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Abstract
This paper investigates a kind of inverse problem for assessing the uncertainties of identified parameters with uncertainties 
in structural parameters and limited experimental data. The uncertainty is described by the interval model in which only the 
bounds of uncertain parameters are required. Directly solving this kind of inverse problem involves a double-loop problem 
where the outer-loop is interval analysis and the inner-loop is deterministic optimization, which requires a large number 
of calculations. To efficiently evaluate the effect of interval parameters on the identified parameters, a novel method based 
on the dimension-reduction method and adaptive collocation strategy is proposed. First, the interval inverse problem is 
transformed into an inverse-propagation problem, and the dimension-reduction interval method is adopted to transform the 
interval inverse-propagation problem into several one-dimensional interval inverse-propagation problems. Then, an adap-
tive collocation strategy is proposed to efficiently estimate the lower and upper bounds of identified parameters. Therefore, 
the double-loop problem can be transformed into several deterministic inverse problems, and the efficiency of solving the 
uncertain inverse problem is dramatically improved. Two numerical examples and an engineering application are applied to 
demonstrate the feasibility and efficiency of the proposed method.

Keywords  Uncertain inverse problem · Interval model · Dimension-reduction method · Adaptive strategy

1  Introduction

According to the relationship between inputs and outputs, 
the structural problems can be roughly classified into two 
categories: forward problems and inverse problems. Forward 
problems are defined as the problems to calculate the out-
puts based on the known inputs. In contrast with forward 

problems, inverse problems are defined as the problems to 
calculate the inputs through the outputs. Due to the increas-
ing complexity of the structures and application environ-
ment, the measuring system inputs directly obtained by 
experiments are becoming harder in some of the complex 
structures and systems. Therefore, the inverse problem 
methods [1–3] are proposed to indirectly obtain the inputs 
through the system outputs which are available or more 
convenient to be measured. In practical engineering, many 
problems can be considered as inverse problems, such as 
crack identification and traffic accident reconstruction. In 
traditional inverse problems, the parameters in structures are 
measured as constants, thus those identified parameters will 
be constants. However, in practical engineering problems, 
uncertainties widely exist in geometric dimensions, loads 
and other material parameters. To obtain a reliable design, 
the uncertain inverse problems which comprehensively con-
sider uncertain parameters in structures are gradually studied 
in the last few decades.

At present, the Bayesian method and the maximum likeli-
hood estimation method are two important methods that are 
widely used to deal with uncertain inverse problems [4–13], 
and many uncertain analysis methods are also applied to 
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uncertain inverse problems to improve the solution effi-
ciency at the same time, such as perturbation method [7] 
and sensitivity matrix method [14]. However, those methods 
are all on the assumption that the probability distributions 
of uncertain parameters are already obtained [15–21]. How-
ever, this assumption may not always be true or sometimes 
requires expensive cost in practical engineering problems. 
Therefore, the non-probabilistic methods [22–26], which do 
not need the probability distributions of uncertain param-
eters, are proposed as beneficial supplements to the prob-
ability method. The interval method [22, 27, 28] is one of 
the non-probability methods, and because it only requires 
the lower and upper bounds of the uncertain parameters, 
fewer samples are required to construct an interval model 
compared with the probability method.

As a result, the inverse problem considering interval 
uncertainty called interval inverse problem is gradually 
investigated by many researchers. In the process of solving 
the interval inverse problem, usually, the forward propaga-
tion problem is repeatedly called by the interval identifi-
cation process in a double-loop nested framework, which 
brings about lower computational efficiency. Therefore, the 
researches on improving computational efficiency are of 
great significance. At present, there are mainly two ways to 
improve the efficiency of the corresponding forward propa-
gation: one is to construct surrogate models [29, 30]; the 
other is to apply interval analysis methods [31, 32]. Sur-
rogate model methods mainly exist in the interval finite 
element modeling updating problems [33–35]. Fang et al. 
[36] proposed a special quadratic response surface method 
to construct the surrogate model, by which the interval func-
tion responses can be directly obtained by interval arith-
metic. Deng et al. [37] applied the radial basis function 
neural networks to construct the surrogate model and then 
employed the perturbation technique to calculate the interval 
function responses. However, usually, the surrogate model 
methods need many sampling points to construct an accu-
rate approximate model, and the accuracy of the surrogate 
model method strongly influences the results of the identi-
fied parameters. In addition to the surrogate model methods, 
interval analysis methods are widely applied to solve interval 
inverse problems. Jiang et al. [38] applied the first-order 
Taylor expansion interval analysis method to transform the 
inverse problem into deterministic inverse problems that 
can be calculated by traditional optimization and applied 
it to identify the material characterization of composites. 
Liu et al. [39] presented an inverse method that combines 
the interval analysis with regularization to stably identify 
the bounds of the dynamic load acting on the uncertain 
structures. Feng et al. [40] presented a new interval inverse 
method, which combines the Chebyshev inclusion function 
and multi-island genetic algorithm, and applied this method 
to deal with the suspension design of a vehicle vibration 

model. Liu et al. [41] proposed an interval inverse method 
based on high dimensional model representation and affine 
arithmetic to improve the efficiency of the interval inverse 
problem with the uncertainty that existed in responses and 
parameters.

