HZK13HI 43 12
Tj2HI 128 9 TP2HI 94 18 HZK14HI 36 8
Tj2HI 170 12 ZK9HI 13 26.1 TC9HI 88 14
BZK6CI 25 26.3 ZK8CI 23 19.3 ZK5CI 28 16.7
AZK6CI 10 26.6 ZK4CI 23 17.2

Shallow sliding 
zone and weak 
zone

HZK13HI 50 15 HZK1HI 59 14 HZK8HI 15 13
ZK9CI 23 25.1 ZK8CI 20 14.4 AZK6CI 23 25.1
ZK9CI 10 22.8 ZK8CI 23 19.1 AZK6CI 10 22.8
BZK6CI 18 17.7 ZK5CI 22 18.8 BR3Hua 36 15.7
BZK6CI 26 23.7 BR3Hua 49 18.8 BR3Tan 30.2 14.7
ZK4CI 13 27.2 BR3Li 2018 23 19.9 BR3Tan 20.2 19.1
ZK5CI 22 17.7 BR3Li 2018 18.1 17.5 BR3Li 12 26.4

Fig. 4  Plane position and trend variation of SSP in the deep sliding zone, a Cohesion. b Internal friction angle
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In this paper, the one-sample Kolmogorov–Smirnov test 
is performed to assess the distribution types of c and � from 
the normal and lognormal distributions (see Fig. 5). From 
the P values of the Kolmogorov–Smirnov test, the optimum 
probability distribution type of c is the lognormal distribu-
tion. However, the hypotheses that the � comes from the 
normal and lognormal distributions are not rejected for a 
significance level of 0.05. Fortunately, thousands of SSPs 
groups of sliding zone soil in the TGRA are counted by 
Luo et al. [38] and Li et al. [39]. And research results show 
that the c and � variables are supposed to obey the lognor-
mal distribution and the normal distribution, respectively. 
Therefore, in this study, the lognormal distribution is used 
for the variable � . The results obtained from the preliminary 
statistical analysis of c and � in the double-sliding zones are 
presented in Table 2. There is a negative correlation between 

c and � , it is consistent with the results reported in geotech-
nical engineering [28, 29].

In order to build the joint probability distribution of c and 
� , the Copulas (e.g., Gaussian, Frank, Plackett, and No.16 
Copulas) that allow a wide range of negative correlation 
coefficients are selected to characterize the dependence [28, 
29]. As shown in Table 3, based on the smallest AIC and 
BIC values, the optimal Copula function of SSPs of the deep 
sliding zone is the Plackett Copula, and that of the shallow 
sliding zone is the Gaussian Copula. Based on the best-fit 
Copula function and the Copula parameter � , the dependent 
random variables of c and � can be generated.

3.3  Determination of the horizontal SOF

According to the distribution characteristics of sampling 
positions shown in Fig. 2, the locations of some sampling 

Fig. 5  Histogram of c and �

Table 2  Statistical values of SSP

Shear 
strength

Counter Mean Standard 
devia-
tion

Coefficient 
of variation

Minimum Maximum Spearman 
correlation 
coefficient

Distribution type

Deep sliding zone c 17 75.1 60.1 0.80 10 222 − 0.56 c is logarithm normal and � 
is normal� 17 16.3 5.9 0.36 8 26.6

Shallow sliding zone c 21 24.9 13.3 0.54 10 59 − 0.34
� 21 19.4 4.3 0.22 13 27.2

Sliding zone c 38 47.3 47.9 1.01 10 222 − 0.61
� 38 18.1 5.3 0.29 8 27.2

Table 3  AIC and BIC values of four Copulas

Bold values indicate the minimum value of the AIC and BIC values

Data type Gaussian Copula [ � , AIC, 
BIC]

Plackett Copula [ � , AIC, 
BIC]

Frank Copula [ � , AIC, BIC] No.16 Copula [ � , AIC, BIC]

Deep sliding zone –, − 5.3246, − 4.4342 0.1566, − 5.6720, − 4.7817 –, − 5.1864, − 4.2960 –, − 3.6653, − 2.7749
Shallow sliding zone − 0.3404, − 1.0112, 0.0334 –, − 0.7587, 0.2859 –, − 0.7032, 0.3413 –, − 0.8393, 0.2052
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points in the shallow sliding zone are relatively concen-
trated. It is unrealistic to obtain the spatial variation charac-
teristics of SSPs of the shallow slip soil. Therefore, the deep 
sliding zone is presented as the primary example to obtain 
the SOF. In addition, there is no sufficient data to calculate 
the vertical SOF, because some sampling elevations are not 
accurate, and the sampling points are relatively concentrated 
in the vertical direction. Fortunately, it is more rational for 
the longitudinal section A–A´ used in this study to calculate 
the horizontal SOF. And the vertical SOFs are assumed to be 
0.25, 0.5, 0.75, and 1.0 times of the horizontal SOF.

