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Abstract
The main purpose of this paper is to render a novel higher-order shear deformation theory (HSDT), which can model the 
dynamic analysis of the 2D-FG nanoplates subjected to hygro-thermo loading using a new shear strain shape function. The 
transverse component of displacement is composed of bending and shear parts. Thickness stretching influence is consid-
ered according to higher-order shear and normal deformation theory. The present model is suitable to deal with thin and 
thick nanoplates since it includes the HSDT and the thickness stretching influence. Assume the plate’s materials properties, 
including density, Young’s modulus, and thermal and moisture parameters vary continuously with an arbitrary function in 
two directions. Size-dependent nonlocal elasticity theory is dedicated to consider the nonlocality. The temperature variation 
and moisture expansion vary through the thickness of the nanoplate nonlinearly. To achieve the equations of motion of the 
2D-FG nanoplate with simply-supported boundary conditions, Hamilton’s principle is utilized. Navier method is utilized for 
a closed-form solution of the 2D-FG nanoplates. The impacts of several parameters, including thermal effects, are investi-
gated on the vibration characteristics of the 2D-FG nanoplates. The results demonstrate that with increasing the FG indexes, 
their impacts on the natural frequency of the system will enhance/reduce when the temperature variation increases/reduces.

Keywords 2D-FG plates · Novel HSDT · Small scale effect · Thickness stretching · Hygro-thermo-environment

1 Introduction

Functionally graded materials (FGMs) are the new kinds of 
composites that are made from a composition from ceram-
ics and metals. These kinds of heterogeneous materials have 
variable mechanical properties in one or more directions. 
The usages of FGMs have been enhanced quickly in all of 
the engineering branches, such as mechanical engineering, 
due to their phenomenal mechanical properties. Therefore, 
to have a comprehensive investigation about their features, 
many researchers examined the mechanical responses of the 
FGMs with variable mechanical properties in one or more 
directions [1–12].

Kazemirad et. al [13] examined the nonlinear dynamic 
investigation of a buckled axially moving beam. Ghayesh 
et. al [14] examined the vibration investigation of a simply 
supported spring-mass-beam system considering the thermal 
efficacy. Ghayesh et. al [15] presented an approximate ana-
lytical solution technique for phase-shift prediction along the 
length of the measuring tube of a Coriolis mass-flowmeter. 
Ghayesh and Amabili [16] examined the nonlinear stabil-
ity of an axially moving beam in the thermal environment. 
Daikh et. al [17] examined the vibration investigation of the 
FG sandwich nanoplates in the thermal environment based 
on third-order shear deformation theory (TSDT). Nonlocal 
elasticity theory is utilized to consider nonlocality. Hos-
seini et. al [18] studied the free vibration investigation of 
the nanoplates subjected to thermal efficacy using FSDT. 
To ponder the thermal efficacy, linear thermal relation is 
utilized. Daikh et. al [19] examined the buckling and free 
vibration investigation of the reinforced composite nano-
plates reinforced by carbon nanotubes in the thermal envi-
ronment based on TSDT. Nonlocal strain gradient theory 
is utilized to ponder the nonlocality. Singh and Azam [20] 
examined the buckling and free vibration investigation of 

 * Xiaoli Liu 
 L13600620263@sina.com

1 School of Architecture and Transportation Engineering, 
Ningbo University of Technology, Ningbo 315211, China

2 State Key Laboratory of Hydroscience and Engineering, 
Tsinghua University, Beijing 100084, China

3 Department of Mechanical Engineering, Tarbiat Modares 
University, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01443-2&domain=pdf