In the above interval inverse methods, almost all of them 
concern with the uncertainties that existed in structure or 
system responses. The research of the interval inverse prob-
lem discussed in this paper is relatively few. However, this 
type of interval inverse problem discussed in this paper 
widely exists in practical engineering. For example, as for 
the vehicle accident reconstruction problem, the meas-
ured data of the deformation of the impacted vehicles in 
an accident is rare and deterministic and it is impossible 
to measure again, and some of the parameters such as the 
material parameters and friction factors are uncertain param-
eters. Under the influence of those uncertain parameters, 
the possible value of the vehicle speed and collision angle 
should be identified. Therefore, a kind of inverse problem for 
parameter identification will be discussed here, in which the 
experimental results are limited and fixed, and the intervals 
of some structural parameters should be identified under the 
influence of other structural parameters that are known yet 
described by intervals. In this paper, this kind of interval 
inverse problem is call model uncertainty inverse problem, 
and the parameters whose intervals have been obtained are 
called “interval parameters”, and the ones that should be 
identified are called “identified parameters”. Commonly, 
solving the model uncertainty problem encounters the dou-
ble-loop problem where the outer loop is the uncertain prop-
agation from uncertain parameters to identified parameters, 
and the inner loop is the deterministic inverse calculation.

To improve the efficiency of the model uncertainty prob-
lem, a novel inverse method based on the dimension-reduc-
tion interval method and adaptive collocation strategy is 
proposed. First, the interval inverse problem is transformed 
into the form of inverse-propagation function problem; 
and then the dimension-reduction interval method is used 
to transform the inverse-propagation function into several 
one-dimensional inverse-propagation functions; an adaptive 
collocation strategy is proposed to determine the collocation 
nodes in an interval, based on which, the one-dimensional 
inverse-propagation function is transformed into several 
deterministic inverse calculations which effectively avoids 
the time-consuming double-loop solution procedure and 
improves the efficiency of uncertain inverse calculation. 
The rest of this paper is as follows: Sect. 2 gives a problem 
statement of the inverse problem; Sect. 3 gives the formula-
tion of the dimension-reduction method of the inverse func-
tion and the calculation strategy; afterward, three examples 
are utilized to demonstrate the feasibility and validity of the 
proposed method in Sect. 4; finally, Sect. 5 gives the conclu-
sions of this paper.
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2 � Problem statement

A general inverse problem can be formulated as:

where � is an n-dimensional structural parameter vector that 
needs to be identified by inverse calculation; � is system 
function vector; m is the number of the functions; � is the 
structural response vector which is known and obtained by 
measurement; m is the number of functions; n is the number 
of parameters to be identified. Generally speaking, m should 
be larger or equal to n to ensure the positive definite solution 
of Eq. (1). Supposing that there are uncertainties in some of 
the parameters or inputs of structures, and those uncertain-
ties are modeled by intervals. The uncertain inverse problem 
can be formulated as:

where:

where the interval vector �I is used to describe the uncer-
tainty of the parameter vector � ; The subscripts I, L and 
R are the interval, lower and upper bounds of the interval, 
respectively; q is the number of interval parameters; � is 
the deterministic response vector. Eq. (2) is called model 
uncertainty inverse problem.

For a deterministic inverse problem, the identified 
parameters can be obtained through a deterministic inverse 
calculation. For interval parameters, the corresponding 
possible value of identified parameters will form a solution 
set, which in this paper is described by the interval vector. 
Therefore, the corresponding interval inverse problem can 
be further expressed as:

where F denotes the mapping relation of interval propaga-
tion from an uncertain parameter vector �I to the identified 
parameter vector �I . Equation (4) is to calculate the intervals 
of identified parameters according to the interval parameters 
on the condition of � = �(�,�) . In practical engineering 
problems, the researchers always encounter the “ill-posed” 
problem where the inverse solution cannot be uniquely 
obtained. For this problem, the regularization method [39, 
42, 43] can be usually applied to transform the “ill-posed” 
into a “well-posed” problem, and the inverse methods based 
on the “well-posed” inverse problem can be applied to solve 
the “ill-posed” inverse problem.

(1)� = �(�), Zi = gi
(
X1,X2, ...,Xn

)
, i = 1, 2, ...,m,

(2)
� = �(�,�), Zi = gi

(
X1,X2, ...,Xn,U1,U2, ...,Uq

)
, i = 1, 2, ...,m,

(3)� ∈ �I =
[
�L,�R

]
,Uk =

[
UL

k
,UR

k

]
, k = 1, 2, ..., q,

(4)
{

F ∶ �I
→ �I

� = �(�,�)
,

This paper mainly concentrates on the computational effi-
ciency of Eq. (4) in which the double-loop nested problem 
always encounters in the solving process. The nested double-
loop involves outer-loop and inner-loop, where the outer-loop 
is interval analyses and the inner loop is inverse calculations. 
In the process of solving this problem, the inverse calculation 
(inner-loop) is repeatedly called by interval propagation (outer-
loop). Therefore, the computational process is very time-con-
suming and the computational efficiency is relatively low.