In order to obtain the horizontal SOF, which need uni-
formly distributed sample sites and much data [33], some 
interpolation methods [32], which can consider the spa-
tial correlation of the original data, should be chosen to 
obtain a reliable estimate of the missing data at locations 
where it should have been measured in the profile A–A’. 
Because of the robustness of Kriging, even with a naive 
selection of parameters, the method will do no worse than 
the conventional spatial interpolation method [40]. And 
many researches have demonstrated that Kriging is a better 
interpolation method with high accuracy and low bias. The 
universal Kriging method, which can consider the variation 
tendency of data [41], is adopted in this paper.

ArcGIS software has powerful geostatistical analysis func-
tions, and the universal Kriging method can be easily applied 
in ArcGIS 10.1. In this study, the universal Kriging interpola-
tion is carried out using the interpolation tools available in 
the ArcGIS 10.1 geostatistical analyst module. The basic step 
is described in detail in the ESRI ArcGIS resource center. 
During the interpolation process, the trend is removed using 
the polynomial fitting tool, the order of the polynomial is set 
2, and the exponential function is selected as the kernel func-
tion and the semi-variogram. Log transformation is used for 
the variable c , and leave the default settings. The interpola-
tion results of c and � are shown in Fig. 6.

From the trailing edge to the front edge of No.1 landslide, 
sixty data points are uniformly distributed in section A–A´. 
The c and � values with the distance are plotted in Fig. 7. 
As can be observed, there is an increasing trend in Fig. 7 (a) 
and a decreasing trend in Fig. 7b. And trend removal by least 
squares regression has been utilized. The stationary residuals 
are drawn separately in Fig. 7 c, ), then the standard devia-
tion SD� of c and � are calculated using the Eq. (5).

The sample ACF of the stationary residuals is firstly cal-
culated. Then, the single exponential and Gaussian mod-
els, which are two commonly used analytical ACF models, 
are used to fit the sample ACF. The ACF fitting curves are 
drawn in Fig. 7e, f, and the fitting results are tabulated in 
Table 4. It can be noted that the more suitable model is the 
Gaussian model with a higher coefficient of determination. 
The horizontal SOFs of c and � are 38.4 m and 54.1 m, 
respectively. The autocorrelation distance reported by El-
Ramly et al. [13] in the horizontal varies between 10 

√

� 
m and 40 

√

� m. The average of c and � horizontal SOFs is 
used to establish random field models.

3.4  Numerical simulation

The finite element model of the A–A´ section is built as 
shown in Fig. 8. The landslide model is divided into 2301 
linear quadrilateral elements of type CPE4RP, coupling the 
pore pressure and the displacement. The linear quadrilateral 
element can meet the requirement of displacement accuracy 
and has low computational cost. The shallow sliding zone 
has 107 elements, and the deep sliding zone has 256 ele-
ments. The ideal elastic–plastic and Mohr–Coulomb failure 
criteria are adopted. And the bottom displacements of the 
model in vertical and horizontal directions are restrained. 
The deep sliding surface is considered an impervious bound-
ary. The landslide surface below the reservoir water level 
is set to the pore pressure and pressure boundaries. The 

Fig. 6  Interpolation results of 
c and �
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Fig. 7  a, b Are the estimated data of c and � . c, d Are the stationary residuals of c and � . e, f Are the ACF fitting curves of c and �
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landslide surface above the water level is the free overflow 
boundary or rainfall boundary.

Based on the statistical parameters shown in Table 2 and 
the construction procedures described in the 2.3 section, the 
SSPs of the shallow sliding zone are generated using the RV 
model. And the SSPs of the deep sliding zone are generated 
using the NSRF model. Different vertical SOFs (e.g., 0.25 
�h , 0.50 �h , 0.75 �h , 1.00 �h , �h�h is the horizontal SOF) are 
used to establish various NSRF models. In addition to the 
SSPs of sliding zones, the Van Genuchten soil–water char-
acteristic curve (SWCC) is adopted to solve the seepage gov-
erning equation. The SWCC fitting parameters (e.g., 0.233, 

1.255) of a typical reservoir landslide [42] in TGRA are 
adopted. Other material parameters are presented in Table 5.

In this article, the strength reduction with the finite ele-
ment (SRFE) method [42–45] is adopted to determine the 
FS with the numerical nonconvergence criterion. The two 
sliding zones are selected as the strength reduction area 
to calculate the FSs of the whole No.1 landslide. And the 
FSs of various uncertain models in different time points 
are obtained using the ABAQUS restart analysis based on 
the local SRFE method. And the EFPs of various uncertain 
models in different time points are also obtained by using 
the element failure probability method [42].