S2996 Engineering with Computers (2022) 38 (Suppl 4):S2995–S3008

1 3

the FG nanoplates in the thermal environment based on non-
local elasticity theory. Dastjerdi et. al [21] examined the 
bending investigation of the thick porous FG nanoplates in 
a hygro-thermal environment based on nonlocal elasticity 
theory. Chen et. al [22] studied the vibration examination 
of the nanoplates subjected to thermal loading based on 
fourth-order strain gradient theory. Fang et. al [23] exam-
ined the buckling investigation of the FG composite skew 
nanoplates with various boundary conditions. Kolahdouzan 
et. al [24] studied the vibration and buckling investigation 
of the FG-CNTRC sandwich annular nanoplates based on 
nonlocal elasticity theory. Dindarloo and Zenkour [25] stud-
ied the bending responses of the FG spherical nanoshells 
in the thermal environment. Linear relations are utilized to 
ponder the thermal efficacy based on nonlocal strain gradient 
theory. Mashat et. al [26] examined the bending responses of 
the FG plates under the hygro-thermo-mechanical loading 
based on a quasi-3D higher-order plate theory. Lal and Saini 
[27] examined the vibration investigation of the FG circular 
plates with nonlinear temperature distribution in the thick-
ness direction. Thang et. al [28] examined the free vibration 
investigation of the FG nanoplates reinforced with carbon 
nanotubes based on nonlocal strain gradient theory. Arshid 
et. al [29] studied the free vibration and buckling investiga-
tion of the FG porous sandwich curved microbeams in the 
thermal environment based on modified couple stress theory. 
Esen et. al [30] examined the vibrational behavior of the FG 
cracked microbeam rested on an elastic foundation subjected 
to the thermal and magnetic fields.

Pursuant to the above review, the free vibration investi-
gation of the 2D-FG nanoplate subjected to hygro-thermo 
loading based on a novel HSDT is examined for the first 
time. The size-dependent nonlocal higher-order theory is 
dedicated to pondering the nonlocality. The novelty of the 
current research is to present a new HSDT, which is an 
amalgamation of exponential, polynomial and trigonomet-
ric functions. Thickness stretching influence is considered 
according to higher-order shear and normal deformation the-
ory. The transverse component of displacement is composed 
of bending and shear parts. We ponder the nonlinear rela-
tions for temperature and moisture fields to investigate the 
impacts of the thermal and moisture efficacy on the vibration 
characteristics of the 2D-FG nanoplates. Hamilton’s axiom 
is dedicated to achieving the governing equations of motion. 
Then, Navier solution technique is dedicated to deriving the 
natural frequency of the nanoplates with S–S boundary con-
ditions. The effects of the various parameters are examined 
on the vibration characteristics of the 2D-FG nanoplates.

2  Size‑dependent analysis of the 2D‑FG 
nanoplates

In the current research, we use the two-directional (2D) func-
tionally graded materials (FGMs) to investigate the vibration 
characteristics of the nanoplates subjected to hygro-thermo 
conditions. Assume the materials’ properties of the plate 
including density ( � ), Young’s modulus ( E ) and thermal 
and moisture parameters vary continuously with an arbitrary 
function in two directions as below.

where ni,mj(i, j = 1, ..., 4) are the FG indexes; � and � are the 
thermal and moisture parameters, respectively. In the current 
research, we consider a rectangular nanoplate with length a , 
width b and thickness h (Fig. 1). In the present model, thick-
ness stretching influence is considered according to higher-
order shear and normal deformation theory. To study the 
vibration characteristics of the 2D-FG nanoplates based on a 
new HSDT, the displacement field is reported as below [31]:

where ux , uy and uz are three parts of the displacement along 
with the x , y and z directions, respectively; The transverse 
deflection is divided to shear ( ws ) and bending ( wb ) parts; 
wz is the thickness stretching parameter.

