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Abstract
Blasting has been widely recognized as an economical and viable method in geo-engineering projects. However, the induced 
ground vibration in terms of peak particle velocity (PPV) potentially can damage the nearby environment and inhabitants. 
Therefore, more accurate prediction of the PPV can lead to reduce undesirable and hazardous effects of blasting. With 
the increase in the computational power, wide variety of predictive PPV models using numerical tools and data mining 
approaches have been presented. In this paper, the optimum predictive PPV model was specified using generalized feed-
forward neural network (GFFN) structure integrated with a novel automated intelligent setting parameter approach. Subse-
quently, two new optimized hybrid models using GFFN incorporated with firefly and imperialist competitive metaheuristic 
algorithms (FMA and ICA) were developed and applied on 78 monitored events in Alvand–Qoly mine, Iran. According to 
analyzed metrics, the predictability level of hybrid GFFN-FMA dedicated 6.67% and 20% progress than GFFN-ICA and 
optimum GFFN. The pursued performance using precision–recall curves and ranked accuracy criteria also exhibited superior 
improvement in GFFN-FMA. Sensitivity analyses implied on the importance of the distance and burden as the most and 
least effective factors on predicted induced PPV in the study area.
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Abbreviations
GFFN  Generalized feed forward neural network
FMA  Firefly metaheuristic algorithm
ICA  Imperialistic competitive metaheuristic algorithm
PPV  Peak particle velocity
MAs  Metaheuristic algorithms
FT  Fitness function
ANN  Artificial neural network
MLP  Multilayer perceptron
GSN  Generalized shunting neuron
TA  Training algorithm
AF  Activation function

QP  Quick propagation
CGD  Conjugate gradient descent
QN  Quasi-Newton
L–M  Levenberg–Marquardt
MO  Momentum
Log  Logistic
Hyt  Hyperbolic tangent
Lin  Linear
AUC   The area under the curve
ROC  Receiver-operating characteristics

1 Introduction

Blasting as a powerful and fast but cost-effective tool widely 
have been applied to accomplish rock handling in civil (e.g. 
dam, road, tunnel), mining (e.g. underground, open pit, quar-
ries) and construction purposes [1–3]. However, the industry 
experts and independent analysts believe that most of the 
blast-produced energy is wasted due to ground vibration and 
partial of this loss may then cause for fly-rock debris, air 
blast, back break, and seismic waves [1, 4–6]. Moreover, 
other possible induced blasting dangers (e.g. block size, 
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environmental and utilities impacts, local disruptions, and 
premature detonation/misfires) are underestimated. The peak 
particle velocity (PPV) as an indicator index of undesirable 
ground vibration measurements is used to control the struc-
tural damage criteria and decrease the possible risk of blast-
ing on environmental complaints [1, 7–10]. Therefore, pro-
viding predictive PPV-based models for assessing the effect 
of induced ground vibration is great of interest.

Traditionally, the PPV is estimated by empirical–statis-
tical predictors [11–16]. However, such predictors due to 
incorporating of only limited numbers of influential param-
eters are not consistent and almost represent different scores 
of accuracies [7, 17, 18]. Despite presented updates using 
other related parameters [19–21], the PPV models in wide 
expanded range of data cannot simulate the process effi-
ciently and thus provide unreliable predictions [1, 6, 22].

With parallel of progress in numerical simulation tools, 
soft computing-based techniques also have been applied to 
develop PPV predictive models. In literatures, capability of 
artificial neural network (ANNs) [1, 9, 10, 23], ANFIS and 
fuzzy logic [22, 24–26], support vector machine [27–29], 
and hybrid intelligent models [2, 30–32] in producing more 
precise results than other conventional or regression analyses 
have been highlighted.