Table 4  Fitting results of SOFs

Bold values indicate a higher coefficient of determination

Data type Trend function SD� SOF ACF models Coefficient of 
determination

c f
c
(x)  = 10.84 – 0.095x + (2.9E − 4)x2 3.19 38.4 Gaussian 0.582

30.5 Exponential 0.519
c f�(x)  = 24.8 – 0.031x + (1.62E − 5)x2 1.10 54.1 Gaussian 0.631

45.1 Exponential 0.552

Fig. 8  Finite element model of section A–A´ of the No.1 landslide

Table 5  Physical and mechanics parameters of materials [34]

Medium Unit weight 
(KN/m3)

Elasticity 
modulus 
(MPa)

Poisson ratio Cohesion (KPa) Internal fric-
tion angle (°)

Saturated hydraulic 
conductivity (m/d)

Void ratio

Shallow sliding mass 21.0 727.0 0.31 80 25 2.35 0.28
Deep sliding mass 23.0 2178.0 0.29 190 34 1.88 0.25
Shallow sliding zone 19.9 28.6 0.34 – – 0.76 0.24
Deep sliding zone 21.3 36.8 0.35 – – 0.24 0.23
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3.5  Simulation scheme

According to monitoring data of meteorological and hydro-
logical, the daily rainfall and reservoir water level of one 
hydrological year are shown in Fig. 9. The real daily rainfall 
condition is adopted, and we simplified the simulation con-
dition of the reservoir water as follows:

 Step 1. From 145 to 175 m, lasting 60 days, rising stage of 
reservoir water;

 Step 2. At 175 m reservoir water level, lasting 60 days, sta-
ble stage of reservoir water;

 Step 3. From 175 to 145 m, lasting 160 days, drawdown 
stage of reservoir water;

 Step 4. At 145 m reservoir water level, lasting 80 days, sta-
ble stage of reservoir water.

According to the annual monitoring data of groundwater 
level in borehole ZK4, the groundwater level is maintained 
at 210 m throughout the year [34]. On this basis, the ini-
tial groundwater level is determined by the steady seepage 
analysis in ABAQUS.

According to the deformation characteristics of the 
Huangtupo landslide [3, 34], the No.1 landslide is sta-
ble under this simulation condition. However, the 

Fig. 9  Monitoring data of the rainfall, reservoir water level, and GPS displacement in 1 year

Fig. 10  SSPs in the shallow sliding zone for different NSRF models a 0.25 �h , b 1.0 �h
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un-convergence problem may occur during the finite ele-
ment calculation, once c and � values in double sliding zones 
deviate from the actual situation. Certainly, other causes 
of un-convergence need be first excluded roughly. On this 
basis, we can use the above mechanism, which is a form of 
back analysis for parameters based on the landslide stabil-
ity, to eliminate some unreasonable parameters of c and � 
in double sliding zones. In this study, 1 000 realizations for 
uncertain models are carried out. The variation character-
istics of c and � are firstly analyzed. And then the landslide 
surface displacements, EFPs, and FSs are explored for dif-
ferent uncertain models.

4  Results

4.1  Parameter variation characteristics

Based on the convergence condition of 1000 numerical 
simulations, the variation characteristics of SSPs of double 
sliding zones are analyzed. For the SSPs of the shallow slid-
ing zone, 1 000 realizations of c and � are plotted in Fig. 10. 
The black dots represent the discarded parameters, while the 
red dots represent the remaining parameters, and the dark 
blue line is the dividing line. As can be seen from Fig. 10, 
there is a boundary between the discarded parameters and 
the remaining parameters. The region boundary is relatively 
straight due to the negative correlation of c and � . The dif-
ferences of SOF for two NSRF models have little influence 
on the dividing line by comparing Fig. 10a. b. The region of 
discarded parameters can be defined by � = − 0.37c + 19 , 
where c < 52 and 𝜑 < 19 . In this region, the mean of c and 
� are 20.66 kPa and 15.17°, respectively. Under the combi-
nation parameters of c and � over this region, the numerical 

simulation process is interrupted. The SSPs of the shallow 
sliding zone are not reasonable for the No.1 landslide.

For the purpose of studying variation characteristics of 
the SSPs of the deep sliding zone, the mean, maximum, 
and minimum of SSPs in the deep sliding zone are used to 
characterize the parameter variation in one realization. The 
statistical values of 1000 realizations are plotted in Fig. 11. 
It is apparent from this figure that no significant differences 
are found between the mean of the discarded parameters 
and the mean of the remaining parameters. The maximum 
and minimum of discarded parameters are within the ranges 
of the maximum and minimum of remaining parameters, 
and their differences are almost insignificant. As shown in 
Fig. 11a, b, the change of SOF also has little effect on the 
parameter selection. Remarkably, the trend of statistics may 
result from the constant negative correlation of c and �.

Overall, the variations of SSPs in the shallow sliding zone 
are apparent, while those in the deep sliding zone have no 
obvious regularity. It indicates that the SSPs in the shallow 
sliding zone have more influence on landslide stability. And 
the change of NSRF models with different SOFs has a minor 
effect on the SSPs variation of double-sliding zones. The 
influences of various SOFs are analyzed and discussed in 
the discussion section. The remaining parameters are used 
for subsequent analysis.

4.2  Displacements analysis

In this section, GPS monitoring points (e.g., G7 and G9) 
and corresponding points in simulation are used to investi-
gate the effect of SSPs uncertainty on the landslide surface 
displacement. The uncertain model with 0.25 �h is taken 
as a case. The G7 and G9 surface displacement curves are 
drawn in Fig. 12. It can be observed that the light red and 

Fig. 11  SSPs in the deep sliding zone for different NSRF models a 0.25 �h , b 1.0 �h
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light blue areas are the fluctuating ranges of G7 and G9 
displacements, respectively, and their mean displacement 
curves are undoubtedly in these intervals. It can also be 
noted that the mean displacement curves are not in the mid-
dle of their intervals. According to the displacement curves, 
the deformation of the No. 1 landslide mainly occurs during 
the decline of reservoir water level (120–280d). The dis-
placement of G7 in the middle-front region is larger than 
that of G9 in the back part. And it can be seen from Fig. 9 
that the rainfall is relatively high in this period.