3 � Interval assessment method for identified 
parameters

In this section, an efficient interval assessment method for 
identified parameters is proposed. The main strategy of the 
proposed method is to transform the interval inverse problem 
into several deterministic inverse problems. First, the interval 
inverse problem is transformed into an inverse function prob-
lem where the propagation direction is from an interval param-
eter vector and deterministic responses vector to the identified 
parameter vector. Then, the dimension-reduction method is 
introduced to transform the inverse function problem into sev-
eral one-dimensional inverse-propagation problems. Moreo-
ver, an adaptive collocation strategy is proposed to obtain the 
lower and upper bounds of the identified parameters through 
a minimum number of collocation points.

3.1 � The dimension‑reduction model of the inverse 
function

Following the notation in interval mathematics [31, 32], an 
interval vector �I can be rewritten in the following form:

where the subscripts C and W  represent interval midpoint 
and interval radius, respectively; �C and �W can be obtained 
by:

For the convenience of expression, the inverse-propagation 
expression of Eq. (2) can be transformed into:

where 
←

� denotes the inverse function vector by which the 
identified vector � can be obtained by the deterministic 
response vector � and the uncertain parameter vector � . 

(5)
�I =

[
�L,�R

]
=
[
�C − �W ,�C + �W

]
= �C + [−1, 1]�W ,

(6)

⎧⎪⎨⎪⎩

�C =
�L+�R

2
,UC

j
=

UL
j
+UR

j

2
, j = 1, 2, ..., n

�W =
�R−�L

2
,UW

j
=

UR
j
−UL

j

2
, j = 1, 2, ..., n

.

(7)� =
←

�(�,�),
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The explicit expression of 
←

� is usually non-existent, and it 
denotes a mapping relationship from the interval parameters 
� to identified parameters � . For example, the mapping rela-
tion from two-interval parameters to two identified param-
eters is depicted as shown in Fig. 1.

In the probability analysis methods, the dimension-
reduction method [44] is an efficient integration method to 
calculate the response moments, and this method is widely 
applied in the probability analysis problems [45–47] and 
uncertain design optimization problems [48, 49]. The main 
strategy of the dimension-reduction method is to deal with 
the uncertain parameters one by one, meanwhile transforms 
the original function into several one-dimensional functions. 
Solving those one-dimensional functions is more efficient 
than solving the original function. Therefore, the integra-
tion problem is simplified, and the calculation efficiency is 
improved. In current years, the dimension-reduction method 
is extended to the interval analysis field to efficiently calcu-
late the bounds of function interval response [50–52], and 
those methods also achieved well performance both in accu-
racy and efficiency. Interval dimension-reduction model can 
be expressed as:

According to the Taylor series expansions of the original 
and dimension-reduction functions. The residual error of the 
dimension-reduction function can be expressed as:

It can be seen that the residual error of interval dimension 
reduction functions mainly lies in cross terms.

(8)f̃(�)=f
(
U1,U

C
2
, ...,UC

q

)
+ f

(
UC

1
,U

2
, ...,UC

q

)
+⋯ + f

(
UC

1
,UC

2
, ...,U

q

)
− (q − 1)f

(
�C

)
.

(9)

f (�) − f̃ (�)=

q∑
i=1

q∑
j=1,j≠i

𝜕2f
(
UC

i
,UC

j

)

𝜕U
i
𝜕U

j

(
U

i
− UC

i

)(
U

j
− UC

j

)
+

q∑
i=1

q∑
j=1,j≠i

1

2!

𝜕3f
(
UC

i
,UC

j

)

𝜕U2
i
𝜕U

j

(
U

i
− UC

i

)2(
U

j
− UC

j

)

+

q∑
i=1

q∑
j=1,j≠i

q∑
k=1,k≠i,

k≠j

𝜕3f
(
UC

i
,UC

j

)

𝜕U
i
𝜕U

j
𝜕U

k

(
U

i
− UC

i

)(
U

j
− UC

j

)(
U

k
− UC

k

)
+ ... .

In this paper, the dimension-reduction interval method 
is extended to the interval inverse problem. Based on Eqs. 
(7) and (8), the inverse function can be transformed into 
the form of dimension-reduction:

where 
←

�
(
�,UC

1
,UC

2
, ...,UC

q

)
 is a deterministic inverse-prop-

agation problem that can be directly obtained by a determin-
i s t i c  i n v e r s e  c a l c u l a t i o n ; 
←

�
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
, k = 1, 2, ..., q is the one-dimen-

sional inverse function. Equation (10) is called the dimen-
sion-reduction model of the inverse function. Based on the 
dimension-reduction interval method, Eq. (7) is transformed 
into the accumulation of multiply one-dimensional inverse 
functions, and the number of the one-dimensional inverse 
functions is determined by the number of interval parame-
ters. For the simplicity of expression, �k, k = 1, 2, ..., q is 
defined as the output vector of the inverse function vector 
←

�
k, k = 1, 2, ..., q , and �C is defined as the output vector of 

the inverse function vector 
←

�
(
�,UC

1
, ...,UC

k
, ...,UC

q

)
 as 

follows:

(10)

� =
←

�(�,�)=
←

�
�

(
�,U1,U

C
2
, ...,UC

q

)
+

←

�
�

(
�,UC

1
,U

2
, ...,UC

q

)
+ ...