Hybridized architectures aim to combine and optimize 
different knowledge schemes and learning strategies to 
solve a computational task [33, 34]. In this perspective, the 
metaheuristic algorithms (MAs) due to flexibility, effective 
dealing with complex constraints, problem-independent 
strategies, and user-defined special conditions [35, 36] have 
contributed to large number of new systems designs to over-
come on limitations of individual models. Therefore, inte-
grating the ANNs-MAs can provide innovative intelligent 
computational frameworks. Such computational intelligence 
incorporations have shown remarkable progress in predict-
ability level of developed PPV models [26, 30, 32, 37–41]. 
Almost in all these literatures, the multilayer perceptrons 
(MLPs) is the core of hybridizing. Dense MLPs lead to high 
variance and thus slow training that is deemed insufficient 
to converge to a solution for modern advanced computer 
vision tasks. Moreover, large numbers of total parameters 

corresponding to characteristic of fully connected layers 
should be adjusted that can make redundancy in such high 
dimensions. However, if proper internal characteristics are 
set, the MLPs can approximate any input/output map.

Owing to the lack of a unified framework, comparative 
performance and conceptual analysis of various hybrid mod-
els often have been remained difficult. These issues motives 
for developing novel hybridized models using other subclass 
of ANNs.

In this paper, an optimum PPV-predictive model using 
generalized feedforward neural network (GFFN) structure 
integrated with a novel automated intelligent setting param-
eter approach is presented. The model then was hybridized 
with two prominent swarm-intelligence MAs including fire-
fly and imperialist competitive algorithms (FMA and ICA). 
Applying the GFFN enhances the computing power, while 
automating process tunes the optimal hyper parameters. This 
implies that the performance of optimized FMA and ICA 
in different size of the search spaces are investigated. The 
adopted models were applied on 78 compiled datasets of 
a quarry in west of Iran (Table 1). Compared predictabil-
ity and accuracy level using different metrics demonstrated 
superior performance in hybrid GFFN-FMA than GFFN-
ICA and optimum GFFN. The importance of the used com-
ponents then also was identified using sensitivity and weight 
analyses.

2  Hybridizing and optimization

Optimization techniques lead to more efficient and cost-
effective procedures to find an optimal solution among vari-
ous iteratively compared responses. The classical methods 
lead to a set of nonlinear simultaneous equations that may 
be difficult to solve, while the computing capacities can be 
enhanced by utilizing the MAs and intelligent computer-
aided activities [36]. This implies that combinatorial incor-
porations of ANNs-MAs can capture the feasible solution 
with less computational effort than traditional approaches 
[33, 34, 36, 42]. As presented in Fig. 1, the MAs are cat-
egorized in practical-oriented branches of optimization 

Table 1  The relevant 
parameters in adjustment of 
FMA

I0 denotes the light intensity of he source. β, β0, α, and γ can also be organized using parametric investiga-
tions

Description Formula Parameter Advised ranges

Brightness I(r) = I
0
e−�r

2 I –

Attractiveness � = �
0
e−�r

2 β –

Distance between two fireflies i and j rij =∥ si − sj ∥ rij –
Absorption coefficient γ Typically within [0.1–10]
Tradeoff constant in randomized movement α [0, 1]
Attractiveness at zero distance (rij = 0) β0 Normally is set to 1
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techniques. However, an algorithm may not exactly fit into 
each category. It can be a mixed type or hybrid, which uses 
some combination of deterministic components with ran-
domness, or combines one algorithm with another to design 
more efficient system.

Therefore, in the design of hybrid architectures, the incor-
poration and interaction of applied techniques are more 
important than merging different methods to create ever-
new techniques [34, 42].

2.1  FMA

Referring to Fig. 1, the FMA is a swarm population-based 
stochastic intelligence method inspired by the flashing 
behavior of fireflies [43] with approved efficiency in solv-
ing the hardest global and local optimization problems 
[44]. This algorithm (Fig. 2) is formulated using introduced 
parameters in Table 1 which depend on the problem should 
appropriately be tuned.

The FMA aims to optimize the I (Table 1) as the objective 
function. Accordingly, better fireflies have smaller error and 
thus higher intensity. As presented in Table 1, I and β for 
each firefly are functions of distance coordinate in which γ 
plays crucial role on the convergence speed. This parameter 
in most optimizing problems typically varies within [0.1–10] 
interval (Table 1).

