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Abstract
The particle swarm optimization (PSO) is a population-based stochastic optimization technique by the social behavior of 
bird flocking and fish schooling. The PSO has a high convergence rate. It is prone to losing diversity along the iterative 
optimization process and may get trapped into a poor local optimum. Overcoming these defects is still a significant problem 
in PSO applications. In contrast, the backtracking search optimization algorithm (BSA) has a robust global exploration abil-
ity, whereas, it has a low local exploitation ability and converges slowly. This paper proposed an improved PSO with BSA 
called PSOBSA to resolve the original PSO algorithm’s problems that BSA’s mutation and crossover operators were modified 
through the neighborhood to increase the convergence rate. In addition to that, a new mutation operator was introduced to 
improve the convergence accuracy and evade the local optimum. Several benchmark problems are used to test the perfor-
mance and efficiency of the proposed PSOBSA. The experimental results show that PSOBSA outperforms other well-known 
metaheuristic algorithms and several state-of-the-art PSO variants in terms of global exploration ability and accuracy, and 
rate of convergence on almost all of the benchmark problems.

Keywords Particle swarm optimization · Backtracking search optimization algorithm · Solving continuous optimization 
problems · Hybridization

1 Introduction

Many challenging problems in applied mathematics and 
engineering sciences can be regarded as the optimization 
process. Optimization is defined as the selected best avail-
able solution from the set of available solutions by consider-
ing a problem’s constraints and requirements. For instance, 
problem optimization aims to maximize profit or quality and 
minimize time, cost, or risk. Some engineering problems are 
typically involved. As a result, it is difficult to find precise 
solutions to such problems in a reasonable time. The classic 
optimization methods are susceptible to initialization esti-
mation and may generally converge on a local optimum. 
Since the search space dimensions increase by increasing the 
optimization problem dimensions, it is not easy to find the 
global optimum solution through classical methods [1, 2]. 
The metaheuristic algorithms solve some of these problems. 

Therefore, they replaced classical optimization methods to 
solve non-linear optimization problems due to finding high-
speed global optimum solutions with fewer control param-
eters at low computation costs in a more straightforward 
way [3–5].

Nevertheless, most of the metaheuristic algorithms should 
be improved because they are unsuitable for complex prob-
lems, such as complex scheduling and planning problems, 
analysis of big data, complex machine learning structures, 
and complex modeling and classification problems. Moreo-
ver, the efficiency of metaheuristic algorithms depends on 
the balance between the local exploitation capability and 
the global exploration capacity over the exploration process. 
The exploitation is characterized by an algorithm capable 
of extracting new solutions from the search space adjacent 
to the existing solutions. However, the exploration capac-
ity refers to the process of exploring new areas of a search 
space. It is essential to achieve an ideal balance between 
these two contradictory properties to improve metaheuristic 
algorithms’ performance. Many metaheuristic algorithms, 
such as differential evolution (DE) algorithm [6], gravita-
tional search algorithm (GSA) [7], teaching learning-based 
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optimization (TLBO) algorithm [8], Krill Herd (KH) algo-
rithm [9], forest optimization algorithm (FOA) [10], farm-
land fertility algorithm (FFA) [11], water cycle algorithm 
(WCA) [12, 13], whale optimization algorithm (WOA) [14], 
fireworks algorithm (FWA) [15], marine predators algorithm 
(MPA) [16], water strider algorithm (WSA) [17], adolescent 
identity search algorithm (AISA) [18], electric fish optimi-
zation (EFO) [19], lion optimization algorithm (LOA) [20], 
and equilibrium optimizer (EO) algorithm [21].

The PSO is a population-based stochastic optimization 
technique developed by Kennedy and Eberhart in 1995 [22], 
inspired by bird flocking or fish schooling’s social behavior. 
The PSO search process is based on a series of solutions 
generated stochastically in the search space. This series of 
potential solutions a swarm, and each solution is known as 
a particle. Before moving in the search space, each parti-
cle adjusts its velocity concerning the best position and the 
best position observed by every swarm particle. Learning 
from itself and learning from others are known as cognitive 
learning and social learning, respectively. However, PSO 
is widely used for solving real-world problems due to its 
simple concept and easy implementation.

Nevertheless, PSO may show a slow convergence rate and 
premature convergence when solving complex and multi-
dimensional multimodal optimization problems and easily 
get trapped into poor local optimum. Moreover, it is essential 
to select control parameters, such as the acceleration coef-
ficient, inertia weight, and maximum velocity. These param-
eters play a balancing role between global and local search 
processes. These parameters’ high and low values increase 
the global exploration capacity and local exploitation capa-
bility, respectively. As a result, overcoming its defects is still 
a significant problem in PSO applications.

The BSA is a population-based stochastic optimization 
technique developed by Civicioglu in 2013 for solving real-
valued numerical optimization problems [23]. The unique 
BSA method of generating trial individuals (including the 
mutation and crossover operators) resulted in successful 
solutions to many optimization problems [24, 25]. The BSA 
has a simple structure and uses the previous generation’s 
population to determine the search-direction matrix and 
remembers this historical population until it is changed. As a 
result, the BSA has a memory. Although it is highly capable 
of global exploration due to its reluctance to use individuals 
with higher fitness values and historical population for solv-
ing multimodal optimization problems, it showed low local 
exploitation capability. It converged slowly compared with 
other evolutionary algorithms [26–28].

This paper proposed an improved PSO with BSA called 
PSOBSA to resolve the original PSO algorithm’s problems. 
The motivation to develop the PSOBSA approach is to 
combine the PSO’s advantages with BSA to overcome the 
original PSO defects by avoiding the low local optimum 

and increasing convergence accuracy to solve continuous 
optimization problems. In the proposed PSOBSA, BSA’s 
mutation and crossover operators were modified through the 
neighborhood to increase the convergence rate. In addition to 
that, a new mutation operator was introduced to improve the 
convergence accuracy and evade the local optimum.

The rest of the paper consists of the following sec-
tions. Some related works on PSO are reviewed in Sect. 2. 
In Sect. 3, an overview of PSO and BSA is provided. The 
proposed PSOBSA is presented in Sect. 4, and conducted 
experiments and results are presents in Sect. 5. Finally, the 
conclusion and future work are included in Sect. 6.

2  Related works

Since the development of PSO, extensive studies have been 
conducted for its theoretical understanding. Many improved 
and hybrid versions of PSO can be found in the literature 
developed to overcome its defects. These algorithms have 
improved the PSO performance through different methods, 
using various neighborhood topologies, parameter correc-
tion, combination with other optimization algorithms, and 
other minor changes. The hybrid versions are among the 
most effective methods of improving the PSO performance. 
They refer to the combination of two or more optimization 
algorithms in the PSO. Some of the improved versions are 
as follows:

Liu et al. [29] proposed the hybrid PSO by combining 
the chaos technique to improve the PSO performance. First, 
the adaptive inertia weight factor (AIWF) was introduced to 
PSO to strike a sufficient balance between the exploration 
and exploitation capabilities. Then, the PSO was combined 
with AIWF and chaos to form the chaos PSO (CPSO). In 
this way, the population-based evolutionary search capabili-
ties of PSO and chaos search behavior were combined. Da 
and Xiurun [30] first improved the original PSO to escape 
from the local optimum and then used the SA to modify it. 
After that, an artificial neural network (ANN) was devel-
oped through the proposed PSO. According to the results, 
the SAPSO-based ANN had a better ability to escape from 
a local optimum, more excellent training performance, and 
better-predicting ability than the PSO-based ANN. Liang 
et al. proposed the comprehensive learning PSO (CLPSO) to 
avoid a local optimum [31]. This approach adds no complex 
operators to the original PSO’s simple structure and only 
differs from it in the velocity update equation. The best his-
torical data of all particles were used in the proposed learn-
ing strategy to update the particle velocity. This strategy 
preserves the swarm diversity to avoid early convergence. 
The CLPSO results indicate its outstanding performance in 
solving multimodal problems. However, it is no good choice 
for solving unimodal problems.
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Yu et al. [32] proposed the improved PSO and discrete 
PSO (DPSO) through enhancement operations using the 
self-adaptive evolution strategies to optimize the joint opti-
mization of three-layer feed-forward ANN structure and 
parameters (weights and bias). This combination of con-
tinuous and discrete PSO enabled the ANN to evolve its 
structure and regulate parameters simultaneously. Zhan 
et al. [33] proposed the adaptive PSO (APSO) to exploit 
the original PSO by adding two new parameters. Moreover, 
their approach can explore the entire search space at a faster 
convergence rate. APSO has two main steps. The first step 
is estimating a real-time evolutionary state to identify one of 
the four evolutionary states, i.e., exploration, exploitation, 
convergence, and jumping out in each repetition, by evaluat-
ing population distribution and particle fitness. The second 
step is an elitist learning strategy applied to the best global 
particle to escape from the local optimum when the evolu-
tionary state is classified as the convergence state. Moreover, 
the inertial coefficient, acceleration coefficient, and other 
parameters are controlled for dynamic search efficacy and 
convergence rate.

Alfi and Fateh [34] proposed the improved fuzzy PSO 
(IFPSO) for the intelligent identification and control of a 
dynamic system. The proposed approach optimally estimates 
the system parameters and controls the system by minimiz-
ing the mean squared error. In the proposed approach, the 
local and global exploitation ability were improved using the 
fuzzy inertia weight. Moreover, each particle’s inertia weight 
was regulated dynamically based on the particle memories 
through a non-linear fuzzy model. Tang et al. proposed the 
improved quantum-behaved PSO (QPSO) to solve ongoing 
large-scale problems based on the memetic algorithm and a 
memory mechanism [35]. Before getting involved with the 
evolutionary process, the memetic algorithm was used for 
all particles to trade-off through local optimum.

Moreover, the memory mechanism was used to introduce 
the bird kingdom through memory capacity. Guedria [36] 
proposed an improved accelerated PSO (IAPSO), a simple 
and effective optimization method, for solving non-linear 
boundary optimization problems using continuous, hybrid, 
discrete, and integer variables. In the proposed approach, the 
penalty function is used as a constraint handling technique. 
Its operators can update particle positions with a simple 
equation. As a result, it is independent of the particle veloc-
ity; thus, it is simple to understand and implement.

Ouyang et al. [37] proposed a hybrid harmony search 
PSO with global dimension selection (NHSPSO-GDS) to 
improve the original PSO performance. The HS algorithm 
was used with the global dimension selection strategy to 
enhance the exploratory capacity and the exploitation capa-
bility. In HHSPSO-GDS, a new global velocity updating 
strategy was introduced to enhance the neighborhood region 
search and the better trade-off between convergence rate and 

robustness. In addition, a dynamic non-linear decreased 
inertia weight was utilized to balance global exploration and 
local exploitation. Meng et al. [38] proposed a new hybrid 
algorithm, called the crisscross search PSO (CSPSO), to 
avoid local optimum and enhance global search ability. The 
particle population in CSPSO was updated by modifying 
the PSO and implementing the crisscross search optimiza-
tion (CSO) [39] at each iteration. The CSO is incorporated 
as a high-quality evolutionary catalytic agent with the rug-
ged capability to search for the personal best. The PSO per-
formance was enhanced by two search operators, namely 
horizontal crossover and vertical crossover. The horizontal 
crossover further enhances the PSO global convergence abil-
ity when the vertical crossover can enhance swarm diver-
sity. Taherkhani and Safabakhsh [40] proposed an adaptive 
strategy called the stability-based adaptive inertia weight 
(SAIW). Regardless of its size, each particle’s inertia weight 
is determined through the local best position’s distance and 
performance. Also, each particle in the search space plays a 
distinct role. The adaptive inertia weight is suggested con-
cerning the particle success in two previous iterations and 
the displacement of its best position. The position of each 
swarm particle influences the inertia weight adjustment. As 
a result, each particle in the SAIW has its inertia weight at 
different dimensions.