+
←

�
q

(
�,UC

1
,UC

2
, ...,U

q

)
− (q − 1)

←

�
(
�,UC

1
,UC

2
, ...,UC

q

)
,

Fig. 1   The mapping relation 
from interval parameters to 
identified parameters
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The identified parameter vector � can be obtained by:

Based on Eq. (12), the identified interval parameter vector 
� is transformed into the summation of several interval vec-
tors �k  . Since each inverse-propagation problem 
←

�
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 contains an interval parameter U

k
 , 

the one-dimensional inverse-propagation problems 
←

�
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 can be solved separately, and the 

parallel computation also can be applied to solve Eq. (12).
Based on the dimension-reduction method, the interval 

inverse problem is transformed into several one-dimensional 
inverse problems. Although there are many interval analysis 
methods, few of them can be appropriately used to directly 
solve the inverse problem discussed in this paper for the 
strong nonlinear of the inverse function. Therefore, in the 
procedure of solving each one-dimensional inverse function 
←

�
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 , the points in interval parameters 

U
k
 are selected to calculate the possible values of the identi-

fied vector �
k
 . For example, ak points selected in the interval 

parameter U
k
 can obtain ak possible vectors as:

where the subscribe of U
k
 represents the point in the interval 

U
k
 . According to Eq. (13), it can be seen that ak deterministic 

inverse calculations obtain ak deterministic identified vec-
tors �1

k
,�2

k
, ...,�

ak
k

 . The obtained possible vector of identified 
vectors in Eq. (13) is assembled to a n × ak matrix as:

The upper and lower bounds of each identified parameters 
�

k
 are determined by the maximum and minimum values of 

each row of the matrix �k , respectively:

(11)

⎧
⎪⎨⎪⎩

�k=
←

�
k

�
�,UC

1
, ...,U

k
, ...,UC

q

�

�C=
←

�
�
�,UC

1
, ...,UC

k
, ...,UC

q

� .

(12)� = �1 + �2 + ...�q − (q − 1)�C.

(13)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�1
k
=
←

�
k

�
�,UC

1
, ...,U1

k
, ...,UC

q

�

�2
k
=
←

�
k

�
�,UC

1
, ...,U2

k
, ...,UC

q

�

...

�
ak
k
=
←

�
k

�
�,UC

1
, ...,U

ak
k
, ...,UC

q

�
,

(14)�k =
(
�1

k
,�2

k
, ...,�

ak
k

)
, k = 1, 2, ..., q

(15)

⎧⎪⎪⎨⎪⎪⎩

XL
k,1

= min
�
�k,1

�
,XR

k,1
= max

�
�k,1

�
XL
k,2

= min
�
�k,2

�
,XR

k,2
= max

�
�k,2

�
...

XL
k,n

= min
�
�k,n

�
,XR

k,n
= max

�
�k,n

�
,

where �k,i, i = 1, 2, ..., n is the ith row of the matrix �k ; XL
k,i

 
and XR

k,i
 are the lower and upper bound of the ith identified 

parameter X
i
 in the interval vector �

k
 , respectively. Based on 

Eq. (15), the lower and upper bound vectors of the interval 
vector �k can be obtained according to Eq. (15):

Based on all the interval vector �I
k
 , the identified param-

eter interval vector �I can be obtained by Eq. (12). The total 
number of the acquired points is:

where ak represents the number of selected points in the 
interval parameter Uk . Based on Eq. (17), it can be seen 
that the computational efficiency depends on q and ak . At 
each point, the deterministic inverse problem can be con-
structed, and once the deterministic inverse calculation is 
implemented to obtain a possible value of the identified 
parameters. Therefore, 

∑q

k=1
ak deterministic inverse cal-

culations are required to obtain the interval of identified 
parameters. In the practical calculation process, however, 
ak is hard to be determined, and the accuracy of the results 
is strongly influenced by the number of ak . Therefore, an 
adaptive collocation strategy is proposed to determine the 
minimum number of points of each interval parameter on 
the premise of guaranteed accuracy.

3.2 � Adaptive collocation strategy

The adaptive strategy is widely used in the reliability analy-
sis method [53–56]. The strategy provides an effective way 
to improve the computational efficiency of the reliability 
analysis method. In this part, the idea of adaptive strategy is 
extended to the interval inverse-propagation analysis prob-
lem, and a novel computational strategy called adaptive col-
location strategy is proposed to improve the computational 
efficiency of the interval inverse-propagation analysis.

The computational accuracy of the proposed method 
is determined by the number of points ak in each interval 
parameter Uk . Theoretically, the more points selected in an 
interval parameter will generally bring about better accuracy. 
However, the more points selected in an interval also need 
more deterministic inverse calculations, which will cause a 
larger computational cost. Therefore, it is desired to use a 
minimum number of points to achieve satisfying accuracy. 
The adaptive collocation strategy is proposed to determine 
the number of points in each interval parameter, through 

(16)

�k ∈ �I
k
=
[
�L

k
,�R

k

]
,�L

k
=
[
XL
k,1
,XL

k,2
, ...,XL

k,n

]
,

�R
k
=
[
XR
k,1
,XR

k,2
, ...,XR

k,n

]
,

(17)f
(
ak, q

)
=

q∑
k=1

ak,
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which the required points can be dramatically decreased and 
the efficiency of the inverse problem can be improved to a 
great extent.