According to level of I, the optimal solution in population 
is found through the individual fitness function (FT) for any 
binary combination of fireflies using:

where αt varies within [0, 1] interval. The rand function 
corresponds to a random number of solutions I. sj is a solu-
tion with lower FT than si and (sj-si) represents the updated 
step size.

In each iteration, the FT is compared with the previous 
results to keep only one new solution [34]. Briefly, using 
FT the position of moved firefly i towards the brighter one 
(new solution) in the current population is evaluated using:

The third condition means that the  FTbest (the lowest) is 
retained while others are discarded.

(1)snew
i

= st
i
+ �0e

−�r2
ij

(
sj − si

)
+ �t(rand − 0.5)

(2)

snew
i

=

⎧⎪⎨⎪⎩

sisi = sbest → no new solution

snew
i

sj = sbest → one new solution

snew with
ij

FTbestotherwise → at least two better solutions

Fig. 1  An overview on 
subcategories of optimization 
algorithms

Fig. 2  Mathematical concept of FMA and relevant parameters
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2.2  ICA

ICA is an evolutionary and robust optimization algorithm 
inspired by imperialist competitive through expanding 
power and political system [45]. Like other evolutionary 
algorithms, ICA also starts with a random initial ensemble 
of countries (Ncou) in which those with minimum cost are 
selected to be imperialists (Nimp) and the rests play the role 
as colonies (Ncol). The outcome of configured formulation in 
this algorithm is to eliminate the weakest empires through a 
competition process according to total power of an empire 
(Fig. 3). The more empire power, the more attracted colo-
nies, and thus all the countries are converged to only one 
robust empire in the domain of the problem as the desired 
solution.

Similar to other evolutionary algorithms, the involved 
parameters in ICA (Table  2) should also properly be 
adjusted. Appropriate initial guess for these parameters 
(Table 2) can be set through the previous studies [33, 45–47].

The total power of nth empire  (TCn) as summation of the 
power of imperialist and its attracted colonies is expressed 
by:

where ξ theoretically falls within [0, 1] interval. The total 
power is affected by imperialist power in small value of ξ 

(3)
TCn = cost(imperialist)� ×mean{cost (colonies ofnnempire)

and can be influenced by the mean power of colonies in large 
ξ value. Thus, usually the value of ξ is considered close to 0.

Accordingly, the competition process among the empires 
represents the possession probability of each empire (pn) 
based on its total power and is calculated using normalized 
total cost of empire as:

where  TCn and  NTCn denote the total and normalized cost 
of nth empire.

(4)pn =

������
NTCn∑Nimp

i=1
NTCi

������
;

Nimp�
i=1

pi = 1

Fig. 3  Scheme of ICA competi-
tion process

Table 2  The range of used ICA parameters in the previous studies

Ncou, Nimp, Ndec also can be managed using parametric investigations

Parameter Description Range in 
previous 
studies

Ncou Number of countries 25–500
Nimp Number of imperialists 5–65
Ndec Number of decades [0–1000]
β Movement direction of colony [1, 2]
θ Arbitrary parameter (search condition) π/4; [0, 1]
ζ Effective factor of the power of empire [0.1–0.02]

Fig. 4  Implemented the GSN in data processing
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3  Layout of GFFN model

ANNs are simple simulation of human brain structure in 
learning the nonlinear models through the interconnected 
processing neurons. In the MLPs (Fig. 4A), as the main core 
of ANNs the result of mth neuron in output layer (Om) is 
expressed using:

where xi denotes the inputs. f and g are the applied activa-
tion function on the hidden and output layers. zj shows the 
output of jth neuron in hidden layer using assigned weights 

(5)Om = g (bk
∑
j

f

zj

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(bj

∑
xiwij) .wjk

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
yk

(wij). Accordingly, the weight of hidden to output layer is 
shown by wjk. bj, and bk are the biases for setting the thresh-
old values.