As can be seen from Fig. 12, for the actual monitoring 
and modeling displacement curves, the trend of displace-
ment curves is similar, but displacement values are different. 
More obviously, G7 and G9 points have a displacement trend 
towards the interior of the landslide for modeling displace-
ment curves from 0 to 60 days, and the period is the rising 
stage of reservoir water. It can be interpreted that the exist-
ence of cracks in the landslide provides space for deforma-
tion, and the GPS monitoring points cannot obtain the dis-
placement deformation pointed to the inside of the landslide 

Fig. 12  Landslide surface displacement in 1 year for the NSRF model with 0.25 �h

Fig. 13  Landslide surface displacement of G7 in 1 year for NSRF models with different �h
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body [34]. In addition, the material constitutive model and 
other simulation parameters are also factors affecting mod-
eling displacement.

In order to study the effect of NSRF models with vari-
ous SOFs on the landslide surface displacement, the mean, 
maximum, and minimum of G7 displacements with different 
NSRF models are plotted in Fig. 13. It can be seen that the 
mean and minimum curves of 0.25 �h , 0.5 �h , 0.75 �h , 1.0 �h 
are basically in coincidence, and there are no meaningful dif-
ferences. Interestingly, during the period from 270 to 360d, 
the displacement values of the maximum curve with 0.25 �h 
are the largest, and those of the maximum curve with 1.0 �h 
are the minimum. The same phenomenon can be found in 
G9, which need not be repeat here. Generally, for the NSRF 

models of SSPs in the deep sliding zone, the change of SOF 
has a negligible effect on the landslide surface displacement.

4.3  FS analysis

In order to investigate the effects of SSPs uncertainty on 
landslide stability, the FSs of various models with differ-
ent time points are analyzed. For the stability analysis of 
reservoir landslide in a real hydrological year, there are 
four critical time points [e.g., reservoir water level rising to 
175 m (60d), before the reservoir water drawdown (120d), 
reservoir water level dropped to 145 m (280d), and reservoir 
water level maintained at 145 m (360d)], which are chosen 
to calculate the FSs.

The FS results of the NSRF model with 0.25 �h are used 
to analyze the landslide stability at different time points. 
The distribution characteristics of FSs of four time points 
are shown in Fig. 14. The FS mean of four points are 1.326, 
1.276, 1.215, and 1.247. The FS medians of four points 
are 1.329, 1.283, 1.230, and 1.232. The FS maximums of 
four points are 1.462, 1.434, 1.324, and 1.735, And the 
FS minimums of four points are 1.137, 1.120, 1.015, and 
1.004. It can be noted from Fig. 14 that the mean, medians, 
minimums and maximums of FS decrease for the first three 
points, and increase at the last point. Further analysis shows 
that the landslide stability is the worst when the reservoir 
water level descends to 145 m. And after a stationary phase 
of reservoir water level, the landslide stability decreases 
slightly. As the reservoir water level rising to 175 m, the 
whole stability is the best. After a stable period, the whole 
landslide stability increases gradually, and the dispersion of 
data increases.

Fig. 14  Boxplot and data distribution of FSs for different time points 
(NSRF model with 0.25 �h)

Fig. 15  EFPs of the No. 1 landslide at different time points



S3072 Engineering with Computers (2022) 38 (Suppl 4):S3057–S3076

1 3

In order to study the effect of various NSRF models on 
the FS of the whole landslide, the 280d point when the sta-
bility is worst, is taken as a case. The FS mean of the whole 
landslide with 0.25 �h , 0.5 �h , 0.75 �h , and 1.0 �h are 1.215, 
1.211, 1.212, and 1.212. The standard deviations of FSs are 
0.040, 0.422, 0.041, and 0.040. It can be seen that the dif-
ferences of FSs with different SOFs are small.

4.4  EFP analysis

The NSRF model with 0.25 �h is taken as an example to inves-
tigate the element failure of the No.1 landslide. Figure 15 
shows the EFPs of the No.1 landslide at four critical time 
points. It can be seen that the maximum of EFPs shall not 
exceed 0.55. As can be seen from Fig. 15a, when the reservoir 
water level reaches 175 m, the area of element failure mainly 
distributes in the middle-front part of the shallow landslide. 
And the element failure in the middle area of the deep sliding 
zone also occurs, but the EFP of this area is below 0.1. After 
a 60-day stabilization period (Fig. 15b), we can see that the 
element failure area is reduced compared with the situation 
in Fig. 15a, while the values and the area of sliding zones are 
increasing. This may due to the decrease of the seepage pres-
sure pointed to the landslide, and this can lead to an increase 
of the residual sliding force. As the reservoir water level drops 
to 145 m, the element failure area and EFP values increase 
significantly, as shown in Fig. 15c, the failure area of shallow 
landslide extends to the toe of the landslide, and the whole 
area of sliding zones occurs failure. It can also be noted that 
the EFP values of many elements in the deep sliding zone are 
more than 0.4, and the EFP values in the front area of the shal-
low sliding zone are more than 0.35. Then an 80-day stabiliza-
tion period of reservoir water is carried out, and the result is 
shown in Fig. 15d. The element failure area and the EFP values 
decrease remarkably. The failure area almost only occurs in the 
front part of the shallow landslide. Because the pore pressure 
perpendicular to the landslide surface is down, and the seep-
age pressure pointed to the outside of the landslide dissipates.