For example, the adaptive collocation strategy is operated 
to solve the one-dimensional inverse function problem 
←

g
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 . As shown in Fig. 2, the first three 

iterative steps of this iterative mechanism are depicted: at 
the first iterative step, the midpoint and two vertex points of 
an interval parameter are selected (depicted as red circle 
dots) to calculate the interval vector of �

k
 ; based on the 

three points, the interval inverse problem is transformed into 
three deterministic inverse problems, and the �L(1)

k
 and �R(1)

k
 

can be obtained by Eqs. (14) and (15), where the superscript 
in bracket represents the iterative step; at the second iterative 
step, the midpoints of two adjacent red circle dots (depicted 
as black square dots) are added to calculate the �L(2)

k
 and 

�
R(2)

k
 , and only black square points are required to calculate; 

if the convergence criterion is satisfied, terminate the itera-
tion and the �L(2)

k
 and �R(2)

k
 are the lower and upper bounds 

of �
k
 , respectively; otherwise, the midpoints of the existed 

adjacent points (depicted as green triangle dots in step 3) are 
added at the third iterative step. The iterative process will 
continue until the convergence criterion is satisfied as:

where s is the iterative step; �L(s)

k
 and �R(s)

k
 are the lower and 

upper bounds at the sth step, and �R(s+1)

k
 are the lower and 

upper bounds which are obtained at the (s + 1)th iterative 
step. � is the small value, and set � = 0.001 . Through Eq. 
(18), the lower and upper bounds �k are guaranteed to be 
converged. In summary, the computational procedure can be 
described as follows:

Step 1. As for the kth one-dimensional inverse-propaga-
tion problem 

←

�
k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 , set s = 1;

(18)
(‖‖‖�

L(s+1)

k
− �

L(s)

k

‖‖‖ +
‖‖‖�

R(s+1)

k
− �

R(s)

k

‖‖‖
)
≤ �,

Step 2. If s = 1 , the midpoint and two vertex points of an 
interval parameter are selected to calculate the lower and 
upper bound vector �L(s)

k
 and �R(s)

k
 of the identified parameter 

vectors �(s)

k
 ; otherwise, add new points at the midpoints of 

the existed adjacent points and calculate the lower and upper 
bound vectors �L(s)

k
 and �R(s)

k
 of the identified parameter vec-

tors �(s)

k
 , respectively;

Step 3. If the convergence criteria Eq. (18) is satisfied, 
terminate the iteration and obtain the upper and lower bound 
vectors �L(s)

k
 and �R(s)

k
 , respectively; otherwise set s = s + 1 

and turn to step 2.
The iterative flowchart of one-dimensional inverse-prop-

agation is depicted in Fig. 3. Based on �
k
 , k = 1, 2, ..., q , the 

interval of identified parameters � can be obtained by Eq. 
(12). Generally, the adaptive collocation strategy takes only 
a few iterations to reach convergence and provides a solution 
with acceptable accuracy, which can be demonstrated in the 
following examples. Since the proposed method decouples 
the original interval inverse problem to several determinis-
tic inverse problems, the double-loop strategy is success-
fully avoided and hence the high efficiency of the proposed 
method is guaranteed. In practical engineering problems, 
the uncertainties always are relatively small, therefore, the 
iterative mechanism can deal with most of the engineering 
problems. For the rest, particularly the complicated sys-
tems or structures, the proposed mechanism may encounter 
a convergence problem that may identify the local interval 
solution, and the reader should select enough points at the 
first iterative step to overcome the convergence problem as 
far as possible. Besides, the more samples selected in the 
first step, the more deterministic inverse calculations are 
acquired to obtain the identified interval, and the efficiency 
of the proposed method will be correspondingly reduced 

Midpoint
Upper bound pointLower bound point

New points

New points

Fig. 2   Adaptive collocation strategy

Start

S=0

Convergence?

End

Predict bound vectors         and           by 
Eq. (16) 

N

Y

Add new points at the midpoints 
of  two adjacent points

Fig. 3   Iterative flowchart of one-dimensional inverse-propagation 
problem
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to a certain extent based on the number of the points at the 
first iterative step.

3.3 � Solution of the deterministic inverse problem

When each interval parameter is replaced by the selected 
points determined by the adaptive collocation strategy, the 
interval inverse system Eq. (7) has degenerated to determin-
istic inverse problems as:

where U(ak)

k
 is a point in U

k
 . The least-square method can be 

used to construct deterministic optimization as:

Equation (20) is a deterministic optimization problem, 
and many traditional optimization methods can be applied 
to this unconstrained deterministic optimization problem. 
In this paper, the genetic algorithm (GA) [57] is selected to 
solve the Eq. (20) to obtain the global convergence solution 
for the deterministic inverse problem.

3.4 � Iterative mechanism

The above section illustrates the adaptive collocation strat-
egy and iterative procedure of a one-dimensional inverse 
function, and through the procedure, the one-dimensional 
inverse function can be efficiently solved. As for a multi-
dimensional inverse problem, all the transformed one-
dimensional inverse functions must be solved and then the 
solution results are assembled to obtain the identified param-
eters. The multi-dimensional inverse problem can be solved 
as shown in Fig. 4:

	Step 1.	 Transform the inverse problem into the inverse 
propagation problem as shown in Eq. (7) through the 
interval inverse analysis method;

	Step 2.	 Transform the inverse propagation problem into 
several one-dimensional inverse propagation problems 
as shown in Eq. (10) through the dimension-reduction 
method.