The main novelty of the present research is to render a 
new HSDT without including the shear correction coeffi-
cient. The new shear strain shape function f (z) presented in 
this research is an amalgamation of exponential, polynomial 
and trigonometric functions. According to this HSDT, we 
can investigate the mechanical responses of the composite 
structures, including FG plates and shells, accurately. To 
compare the present theory with the other theories, the vari-
ations of f (z) and df (z)

dz
 is presented along with the thickness 

direction in Fig. 2.
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With considering the displacement field, the strain parts 
are reported as:

In this paper, to ponder the nonlocality, the size-depend-
ent nonlocal elasticity theory is dedicated. The relations 
between the stress and strain components with considering 
the thermal and moisture impacts are:
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where C
ij
 are the stiffness parameters:

To study the effects of the thermal and moisture effects on 
the vibration characteristics of the 2D-FG nanoplates accu-
rately, we ponder the nonlinear relations for temperature and 
moisture fields as following:

where Ti and Ci are thermal and moisture loads.
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Fig. 1  Geometry of a rectangular FG nanoplate
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Fig. 2  Variation of f (z) and df
dz

 in several theories
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Based on the nonlocal elasticity theory, the stress tensor 
parts in terms of displacement ingredients with considering 
the thermal and moisture effects are reported as below:

Considering the strain potential energy ( US ) and kinetic 
energy ( UT ) and according to Hamilton’s principle, we have:
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Implementing Eqs. (2) and (8) into Eq. (9), the governing 
equation of motion is reported as

The unknown components of Eq. (10) including the ther-
mal loads and moments due to the hygro-thermo conditions 
are reported as:
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To achieve the equations of motion in terms of displace-
ment ingredients, it is essential to substitute Eqs. (8) and 
(11) into Eq. (10) as below:
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I0ü − I1

𝜕ẅb
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=
(
1 − 𝜇2∇2

)(
I1
𝜕u̇

𝜕x
+ I1

𝜕v̇

𝜕y
+ I0ẅb + I0ẅs + I6ẅz − I2

𝜕2ẅb

𝜕x2
− I4

𝜕2ẅs

𝜕x2
− I2

𝜕2ẅb

𝜕y2
− I4

𝜕2ẅs

𝜕y2
+ q3

)

Table 1  Natural frequency of 
the functionally-graded plates 
for several FG index

Theory k = 0 k = 1
a

h
= 5

a

h
=
√
10

a

h
= 10

a

h
= 5

a

h
= 10

a

h
= 20 k = 2 k = 3 k = 5

3D [36] 0.4658 0.0578 0.2192 0.0596 0.0153 0.2197 0.2211 0.2225
Quasi-3D [38] – – 0.2193 0.0596 0.0153 0.2198 0.2212 0.2225
Quasi-3D [37] – – 0.2193 0.0596 0.0153 0.2201 0.2216 0.223
Quasi-3D [39] – – 0.2193 – – 0.22 0.2215 0.223
IRPT [40] 0.4661 0.0578 0.2192 0.0597 0.0153 0.2201 0.2214 0.2225
Present 0.4658 0.0578 0.21932 0.0596 0.0153 0.2197 0.2211 0.2225

Table 2  The efficacy of the 
nonlocality on the natural 
frequency of the homogeneous 
nanoplate

Nonlocality 
index (nm)

b

a
= 1

b

a
= 2

Ref ([41]) Ref [42] Present Ref ([41]) Ref [42] Present

0 0.057 0.054 0.057 0.036 0.034 0.036
0.2 0.043 0.040 0.042 0.029 0.028 0.029
0.4 0.028 0.026 0.028 0.021 0.020 0.021
0.6 0.020 0.018 0.020 0.015 0.014 0.015
0.8 0.015 0.014 0.015 0.012 0.011 0.012
1 0.012 0.011 0.012 0.010 0.009 0.010
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Table 3  The efficacy of the 
nonlocality and geometrical 
parameters on the natural 
frequency of the nanoplate ( 
Ti = Ci = 0, ni = mi = 0)