In summary, the description of the failure area is consistent 
with the actual deformation situation of the No.1 landslide. 
Based on the element failure area of different stages, we can 
have an overall understanding of the deformation and evolu-
tionary process of the No. 1 landslide. It is helpful to guide the 
mechanism analysis and the control of reservoir landslides.

5  Discussions

5.1  Effect of the uncertainty of SSPs 
on the landslide deformation and stability

For the consideration of the uncertainty of SSPs of slip soil, 
the RV model takes the randomness of SSPs into account. 

One value is generated in the whole shallow sliding zone, 
and the variability of the RV model is big. For the NSRF 
model, with the application of the SOF, the trend charac-
teristics, and the autocorrelation function, the spatial cor-
relation structures of soil properties can be considered. And 
the randomness of parameters decreases by considering the 
trend characteristics. The various SOFs represent different 
variabilities of soil properties [19]. As the vertical SOF gets 
larger, the variability of SSPs becomes smaller.

In this study, no significant differences in the landslide 
surface displacement, EFP and FS are found between various 
NSRF models of the deep sliding zone. There are probably 
three chief causes for the results. (1) the fluctuation extent 
of data depends on the standard deviation of the residual 
component, and the standard deviation of the residual com-
ponent is relatively small due to the separation of the trend 
component, especially when the tendency is dominant. (2) 
Some characteristic indexes of landslides are not sensitive to 
the change of SSPs in the deep sliding zone caused by verti-
cal SOF. (3) Compared with the deep sliding mass of No.1 
landslide, the shallow sliding mass is the main deformable 
body under the rainfall and reservoir water condition [3].

During the conventional landslide stability analysis, the 
actual spatial variability and randomness of soil properties 
are not considered. And the deterministic analysis in previ-
ous studies is not able to obtain some indexes (e.g., statisti-
cal indicators, EFP) and extreme cases of a landslide. It is 
necessary to explore the differences between the determin-
istic model of current literature and the uncertain models of 
this paper. The SSPs of sliding zones reported by Ni et al. 
[34] are adopted in the deterministic model. The FSs of the 
landslide at four time points are 1.305, 1.156, 1.194, and 
1.139. The FSs of the uncertain model (0.25 �h ) and the 
deterministic model are plotted in Fig. 16. It can be noted 

Fig. 16  FSs of the No. 1 landslide at different time points
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that the FSs of the deterministic model are smaller than the 
FSs mean of the uncertain model. The time point of the least 
FS is in 120d for the deterministic model, while that of the 
least FS is in 280d for the uncertain model. And the FS trend 
of the deterministic model is different from that of uncertain 
models. However, the FSs of the deterministic model are still 
in the range of the FSs extremum of the uncertain model.

The G7 and G9 displacements of the uncertain and deter-
ministic models are drawn in Fig. 17. It can be seen that the 
displacement curves of the deterministic model are close to 
the mean displacement curves. And the displacements of 
the deterministic model are slightly larger than the mean 
displacements. All in all, considering the actual spatial vari-
ability of soil properties, it is great of realistic significance 

to establish a random field model and obtain comprehensive 
results of landslide stability.

5.2  FS estimation with different strength reduction 
regions

The SRFE method is under the concept of the limit equilib-
rium slice method. The whole SRFE method is widely used 
to calculate the FS of slope or landslide in which the sliding 
zone is not determined. And the local SRFE method is more 
suitable for the landslide with clear sliding zones [45]. For 
the common landslide with a single sliding zone, there is no 
doubt about the strength reduction region, and the FS repre-
sents the stability of the whole landslide. However, for the 
landslide with multi-sliding zones, it is necessary to explore 
the effect of various strength reduction regions on the FS.

For the No.1 landslide with double-sliding zones, the 
shallow sliding zone, the deep sliding zone, and two slid-
ing zones are selected respectively as the strength reduction 
regions to calculate the FSs. Model 1, model 2, and model 3 
are used to denote the No.1 landslide connected with those 
three reduction regions. The NSRF model with 0.25 �h is 
taken as a case. The FSs mean of the three models are plot-
ted in Fig. 18. It can be noted that the FS mean of model 1 
is much greater than that of model 2 and model 3. The FS 
mean of model 2 is slightly larger than that of model 3. The 
change of strength reduction regions inevitably leads to the 
change of FS.