As presented in Fig. 4B, replacing the perceptron with 
generalized shunting neuron (GSN) can provide consider-
able plausibility. The shunting model [48] due to spatial 
extent of the dendritic tree and receiving two inputs (one 
excitatory and one inhibitory) dedicates the GFFN (Fig. 4C) 
in which the connecting system can jump over one or more 
layers [49]. This ability allows neurons to operate as adap-
tive nonlinear filters and provide higher flexibility [33, 46, 
49–51].

In GFFN, the input lines are rectified in a postsynaptic 
neuron in such way that excitatory input transmits the sig-
nals in preferred directions while in the null direction the 
response of the excitatory synapse is shunted by the simul-
taneous activation of the inhibitory synapse [49]. Therefore, 
in the same number of neurons, the GFFN due to using 
shunting inhibition and applied GSN not only often solve 
the problem much more efficiently than MLPs [33, 50, 52], 
but also can speed up the training procedure and enhance the 
computability level to save the memory. This characteristic 
then utilizes more freedom to select optimum topology and 
get higher resolution in complex nonlinear decision classi-
fiers [1, 33, 49, 50]. To produce the output of jth neuron in 
hidden layer (zj), all input is summed and passed through 
activation function as:

where xi and xj show the inputs to the ith and jth neurons. wj0 
and cj0 are bias constants. aj is a positive constant represents 
the passive decay rate of the neuron and bj reflects the output 
bias. wji and cji express the connection weight from the ith 
inputs to the jth neuron, where cji refers to “shunting inhibi-
tory” connection weight.

The network error (E) of the kth output neuron in tth itera-
tion in terms of the actual (tk) and predicted values ( ot

k
 ) then 

is defined as:

(6)zj =
bj + f (

∑
i wjixj + wjo)

aj + g(
∑

i cjixi + cjo)

Fig. 5  Generated digital elevation model of studied area

Table 3  Simple descriptive 
statistical analyses of datasets

SE standard error; St .dev. standard deviation; MSSD mean of the squared successive differences

Variable Mean Mean SE St. dev. Min Max Skewness MSSD

Stemming (m) 3.58 0.075 0.667 2.52 4.69 0.06 0.778
Burden (m) 2.50 0.072 0.636 1.51 3.57 -0.01 0.721
Spacing (m) 3.50 0.038 0.339 3.00 4.16 0.1 0.115
Total charge (kg) 1493.9 91.80 816.2 225 3000 0.15 569,270.1
Distance (m) 834.8 38.50 342.4 241 1500 -0.33 43,369.2
Charge/delay (kg) 155.17 9.18 81.62 28.28 305.78 0.15 5692.7
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(7)

Et
train

=
1

2

n∑
i=1

(
ot
k
− tk

)2
=

1

2

n∑
i=1

(
g

(
J∑
j=1

wjkz
t
j

)
− tk

)2 To reduce the error between the desired and actual out-
puts, the weights are optimized using an updating procedure 
for (t + 1)th pattern subjected to:

Fig. 6  Simplified diagram of hybridizing process incorporated to FMA and ICA. TA number of training algorithms, AF number of activation 
functions, J number of neurons

Fig. 7  Variation of network 
RMSE based on the number of 
neurons subjected to imple-
mented training algorithms 
(A) and a series of examined 
structures to find the optimum 
topology (B)
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where η is the learning rate.

4  Case study and acquired datasets

In the current study, a number 78 monitored PPV from the 
Alvand–Qoly quarry at 5 km distance from Bijar town in 
Kurdistan province of Iran (Fig. 5) was used. This mine 
with 124 million tones of deposit in an area of 15.93km2 
is the resource of limestone for Kurdistan cement indus-
try. The PPV values have been recorded during the blast-
ing of benches with 13.5 m depth and 1 m subdrill, where 
the distances between located geophones to shot point vary 
between 241 and 1500 m. The statistical description of 
employed data is given in Table 3. These data were normal-
ized within [0, 1] interval and then randomized into 55%, 
25%, and 20% to generate the training, testing, and valida-
tion sets.