Many PSO algorithms have recently been introduced. In 
[41] proposed a hybrid algorithm with simple concepts to 
enhance exploration and exploitation capabilities. The pro-
posed approach used the combination of the continuous and 
discrete probability distribution of the ant colony optimiza-
tion (ACO) to help the GA with exploration. Two mutation 
operators were also introduced: the standard and refined 
mutations. In the initial iterations, the common mutation 
was used commonly with the concept of an unrepeated tour 
of the ACO to escape from the local optimum, whereas the 
monitored mutation was used in the next iterations to com-
plete the exploitation search, mainly controlled by PSO. In 
[42] proposed a new hybrid version of PSO and DE algo-
rithms for engineering and numerical optimization purposes. 
In that hybrid approach, new non-linear strategies were 
adopted to reduce the inertia weight. The chaos map was uti-
lized to balance exploration and exploitation capabilities. In 
[42] proposed a nonparametric PSO without regulating any 
parameter. The multi-crossover operation, vertical crossover, 
and sample-based strategy were combined to enhance the 
exploitation and exploration capabilities.

In [43], a hybrid algorithm based on PSO with a spiral-
shaped mechanism called HPSO-SSM for selecting the 
optimal feature subset for classification via a wrapper-based 
approach has been developed. In HPSO-SSM, there are three 
major modifications: first, a logistic map sequence is used to 
tune the inertial weight, which can effectively provide diver-
sity and facilitate the avoidance of optima in the selection 
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process. Second, two new parameters have been introduced 
into the original position update formula, which can better 
balance exploration and exploitation. Third, a spiral-shaped 
mechanism is embedded in the search process to improve 
the search solution’s quality by enabling any candidate solu-
tion to be selected. In [44], a hybrid binary PSO with Tabu 
Search called HBPSO/TS to solve the set-union knapsack 
problem (SUKP) has been proposed. First, an adaptive pen-
alty function is utilized to evaluate the quality of solutions 
during the search, exploring the feasible solution space 
boundary. Next, based on the characteristics of the SUKP, 
a novel position updating rule to the procedure, new solu-
tions are designed. The newly generated solutions obtain the 
good structures of previously found solutions. A Tabu-based 
mutation procedure is introduced to lead the search to enter 
into new hopeful regions. Finally, I designed a Tabu Search 
procedure to improve the exploitation ability. Furthermore, 
other attempts at improving PSO are as follows: APSO [45], 
PSO-GWO [46], PSOGA [47], ELPSO [48], QPSO [49], 
IMFMBO [50], CGPSO [51], NP-PSO [52], IDPSO [53] 
and CECBPSO [54].

This section references many studies that worked in vari-
ous optimization and complex issues by the BSA. In [55], 
a new method based on specular reflection learning (SRL) 
to optimize BSA has been proposed. SRL is motivated by 
specular reflection phenomena in physics. There is a close 
relationship between opposition-based learning (OBL) and 
SRL. OBL can be seen as a similar model to SRL. To inves-
tigate the effectiveness of RL, SRL is applied to improve 
BSA. The proposed BSA’s SRL performance is assessed by 
88 test functions extracted from the well-known CEC 2013, 
CEC 2014 and CEC 2017 test suites and two constrained 
engineering design problems. Experimental results empha-
sized that SRL is a more effective method for improving 
BSA than OBL, establishing the basis for SRL applications 
on other models.

In [56], BSA is applied to measure amplitude and direc-
tion of arrival (DOA) parameters of sources impinging on a 
uniform linear array from the Fraunhofer zone. The variant 
of BSAs is proposed by varying the backtracking history 
and individual populations for effective optimization of the 
fitness evaluation function based on the mean squared error 
between actual and measured responses. The BSA optimiza-
tion model is applied to different DOA release models from 
distant field sources for a noisy and noise-free environment. 
Through statistical results based on multiple executions, 
evaluation studies indicate that each solver is performed 
using different measurements of accuracy and complexity.

A robust optimization method with the notion of OBL, 
namely quasi-oppositional BSA (QOBSA), for load fre-
quency control (LFC) of the power system has been pro-
posed [57]. Two significantly used power systems have been 
selected to create the efficiency of QOBSA. Complementary 

controllers in LFC are designed with frequency deviations 
and tie-line in each region as input, and QOBSA is used to 
optimize controller fit simultaneously. Integral error-based 
performance criteria are formulated to claim the tuning 
optimality of QOBSA. Comparisons are also made with 
the existing results to establish the superiority of QOBSA 
in terms of convergence mobility and time response meas-
urements. The applied method’s success and competence 
have been confirmed after penetrating renewable energy 
resources and power system nonlinearities. The robustness 
of the expanded controller has been assessed with system 
uncertainty and random derangement.

In [58], a multi-objective learning BSA (MOLBSA) is 
proposed to solve the environmental/economic dispatch 
(EED) problem. Two new learning schemes are designed: a 
leader-choosing scheme, which takes a sparse solution from 
an external archive as a leader; a leader-guiding scheme, 
which updates individuals with the leader’s guidance. These 
two learning schemes have outstanding efficiency in improv-
ing the uniformity and diversity of gained Pareto front. 
The robust solutions, accordance solution and three met-
rics gained by MOLBSA are further compared with those 
of well-known multi-objective optimization algorithms in 
IEEE 30-bus 6-unit test system and 10-unit test system. 
Simulation results showed the capability of MOLBSA in 
generating a well-distributed and high-quality approximation 
of the correct Pareto front for the EED problem.

An improved BSA (IBSA) is proposed to gain an opti-
mal charge plan for each feasible candidate set [59]. The 
best-obtained solution from the useful charging programs 
obtained by IBSA is extracted as the final charging program. 
In IBSA, a mapping plan is used to make base BSA suit-
able to binary problems. Improvements that consist of the 
adjustment of historical population updating plan, the hybrid 
of mutation and crossover strategy of difference evaluation 
algorithm, a greedy local search algorithm and the reproduc-
tion operator are also made to increase the exploitation and 
exploration ability IBSA. The comparisons of the simulation 
experiment showed the effectiveness of the IBSA and the 
proposed algorithm’s performance.

In [60], BSA is proposed to optimize the least square sup-
port vector machine (SVM). Thus, the SVM error is replaced 
with a prediction error based on a sliding window design 
to solve the mismatch between the prediction model and 
the actual sample data in a time-varying system. The pro-
ficiency of the proposed model is checked by classification 
and regression problems. 5 Benchmark datasets check the 
model’s classification performance, and the regression pre-
diction performance is checked by the dynamic liquid level 
of the oil production process. Compared with GA, PSO, and 
improved several algorithms optimized least square SVM, 
the simulation results show that the proposed model has 
higher classification accuracy, higher prediction accuracy, 
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less computation time, and reliability for the dynamic liquid 
level.

3  Material and methods

This section presents the original PSO and BSA algorithms.

3.1  Particle swarm optimization

In the PSO, many independent particles are stochastically 
generated in the search space. Each particle is a potential 
solution to the optimization problem, and each swarm 
includes a collection of particles. A position vector repre-
sents each particle Xi and a velocity vector Vi in the search 
space. Moreover, it has a memory to recall its previous per-
sonal best position. The particle velocity determines the 
pathway and distance which a particle should travel. In each 
iteration, the velocity of particle i is updated using Eq. (1):

I n  E q .   ( 1 ) ,  i = (1, 2, 3,… ,N)  M o r e o v e r , 
j = (1, 2, 3,… ,D) , where N and D are the swarm size and 
the problem dimension, respectively. �1 and �2 are two ran-
dom numbers with uniform distribution in the range of 0 to 
1. Also, c1 and c2 are the acceleration coefficients, Pbest is 
the personal best position of particle i , Gbest is the global 
best position obtained by the swarm, and t  denotes the tth 
iteration in the search process. The position of particle i in 
each iteration is updated by adding the velocity vector to the 
position vector, defined in Eq. (2):

The acceleration coefficient determines the particle step 
size for the next iteration, defined as a numerical constant. 
Here, c1 is the particle attraction towards its success (cogni-
tive learning), and c2 is the particle attraction towards swarm 
success (social learning). In the original PSO, c1 = c2 = 2 
is selected. This selection leads to particles’ sudden move-
ment, an increased convergence rate, and the reduced local 
exploitation of the search space.

Eberhart et al. [61] proposed a scheme to control and 
constraint particle velocity to prevent the particles from 
flying out of the search space. In that, the velocity of each 
component Vi in Eq.  (1) is in the range [−Vmax,Vmax] . 
Therefore, if the velocity exceeds Vmax in every dimen-
sion, the velocity in that dimension should be limited to 
Vmax . As a result, it is a critical parameter whose value 
determines the regions between the search item’s current 
position and target position. If the value of Vmax is too 
high, the particle may pass the suitable positions. On the 

(1)
Vij(t + 1) = Vij(t) + c1�1(Pbestij − Xij(t)) + c2�2(Gbestj − Xij(t)).

(2)Xij(t + 1) = Xij(t) + Vij(t + 1).

other hand, if it is too low, it may not be searched beyond 
the local optimum position. As a result, the high and low 
values of Vmax lead to global exploration and local exploi-
tation, respectively.

Shi and Eberhard introduced the inertia weight to gain 
better control over the search domain, reduce the impor-
tance of Vmax . Moreover, overcoming early convergence 
[62]. The inertia weight established a balance between the 
global and local search. With the inertia weight applica-
tion, the particle velocity updating rule Eq. (1) was devel-
oped into Eq. (3):

In Eq. (3), � is the inertia weight coefficient, either a 
numerical positive constant or a positive linear or non-
linear function. The large and smaller inertia weight val-
ues can improve global exploration and local exploitation, 
respectively [62].

Two general types of the particle neighborhood, namely 
the global best (Gbest) . Moreover, local best (Lbest) have 
been studied by many researchers. In Gbest , Which is a 
concept used in the original PSO, particles are attracted to 
the best position obtained by every particle of the swarm. 
This type represents a fully connected network in which 
each particle has access to all other community members’ 
information. On the other hand, each particle in Lbest has 
access to the information of its non-mediated neighbors 
concerning a specific swarm topology. In other words, 
Lbest is the best position found so far within a neighbor-
hood. Here, the neighborhood does not mean the particles’ 
real geometrical closeness relationship but is the relation-
ship between the particles defined by the user. After defin-
ing the neighborhood, the particle velocity update Eq. (3) 
was developed into Eq. (4):

In Eq. (4), Lbest is the best position in the neighborhood 
of the particle i . The applied structures of particle neigh-
borhood in PSO, such as ring topology [63], von Neu-
mann topology [64], and global best version [65], were 
proposed to enhance the global search capability and avoid 
trapping into the local optimum. Kennedy et al. in [66] 
believe that the Gbest topology rapidly converges on the 
problem solutions, but it has poorly capable of avoiding 
the local optimum. Whereas, the Lbest topology can search 
the neighborhood of a local optimum to explore different 
regions. The effects of different population topologies on 
PSO were systematically investigated in [67]. Using 20 
particles, they realized that the best performance was in 
the stochastic neighborhood with five particles on average. 
The overall PSO structure is summarized in Fig. 1.