With the reduction of SSPs only in the shallow sliding 
zone, the shallow sliding mass has a large displacement 
deformation, and the plastic zone gradually runs through 
the shallow sliding zone, the shallow sliding mass may 
attain the limit equilibrium state. To some extent, the FS 

Fig. 17  Landslide surface displacement curves of deterministic model and uncertain model

Fig. 18  Mean FSs of three models at different time points
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of model 1 reflects the stability of the shallow sliding mass. 
For model 2, the plastic zone is expanding along with the 
reduction of SSPs in the deep sliding zone, the region above 
the deep sliding zone moves together as a whole. And the 
FS of model 2 may reflect the stability of the whole sliding 
mass. Compared with model 1 and model 2, the reduction 
of SSPs in double sliding zones is considered in model 3. 
The FS results are more conservative as the reduction area 
increases. In conclusion, the weakness of SSPs exists in the 
multi-sliding zones during landslide evolution, the multi-
sliding zones should be selected as the reduction area to 
obtain the FS of the whole landslide.

5.3  Deficiency in this research

1. Due to the limitation of data, the spatial variation of 
SSPs is not considered for the shallow sliding zone, 
while the randomness of SSPs is studied using the RV 
model. And this study focuses on the SSPs of sliding 
zones, other mechanical parameters are not considered.

2. The few sampling points of sliding zones are not enough 
to obtain the spatial variation of SSPs in the vertical 
direction, therefore, the vertical SOFs are assumed to 
be 0.25, 0.5, 0.75, and 1.0 times of the horizontal SOF. 
Some NSRF models are then established

3. The effect of other parameters on the numerical software 
convergence is not studied here, because it is not the 
purpose of this present study. In this paper, based on the 
un-convergence mechanism of numerical software, the 
SSPs are roughly filtered.

4. In order to investigate the deformation and stability of 
reservoir landslide under real reservoir water operation 
conditions in TGRA, a real hydrological year is adopted 
in the fluid–solid numerical simulation, and the extreme 
operating condition is not considered.

5. All in all, this research aims to study the effect of uncer-
tain variables SSPs with negative correlation charac-
teristics on the deformation and stability of reservoir 
landslides, and a nonintrusive stochastic finite element 
program is built. The approach and some meaningful 
results can provide a reference to other researchers.

6  Conclusions

This paper proposes a comprehensive nonintrusive stochas-
tic finite element procedure for the reservoir landslide uncer-
tain analysis under real simulation conditions. And the RV 
model and NSRF models involving the negative correlated 
non-normal variables are built. The spatial variation charac-
teristics of the SSPs in the sliding zones are investigated in 
detail using the geostatistics-based method, Copula method, 
and ACF method. In addition, the surface displacement, 

landslide stability, and EFP are explored. Several conclu-
sions can be learned from this study.

1) The spatial variability of the SSPs of sliding zone soil 
is an objective fact. And there is an observable trend 
of SSPs along the sliding direction. The c increases in 
the sliding direction, while the � is in decreasing ten-
dency along with the sliding direction. Some important 
parameters, such as SSPs distribution types, correlation 
characteristics between c and � , and the horizontal SOF 
of SSPs are obtained. It can provide references for the 
reliability and spatial variability analyses of landslides.

2) With the application of the uncertain models on the 
landslide stability analysis, the statistical parameters of 
the response indexes of landslides enable us to have a 
clearer understanding and profound understanding of 
landslide deformation and evolution characteristics. 
Compared with the deterministic analysis, the spatial 
deformation possibility of a landslide, the displacement 
change interval, and the overall tendency of stability can 
also be obtained.

3) For the No. 1 landslide, the front and middle parts of the 
shallow sliding mass are the main areas of deformation 
and failure, and when the reservoir water level drops to 
the lowest, the stability is worst. As to the calculation 
of the overall landslide stability with multisliding zones, 
the conservative results can be obtained when the mul-
tisliding zones are selected as the reduction areas, and 
this choice is relatively consistent with the evolution of 
landslide.

Acknowledgements This research is supported by the National Natu-
ral Science Foundation of China (Grant No.41977244), the National 
Key Research and Development Program of China (Grant No. 
2017YFC1501301), and the National Natural Science Foundation of 
China (Grant No.42007267). The authors are grateful to the colleagues 
in our laboratory for their constructive comments and assistance.

References

 1. Tang HM, Wasowski J, Juang CH (2019) Geohazards in the three 
Gorges Reservoir Area, China-Lessons learned from decades of 
research. Eng Geol 261:105267–105267

 2. Tang HM, Zou ZX, Xiong CR, Wu YP, Hu XL, Wang LQ, Li 
CD (2015) An evolution model of large consequent bedding 
rockslides, with particular reference to the Jiweishan rockslide in 
Southwest China. Eng Geol 186:17–27

 3. Tang HM, Li CD, Hu XL, Su AJ, Wang LQ, Wu YP, Criss RE, 
Xiong CR, Li YA (2015) Evolution characteristics of the Huang-
tupo landslide based on in situ tunneling and monitoring. Land-
slides 12(3):511–521

 4. Wang JE, Su AJ, Liu QB, Xiang W, Yeh HF, Xiong CR, Zou ZX, 
Zhong C, Liu JQ, Cao S (2018) Three-dimensional analyses of 
the sliding surface distribution in the Huangtupo No. 1 riverside 