Nonlocality index 
(nm)

b

a
= 1

b

a
= 2

b

a
= 3

a

h
= 5

a

h
= 10

a

h
= 5

a

h
= 10

a

h
= 5

a

h
= 10

0 0.2113 0.0577 0.1377 0.0365 0.1234 0.0325
0.1 0.1931 0.0527 0.1299 0.0345 0.1171 0.0309
0.2 0.1579 0.0431 0.1126 0.0299 0.1029 0.0271
0.3 0.1268 0.0346 0.0948 0.0251 0.0875 0.0231
0.4 0.1036 0.0283 0.0798 0.0212 0.0743 0.0196
0.5 0.0867 0.0237 0.0681 0.0181 0.0638 0.0168
0.6 0.0742 0.0203 0.059 0.0157 0.0555 0.0146
0.7 0.0647 0.0177 0.0519 0.0138 0.0489 0.0129
0.8 0.0572 0.0156 0.0461 0.0122 0.0436 0.0115
0.9 0.0513 0.0140 0.0415 0.011 0.0392 0.0104
1 0.0464 0.0127 0.0377 0.010 0.0357 0.0094

Fig. 3  The efficacy of the nonlocality and a
h
 ratio on the natural fre-

quency of the nanoplate ( Ti = Ci = 0, ni = mi = 0)

Fig. 4  The efficacy of the FG parameter on the natu-
ral frequency of the nanoplate for several small size impact 
( Ti = Ci = 0, ni = mi, n2 = m2 = 1)

Fig. 5  The efficacy of the FG parameter on the natu-
ral frequency of the nanoplate for several small size impact 
( Ti = Ci = 0, n2 = m2, n1 = m1 = n3 = m3 = 1)

Fig. 6  The efficacy of the thermal conditions on the fre-
quency of the nanoplate for several Passion’s ratio 
( T2 = T3 = C2 = 0,� = 1, ni = mi = 0(i = 1, 2,… , 4))
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The unknown coefficients of Eqs. (12a-e) are reported 
as following:

3  Navier solution method

In the current research, the Navier solution procedure is uti-
lized to achieve the vibration characteristics of the 2D-FG 
nanoplates with simply supported boundary conditions. 
Therefore, the relations of the boundary conditions are 
reported as below:
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𝜕2ẅb
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Fig. 7  The variation of the non-dimensional frequency of nano-
plate against temperature variation for various nonolocal index 
( b
a
= 1, n2 = m2 = 1,T2 = T3 = C1 = 0)
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According to Navier solution procedure, the components 
of the displacement using double Fourier series are:

(14)

u(x, 0) = u(x, b) = v(0, y) = v(a, y) = 0

wb(x, 0) = wb(x, b) = wb(0, y) = wb(a, y) = 0

ws(x, 0) = ws(x, b) = ws(0, y) = ws(a, y) = 0

wz(x, 0) = wz(x, b) = wz(0, y) = wz(a, y) = 0

(15)

u(x, y;t) =

∞∑
r=1

∞∑
s=1

Urs cos (�x)r sin (�y)se
i�t

v(x, y;t) =

∞∑
r=1

∞∑
s=1

Vrs sin (�x)r cos (�y)se
i�t

wb(x, y;t) =

∞∑
r=1

∞∑
s=1

Wb
rs
sin (�x)r sin (�y)se

i�t

ws(x, y;t) =

∞∑
r=1

∞∑
s=1

Ws
rs
sin (�x)r sin (�y)se

i�t

wz(x, y;t) =

∞∑
r=1

∞∑
s=1

Wz
rs
sin (�x)r sin (�y)se

i�t.

Table 4  The efficacy of the 
temperature variation and 
FG parameters on the natural 
frequency of the FG nanoplate 
( b
a
= 1, n2 = m2 = 1,T2 = T3 =

C1 = 0,� = 0.5)