(3)
Vij(t + 1) = �Vij(t) + c1�1(Pbestij − Xij(t)) + c2�2(Gbestj − Xij(t)).

(4)
Vij(t + 1) = �Vij(t) + c1�1(Pbestij − Xi(t)) + c2�2(Lbestij − Xij(t)).
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3.2  Backtracking search optimization

BSA was proposed to make up for some evolutionary algo-
rithms’ defects, such as the high sensitivity to the control 
parameters, high sensitivity to the control parameters, time-
consuming computation, and premature convergence [68]. 
Moreover, this algorithm has a straightforward structure 
and includes only two control parameters to mix the search-
direction matrix rate and amplitude, significantly reducing 
sensitivity to the control parameters’ initial values. The BSA 
is also a dual-population-based algorithm that uses both cur-
rent and historical populations to generate promising solu-
tions. The BSA uses three major genetic operators (selection, 
mutation, and crossover) to generate trial individuals and 
has a stochastic mutation operator. Contrary to other genetic 
algorithms such as DE and its derivatives (JADE, JDE, and 
SADE), it only uses one individual randomly selected from 
the previous generation. This selection is allowing BSA to 
perform more successfully in solving multimodal problems. 
The BSA also uses a non-uniform crossover operator, which 
is more complicated than the crossover operators used in 
many genetic algorithms. A unique mechanism for generat-
ing trial individuals enables it to solve numerical optimiza-
tion problems successfully and fast. The underlying factors 
on the success of the BSA algorithm compared to other 
genetic algorithms are as follows:

• BSA’s mutation and crossover operators produce very 
efficient trial populations in each generation.

• BSA’s generation strategy for the parameter, which 
controls the search direction’s amplitude, can produce 
numerically large amplitude values necessary for a global 
search and the small amplitude values necessary for a 
local search in a very balanced and efficient manner. It 
enhances BSA’s problem-solving ability.

• The historical population (oldP) , used by BSA to calculate 
the search-direction matrix, belongs to the previous genera-

tion, selected randomly. As a result, the oldP used in the 
next generations includes more effective individuals than 
the older generations’ historical population. It facilitates 
BSA’s generation of more efficient trial individuals.

• BSA’s crossover strategy has a non-uniform and complex 
structure that ensures the creation of new trial individuals 
in each generation. This crossover strategy enhances BSA’s 
problem-solving ability.

• BSA’s boundary control mechanism helps achieve popula-
tion diversity, ensuring efficient searches, even in advanced 
generations.

In general, the BSA can be divided into five major com-
ponents: initialization, selection-I, mutation, crossover, and 
selection-II.

3.2.1  Initialization

In the initialization stage, the initial population is generated 
randomly in a uniform search space. The initial population is 
determined through Eq. (5):

In Eq. (5), i = (1, 2, 3,… ,N) and j = (1, 2, 3,… ,D), where 
N and D are the population size and the problem dimension, 
respectively. U uniform distribution, and each Pij is a target 
individual in population (P).

3.2.2  Selection‑I

In selecting I, the BSA determines the historical population 
(oldP) used to calculate the search-direction matrix. The old 
population is determined through Eq. (6):

(5)Pij ∼ U(lowj, upj)

(6)oldPij ∼ U(lowj, upj).

Parameters: Swarm size: , Inertia weight: , Acceleration coefficients: , and Termination criterion (such as ).
1: Initialization
2: Generate initial positions and velocities of the particles and calculate their fitness function value of each particle,

initialize the personal best position ( ) and update the global best position ( ).

3: repeat the following steps
4: for = 1 to do
5: Determine the next position of particle .
6: Calculate the next velocity of particle using Eq. (3) with all variables. Different and should be used for 

different variables.
7: Calculate the next position of particle using Eq. (2) with all variables.
8: Calculate the fitness function value of particle and update and if necessary.
9: end

10: until a termination criterion is met.

Fig. 1  Pseudocode of the PSO



S2803Engineering with Computers (2022) 38 (Suppl 4):S2797–S2831 

1 3

The BSA has an option to redefine oldP at the beginning 
of each iteration through the “if–then” rule in Eq. (7):

In Eq. (7), ∶= is the update operator. Equation (7) guar-
antees that the previous generation’s population is selected 
randomly as the oldP , and remembers this oldP until it is 
changed. As a result, BSA possesses a memory. After the 
determination of oldP , Eq. (8) is used to randomly change 
individuals’ order in oldP:

In Eq. (8), the permuting function used is a random shuf-
fling function.

3.2.3  Mutation

The mutation process is used for generating the initial form 
of the trial population, using Eq. (9):

In Eq. (9), F controls the amplitude of mutation search-
direction matrix (oldP − P) . Since oldP is used to calculate 
the search-direction matrix, BSA generates the trial popula-
tion by taking partisan advantage of its previous generations’ 
experiences.

3.2.4  Crossover

BSA’s crossover process produces the final form of the trial 
population ( T  ). The initial value of the trial population is 
Mutant , as set in the mutation process. Trial individuals 
with better fitness values for the optimization problem are 
employed to evolve individuals’ target population. BSA’s 
crossover process has two steps. The first step, binary inte-
ger-valued matrix (map) of size N × D is calculated, indi-
cates that the T  is manipulated using relevant individuals 
from the evolutionary population. Then, the T  is updated. If 
mapij = 1 , where i = (1, 2, 3,… ,N) and j = (1, 2, 3,… ,D) , 
T  is updated with Tij ∶=Pij.

BSA’s crossover strategy is entirely different from the 
crossover strategies used in DE and its variants. The mix rate 
parameter (mixrate) in the BSA’s crossover process controls 
the numbers of elements of individuals that will mutate in a 
trial using mixrate . The function of the mix rate is entirely 
different from the crossover rate used in DE. To determine 
the matrix map , two predefined strategies are randomly 
used. The first strategy uses parameter mixrate . The second 
strategy allows the random selection of only one individual 
to change each trial individually. Some individuals of the 
T  , obtained at the end of the BSA’s crossover process, can 
overflow the allowed search space limits due to the BSA’s 

(7)if a < b then oldP ∶=P|a, b ∼ U(0, 1).

(8)oldP ∶= permuting (oldP).

(9)Mutant = P + F × (oldP − P).

mutation strategy. The individuals beyond the search space 
limits should be regenerated.

3.2.5  Selection‑II

In the selection-II, if Ti that have better fitness value than the 
corresponding Pi , it is used to update Pi based on the greedy 
selection. If the best individual of the population has a bet-
ter fitness value than the BSA’s optimum global value, the 
optimum global value will be updated.

4  Proposed approach

This section will give a detailed description of the proposed 
PSOBSA approach for solving continuous optimization 
problems.

4.1  Motivations

One of the crucial criteria determining population-based sto-
chastic optimization algorithms’ performance is balancing 
exploitation and exploration. The exploitation is character-
ized by an algorithm capable of extracting new solutions 
from the search space adjacent to the existing solutions. 
However, the exploration capacity refers to the process of 
exploring new areas of a search space. The original PSO in 
solving complex and multi-dimensional multimodal optimi-
zation problems has slow convergence rates and premature 
convergence, resulting in a poor local optimum. The main 
reason for premature convergence is that particles’ diversity 
decreases rapidly during the optimization process iterations.

Moreover, it is essential to select control parameters, such 
as the acceleration coefficient, inertia weight, and maximum 
velocity. These parameters play a balancing role between 
global and local search processes. On the other hand, BSA 
is proposed to solve evolutionary algorithms’ defects, such 
as the high sensitivity to the control parameters, time-con-
suming computation, premature convergence, and a robust 
global exploration capacity. However, there is no research 
on using the BSA algorithm to improve the performance 
and overcome the PSO’s weaknesses as far as we know. We 
put forward an improved PSO algorithm with BSA called 
PSOBSA for solving continuous optimization problems 
based on these considerations. This improvement includes 
adding a new search process with BSA’s operators (mutation 
and crossover) and proposed mutation to increase the diver-
sity of particles and increase the PSO algorithm’s accuracy 
and convergence rate during optimization process iterations. 
The complete flowchart of the proposed PSOBSA is given 
in Fig. 2.
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4.2  BSA’s mutation and crossover

In the proposed PSOBSA approach, each particle in the 
search space has two positions: the primary and trial posi-
tions. The neighborhood-based PSO is used to generate the 
leading position of the particles to take advantage of the 
local search capability of the PSO, and the BSA operators 
(mutation and crossover) are used to generate the trial posi-
tion of the particles to take advantage of the global search 
capability BSA. The mutation and crossover operation of 
BSA has been modified to generate the trial position by the 
particle neighborhood. The historical population’s applica-
tion in the BSA mutation to the direct population to global 
optimum concentrates on exploration. Nevertheless, the use 
of experiences of previous generations may reduce the con-
vergence rate [69]. Therefore, in PSOBSA, the local best 
position is used instead of the mutation operator’s histori-
cal population to increase the convergence rate. Indeed, the 
BSA’s mutation operator in Eq. (9), which generates the trial 
position’s initial form, is modified in Eq. (10):

(10)Mutant = X + F(Lbest − X).

I n  E q .   ( 1 0 ) , i = (1, 2, 3,… ,N)  M o r e o v e r , 
j = (1, 2, 3,… ,D) , where N and D are the swarm size and 
the problem dimension, respectively. X is the primary posi-
tion, F is the amplitude of the search-direction matrix, and 
Lbest is the best position in the neighborhood of the particle 
i . Before using Eq. (10) for generates the initial form of the 
trial position, Eq. (11) is used to randomly change the order 
of individuals in Lbest:

The permuting function used in Eq. (11) is a random shuf-
fling function. Besides, Lbest to replacement in trial position 
is used in the BSA’s crossover process, which generates the 
trial position’s final form. The process is given in Fig. 3.

4.3  Proposed mutation

In the proposed PSOBSA approach, the convergence accu-
racy, escaping from a poor local optimum, and exploring 
new spaces by generated trial position in different regions 
has been improved by the new mutation operator introduced 
in Eq. (12):

(11)Lbest ∶= permuting(Lbest).

Start

 Initialization control parameters
of the PSOBSA

 Initialization main positions and
velocities of the swarm

Calculate the particle's fitness function
value and initialize the Pbest and

update Gbest

Determine the particle's neighborhood

Select-I: Determine the local best 
(Lbest)

Calculate the next velocity and main
position using Eq. (4) and using Eq. (2), 

respectively.

Apply the mutation operator
using Eq. (12)

Apply the mutation operator
using Eq. (10)

Apply the permuting function on lbest
 using Eq. (11)

Calculate binary integer-valued matrix

Select-II: Calculate fitness function
value of the main and trial position and

select the best position.