S3075Engineering with Computers (2022) 38 (Suppl 4):S3057–S3076 

1 3

sliding mass in the Three Gorges Reservoir area of China. Land-
slides 15:1425–1435

 5. Cui DS, Wang S, Chen Q, Wu W (2021) Experimental Investiga-
tion on Loading-Relaxation Behaviors of Shear-Zone Soil. Int J 
Geomech 21(4):06021003

 6. Wen BP, Aydin A, Duzgoren-Aydin NS, Li YR, Chen HY, Xiao 
SD (2007) Residual strength of slip zones of large landslides in 
the Three Gorges area. China Eng Geol 93(3–4):82–98

 7. Jiang JW, Xiang W, Rohn J, Zeng W, Schleier M (2015) Research 
on water–rock (soil) interaction by dynamic tracing method for 
Huangtupo landslide, Three Gorges Reservoir, PR China. Environ 
Earth Sci 74(1):557–571

 8. Lu S, Tang HM, Zhang YQ, Gong WP, Wang LQ (2018) Effects of 
the particle-size distribution on the micro and macro behavior of 
soils: fractal dimension as an indicator of the spatial variability of 
a slip zone in a landslide. Bull Eng Geol Environ 77(2):665–677

 9. Tan QW (2019) Study on the structural capacity of sliding zone 
soil based on the in-situ triaxial test and its application – taking 
the Huangtupo landslide as an example. China University of Geo-
science (in Chinese)

 10. Miao FS, Wu YP, Li LW, Tang HM, Xiong F (2020) Weakening 
laws of slip zone soils during wetting–drying cycles based on 
fractal theory: a case study in the Three Gorges Reservoir (China). 
Acta Geotech 15:1909–1923

 11. Wen BP, Aydin A (2003) Microstructural study of a natural 
slip zone: quantification and deformation history. Eng Geol 
68(3–4):289–317

 12. Zhao LH, Zuo S, Lin YL, Li L, Zhang YB (2016) Reliability 
back analysis of shear strength parameters of landslide with 
three-dimensional upper bound limit analysis theory. Landslides 
13(4):711–724

 13. El-Ramly H, Morgenstern NR, Cruden DM (2002) Probabilistic 
slope stability analysis for practice. Can Geotech J 39(3):665–683

 14. Phoon KK, Kulhawy FH (1999) Characterization of geotechnical 
variability. Can Geotech J 36(4):612–624

 15. Li DQ, Qi XH, Phoon KK, Zhang LM, Zhou CB (2014) Effect 
of spatially variable shear strength parameters with linearly 
increasing mean trend on reliability of infinite slopes. Struct Saf 
49:45–55

 16. Li DQ, Xiao T, Cao ZJ, Phoon KK, Zhou CB (2016) Efficient and 
consistent reliability analysis of soil slope stability using both 
limit equilibrium analysis and finite element analysis. Appl Math 
Model 40(9–10):5216–5229

 17. Jiang SH, Li DQ, Zhang LM, Zhou CB (2014) Slope reliability 
analysis considering spatially variable shear strength parameters 
using a non-intrusive stochastic finite element method. Eng Geol 
168:120–128

 18. Huang J, Lyamin AV, Griffiths DV, Krabbenhoft K, Sloan SW 
(2013) Quantitative risk assessment of landslide by limit analysis 
and random fields. Comput Geotech 53:60–67

 19. Griffiths DV, Huang J, Fenton GA (2015) Probabilistic slope sta-
bility analysis using RFEM with non-stationary random fields. In: 
Schweckendiek T, van Tol F, Pereboom D, van Staveren M, Cools 
P (eds) Geotechnical safety and risk V. IOS Press, Amsterdam, 
The Netherlands, pp 704–709

 20. Jiang SH, Huang J (2016) Efficient slope reliability analysis at 
low-probability levels in spatially variable soils. Comput Geotech 
75:18–27

 21. Jiang SH, Huang JS (2018) Modeling of non-stationary random 
field of undrained shear strength of soil for slope reliability analy-
sis. Soils Found 58(1):185–198

 22. Jiang SH, Liu X, Huang JS (2020) Non-intrusive reliability anal-
ysis of unsaturated embankment slopes accounting for spatial 
variabilities of soil hydraulic and shear strength parameters. Eng 
Comput. https:// doi. org/ 10. 1007/ s00366- 020- 01108-6

 23. Jiang SH, Papaioannou I, Straub D (2018) Bayesian updating of 
slope reliability in spatially variable soils with in-situ measure-
ments. Eng Geol 239:310–320

 24. Yang HQ, Zhang LL, Xue JF, Zhang J, Li X (2019) Unsaturated 
soil slope characterization with karhunen–loève and polynomial 
chaos via bayesian approach. Eng Comput 35(1):337–350

 25. Jiang SH, Huang J, Qi XH, Zhou CB (2020) Efficient probabilistic 
back analysis of spatially varying soil parameters for slope reli-
ability assessment. Eng Geol 271:105597

 26. Wu YP, Cheng C, He GF, Zhang QX (2014) Landslide stability 
analysis based on random-fuzzy reliability: taking Liangshuijing 
landslide as a case. Stoch Env Res Risk A 28(7):1723–1732