ΔT(K) n2 = 1 n2 = 2

n1 = 0.5 n1 = 1 n1 = 1.5 n1 = 2 n1 = 0.5 n1 = 1 n1 = 1.5 n1 = 2

0 0.021 0.0204 0.0191 0.0151 0.0176 0.0168 0.015 0.0083
10 0.0211 0.0205 0.0193 0.0156 0.0177 0.017 0.0153 0.009
20 0.0212 0.0207 0.0195 0.016 0.0178 0.0172 0.0156 0.0098
30 0.0213 0.0208 0.0197 0.0164 0.018 0.0173 0.0158 0.0104
40 0.0215 0.021 0.0199 0.0168 0.0181 0.0175 0.0161 0.0111
50 0.0216 0.0211 0.0201 0.0172 0.0182 0.0177 0.0163 0.0117
60 0.0217 0.0212 0.0203 0.0176 0.0184 0.0178 0.0166 0.0122
70 0.0218 0.0214 0.0205 0.018 0.0185 0.018 0.0168 0.0128
80 0.0219 0.0215 0.0207 0.0184 0.0186 0.0182 0.017 0.0133
90 0.022 0.0217 0.0209 0.0187 0.0188 0.0183 0.0173 0.0138
100 0.0221 0.0218 0.0211 0.0191 0.0189 0.0185 0.0175 0.0143

Fig. 8  The variation of the non-dimensional frequency of nanoplate 
against temperature variation for various values of n1 parameter 
( b
a
= 1, n2 = m2 = 1,T2 = T3 = C1 = 0,� = 0.5)

Fig. 9  The variation of the non-dimensional frequency of nanoplate 
against temperature variation for various values of n2 parameter 
( b
a
= 1, n2 = m2 = 1,T2 = T3 = C1 = 0,� = 0.5)
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In which � is the frequency of the nanoplate; Urs , Vrs , 
Wb

rs
,Ws

rs
 and Wz

rs
 are the unknown factors, � =

r�

a
,� =

s�

b
 . To 

report the equations of motion in terms of ingredients of 
displacement, it is essential to substitute Eq. (15) into Eqs. 
(12a-e) as below:

4  Numerical results

In the current research, the vibration investigation of the 
2D-FG nanoplates pondering nonlocality subjected to hygro-
thermo conditions according to a novel HSDT is examined 
for the first time. The dimensionless forms of the natural 
frequency parameters are presented as:

The material features of the 2D-FG nanoplate are 
reported as Em = 70 GPa, Ec = 200GPa,vm = vc = 0.34 , 
�m = 2702

kg

m3
 and �c = 5700

kg

m3
.

4.1  Verification of the results

To investigate the accuracy of the current research, first, the 
outcomes are verified. To verify the outcomes accurately, it 
is assumed that the material features of the plate vary based 
on Voigt’s rule of mixtures as following:

where k is the FG index.
In Table 1, the natural frequency of the FG plate for vari-

ous values of the FG index and a
h
(side-to-thickness) ratio 

with assumption ΔT = 0,ΔC = 0,� = 0 has been examined. 
The results of Refs [36–40] are dedicated to investigate the 
accuracy of the current model. With investigating the out-
comes in Table 1, it can be deduced that the achieving data 
of the current research are in perfect agreement with similar 
researches.

(16)
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� = �h

√
�

E

� =
�a2

h

√
�m

Em

.

(18)
E(z) =

(
Ec − Em

)( z

h
+ 0.5

)k

+ Em

�(z) =
(
�c − �m

)( z

h
+ 0.5

)k

+ �m.

In Table 2, the natural frequency of the homogeneous 
nanoplate for various values of the nonlocality index and b

a
(length -to-side) ratio with assumption ΔT = 0,ΔC = 0 has 
been examined. The results of Refs [41, 42] are dedicated to 
investigate the accuracy of the current model. With inves-

tigating the outcomes in Table 2, it can be deduced that the 
achieving data of the current research are in perfect agree-
ment with the similar researches.

4.2  Effects of the nonlocality on the frequency 
of the nanoplate

In Table 3, the efficacies of the geometrical parameters and 
nonlocality index are reported on the vibration character-
istics of the nanoplates. The results are provided for both 
thick ( a

h
= 5 ) and moderately thick ( a

h
= 10 ) nanoplate. We 

can declare that the frequency of the nanoplate reduces 
with growth in a

h
 and b

a
 ratios. In addition, we can report 

that with enhancing the value of the nonlocality index, the 
frequency of the structure reduces. Also, with enhancing 
the small size parameter, its efficacy on the frequency of the 
nanosize structure will reduce. Also, we can report that with 
increasing the small size parameter, the efficacy of the thick-
ness stretching on the frequency of the nanoplate reduces. 
Therefore, we can render that with enhancing the stiffness of 
the structure (i.e., with reducing the nonlocality index), the 
thickness stretching has essential impacts on the responses 
of the nanosize systems.