Update Pbest and Gbest

Termination
criterion ? Submeting Gbest as the optimal result

rand < PM

Apply the crossover operator

Yes

YesNo

No

End

Fig. 2  Flowchart of proposed PSOBSA
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In Eq.  (12), Ti is the trial position, A is a coefficient 
vector, � is a random number with uniform distribution 
in the range of (0, 1), and Lbest is the best position in the 
neighborhood of the particle i . This paper uses the value 
A = 2 × rand , where rand ∼ U(0, 1).

4.4  Procedure of PSOBSA

The detailed step-by-step procedure for the proposed 
PSOBSA approach is described in Fig. 4.

Step 1 Initialization. The control parameters are swarm 
size, inertia weight, acceleration coefficients, mix rate, 
coefficient vector, mutation probability, neighborhood 
size, and termination criterion. The initial swarm are as 
follows: the central position vector Xi is generated ran-
domly within the search space, the initial trial position 
vector, and velocity Ti = 0 and Vi = 0 , particle’s per-
sonal best position Pbesti = Xi . Moreover, update global 
best (Gbest) . Moreover, the determination of the parti-
cle’s neighborhood is done at this step. The stochastic 
technique is used to determine particle neighborhoods 
in PSOBSA. So, the neighbors of the particle i are ran-
domly selected based on the number of neighborhood 
sizes (NS).
Step 2 Selection-I. In this step, the PSOBSA determines 
the local best (Lbest) . Thus, the personal best position in 
the neighborhood, which has the best value of the fitness 
function, is chosen as Lbest of particle i . If there are sev-
eral best positions, one is chosen at random.
Step 3 Main position generation. In this search phase, 
for every particle i , the particle’s velocity is adjusted by 

(12)Tij = Xij + A(� × Lbest − Xij).
Eq. (4). Then, the new generated central position Xi is 
achieved by Eq. (2).
Step 4 Trial position generation. The trial position of 
particle i , is generated using the mutation and crossover 
operation on their central position. The selection between 
the BSA’s modified mutation operator in Eq. (10) and the 
proposed mutation operator in Eq. (12) is based on the 
probability of mutation (PM) . In that, a random number is 
generated in the range of 0 and 1. If the random number 
is smaller than the PM , the mutation operator of Eq. (12) 
is selected. Otherwise, first, the permutation function in 
Eq. (11) is used to randomly change the order of individu-
als in Lbest . Then, the mutation operator is selected in 
Eq. (10) to generate the mutated position. It is the mutated 
position of the initial form of the trial position. In the end, 
the crossover process is used to produce the final form 
of a trial position. The crossover process consists of two 
stages. In the first stage, the binary integer-valued matrix 
called map is determined to show that the trial position 
components are manipulated with Lbest . In the second 
step, the T  is updated. Two predefined strategies from 
BSA are randomly used. The first strategy uses parameter 
mixrate (Fig. 3, line 3). The second strategy allows for 
the random selection of only one component for change 
in a trial position (Fig. 3, line 5). Equations (11) and (12) 
globally influence hybrid model search changes, allowing 
the hybrid model to discover the best points and strike a 
balance between exploration and exploitation.
Step 5 Selection-II. In PSOBSA’s selection-II step, the 
Ti that have better fitness values than the corresponding 
Xi are used to update the Xi based on a greedy selection. 
In the end, the Pbesti , and Gbest are updated. Thus, if Xi 
is that have better fitness values than Pbesti , the Pbesti is 
updated by Xi . After that if Pbesti has a better fitness value 

Fig. 3  Pseudocode of the crossover strategy
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than the global best solution obtained so far, the Gbest is 
updated by Pbesti.
Step 6 Termination criterion. If the termination criterion 
(maximum number of iterations) is met, computation is 
terminated. Otherwise, steps 2 to 6 are repeated.

5  Experiments result

In this section, the details of the experimental tests, statisti-
cal analyses, optimization problems, and control parameters 
used in the proposed PSOBSA and other compared algo-
rithms were provided along with statistical results. Three 
experimental tests are used to investigate the performance 
of the proposed PSOBSA from different aspects based on 
several well-known benchmark functions. The first test 
is used to validate the comprehensive performance of the 
proposed PSOBSA by comparison with other well-known 
metaheuristic algorithms. The second test is used to measure 
the effects of the proposed mutation on PSOBSA. The third 
test is used to validate the comprehensive performance of the 
proposed PSOBSA by comparison with other state-of-the-art 
PSO variants. The aim of the last test to further exhibit the 

excellent performance of the proposed PSOBSA. All tests 
and statistical analyses were conducted in MacOS Mojave’s 
environment using a computer with an Intel Core i5 proces-
sor with a clock speed of 2 GHz and 8 GB RAM. Moreover, 
MATLAB R2017b MathWorks, Inc. software tool was used 
for the execution of algorithms.

There are 70 benchmark functions used for experiments 
as optimization problems. Many researchers have used these 
classical functions (Tables 1, 2, 3 and 4) [70–73]. In general, 
these 70 benchmark functions are the minimization prob-
lems and can be classified into four groups. Group 1 includes 
multi-dimensional unimodal functions F01–F12. Group 2 
contains fixed-dimension unimodal functions F13–F19. 
Group 3 consists of multi-dimensional multimodal func-
tions F20–F31, and group 4 includes fixed-dimension mul-
timodal functions F32–F70. The unimodal functions have 
only one optimum value and are suitable for evaluating the 
local search ability of the PSOBSA.

On the other hand, the multimodal problems have many 
local optimums, and the number of their optimum local 
increases exponentially by increasing the problem dimen-
sions, which can make them suitable for evaluating the 

Parameters: Swarm size: , Inertia weight: , Acceleration coefficients: , , Mix rate parameter: , Coefficient vector F,
A, Mutation probability: , Neighborhood size: , and termination criterion (such as ).

Input: The fitness function.
Output: Global best solution.

1: Initialization
2: Generate initial positions and velocities of the particles and calculate their fitness function value of each particle and 

initialize the personal best position and update the global best position .
3: Determine the neighborhood of particles.

4: repeat the following steps
5: for = 1 to do
6: Select-I: Determine the local best ( ).
7: Determine the next central position of particle .
8: Calculate the next velocity of particle using Eq. (4) with all variables. Different and should be used for 

different variables.
9: Calculate the next central position of particle using Eq. (2) with all variables.

10: Determine the trial position of particle .
11: if < then
12: Apply the mutation operator using Eq. (12).
13: else
14: Apply the permuting function on of particle using Eq. (11).
15: Apply the mutation operator using Eq. (10).
16: Apply the crossover operator; see Fig. 3 for more information.
17: end
18: Select-II: Calculate the fitness function value of the central and trial positions of particle and select the best. Update 

and if necessary.
19: end
20: until a termination criterion is met.

Fig. 4  Pseudo code of the PSOBSA
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global search ability of the PSOBSA. In Tables 1, 2, 3 
and 4, the columns “Optimum” gives the optimum global 
value, and “Range” defines the lower and upper bounds of 
the definition domain in all dimensions. Moreover, column 
“D” is the benchmark problem dimension.

5.1  Comparisons of PSOBSA with other well‑known 
metaheuristic algorithms

In this section, the performance of proposed PSOBSA 
is compared with PSO [63, 74], BSA [23], WOA [14], 
GWO [75], SSA [76], TLBO [8], WCA [12, 13], DE [6] 

Table 1  The multi-dimension 
unimodal benchmark problems

Name Equation D Range Optimum

Sphere
f01(x) =

D∑

i=1

x2
i

30 [− 100, 100] 0

Schwefel 1.2
f02(x) =

D∑

i=1

�
i∑

j=1

xj

�2 30 [− 100, 100] 0

Schwefel 2.20
f03(x) =

D∑

i=1

�
�xi

�
�

30 [− 100, 100] 0

Schwefel 2.21 f04(x) = max
i=1,2,3,…,n

|
|xi

|
| 30 [− 100, 100] 0

Schwefel 2.22
f05(x) =

D∑

i=1

�
�xi

�
� +

D∏

i=1

�
�xi

�
�

30 [− 10, 10] 0

Schwefel 2.23
f06(x) =

D∑

i=1

x10
i

30 [− 10, 10] 0

Step
f07(x) =

D∑

i=1

�
xi + 0.5

�2 30 [− 100, 100] 0

Rosenbrock
f08(x) =

D∑

i=1

�

100
�
xi + 1 − x2

i

�2
+
�
xi − 1

�2
� 30 [− 30, 30] 0

Sum squares
f09(x) =

D∑

i=1

ix2
1

30 [− 10, 10] 0

Zakharov
f10(x) =

D∑

i=1

x2
i
+

�
D∑

i=1

0.5ixi

�2

+

�
D∑

i=1

0.5ixi

�4 30 [− 5, 10] 0

Quartic
f11(x) =

D∑

i=1

x4
i
+ random(0, 1)

30 [− 1.28, 1.28] 0

Powell sum
f12(x) =

D∑

i=1

�
�xi

�
�
i+1 30 [− 1, 1] 0

Table 2  The fixed-dimension 
unimodal benchmark problems

Name Equation D Range Optimum

Dixon price
f13(x) =

�
x1 − 1

�2
+

D∑

i=2

i
�
2x2

i
− xi−1

�2 2 [− 10, 10] 0

Leon f14(x) = 100
(
x2 − x3

1

)2
+
(
1 − x1

)2 2 [0, 10] 0

Booth f15(x) =
(
x1 + 2x2 − 7

)2
+
(
2x1 + x2 − 5

)2 2 [− 10, 10] 0

Matyas f16(x) = −0.26(x2
1
+ x2

2
) − 0.48x1x2 2 [− 10, 10] 0

Perm
f17(x) =

D∑

i=1

�
D∑

j=1

(j + 10)
�

xi
j
−

1

ji

�
�2 2 [− 2, 2] 0

Ackley 2
f18(x) = −200e

−0.2
√

x2
1
x2
2

2 [− 32, 32] − 200

Trid
f19(x) =

D∑

i=1

(x2 − 1)2 −
D∑

i=2

xixi − 1
10 [− 100, 100] − 210
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on different benchmark problems. Solutions obtained are 
listed in results tables in the form of scientific notation with 
decimal place 2. The parameter configurations of these algo-
rithms are according to the corresponding references, which 
are shown in Table 5.