5  Configuring the hybrid predictive models

The learning algorithm of ANNs in weight space intends to 
minimize the output error and converge to a locally optimal 
solution. However, there is no guarantee in finding a global 
solution. This implies that adjustment of internal character-
istics (e.g., number of neurons, activation function, learn-
ing rate, and layer organization) to capture an appropriate 
network size is a difficult task, where there is no unified 
accepted method [51, 53].

(8)
wt+1
ik

= wt
ik
−�

�E(W)

�wik
⏟⏞⏞⏟⏞⏞⏟

∇wt
ik

As presented in Fig. 6, in this paper an automated setting 
parameter procedure using a trial–error method was designed 
to find the optimum topology of predictive GFFN model. The 
proposed parameter setting approach aims to capture the opti-
mal of one-dimensional array including several items, such as 
the number of epochs, learning rate, training algorithm, the 
number of neurons in hidden layers, and activation functions. 
Using the defined iterative procedure, the best performance 
of each produced topology after three runs is then evaluated 
using error metrics to represent the quality of found solution. 
The results then are reported back to the training algorithm 
to construct new topology. This procedure then was incorpo-
rated to FMA and ICA to investigate possible improvement in 
prediction process. To minimize the risk of getting trapped in 
local minima, overfitting, or early convergence, two internal 
loops was embedded to provide high flexibility in monitor-
ing different training algorithms and activation functions. In 
this process, five training algorithms (QP quick propagation, 
CGD conjugate gradient descent, QN quasi-Newton, L–M 
Levenberg–Marquardt, MO momentum) and three activation 
functions (log logistic, hyt hyperbolic tangent, lin Linear) 
were used. The number of neurons as user defined parameter 
then can be arranged in diverse topologies even in similar 
structures, but different internal characteristics. Here, the 
possibilities of 16 neurons in maximum tow hidden layers 
were investigated. Obviously, by changing the number of 
neurons or defining more hidden layers, the procedure is able 
to capture much more topologies. Using 16 neurons, the sys-
tem automatically will capture a large number of topologies 
(e.g., 6-16-1, 6–1-15–1, 6-2-14–1… 6-7-9-1… 6-15-1-1). 
Each topology then is tested by one of the training algorithms 
and one activation function. Accordingly, after checking all 
structures, it will be switched to another algorithm and sub-
sequently activation function. This corresponds to monitoring 
of similar topologies subjected to different internal charac-
teristics. All tested topologies are saved in a temporary query 
to be ranked using root mean square error (RMSE) and R2 
to select the best optimum model. This procedure was pro-
grammed with C +  + .

To decrease the number of variables, value of 0.7 for 
learning rate was set for all implemented algorithms and 
the step sizes of hidden layers were changed in domain of 
[1.0–0.001]. The sum of squares and network root mean 
square error (RMSE) as well as number of epochs were also 
employed as output errors function and termination crite-
ria, respectively. The priority of termination is to satisfy the 
RMSE and if not achieved then the number of epochs will 
use. Here the number of epochs was set for 500. As a result 
of carried out efforts, the minimum observed RMSE against 
the number of neurons subjected to different training algo-
rithm and activation functions were reflected in Fig. 7A. The 
results of examined structures to find the optimum topology 

Table 4  Results of implemented training algorithms to assess the 
optimized GFFN-based model

The bold values indicate the result of optimum model

Training 
algorithm

Min RMSE Number of 
neurons

Optimum topology Transfer 
function

QP 0.256 9 6-5-4-1 hyt
CGD 0.235 10 6-10-1 log
QN 0.242 9 6-4-5-1 hyt
L–M 0.239 11 6-5-6-1 hyt
MO 0.211 10 6-4-6-1 hyt
QP 0.251 8 6-8-1 log
CGD 0.264 9 6-9-1 hyt
L–M 0.245 8 6-8-1 log
MO 0.233 12 6-7-5-1 log
QN 0.226 11 6-5-6-1 log
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subjected to MO and Thy then was reflected in Fig. 7B. A 
brief summary of other training algorithms and correspond-
ing optimum topologies is given in Table 4. 