In Fig. 3, the efficacies of the nonlocality index and a
h
 ratio 

on the vibration characteristics of the nanoplate are exam-
ined. The results are provided for thick ( a

h
= 5 ), moderately 

thick ( a
h
= 10 ) and thin ( a

h
= 30 ) nanoplates. We can declare 

that the natural frequency of the nanoplate reduces with 
growth in a

h
 ratio. Also, we can report that with enhancing/

reducing the side/thickness of the nanoplate, its efficacy on 
the frequency of the nanoplate will reduce. Moreover, with 
enhancing the nonlocality index, the efficacy of the thickness 
stretching on the frequency of the nanoplate reduces. Also, 
in thick nanoplates ( a

h
= 5 ), nonlocality index has essential 

role on the mechanical responses of the system. However, in 
thin nanoplates ( a

h
= 30 ), nonlocality index has minor role 

on the mechanical responses of the system. Therefore, it is 
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noticeable that in thin nanoplates, the efficacy of the nonlo-
cality is neglectable.

In Fig. 4, the efficacies of the nonlocality index and FG 
parameters on the frequency of the nanoplate are reported. 
We can declare that with enhancing the value of n1 , the fre-
quency of the nanoplate decreases. This is because with 
enhancing the FG index, the value of the components of the 
mass matrix of the system increase. Also, with reducing/
increasing the value of n1 , its efficacy on the frequency of the 
nanoplate reduces/enhances. Also, with enhancing/reduc-
ing the value of n1 , the efficacy of the nonlocality index on 
the frequency of the nanoplate reduces/enhances. Moreover, 
when we ponder the nonlocality, FG indexes have important 
role on the dynamic responses of the FG nanoplate.

In Fig. 5, the efficacies of the size effect parameter and 
FG indexes on the frequency of the nanoplate are reported. 
We can declare that with enhancing the value of n2 , the 
frequency of the nanoplate reduces. This is because with 
enhancing the FG indexes, the value of the components of 
the mass matrix of the system increase. Also, with increas-
ing/reducing the nonlocality index, its efficacy on the vibra-
tion characteristics of the nanoplate will reduce/enhance.

4.3  Effects of the hygro‑thermo conditions 
on the frequency of the nanoplate

In this part, the natural frequency investigation of the 2D-FG 
nanoplates in the hygro-thermo conditions is reported.

In Fig. 6, the variation of the non-dimensional frequency 
of the 2D-FG nanoplate against temperature variation for 
various Passion’s ratio is presented. We can express that 
with increasing the Passion’s ratio, the natural frequency of 
the 2D-FG nanoplate enhances. Also, with increasing the 
temperature variation, the natural frequency of the 2D-FG 
nanoplate rises linearly. In addition, with enhancing the tem-
perature variation, the frequency chart behaves similarly for 
various values of Passion’s ratio.

In Fig. 7, the variation of the non-dimensional frequency 
of the 2D-FG nanoplate against temperature variation for 
various nonlocal size effect is presented. We can express 
that with increasing the nonlocal size effect, the natural 
frequency of the 2D-FG nanoplate decreases. Also, with 
increasing the temperature variation, the natural frequency 
of the 2D-FG nanoplate increases linearly. In addition, with 
enhancing the size effect parameter, its impact on the natural 
frequency of the plate reduces. Moreover, with enhancing/
reducing the nonlocality index, the impacts of the tempera-
ture variation on the natural frequency of the 2D-FG nano-
plate will reduce/increase. Therefore, we can conclude that 
with increasing the size effect parameter, the slope of the 
chart will reduce when the variation of the temperature rises.