Regarding the stochastic nature of metaheuristic algo-
rithms, they may arrive at better or worse solutions than 
the earlier solutions reached during the search for new solu-
tions to the problem. As a result, statistical instruments are 
employed to evaluate problem-solving success and compare 
an optimization algorithm with other methods. The simple 
statistical indices (best, mean, and standard deviation of the 

best solutions), obtained using an algorithm in solving a 
specific problem, under different initializations, only offer 
information about the algorithm’s behavior in dealing with 
that specific problem. The test results are summarized in 
Tables 6, 7, 8, 9 and 10. Where “Best”, “Mean”, and “Std.” 
are three evaluative indices that represent optimum value, 
the mean and standard deviation of the best solutions, where 
the algorithms are ranked based on the mean best solutions. 
The final ranks illustrated the performance of the nine algo-
rithms in terms of the mean best solutions. Algorithms find 
the best value for the benchmark problem ranks 1st, worst 

Table 3  The multi-dimension multimodal benchmark problems

Name Equation D Range Optimum

Qing
f20(x) =

D∑

i=1

�
x2 − i

�2 30 [− 500, 500] 0

Alpine
f21(x) =

D∑

i=1

�
�
�
xi sin

�
xi + 0.1xi

��
�
�

30 [0, 10] 0

Griewank
f22(x) = 1 +

D∑

i=1

x2
i

4000
−

D∏

i=1

cos
�

xi√
i

� 30 [− 600, 600] 0

Salomon
f23(x) = 1 − cos

⎛
⎜
⎜
⎝

2�

�
D∑

i=1

x2
i

⎞
⎟
⎟
⎠

+ 0.1

�
D∑

i=1

x2
i

30 [− 100, 100] 0

Ackley
f24(x) = −20 exp

⎛
⎜
⎜
⎝

−0.2

�

1

D

D∑

i=1

x2
i

⎞
⎟
⎟
⎠

− exp

�

1

D

D∑

i=1

cos
�
2�xi

�
�

+ 20 + exp (1)

30 [− 32, 32] 0

Levy
f25(x) = sin2

�

�y1 +
D−1∑

i=1

�
yi − 1

�2�
1 + 10 sin2

�
�yi + 1

��
+
�
yD − 1

�2

�
�
1 + sin2

�
2�yD

��

yi = 1 +
xi−1

4

30 [− 10, 10] 0

Powell
f26(x) = 1 +

D∕4∑

i=1

�

x4i−3 + 10x4i−2 + 5
�
x4i−1 − x4i

�2
+
�
x4i−2 − 2x4i−1

�4
+ 10

�
x4i−3 − x4i

�4
� 30 [− 4, 5] 0

Rastrigin
f27(x) = 10D +

D∑

i=1

�
x2
i
− 10 cos

�
2�xi

�� 30 [− 5.12, 5.12] 0

Penalized 1
f28(x) =

�

n

�

10 sin
�
�y1

�
+

D−1∑

i=1

�
yi − 1

�2�
1 + 10 sin2

�
�yi+1

��
+
�
yD − 1

�2

�

+
D∑

i=1

u
�
xi, 10, 100, 4

�

yi = 1 +
xi+1

4
u
�
xi, a, k,m

�
=

⎧
⎪
⎨
⎪
⎩

k
�
xi − a

�m
xi > a

0 − a < xi < a

k
�
−xi − a

�m
xi < −a

30 [− 50, 50] 0

Penalized 2

f29(x) = 0.1

⎧
⎪
⎪
⎨
⎪
⎪
⎩

sin2
�
3�x1

�
+

D∑

i=1

�
xi − 1

�2�
1 + sin2

�
3�xi + 1

��
+
�
xD − 1

�2�
1 + sin2

�
2�xD

��

+
D∑

i=1

u
�
xi, 10, 100, 4

�

⎫
⎪
⎪
⎬
⎪
⎪
⎭

30 [− 50, 50] 0

Schwefel
f30(x) = −

1

D

D∑

i=1

xi sin

��
�
�xi

�
�

� 30 [− 500, 500]  − 12,569.5

Langermann
f31(x) =

5∑

i=1

ci exp

�

−1

�

D∑

j=1

�
xj − Aij

�2

�

cos

�

�

D∑

j=1

�
xj − Aij

�2

�
30 [0, 10]  − 4.1558
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Table 4  The fixed-dimension multimodal benchmark problems

Name Equation D Range Optimum

Goldstein price
f
32
(x) =

[

1 +
(
x
1
+ x

2
+ 1

)2(
19 − 14x

1
+ 3x

2

1
− 14x

2
+ 6x

1
x
2
+ 3x

2

2

)]

[

30 +
(
2x

1
− 3x

2

)2(
18 − 32x

1
+ 12x

2

1
+ 4x

2
− 36x

1
x
2
+ 27x

2

2

)]

2 [− 2, 2] 3

Bartels Conn f33(x) =
|
|
|
x2
1
+ x2

2
+ xy

|
|
|
+
|
|
|
sin

(
x1
)
+ cos

(
x2
)|
|
|

2 [− 500, 500] 1

Levy 13 f34(x) = sin2
(
3�x1

)
+
(
x1 − 1

)2[
1 + sin2

(
3�x2

)]
+
(
x2 − 1

)2[
1 + sin2

(
2�x2

)] 2 [− 10, 10] 0

Himmelblau f35(x) =
(
x2
1
+ x2 − 11

)2
+
(
x1 + x2

2
− 7

)2 2 [− 6, 6] 0

Egg crate f36(x) = x2
1
+ x2

2
+ 25

(
sin2

(
x1
)
+ sin2

(
x2
)) 2 [− 5, 5] 0

Three hump camel
f37(x) = 2x2

1
− 1.05x4

1
+

x6
1

6
+ x1x2 + x2

2

2 [− 5, 5] 0

Beale f38(x) =
(
1.5 − x1 + x1x2

)2
+
(
2.25 − x1 + x1x

2
2

)2
+
(
2.625 − x1 + x1x

3
2

)2 2 [− 4.5, 4.5] 0

Colville
f
39
(x) = 100

(
x
2

1
− x

2

)2
+
(
x
1
− 1

)2
+
(
x
3
− 1

)2
+ 90

(
x
2

3
− x

4

)2

+10.1

((
x
2
− 1

)2
+
(
x
4
− 1

)2
)

+ 19.8
(
x
2
− 1

)(
x
4
− 1

)

4 [− 10, 10] 0

Power sum
f40(x) =

D∑

i=1

��
D∑

j=1

xi
j

�

− b

�2 4 [0, 4] 0

Bohachevsky 1 f41(x) = x2
1
+ 2x2

2
− 0.3 cos

(
3�x1

)
− 0.4 cos

(
4�x1

)
+ 0.7 2 [− 100, 100] 0

Bohachevsky 2 f42(x) = x2
1
+ 2x2

2
− 0.3 cos

(
3�x1

)
− 0.4 cos

(
4�x1

)
+ 0.3 2 [− 100, 100] 0

Bohachevsky 3 f43(x) = x2
1
+ 2x2

2
− 0.3 cos

(
3�x1 + 4�x2

)
+ 0.3 2 [− 100, 100] 0

Schaffer 1
f44(x) = 0.5 +

sin2 (x21+x
2
2)

2
−0.5

(1+0.001(x21+x
2
2))

2

2 [− 100, 100] 0

Schaffer 2
f45(x) = 0.5 +

sin2 (x21−x
2
2)−0.5

(1+0.001(x21+x
2
2))

2

2 [− 100, 100] 0

Schaffer 3
f46(x) = 0.5 +

sin2 (cos (|x21−x
2
2|))

2
−0.5

(1+0.001(x21+x
2
2))

2

2 [− 100, 100] 0.0016

Schaffer 4
f47(x) = 0.5 +

cos2 (sin (|x21−x
2
2|))−0.5

(1+0.001(x21+x
2
2))

2

2 [− 100, 100] 0.2926

Branin
f48(x) =

(

x2 −
5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(

1 −
1

8�

)

cos
(
x1
)
+ 10

2 [− 5, 5] 0.3979

Keane
f49(x) = −

sin2 (x1−x2) sin
2 (x1+x2)√

x2
1
+x2

2

2 [0, 10] − 0.6737

Kowalik
f50(x) =

11∑

i=1

�

ai −
x1(b

2
i
+bix2)

b2
i
+bix3+x4

� 4 [− 5, 5] 0.0003

Drop wave
f51(x) = −

1+cos

�

12
√

x2
1
+x2

2

�

0.5(x21+x
2
2)+2

2 [− 5.12, 5.12] − 1

Ackley 3
f52(x) = −200e

−0.2
√

x2
1
+x2

2 + 5ecos (3x1)+sin (3x2)
2 [− 32, 32] − 195.63

Holder table
f53(x) = −

�
�
�
�
�
�

sin
�
x1
�
cos

�
y1
�
exp

�
�
�
�
�
�

1 −

√
x2
1
+x2

2

�

�
�
�
�
�

��
�
�
�
�
�

2 [− 10, 10] − 19.208

Shubert
f54(x) =

D∏

i=1

�
5∑

j=1

cos
�
(j + 1)xi + j

�
�

2 [− 10, 10] − 186.73

Shubert 3
f55(x) =

D∑

i=1

5∑

j=1

j sin
�
(j + 1)xi + j

� 2 [− 10, 10] − 29.676

Shubert 4
f56(x) =

D∑

i=1

5∑

j=1

j cos
�
(j + 1)xi + j

� 2 [− 10, 10] − 25.742

Eggholder
f57(x) = −

(
x2 + 47

)
sin

(√
|
|
|
x2 +

x1

2
+ 47

|
|
|

)

− x1 sin

(√
|
|
|
x1 −

(
x2 + 47

)|
|
|

)
2 [− 512, 512] − 959.64
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algorithm rank 9th while the other algorithms rank between 
1st and 9th.

Table 5 shows the initial values of control parameters of 
metaheuristic algorithms used in this test. For the proposed 
PSOBSA, the inertia weight coefficient is set the random 
numerical in the range of (0.1, 0.8), the acceleration coef-
ficients are set as c1 and c2 = 1.4962 , the parameters mix 

rate, neighborhood size, and mutation probability are set 
to 1.0, 10, and 0.2, respectively, the parameters F and A are 
set to 2 × rand(0, 1) . The standard control parameters, such 
as population size and a maximum number of iterations, 
were set at 40 and 100. For each benchmark problem, each 
algorithm is performed 30 times independently to obtain sta-
tistical results. In Tables 6, 7, 8, 9 and 10, for the problems 

Table 4  (continued)

Name Equation D Range Optimum

Six hump camel
f58(x) =

(

4 − 2.1x2
1
+

x4
1

4

)

x2
1
+ x1x2 +

(
−4 + 4x2

2

)
x2
2

2 [− 5, 5] − 1.0316

Bird f59(x) = sin
(
x1
)
e(1−cos (x2))

2

+ cos
(
x2
)
e(1−sin (x1))

2

+
(
x1 − x2

)2 2 [−2� , 2�] − 106.76

Adjiman f60(x) = cos
(
x1
)
sin

(
x2
)
−

x1

x2
2
+1

2 [− 1, 2] − 2.0218

Michalewicz 2
f61(x) = −

D∑

i=1

sin
�
xi
�
sin20

�
ix2

i

�

� 2 [0, �] − 1.8013

Michalewicz 5
f62(x) = −

D∑

i=1

sin
�
xi
�
sin20

�
ix2

i

�

� 5 [0, �] − 4.6877

Michalewicz 10
f63(x) = −

D∑

i=1

sin
�
xi
�
sin20

�
ix2

i

�

� 10 [0, �] − 9.6601

Shekel 5
f64(x) = −

5∑

i=1

�
4∑

j=1

�
xj − Cji

�2
+ �i

�−1 4 [0, �] − 10.153

Shekel 7
f65(x) = −

7∑

i=1

�
4∑

j=1

�
xj − Cji

�2
+ �i

�−1 4 [0, 10] − 10.403

Shekel 10
f66(x) = −

10∑

i=1

�
4∑

j=1

�
xj − Cji

�2
+ �i

�−1 4 [0, 10] − 10.536

Hartman 3
f67(x) = −

4∑

i=1

ai exp

�

−
3∑

j=1

Aij

�
xj − Pij

�2

�
3 [0, 1] − 3.8628

Hartman 4
f68(x) =

1

0.839

�

1.1 −
4∑

i=1

ai exp

�

−
4∑

j=1

Aij

�
xj − Pij

�2

��
3 [0, 1] − 3.1345

Hartman 6
f69(x) = −

4∑

i=1

ai exp

�

−
6∑

j=1

Aij

�
xj − Pij

�2

�
3 [0, 1] − 3.0425

Styblinski tank
f70(x) =

1

2

D∑

i=1

�
x4
i
− 16x2

i
+ 5xi

� 10 [− 5, 5] − 391.66

Table 5  The parameters of the 
algorithms and their values

Algorithms Year Parameters settings Refs.