The required parameters of ICA (Table 1) were obtained 
through a series of parametric analyses. Referring to the 
previous studies, the values of 2, π/4, and 0.02 were man-
aged as the values for β, θ, and ζ, respectively (Abbaszadeh 

Shahri et al., 2020a). To capture the optimal of Ncou, Nimp, 
and Ndec, 12 hybrid models subjected to optimum GFFN 
(Table  4) were trained. Using analyzed R2 and RMSE, 
the values of 150, 15, and 250 were assigned to Ncou, 
Nimp, and Ndec, respectively (Fig. 8A–E). In case of FMA 
(Fig. 5), the pointed parameters in Table 2 should be tuned. 
This process is executed using gen-counter parameter 

Fig. 8  Parametric efforts to adjust optimum internal factors of hybrid models using ICA (A–E) and FMA (F–H)
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(t) that calculates the new values for α through the func-
tion Δ = 1–10−4/0.91/max Gen and α(t+1) = 1-Δ. α(t), where Δ 
determines the step size of changing parameter α(t+1) and 
descends with the increasing of t. The required parameters 
for FMA then were captured through series analyses using 
RMSE and R2. Accordingly, values of 1, 0.2, 0.05, 0.2, and 
0.5 corresponding to γ, β, Δ, α, and β0 can be selected as the 
most appropriate parameters to adjust FMA (Fig. 8F–H). 
Referring to convergence history, ICA in the number of 150 
and FMA in 40 populations can optimize the GFFN model 
(Fig. 9). Subsequently, calculated residuals and also compar-
ison between measured and predicted values were executed 
and plotted in Fig. 10.  

6  Discussion and validation

Identifying the system confusing for different classes and 
improved performance of generated models can be quan-
tified and evaluated using confusion matrix [54]. The 
established confusion matrixes for the validation datasets 
of GFFN, GFFN-ICA, and GFFN-FMA were presented in 
Table 5. The similar process for test and train data was car-
ried out to determine the correct classification rate (CCR 
) and classification error (CE) [33, 46, 50] as reflected in 
Table 6. According to observed results, GFFN-FMA shows 
6.67% and 20% improvement regarding to GFFN-ICA and 
GFFN, respectively.

The performance analyses of the models using mean 
absolute percentage error (MAPE), variance account for 

(VAF), RMSE, index of agreement (IA), and R2 criteria for 
validation datasets were reflected and ranked in Table 7.

To check or visualize the performance of the multiclass 
problem at various thresholds settings, the area under the 
curve of receiver-operating characteristics (AUC ROC) can 
be employed. The ROC is a probability curve showing 
the performance of a model at all classification thresholds 
and AUC represents capability of model in distinguishing 
between classes. Referring to ROC, the precision–recall is 
a useful tool to reflect the success of prediction when the 
classes are very imbalanced. In information retrieval, preci-
sion is a measure of result relevancy, while recall reflects 
the returned numbers of truly relevant. Therefore, this curve 
displays the relevant and corresponding number of truly pre-
dicted results. Accordingly, the curves of different models 
then can directly be compared for different thresholds to get 
the full picture of evaluating. In Fig. 11A, the AUC of preci-
sion–recall for hybrid GFFN-FMA is 2.5% and 12.5% more 
than GFFN-ICA and GFFN. This improvement demonstrates 
higher accuracy in predicted outputs of GFFN-FMA. The 
comparison between measured and predicted values and 
corresponding calculated residuals were also presented in 
Fig. 11B and C.

Sensitivity analyses techniques as a what-if simulation 
for determining the effect of inputs on particular output is 
especially useful tool in black box processes where the out-
put is an opaque function of several inputs [55, 56]. As pre-
sented in Eq. 12, the importance of input parameters using 
the cosine amplitude and partial derivative (PaD) were pre-
sented in Fig. 12.