In Table 4, the variation of the non-dimensional fre-
quency of the 2D-FG nanoplate against temperature varia-
tion for various FG parameters is presented. We can express 
that with increasing the temperature variation, the natural 
frequency of the 2D-FG nanoplate increases. Also, with 
increasing the FG parameters 

(
n1, n2

)
 , the natural frequency 

of the nanoplate decreases. This is because when the FG 
parameters increase, the stiffness of the system increases, 
however; the components of the mass matrix of the system 
increase more than components of the stiffness matrix (For 
more detail, please refer to Eqs. (12a–e). Therefore, with 
increasing the FG parameters, the natural frequency of the 
nanoplate will decrease. In addition, with increasing the 
value of n1 parameter, its impact on the natural frequency 
of the 2D-FG nanoplate will increase when the tempera-
ture variation grows. Also, with increasing the values of n2 
parameter, its effects on the natural frequency of the 2D-FG 
nanoplate will enhance when the temperature variation 
increases.

In Fig. 8, the variation of the non-dimensional frequency 
of the 2D-FG nanoplate against temperature variation for 
several values of n1 parameter is presented. We can express 
that with increasing/decreasing the temperature variation, 
the impacts of the n1 parameter on the frequency of the plate 
will decrease/rise. Also, with growing/decreasing the values 
of the n1 parameter, the impacts of the temperature variation 
on the natural frequency of the plate will rise/decrease.

In Fig. 9, the variation of the non-dimensional frequency 
of the 2D-FG nanoplate against temperature variation for 
various values of n2 parameter is presented. We can express 
that with enhancing the temperature variation, the frequency 
chart behaves similarly for several values of n2 parameter. 
Moreover, with enhancing the temperature variation, the 
intensity of the increase in frequencies are the same for vari-
ous values of n2 parameter.

5  Conclusions

In the current research, a novel nonlocal higher-order theory 
is presented to inquire about the free vibration analysis of the 
2D-FG nanoplate subjected to hygro-thermo loading. The 
novelty of the current research is to present a new HSDT, 
which is an amalgamation of exponential, polynomial and 
trigonometric functions. Thickness stretching influence 
is considered according to higher-order shear and normal 
deformation theory. Size-dependent nonlocal elasticity 
theory is dedicated to pondering the nonlocality. The trans-
verse component of displacement is divided into bending 
and shear components. To ponder the effects of the thermal 
and moisture conditions on the vibration characteristics of 
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the 2D-FG nanoplate, we ponder the nonlinear relations 
for temperature and moisture fields. Hamilton’s axiom is 
dedicated to achieving the governing equations of motion. 
Then, the Navier solution technique is dedicated to derive 
the natural frequency of the nanoplate with S–S boundary 
conditions. The achieved results of the current research are:

• The frequency of the nanoplate reduces with growth in a
h
 

and b
a
 ratios.

• With enhancing the value of the nonlocality index, the 
frequency of the structure reduces.

• With enhancing the nonlocality index, its efficacy on the 
frequency of the nanosize structure will reduce.

• In thick nanoplates, nonlocality index has vital role in 
the mechanical responses of the nanoplates. However, in 
thin nanoplates, nonlocality index has a minor role in the 
mechanical responses of the nanoplates.

• With enhancing the value of FG indexes, the frequency 
of the nanoplate decreases.

• With increasing/decreasing the size effect parameter, the 
impacts of the temperature variation on the natural fre-
quency of the 2D-FG nanoplate will reduce/increase.

• With increasing/decreasing the temperature variation, the 
impacts of the n1 parameter on the frequency of the plate 
will decrease/increase.

• With enhancing the temperature variation, the frequency 
chart behaves similarly for various values of n2 param-
eter.

• With enhancing the temperature variation, the frequency 
chart increases similarly for various values of Passion’s 
ratio.

• With increasing the values of FG indexes, their impacts 
on the natural frequency of the 2D-FG nanoplate will 
increase when the temperature variation rises.
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