PSO 1998 � = 0.7298 c1 and c2 = 1.4962 [77]
BSA 2013 mix − rate = 1.0 F = 3 × rand [23]
WOA 2016 A = 2a × rand − a a = 2 − gen(2∕maxgen) C = 2 ⋅ rand [14]
GWO 2014 A = 2a × rand − a a = 2 − gen(2∕maxgen) C = 2 ⋅ rand [75]
SSA 2017

c1 = 2e
−

(
4⋅maxgen

maxgen

)2 c1 and c2 = rand [76]

TLBO 2011 TF = round[1 + round(0, 1){2 − 1}] [8]
WCA 2012 Nsr = 8 (7 rivers and 1 sea) dmax = 1e−3 c = 2 [12, 13]
DE 1997 F = rand(0.1, 1.0) PCR = 0.9 [78]
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Table 6  Comparison of optimization results obtained for the multi-dimension unimodal benchmark problems

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F01 Best 4.29E+00 2.69E+02 6.32E−17 6.34E−04 2.47E+02 7.72E−15 4.71E+00 3.03E+03 2.20E−54
Mean 1.08E+01 9.69E+02 5.12E−13 3.43E−03 7.62E+02 2.50E−14 2.07E+01 5.55E+03 1.26E−49
Std. 4.71E+00 5.78E+02 2.00E−12 2.07E−03 2.99E+02 1.29E−14 2.10E+01 1.69E+03 2.27E−49
Rank 5 8 3 4 7 2 6 9 1

F02 Best 7.34E+02 3.95E+03 5.40E+04 1.47E+01 1.58E+03 2.59E−01 8.20E+02 3.41E+04 1.99E−47
Mean 1.99E+03 9.47E+03 8.84E+04 1.51E+02 4.70E+03 1.66E+00 3.42E+03 4.56E+04 2.74E−42
Std. 5.71E+02 4.43E+03 2.62E+04 1.11E+02 3.42E+03 1.54E+00 1.88E+03 6.60E+03 1.23E−41
Rank 4 7 9 3 6 2 5 8 1

F03 Best 4.91E+00 7.59E+01 1.30E−11 4.40E−02 8.61E+01 3.99E−07 5.58E+00 2.37E+02 3.67E−27
Mean 1.06E+01 1.22E+02 2.70E−08 7.49E−02 1.33E+02 9.22E−07 2.34E+01 3.12E+02 4.71E−25
Std. 2.53E+00 2.92E+01 6.70E−08 2.02E−02 3.02E+01 3.62E−07 1.42E+01 3.89E+01 1.11E−24
Rank 5 7 2 4 8 3 6 9 1

F04 Best 4.50E+00 1.31E+01 8.66E−02 3.89E−01 1.07E+01 2.61E−06 1.33E+01 5.95E+01 5.73E−26
Mean 7.98E+00 2.64E+01 5.18E+01 7.59E−01 1.65E+01 3.91E−06 2.38E+01 7.99E+01 3.14E−24
Std. 1.58E+00 6.99E+00 3.08E+01 2.96E−01 3.35E+00 1.06E−06 5.36E+00 6.61E+00 5.25E−24
Rank 4 7 8 3 5 2 6 9 1

F05 Best 5.65E−01 7.98E+00 7.76E−12 2.26E−03 8.92E+00 4.77E−08 6.25E−01 3.95E+01 1.07E−27
Mean 1.25E+00 1.30E+01 1.76E−09 1.01E−02 1.43E+01 1.12E−07 2.92E+00 5.34E+01 4.04E−26
Std. 4.26E−01 3.57E+00 2.34E−09 3.42E−03 3.21E+00 5.17E−08 3.37E+00 9.79E+00 4.82E−26
Rank 5 7 2 4 8 3 6 9 1

F06 Best 1.78E−05 2.29E−01 4.34E−62 6.17E−19 3.24E−01 2.36E−74 1.41E−02 4.99E+05 1.93E−271
Mean 3.96E−03 1.79E+03 4.44E−29 8.64E−15 2.37E+02 3.11E−68 2.64E+00 4.26E+07 1.18E−246
Std. 9.59E−03 4.52E+03 2.43E−28 1.66E−14 3.52E+02 1.30E−67 6.29E+00 5.43E+07 0
Rank 5 8 3 4 7 2 6 9 1

F07 Best 4.18E+00 2.25E+02 7.79E−01 1.34E+00 2.22E+02 6.04E−02 2.05E+00 2.77E+03 4.09E−25
Mean 1.29E+01 1.07E+03 1.58E+00 2.30E+00 6.80E+02 1.83E−01 2.46E+01 5.71E+03 1.13E−21
Std. 6.63E+00 7.30E+02 4.52E−01 7.27E−01 2.97E+02 9.23E−02 2.40E+01 1.62E+03 1.91E−21
Rank 5 8 3 4 7 2 6 9 1

F08 Best 2.27E+02 1.45E+04 2.85E+01 2.77E+01 6.68E+03 2.66E+01 2.30E+02 1.13E+06 2.46E+01
Mean 6.53E+02 1.19E+05 2.87E+01 3.23E+01 7.85E+04 2.74E+01 2.16E+03 5.30E+06 2.53E+01
Std. 3.80E+02 1.30E+05 8.59E−02 1.67E+01 7.08E+04 4.27E−01 1.88E+03 3.49E+06 3.50E−01
Rank 5 8 3 4 7 2 6 9 1

F09 Best 5.43E−01 5.07E+01 1.13E−19 1.48E−04 2.74E+01 6.39E−16 4.44E−01 3.62E+02 6.62E−55
Mean 2.23E+00 1.81E+02 7.06E−14 6.34E−04 9.15E+01 4.44E−15 4.54E+00 6.31E+02 3.48E−49
Std. 1.23E+00 1.62E+02 1.45E−13 4.86E−04 4.02E+01 4.24E−15 5.32E+00 1.79E+02 1.80E−48
Rank 5 8 3 4 7 2 6 9 1

F10 Best 3.59E+01 8.97E+01 2.76E+02 5.51E−01 1.96E+02 7.04E+00 9.36E+01 2.40E+02 1.09E−43
Mean 1.09E+02 1.53E+02 5.15E+02 1.30E+01 3.63E+02 3.04E+01 2.20E+02 4.26E+02 8.64E−38
Std. 4.71E+01 4.92E+01 1.15E+02 1.23E+01 1.02E+02 1.74E+01 8.28E+01 8.08E+01 3.30E−37
Rank 4 5 9 2 7 3 6 8 1

F11 Best 3.29E−02 6.20E−02 8.13E−04 5.00E−03 1.65E−01 2.78E−03 3.16E−01 9.07E−01 2.80E−05
Mean 6.43E−02 2.41E−01 2.32E−02 1.20E−02 4.36E−01 6.14E−03 8.74E−01 2.47E+00 6.72E−04
Std. 2.47E−02 1.28E−01 2.85E−02 4.40E−03 2.02E−01 2.29E−03 3.45E−01 1.03E+00 5.76E−04
Rank 5 6 4 3 7 2 8 9 1

F12 Best 7.92E−13 9.21E−09 1.34E−34 8.12E−27 1.24E−07 2.15E−43 1.03E−11 6.34E−04 2.12E−70
Mean 1.60E−10 3.89E−05 1.85E−23 2.07E−21 1.71E−05 1.07E−40 4.96E−09 1.36E−02 2.52E−62
Std. 2.70E−10 1.80E−04 1.00E−22 7.75E−21 1.80E−05 2.41E−40 5.27E−09 1.40E−02 1.15E−61
Rank 5 8 3 4 7 2 6 9 1

Sum rank 57 87 52 43 83 27 73 106 12
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with an optimal value of zero, if the algorithms obtain solu-
tions of the near-optimal value, the results are shown in the 
scientific notation with decimal place 2.

The unimodal problems without local optimum, best 
solution accuracy are the paramount criterion to compare 
the performance of proposed PSOBSA with different algo-
rithms. However, as shown in Tables 6 and 7, PSOBSA 
in unimodal benchmark problems can find solutions with 
exact optimal value or highest accuracy. These findings show 
that the PSOBSA has a robust local search ability and high 
convergence accuracy in unimodal problems. Comparisons 
of the algorithms on multimodal problems are reported in 

Tables 8 and 9. These problems contain several local opti-
mums, and the number of their optimum local increases 
exponentially by increasing the dimensions, which may 
lead to premature convergence of PSO algorithms. If a par-
ticle enters into a local optimum, it can hardly fly out of it. 
As shown in Tables 8 and 9, PSOBSA can find solutions 
with exact global optimal or near-global optimal value. It 
means that PSOBSA has a strong global search ability and 
can effectively maintain population diversity in multimodal 
problems.

As shown in Table 6, the PSOBSA can obtain the best 
results than other F1–F12 problems. For problem F06, 

Table 6  (continued)

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

Final rank 5 8 4 3 7 2 6 9 1

Table 7  Comparison of optimization results obtained for the fixed-dimension unimodal benchmark problems

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F13 Best 9.15E−14 6.89E−09 3.60E−13 1.63E−08 2.49E−15 2.14E−29 3.70E−32 2.09E−25 3.70E−32
Mean 1.24E−10 3.00E−06 1.75E−04 3.07E−06 3.25E−13 1.72E−15 6.66E−32 1.19E−13 4.07E−32
Std. 2.59E−10 8.82E−06 4.11E−04 3.14E−06 2.93E−13 7.67E−15 1.44E−31 6.42E−13 2.03E−32
Rank 6 7 9 8 5 3 2 4 1

F14 Best 0 2.04E−04 1.51E−08 8.17E−07 3.00E−10 1.48E−08 0 6.29E−10 0
Mean 1.65E−02 1.13E−02 1.10E−01 3.76E−02 5.79E−02 6.84E−06 1.41E−30 3.77E−02 0
Std. 3.91E−02 1.36E−02 2.80E−01 1.43E−01 1.15E−01 1.19E−05 4.52E−30 1.43E−01 0
Rank 5 4 9 6 8 3 2 7 1

F15 Best 2.15E−14 7.29E−11 1.68E−05 8.31E−07 5.55E−15 0 0 1.77E−24 0
Mean 1.58E−11 3.67E−08 2.57E−02 8.39E−06 3.15E−13 9.41E−30 2.63E−32 3.88E−22 0
Std. 2.35E−11 6.92E−08 3.05E−02 8.39E−06 3.40E−13 2.94E−29 1.44E−31 1.15E−21 0
Rank 6 7 9 8 5 3 2 4 1