 27. Miao FS, Wu YP, Xie YH, Yu F, Peng LJ (2017) Research on 
progressive failure process of Baishuihe landslide based on Monte 
Carlo model. Stoch Env Res Risk A 31(7):1683–1696

 28. Tang XS, Li DQ, Rong G, Phoon KK, Zhou CB (2013) Impact 
of copula selection on geotechnical reliability under incomplete 
probability information. Comput Geotech 49:264–278

 29. Tang XS, Li DQ, Zhou CB, Phoon KK (2015) Copula-based 
approaches for evaluating slope reliability under incomplete prob-
ability information. Struct Saf 52:90–99

 30. Li C, Tang HM, Han DW, Zou ZX (2019) Exploration of the 
creep properties of undisturbed shear zone soil of the Huangtupo 
landslide. Bull Eng Geol Environ 78(2):1237–1248

 31. Li B, Tang HM, Gong WP, Tan QW, Zhang GC (2018) Stability 
analysis of sliding mass I at riverside of Huangtupo landslide in 
one hydrological year. J Eng Geol 26(s1):167–173 (in Chinese)

 32. O’Connor AJ, Kenshel O (2012) Experimental evaluation of the 
scale of fluctuation for spatial variability modeling of chloride-
induced reinforced concrete corrosion. J Bridge Eng 18(1):3–14

 33. Onyejekwe S, Kang X, Ge L (2016) Evaluation of the scale of 
fluctuation of geotechnical parameters by autocorrelation function 
and semivariogram function. Eng Geol 214:43–49

 34. Ni WD, Tang HM, Hu XL, Wu YP, Su AJ (2013) Research on 
deformation and stability evolution law of huangtupo river-
side slump-mass No. 1. Rock Soil Mech 34(10):2961–2970 (in 
Chinese)

 35. HIGH (2002) Detailed investigation report of Huangtupo landslide 
in Badong County, Hubei. Hubei Institute of Geological Hazard, 
Jingzhou (in Chinese)

 36. CISPD (2009) Detailed investigation report of Huangtupo land-
slide in Badong County, Hubei. Changjiang Institute of Survey, 
Planning, Design (in Chinese)

 37. Hua S (2015) Genetic mechanism of multi-stages sliding and 
evolution law of the Huangtupo landslide in the Three Gorges 
Reservoir Area. China University of Geoscience (in Chinese)

 38. Luo C, Yin KL, Chen LX, Jian WX (2005) Probability distribu-
tion fittingand optimization of shear strength parameters in sliding 
zone along horizontal-stratum landslides in wanzhou city. Chin J 
Rock Mech Eng 24(9):1588–1593 (in Chinese)

 39. Li YY, Yin KL, Chai B, Zhang GR (2008) Study on statistical 
rule of shear strength parameters of soil in landslide zone in three 
gorges reservoir area. Rock Soil Mech 29(5):1419–1418 (in 
Chinese)

 40. Gundogdu KS, Guney I (2007) Spatial analyses of groundwater 
levels using universal kriging. J Earth Syst Sci 116(1):49–55

 41. Brus DJ, Heuvelink GB (2007) Optimization of sample patterns 
for universal kriging of environmental variables. Geoderma 
138(1–2):86–95

 42. Xue Y, Wu YP, Miao FS, Li LW, Liao K, Ou GZ (2020) Effect 
of spatially variable saturated hydraulic conductivity with non-
stationary characteristics on the stability of reservoir landslides. 
Stoch Env Res Risk A 34(2):311–329

 43. Zheng YR, Zhao SY (2004) Application of strength reduction 
FEM in soil and rock slope. Chin J Rock Mech Eng 23(19):3381–
3388 (in Chinese)

https://doi.org/10.1007/s00366-020-01108-6


S3076 Engineering with Computers (2022) 38 (Suppl 4):S3057–S3076

1 3

 44. Huang MS, Jia CQ (2009) Strength reduction FEM in stability 
analysis of soil slopes subjected to transient unsaturated seepage. 
Comput Geotech 36(1–2):93–101

 45. Yang GH, Zhong ZH, Fu XD, Zhang YC, Wen Y, Zhang MF 
(2014) Slope analysis based on local strength reduction method 

and variable–modulus elasto-plastic model. J Cent South Univ 
21:2041–2050

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Application of uncertain models of sliding zone on stability analysis for reservoir landslide considering the uncertainty of shear strength parameters
	Abstract
	1 Introduction
	2 Methodology
	2.1 Copula method
	2.2 Random field method
	2.3 Construction procedures for uncertain models

	3 Case study
	3.1 Study area and data collection
	3.2 Statistical analysis
	3.3 Determination of the horizontal SOF
	3.4 Numerical simulation
	3.5 Simulation scheme

	4 Results
	4.1 Parameter variation characteristics
	4.2 Displacements analysis
	4.3 FS analysis
	4.4 EFP analysis

	5 Discussions
	5.1 Effect of the uncertainty of SSPs on the landslide deformation and stability
	5.2 FS estimation with different strength reduction regions
	5.3 Deficiency in this research

	6 Conclusions
	Acknowledgements 
	References