	Step 3.	 Solve all the one-dimensional inverse propagation 
problems by adaptive collocation strategy to obtain 
�k=

�⃖� k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
;

(19)

�
ak
k
=

←

�
k

(
�,UC

1
, ...,U

ak
k
, ...,UC

q

)
⇔ �

=�
(
�

ak
k
,UC

1
,UC

2
, ...,U

ak
k
, ...,UC

q

)
, i = 1, 2, ...,m

(20)min
�

ak
k

n∑
i=1

(
Zi − gi

(
�

ak
k
,UC

1
,UC

2
, ...,U

ak
k
, ...,UC

n

))2

	Step 4.	 Assemble all the �k=
�⃖� k

(
�,UC

1
, ...,U

k
, ...,UC

q

)
 to 

obtain the identified parameter vector as shown in Eq. 
(12).

In the processing of the iteration, the multi-dimen-
sional inverse problem is transformed into several one-
dimensional inverse propagation problems, and each one 
is independent of the others. Therefore, parallel compute 
methods [58–61] can be used to calculate all the trans-
formed one-dimensional inverse propagation problems 
simultaneously, and further improve the efficiency of the 
interval inverse problem. The number of the deterministic 
inverse calculations of the proposed method for q-dimen-
sional inverse problem can be expressed as:

where sk represents the iterative step of the kth one-dimen-
sional inverse-propagation problem. It can be seen that the 
number of the deterministic inverse calculations is the sum-
mation of the number of the q one-dimensional deterministic 
inverse calculations, and in each dimension, the calculation 

(21)fPr o(sk, q) =1+

q∑
k=1

2sk ,

Start

Transform interval inverse problem into interval 
inverse-propagation problem according to Eq. (7)

Transform interval inverse propagation problem into several 
one-dimensional inverse problems according to Eq. (10)

One-dimensional 
inverse problem

One-dimensional 
inverse problem

One-dimensional 
inverse problem

Adaptive collocation 
strategy

Adaptive collocation 
strategy

Adaptive collocation 
strategy

Convergence? Convergence? Convergence?

Interval vector of 
identified parameter 

Yes Yes Yes

No No

...

...

No

Output interval vector: Output interval vector: Output interval vector:
...

Fig. 4   Iterative mechanism
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is 2sk . Usually, in each one-dimensional inverse problem, 
only 2–3 iterative steps are required to achieve convergence. 
Therefore, the proposed method has a fine computational 
efficiency. To verify the accuracy of the obtained solutions, 
the results obtained by the Monte Carlo method [62] (MCS) 
are used to compare the results of the proposed method. The 
number of the deterministic inverse calculations of MCS is:

It can be seen that the number of the deterministic inverse 
calculations is the multiplication of the number of the q one-
dimensional deterministic inverse calculations, and in each 
dimension, the calculation is ak . To ensure the accuracy of 
the reference solution, ak = 100, k = 1, 2, ..., q is selected 
to assess the interval bounds. Therefore, MCS needs 100q 
deterministic inverse calculations.

4 � Numerical examples and discussions

Two numerical examples and an engineering application are 
applied to verify the accuracy and efficiency of the proposed 
method. The results of the Monte Carlo method (MCS) [62] 
are selected as the reference solutions to verify the accu-
racy of the results obtained by the proposed method. To 
help readers clearly understand the proposed method, the 
computational process of this proposed method is detailedly 
illustrated in example one.

4.1 � Numerical example 1

Consider the following numerical system equations:

where X1 and X2 are the unknown parameters that should 
be identified; Z1 and Z2 are the system responses which are 
already measured as Z1 = 1 and Z2 = 3 , respectively; U1 
and U2 are the uncertain parameters which are quantified by 
intervals as U1 ∈ UI

1
= [5, 7] and U2 ∈ UI

2
= [8, 9] , respec-

tively. First, Eq. (23) can be transformed into the form of the 
interval inverse function as Eq. (7):

Based on the dimension-reduction method as Eq. (10), 
Eq. (24) can be transformed into two one-dimensional inter-
val inverse function problems as:

(22)fMCS(ak, q) =

q∏
k=1

ak.

(23)
{

Z1 = X1 + X2
2
+ U1

Z2 = eX1∕2 + 10∕X2 − U2

,

(24)
(
X1,X2

)T
=

←

�
(
Z1, Z2,U1,U2

)
.

where 
←

�
(
Z1, Z2,U

C
1
,UC

2

)
 is a deterministic inverse prob-

lem and can be directly solved by the GA method [57]. By 
solving 

←

�
(
Z1, Z2,U

C
1
,UC

2

)
 , �C = [3.7906, 2.0638] can be 

obtained. 
←

�
1

(
Z1, Z2,U1

,UC
2

)
 contains an interval parameter 

U
1
 , and it cannot be directly obtained by GA [57]. Therefore, 

the proposed adaptive collocation strategy is employed to 
solve this problem. First, three points UL

1
 , UR

1
 and UC

1
 are 

selected to estimate the possible values �1 according to the 
adaptive collocation strategy as:

According to Eq. (14), the vectors in Eq. (26) are assem-
bled to a matrix:

Based on Eq. (27), the row vectors �1 are obtained as:

Based on Eqs. (15) and (28), the lower and upper bounds 
of identified parameters �1 can be obtained as:

and the interval of �1 at the first step can be obtained as:

Two new points between the existed points at the 2nd 
step are added as shown in Fig. 2, and the interval �1 can 
be updated to:

(25)

(
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←

�
1
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,U
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2
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,
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)
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X
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∈ X
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At this step, the convergence criterion is satisfied and the 
iteration terminates. The intervals XI

1,1
= [3.7255, 3.8438] 

and XI
1,2

= [1.9769, 2.1432] are obtained. As the same to the 
←

�
1

(
Z1, Z2,U1

,UC
2

)
 , the solution of 

←

�
2

(
Z1, Z2,U

C
1
,U2

)
 can be 

obtained by the adaptive collocation strategy as:

Based on Eqs. (31) and (32), the lower and upper bounds 
of identified parameters can be obtained as:

According to the above analysis, both one-dimensional 
inverse propagations are convergence at the second iterative 
step. Therefore, the proposed method only acquires 9 deter-
ministic inverse calculations to obtain the interval solutions 
of the identified parameters X1 and X2 based on Eq. (21). To 
verify the accuracy of the interval solutions, the computational 
results obtained by MCS are used as a reference solution to 
compare with the ones obtained by the proposed method. 
According to Eq. (22), 10,000 deterministic inverse calcula-
tions to obtain the reference solution by MCS. It is demon-
strated that the results obtained by MCS and those obtained by 
the proposed method are almost the same, which indicates that 
the proposed method has well performance in both accuracy 
and efficiency (see Table 1).

4.2 � Numerical example 2

This example is the load identification problem of the canti-
lever. In this problem, the loads should be identified by the 
measurements of maximum stress of the fixed end and the 
deflection of the free end. The system equations of the canti-
lever can be expressed as:

(32)
{

XI
2,1

= [3.6243, 3.9433]

XI
2,2

= [2.0507, 2.0754]
.

(33)
{

XI
1
= XI

1,1
+ XI

1,2
− XC

1
= [3.5592, 3.9964]

XI
2
= XI

2,1
+ XI

2,2
− XC

2
= [1.9638, 2.1550]

(34)

⎧⎪⎨⎪⎩

�max =
6PXL

b2h
+

6PYL

bh2

D=
4L3

Ebh

��
PX

h2

�2

+
�

PY

b2

�2 ,

where the length of the cantilever L , the width of cross-
section b , the height of cross-section h and elastic modulus E 
are uncertain parameters and those uncertain parameters can 
be quantified by the intervals as L ∈ [970, 1030][970, 1030] 
mm, b ∈ [98, 102] mm, h ∈ [196, 204] mm and E ∈ [39, 41] 
Gpa, respectively. The maximum stress of the fixed end is 
measured as �max = 0.1Mpa and the deflection of the free 
end is measured as D = 10mm . Based on the above infor-
mation, the vertical load PY and horizontal load PX should 
be identified.

The corresponding vertical load PC
Y
= 14.12 and horizontal 

load PC
X
= 26.04 can be obtained through one deterministic 

inverse calculation at the midpoints of uncertain parameters. 
The original problem is transformed into assessing effects 
from four uncertain parameters to two identified parameters. 
As shown in Table 2, the uncertainties propagate from uncer-
tain parameters to horizontal load PX are listed. PI

L,X
 reflects 

the effect propagating from the uncertain length of the cantile-
ver to horizontal load; PI

b,X
 reflects the effect propagating from 

uncertain width of the cross-section to horizontal load; PI
h,X

 
reflects the effect propagating from the uncertain height of 
cross-section to horizontal load; PI

E,X
 reflects the effect propa-

gating from uncertain elastic modulus to horizontal load. It 
can be seen that the uncertainty of the width of the cross-sec-
tion has the greatest influence on the identification of horizon-
tal load. Therefore, in this aspect, the precision design require-
ment of the width of the cross-section should be higher than 
other uncertain parameters to minimize its influence on the 
identification of the horizontal load PX . As shown in Table 3, 
the uncertainties propagate from uncertain parameters to the 
vertical load PY are listed. PI

L,Y
 reflects the effect propagating 

from the uncertain length of the cantilever to vertical load; 
PI
b,Y

 reflects the effect propagating from uncertain width of 
the cross-section to vertical load; PI

h,Y
 reflects the effect propa-

gating from the uncertain height of cross-section to vertical 
load; PI

E,Y
 reflects the effect propagating from uncertain elastic 

modulus to vertical load. It can be seen that the uncertainty of 
the length of the cantilever has the greatest influence on the 
identification of horizontal load. Therefore, in this aspect, the 

Table 1   The comparisons of accuracy and efficiency in example 1

Identified param-
eters

MCS Proposed method Error(%)

X
I

1
[3.5548,3.9892] [3.5592,3.9964] [0.12,0.18]

X
I

2
[1.9627,2.1530] [1.9638,2.1550] [0.06,0.09]

Number of deter-
ministic inverse 
calculation

10,000 9 -

Table 2   The intervals of horizontal load P
X
 under the influence of 

uncertain parameters

PI
L,X

PI
b,X

PI
h,X

PI
E,X

[25.70, 26.29] [25.26, 26.78] [25.41, 26.64] [25.80, 26.25]

Table 3   The intervals of vertical load P
Y
 under the influence of 

uncertain parameters

PI
L,Y

PI
b,Y

PI
h,Y

PI
E,Y

[12.69, 16.85] [13.78, 15.48] [14.21, 15.01] [14.15, 15.08]
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precision design requirement of the length of the cantilever 
should be higher than other uncertain parameters to minimize 
its influence on the identification of the vertical load PY.