F16 Best 1.04E−16 3.05E−10 2.03E−58 3.36E−33 4.71E−16 9.69E−31 6.64E−41 1.13E−24 1.27E−57
Mean 3.84E−12 9.29E−08 1.54E−45 4.15E−25 1.50E−14 2.54E−28 1.50E−36 3.56E−21 4.94E−54
Std. 5.55E−12 2.59E−07 5.99E−45 1.15E−24 1.93E−14 4.48E−28 2.85E−36 1.30E−20 8.64E−54
Rank 8 9 2 5 7 4 3 6 1

F17 Best 2.04E−13 4.67E−08 1.31E−04 2.03E−06 1.65E−14 1.91E−24 0 1.20E−19 0
Mean 1.11E−09 2.87E−05 1.25E−01 6.66E−04 5.91E−13 2.04E−12 1.54E−30 1.13E−12 7.32E−31
Std. 3.25E−09 7.74E−05 1.53E−01 3.16E−03 6.19E−13 6.32E−12 7.47E−30 5.79E−12 1.99E−30
Rank 6 7 9 8 3 5 2 4 1

F18 Best − 199.9 − 199.9 − 200 − 200 − 199.9 − 200 − 200 − 200 − 200
Mean − 199.9 − 199.9 − 200 − 200 − 199.9 − 200 − 200 − 200 − 200
Std. 1.19E−05 3.15E−06 3.09E−13 9.14E−15 1.92E−06 0 1.18E−14 8.08E−12 0
Rank 9 7 5 1 8 1 1 6 1

F19 Best − 209.962 − 186.844 − 209.312 − 209.813 − 209.087 − 209.925 − 209.886 − 201.861 − 210
Mean − 205.975 − 103.296 − 201.102 − 132.992 − 134.497 − 196.284 − 193.998 − 131.987 − 209.997
Std. 5.64E+00 6.04E+01 6.85E+00 6.79E+01 9.48E+01 1.26E+01 2.31E+01 1.31E+02 3.99E−03
Rank 2 9 3 7 6 4 5 8 1

Sum rank 42 50 46 43 42 23 17 39 7
Total rank 5 9 8 7 5 3 2 4 1
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Table 8  Comparison of optimization results obtained for the multi-dimension multimodal benchmark problems

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F20 Best 8.38E+03 1.70E+07 2.06E+03 2.57E+02 1.91E+06 3.14E+01 6.76E+04 1.19E+09 1.31E−01
Mean 6.24E+04 1.76E+08 4.34E+03 1.21E+03 4.52E+07 1.59E+02 4.78E+05 4.72E+09 1.80E+00
Std. 5.83E+04 3.63E+08 1.01E+03 6.05E+02 5.03E+07 1.50E+02 4.78E+05 3.20E+09 2.70E+00
Rank 5 8 4 3 7 2 6 9 1

F21 Best 1.08E+00 7.72E+00 0 2.68E−04 4.75E+00 0 2.56E−02 7.85E−01 0
Mean 3.56E+00 1.19E+01 0 2.08E−02 1.08E+01 0 2.75E+00 3.13E+00 0
Std. 2.41E+00 2.75E+00 0 7.50E−02 3.44E+00 0 3.16E+00 1.87E+00 0
Rank 7 9 1 4 8 1 5 6 1

F22 Best 1.02E+00 2.62E+00 0 1.44E−03 2.78E+00 1.58E−14 1.07E+00 1.78E+01 0
Mean 1.15E+00 1.03E+01 2.91E−02 3.67E−02 7.68E+00 1.41E−10 1.23E+00 4.88E+01 0
Std. 6.91E−02 5.93E+00 1.59E−01 4.32E−02 2.92E+00 7.36E−10 1.28E−01 1.43E+01 0
Rank 5 8 3 4 7 2 6 9 1

F23 Best 1.04E+00 3.12E+00 3.65E−08 4.00E−01 2.50E+00 2.00E−01 2.50E+00 6.91E+00 2.82E−26
Mean 1.42E+00 4.76E+00 1.70E−01 5.07E−01 5.17E+00 2.00E−01 4.32E+00 8.82E+00 1.50E−19
Std. 2.47E−01 6.82E−01 1.18E−01 7.40E−02 9.87E−01 8.45E−05 9.72E−01 1.00E+00 8.05E−19
Rank 5 7 2 4 8 3 6 9 1

F24 Best 1.45E+00 5.57E+00 1.45E−09 6.93E−03 5.76E+00 2.93E−08 3.44E+00 1.23E+01 8.88E−16
Mean 2.56E+00 8.27E+00 6.85E−08 1.28E−02 7.16E+00 4.60E−03 7.72E+00 1.68E+01 8.88E−16
Std. 6.38E−01 1.73E+00 9.62E−08 4.53E−03 1.03E+00 2.52E−02 3.34E+00 2.56E+00 0
Rank 5 8 2 4 6 3 7 9 1

F25 Best 1.92E−01 1.16E+00 4.61E−01 7.29E−01 2.56E+00 1.33E−01 2.65E+00 1.69E+01 4.57E−24
Mean 2.73E+00 4.59E+00 1.06E+00 1.17E+00 8.25E+00 5.61E−01 9.28E+00 4.02E+01 3.41E−21
Std. 1.83E+00 3.89E+00 4.13E−01 2.50E−01 3.76E+00 2.13E−01 4.28E+00 1.42E+01 9.24E−21
Rank 5 6 3 4 7 2 8 9 1

F26 Best 6.99E−02 1.43E+01 8.06E−19 5.81E−04 5.33E+00 2.51E−08 3.76E−01 4.80E+02 3.74E−50
Mean 1.06E+00 7.95E+01 3.49E−06 2.03E−03 2.29E+01 1.42E−05 3.53E+00 9.63E+02 2.90E−45
Std. 7.08E−01 5.55E+01 1.33E−05 1.58E−03 1.29E+01 2.43E−05 2.40E+00 3.05E+02 8.85E−45
Rank 5 8 2 4 7 3 6 9 1

F27 Best 3.42E+01 1.15E+02 0.00E+00 8.37E+00 2.81E+01 3.63E−01 3.67E+01 2.42E+02 0
Mean 5.23E+01 1.55E+02 6.72E+00 2.51E+01 7.62E+01 5.59E+01 8.42E+01 2.74E+02 0
Std. 1.81E+01 2.03E+01 2.95E+01 8.69E+00 2.56E+01 2.76E+01 3.38E+01 1.91E+01 0
Rank 4 8 2 3 6 5 7 9 1

F28 Best 3.57E−01 4.31E+00 2.04E−02 4.51E−02 6.09E+00 1.30E−03 3.84E+00 1.48E+04 1.51E−22
Mean 1.76E+00 2.61E+01 1.05E−01 2.83E−01 1.73E+01 7.71E−03 1.04E+01 3.07E+06 2.93E−20
Std. 1.41E+00 4.42E+01 5.55E−02 2.36E−01 1.41E+01 1.90E−02 4.48E+00 2.35E+06 6.48E−20
Rank 5 8 3 4 7 2 6 9 1

F29 Best 8.96E−01 1.82E+01 4.41E−01 8.02E−01 3.88E+01 6.86E−02 2.10E+01 2.43E+06 1.87E−21
Mean 5.05E+00 6.89E+04 1.06E+00 1.86E+00 5.36E+03 3.28E−01 8.37E+01 1.62E+07 1.03E−18
Std. 3.29E+00 2.11E+05 2.89E−01 5.38E−01 1.16E+04 1.80E−01 2.08E+02 1.02E+07 4.25E−18
Rank 5 8 3 4 7 2 6 9 1

F30 Best − 7617.17 − 7219.32 − 12,491.1 − 7359.94 − 7887.01 − 8079.50 − 9258.04 − 5019.24 − 12,569.5
Mean − 6432.89 − 6569.51 − 9113.14 − 5663.44 − 6614.32 − 4660.25 − 7852.11 − 4415.73 − 12,555.3
Std. 6.73E+02 3.55E+02 1.64E+03 1.18E+03 7.38E+02 7.61E+02 8.39E+02 2.81E+02 4.07E+01
Rank 6 5 2 7 4 8 3 9 1

F31 Best − 4.15581 − 4.15578 − 4.15572 − 4.15579 − 4.15581 − 4.15581 − 4.15581 − 4.15581 − 4.15581
Mean − 3.75764 − 4.12854 − 3.94174 − 3.99040 − 4.12812 − 4.14679 − 3.90048 − 4.10785 − 4.13004
Std. 7.95E−01 1.76E−02 1.97E−01 2.00E−01 2.45E−02 1.34E−02 5.87E−01 9.32E−02 1.81E−02
Rank 9 3 7 6 4 1 8 5 2

Sum rank 66 86 34 51 78 34 74 101 13
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PSOBSA can find the highest accuracy solution and has 
a 1 with a standard deviation of 0, which indicates that 
PSOBSA has high exploitation and strong stability. The 
sum rank PSOBSA is significantly better than the other 
algorithms, and it has the first final rank compared to 
them. In this table, the DE and BSA provide poor results, 
and they have the worst rank, respectively. In the Figs. 5, 
6, 7 and 8, the vertical ordinate is denoted by the fitness 
problem value that is each iteration achieved by PSOBSA 
and other algorithms. As shown in Fig. 5, the PSOBSA 
has higher convergence accuracy than other competitor 
algorithms in all multi-dimensional unimodal problems.

According to the diagrams results, it is clear that the 
PSOBSA model has been able to find the optimal solution 
by 100 iterations. The PSOBSA model obtained the optimal 
value for the functions by taking advantage of the optimal 
parameters and discovering the search space’s optimal posi-
tions more accurately. Other models must be repeated at 
least 500 times to achieve the optimal solution.

For problem F08 (Rosenbrock), the algorithms do not find 
the optimal or near-optimal value. Because in this problem, 
by increasing the dimension of the problem, its complexity 
increases and works like multimodal problems. Therefore, 
to compare the performance of the proposed PSOBSA in 
this problem, the termination conditions of the algorithms 
should be appropriate. In this test, the maximum number of 
iterations is considered 10,000.

As shown in Table 10, the performance of the proposed 
PSOBSA and different algorithms are evaluated on the 
Rosenbrock problem in different dimensions. For the ten 
dimensions, BSA and DE can find the exact optimal value, 
and they have rank 1 and rank 2, respectively. After BSA 
and DE, PSOBSA is third-ranked for the 20 dimensions, 
PSOBSA can find the highest accuracy and has rank 1. For 
the 30 dimensions, PSOBSA can find the exact optimal 
value and has rank 1. The WOA and GWO provide poor 
results for all dimensions, and the SSA has the worst rank.

In summary, the sum rank PSOBSA is significantly bet-
ter than the other algorithms, and it has better performance 
in high dimensions and first final rank compared with the 
other algorithms. The SSA, GWO, and WOA have the worst 
rank, respectively. According to Fig. 9, PSOBSA has higher 
convergence accuracy, and SSA, GWO, and WOA have 
lower convergence accuracy than all algorithms in 20 and 
30 dimensions for the Rosenbrock problem.