Fig. 9  Convergences curves of 
hybrid models subjected to dif-
ferent populations, ICA (A) and 
FMA (B)
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where Ok
p and xi

p are output and input values for pattern P, 
and  SSDi is the sum of the squares of the partial derivatives, 
respectively.

Both applied sensitivity analysis methods identified the 
distance and total charge as the most and burden as the least 
effective factors on PPV.

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

cosine amplitude ∶ Rij =

m∑
k=1

�
xik×xjk

�

�
m∑
k=1

x2
ik

m∑
k=1

x2
jk

, xi and xj ∶ elements of data pairs

PaD ∶ contribution of ith variable =
SSDi∑
i
SSDi

;SSDi =
∑
p

�
�O

p

k

�x
p

i

�2

7  Conclusion and remarks

To control and mitigate the effects of blasting on nearby 
vicinities, developing more accurate PPV predictive models 
is of great importance. In this study, two optimum hybrid-
ized structures using GFFN incorporated to FMA and ICA 
were presented. The optimum GFFN topology was tuned 
through an automated parameter setting procedure subjected 
to 78 monitored datasets of blasting events in Alvand–Qoly 
mine, Kurdistan Province-Iran. To increase the efficiency 
of hybrid structures, the corresponding internal variables 
of FMA and ICA optimally were adjusted using paramet-
ric analyses. The results of optimized hybrid architectures 
proved to be more accurate than the only GFFN.

Fig. 10  Comparing the meas-
ured and predicted values (A, 
C) and corresponding residuals 
(B)
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Table 6  Compared CCR, CE, 
and improved progress of 
optimized models

Model CCR (%) CE (%) Progress (%)

Test Validate Test Validate Test to validate GFFN-ICA GFFN-FMA GFFN

GFFN-ICA 80.0 87.5 20 12.5 8.57 – − 6.67 14.28
GFFN-FMA 85.0 93.75 15 6.25 9.33 6.67 – 20.0
GFFN 70.0 75.0 30 25 6.66 − 14.28 − 20.0 –

Table 7  Results of statistical criteria using validate datasets to evaluate the model performance

Model Performance criteria Ranking of criteria

MAPE RMSE IA VAF R2 MAPE RMSE IA VAF R2 Total rank Sort order

GFFN 9.44 0.211 88.5 92.11 0.92 3 3 3 3 3 15 3
GFFN-FMA 6.45 0.187 91.2 95.46 0.97 2 1 2 1 1 7 1
GFFN-ICA 6.15 0.189 91.7 96.27 0.96 1 2 1 2 2 8 2

Fig. 11  Conducted precision–
recall curves (A), compared pre-
dicted values with observations 
(B), and calculated residuals (C) 
for GFFN, GFFN-FMA, and 
GFFN-ICA models
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Referring to conducted RMSE-iteration curves subjected 
to different number of populations, the higher tendency for 
convergence in FMA than ICA led to 11.37% and 10.42% 
improvements in hybrid GFFN-FMA and GFFN-ICA than 
GFFN. Accordingly, the R2 value of GFFN form 0.90 was 
updated to 0.97 (GFFN-FMA) and 0.96 (GFFN-ICA). The 
results of CCR showed 93.75% success for GFFN-FMA 
while it was decreased to 87.5% and 75% in GFFN-ICA 
and GFFN, respectively. Pursued accuracy performance and 
ranked statistical error criteria exhibited relative superior-
ity of the GFFN-FMA than GFFN-ICA. However, the dif-
ferences were not significant. The calculated AUC ROC as 
an index of model skill demonstrated for 2.3% and 12.5% 
improving in predictability level of the GFFN-FMA than 
other models. Using different sensitivity analyses tech-
niques, the distance, total charge, and the burden were rec-
ognized as the most and least effective factors on predicted 
PPV. The study showed that implementing of the FMA and 
ICA not only can significantly improve the robustness and 
performance of the GFFN model, but also provide more flex-
ible and reliable tool for the purpose of PPV prediction. It 
was observed that for the current study FMA is more appli-
cable than ICA.
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