The obtained intervals of identified parameters by the 
proposed method are listed in Table 4, it can be seen that the 
results obtained by the proposed method are very close to the 
reference solutions. It can be seen that the proposed method 
only needs 17 deterministic inverse calculations, which dem-
onstrates the high efficiency in solving the cantilever prob-
lem. Based on the results of the identified parameters, it can 
be concluded that the uncertainties of L , b , h and E have a 
stronger influence on the identification of the vertical load 
PY than the horizontal load PX.

paid more and more attention, and the constraint system is 
widely studied. Two dummy models, namely 50th percentile 
man, and 5th percentile women, are considered. The multi-
body dynamic model is shown in Fig. 5, which includes 
dummy, seat belt, airbag and car body. The collision speed 
is 3.5 km/h, and the dimension parameter of the gas vent U 
is an interval parameter with an interval midpoint of 43 mm 
and an interval radius of 5 mm. The zoom factor and the rib-
bon stiffness X1 and X2 should be identified. The weighted 
injury criteria (WICs) [63] are selected as the measurement 
responses, and the expression of WIC can be written as [64]:

where HIC is the head injury criterion; C3 ms is the chest 
injury criterion; Fleft and Fright are the left leg strength index 
and right leg strength index, respectively (see Fig. 6).

To improve the computational efficiency the second-order 
response surfaces of the functions are constructed as:

(35)
WIC = 0.6(HIC∕1000) + 0.35

(
C3 ms∕60

)
+ 0.05

(
Fleft + Fright

)
∕20.0,

(36)

⎧⎪⎪⎨⎪⎪⎩

WIC1 = 0.7074 + 0.0971X1 − 0.3248X2 − 1.0934U − 0.0067X2
1

+ 0.1923X2
2
+ 75.3548U2 − 0.0331X1X2 + 0.0014X1U − 5.3158X2U

WIC2 = 0.8210 + 0.0743X1 − 0.7137X2 + 0.1177U − 0.0095X2
1

+ 0.3942X2
2
+ 21.2557U2 − 0.0400X1X2 − 0.0219X1U − 3.8657X2U

,

Table 4   The comparisons of accuracy and efficiency in example 2

Identified parameters MCS Proposed method Error (%)

P
I

X
[24.21, 27.92] [24.04, 27.85] [0.68, 0.23]

P
I

Y
[11.19, 18.74] [10.99, 18.58] [1.75, 0.87]

Number of deter-
ministic inverse 
calculation

108 17 –

Fig. 5   Cantilever problem
L

h

b

XP

YP

D

1X
2X

Fig. 6   The occupant constraint system model [6, 41]

4.3 � Application to the occupant constraint system 
model

The occupant constraint system [6, 41] is an important device 
to protect the occupants when a vehicle collision accident 
happened. In current years, the safety of the occupants is 
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where the WIC1 denotes the WIC of 50th percentile man 
dummy, and it is measured as WIC1 = 0.51629 ; WIC2 
denotes the WIC of 5th percentile woman dummy, and it is 
measured as WIC2 = 0.44425.

The computational results of the proposed method are 
listed in Table 5. It can be seen that the proposed method 
only employs 5 deterministic inverse calculations to obtain 
a relatively accurate solution. Moreover, it should be noted 
that the variation of the identified parameter XI

1
 is much 

larger than the variation of the identified parameter XI
2
 , 

which reflects that the uncertainty of the dimension param-
eter of the gas vent U has a stronger influence on the zoom 
factors X

1
 . Therefore, the designer could have a better and 

accurate understanding of the mass flow rate X
2
 , and more 

attention should be paid to the zoom factors X
1
 in the analy-

sis and design processing of the occupant restraint system 
model.

5 � Conclusions

A kind of inverse problem called model uncertain inverse 
problem is proposed to assess the uncertainties of identified 
parameters with uncertainties in structural parameters and 
limited experimental data. To overcome the low efficiency 
of directly solving the problem, an efficient interval assess-
ment method is proposed. First, the interval inverse prob-
lem is transformed into the inverse function problem, Based 
on which the dimension-reduction method is introduced to 
transform the inverse problem into several one-dimensional 
inverse problems. Afterward, an adaptive collocation strat-
egy is proposed to determine the points in an interval to 
assess the interval of identified parameters, based on which 
the one-dimensional inverse-propagation problem is trans-
formed into several deterministic inverse problems. There-
fore, the double-loop problem of interval propagation and 
inverse calculations is decoupled, and the efficiency of the 
inverse problem can be improved. The results of the exam-
ples demonstrate that this proposed method has good perfor-
mances both in accuracy and efficiency. Moreover, it should 
be aware that due to the disadvantages of the dimension 

reduction strategy, there might be an accuracy problem when 
the functions are strongly influenced by cross terms. In the 
future, we will focus on the possible problem and extend 
this efficient method to the inverse problems with hybrid 
uncertainty parameters, etc.
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