For problem F13, PSOBSA and WCA reach the best 
global minimum, but PSOBSA has a better mean and 

standard deviation of the best solutions, and it also has rank 
1. For problem F14, PSOBSA, PSO, and WCA can find the 
exact optimal solution, but only PSOBSA has rank 1 with a 
standard deviation of 0. For problem F15, PSOBSA reaches 
the best global optimum value, and the standard devia-
tion is zero. Also, TLBO and WCA obtain the best global 
minimum, but their results are not stable. For problem F16, 
PSOBSA can find the solution with the highest accuracy and 
has rank 1. For problem F17, PSOBSA and WCA can find 
the exact optimal value, but PSOBSA has a better mean and 
standard deviation. For problem F18, PSOBSA and TLBO 
reach the best global minimum, and they have zero standard 
deviation. Also, WOA, GWO, WCA, and DE obtain the best 
global minimum, but their results are not stable. For problem 
F19, only PSOBSA can find the exact optimal value and has 
a rank of 1.

As shown in Table 7, the sum rank PSOBSA is signifi-
cantly better than the other algorithms, and it has the first 
final rank compared with the other algorithms. Also, BSA 
and WOA provide poor results, and they have the worst 
rank, respectively. As shown in Fig. 6, F13, F15, and F17, 
PSOBSA after WCA has the highest convergence rate. Also, 
for problem F16, PSOBSA has higher convergence accu-
racy than other algorithms. The above analysis showed that 
PSOBSA had influential local exploitation, convergence 
accuracy, and stability in solving unimodal benchmark 
problems.

Comparisons of the algorithms on multimodal problems 
are reported in Tables 8 and 9. These problems contain sev-
eral local optimums, and the number of their optimum local 
increases exponentially by increasing the problem dimen-
sions, which may lead to premature convergence of PSO 
algorithms. If a particle enters into a local optimum, it can 
hardly fly out of it. As shown in Tables 8 and 9, PSOBSA 
can find the exact global optimal or near-global optimal 
value. It means that PSOBSA has a strong global search 
ability and can effectively maintain population diversity. 
For problem F20, only PSOBSA can find the solution near-
global optimal value and has rank 1. For problem F21, 
PSOBSA, WOA, and TLBO can find the exact global opti-
mum value, and they have rank 1.

For problem F22, PSOBSA and WOA can find the exact 
optimal value, but only PSOBSA has a 1 with a standard 
deviation of 0. For problems F23, F25–F26, and F28–F29, 
PSOBSA can find the highest accuracy solution and has rank 
1. For problems F24, PSOBSA can find the solution with the 
highest accuracy and has rank 1 with a standard deviation of 

Table 8  (continued)

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

Total rank 5 8 2 4 7 2 6 9 1
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Table 9  Comparison of optimization results obtained for the fixed-dimension multimodal benchmark problems

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F32 Best 3 3 3 3 3 3 3 3 3
Mean 3 3 6.62044 3.00066 3 3 3 3 3
Std. 1.54E−10 1.80E−07 9.39E+00 9.35E−04 9.70E−13 1.76E−15 7.98E−15 2.74E−15 1.67E−15
Rank 6 7 9 8 5 2 4 3 1

F33 Best 1 1 1 1 1 1 1 1 1
Mean 1 1 1 1 1.0002 1 1 1 1
Std. 3.32E−06 1.41E−05 2.47E−16 0 2.99E−04 0 2.44E−10 7.02E−15 0
Rank 7 8 1 1 9 1 6 5 1

F34 Best 1.01E−13 2.02E−16 7.55E−08 2.41E−07 9.61E−14 1.35E−31 1.35E−31 2.05E−26 1.35E−31
Mean 5.95E−11 5.31E−11 9.14E−04 1.02E−05 1.37E−11 1.98E−29 1.35E−31 2.88E−23 1.35E−31
Std. 8.00E−11 1.57E−10 1.30E−03 8.66E−06 4.46E−11 7.49E−29 6.68E−47 9.74E−23 6.68E−47
Rank 7 6 9 8 5 3 1 4 1

F35 Best 8.85E−13 9.56E−11 2.42E−08 1.26E−07 1.29E−13 2.91E−25 0 7.47E−24 0
Mean 7.47E−11 7.12E−06 3.06E−03 2.92E−04 1.61E−12 7.86E−13 3.16E−31 4.07E−12 1.84E−31
Std. 1.11E−10 1.18E−05 7.89E−03 3.28E−04 1.77E−12 3.20E−12 3.93E−31 1.72E−11 3.39E−31
Rank 6 7 9 8 4 3 2 5 1

F36 Best 1.14E−14 1.02E−16 6.04E−42 4.77E−62 9.81E−15 1.54E−40 1.83E−38 1.53E−26 9.15E−65
Mean 1.74E−11 3.88E−12 8.07E−29 2.01E−43 6.97E−13 2.74E−34 2.09E−34 5.75E−23 2.13E−57
Std. 3.86E−11 1.20E−11 4.40E−28 1.10E−42 7.85E−13 1.44E−33 7.57E−34 1.66E−22 5.21E−57
Rank 9 8 5 2 7 4 3 6 1

F37 Best 5.71E−15 2.63E−15 2.15E−33 3.97E−58 4.40E−16 2.09E−42 1.08E−40 9.82E−30 4.57E−62
Mean 3.47E−13 5.44E−11 1.66E−15 1.44E−44 2.74E−14 8.94E−37 7.92E−36 9.53E−25 6.43E−58
Std. 4.58E−13 2.50E−10 9.09E−15 7.86E−44 2.82E−14 2.77E−36 1.43E−35 3.02E−24 1.78E−57
Rank 8 9 6 2 7 3 4 5 1

F38 Best 2.34E−14 6.45E−10 1.38E−11 5.92E−08 1.69E−15 2.10E−24 0 6.98E−24 0
Mean 1.52E−01 2.27E−06 7.62E−02 2.54E−02 1.03E−01 3.25E−12 5.08E−02 4.27E−19 5.14E−33
Std. 3.10E−01 4.81E−06 2.33E−01 1.39E−01 2.68E−01 1.32E−11 1.93E−01 1.21E−18 2.34E−32
Rank 9 4 7 5 8 3 6 2 1

F39 Best 8.79E−06 8.18E−02 4.05E−03 1.08E−01 5.77E−03 3.58E−04 1.98E−06 2.09E−03 2.04E−10
Mean 1.10E+00 1.41E+00 3.32E+00 3.11E+00 2.94E+00 6.53E−02 2.99E−01 1.54E−01 2.16E−02
Std. 1.90E+00 1.25E+00 3.94E+00 2.63E+00 2.78E+00 9.26E−02 9.38E−01 4.27E−01 3.89E−02
Rank 5 6 9 8 7 2 4 3 1

F40 Best 5.72E−05 1.07E−02 2.16E−01 2.10E−03 1.33E−05 1.80E−03 5.21E−08 1.72E−02 1.11E−07
Mean 1.36E−02 9.54E−02 7.95E+00 1.68E−01 8.69E−02 1.96E−02 3.16E−02 1.00E−01 1.04E−02
Std. 1.82E−02 8.91E−02 1.12E+01 2.27E−01 1.50E−01 2.39E−02 1.61E−01 7.67E−02 1.75E−02
Rank 2 6 9 8 5 3 4 7 1

F41 Best 2.91E−11 7.48E−14 0 0 5.52E−12 0 0 0 0
Mean 8.30E−09 4.52E−10 7.40E−18 0 1.38E−02 0 0 0 0
Std. 1.53E−08 1.05E−09 4.05E−17 0 7.54E−02 0 0 0 0
Rank 8 7 6 1 9 1 1 1 1

F42 Best 6.11E−12 2.05E−15 0 0 3.65E−12 0 0 0 0
Mean 2.73E−09 8.98E−09 5.09E−02 0 2.25E−10 0 7.28E−03 0 0
Std. 3.34E−09 2.12E−08 9.39E−02 0 2.76E−10 0 3.99E−02 0 0
Rank 6 7 9 1 5 1 8 1 1

F43 Best 2.50E−11 3.59E−09 1.90E−07 0 5.57E−12 0 0 0 0
Mean 1.79E−08 1.08E−06 7.75E−04 1.85E−17 7.90E−11 0 0 1.11E−17 0
Std. 3.76E−08 1.53E−06 1.71E−03 3.03E−17 7.27E−11 0 0 3.69E−17 0
Rank 7 8 9 5 6 1 1 4 1



S2816 Engineering with Computers (2022) 38 (Suppl 4):S2797–S2831

1 3

Table 9  (continued)

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F44 Best 2.22E−16 1.23E−09 0 0 4.44E−16 0 0 0 0

Mean 9.42E−13 4.39E−06 4.37E−04 0 8.68E−15 0 5.89E−05 5.78E−13 0

Std. 2.24E−12 9.31E−06 8.15E−04 0 9.04E−15 0 3.23E−04 2.49E−12 0

Rank 6 7 9 1 4 1 8 5 1
F45 Best 2.22E−16 1.46E−08 0 0 0 0 0 0 0

Mean 1.66E−12 2.98E−05 2.60E−04 0 1.05E−04 1.48E−16 0 3.86E−11 0
Std. 4.78E−12 4.18E−05 7.80E−04 0 5.74E−04 5.87E−16 0 1.92E−10 0
Rank 5 7 9 1 8 4 1 6 1

F46 Best 0.00157 0.00159 0.00157 0.00157 0.00157 0.00157 0.00157 0.00157 0.00157
Mean 0.00157 0.00196 0.00179 0.00159 0.00175 0.00158 0.00232 0.00179 0.00157
Std. 1.98E−06 3.64E−04 2.96E−04 5.90E−05 5.95E−04 1.27E−05 1.63E−03 1.91E−04 2.82E−17
Rank 2 8 6 4 5 3 9 7 1

F47 Best 0.29258 0.29258 0.29258 0.29258 0.29258 0.29258 0.29258 0.29258 0.29258
Mean 0.29258 0.29275 0.29272 0.29259 0.29264 0.29259 0.29266 0.29268 0.29258
Std. 8.94E−06 1.87E−04 3.43E−04 7.59E−06 1.52E−04 2.80E−05 4.71E−04 1.08E−04 1.09E−16
Rank 2 9 8 3 5 4 6 7 1

F48 Best 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789
Mean 0.39789 0.39789 0.39825 0.39791 0.39789 0.39789 0.39789 0.39789 0.39789
Std. 2.08E−11 9.60E−12 8.58E−04 1.68E−05 7.34E−14 0 0 0 0
Rank 7 6 9 8 5 1 1 1 1

F49 Best − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367
Mean − 0.55787 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367 − 0.67367
Std. 1.80E−01 2.85E−12 3.45E−06 8.54E−07 1.17E−14 5.83E−17 7.43E−17 1.03E−16 8.99E−17
Rank 9 6 8 7 5 1 1 1 1

F50 Best 0.00031 0.00054 0.00034 0.00038 0.00033 0.00032 0.00031 0.00038 0.00031
Mean 0.00211 0.00100 0.00081 0.00464 0.00385 0.00129 0.00529 0.00068 0.00048
Std. 4.98E−03 2.72E−04 5.83E−04 8.00E−03 6.83E−03 3.61E−03 8.46E−03 2.50E−04 2.74E−04
Rank 6 4 3 8 7 5 9 2 1

F51 Best − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1
Mean − 0.99999 − 0.99709 − 0.96387 − 0.98937 − 0.97450 − 0.99999 − 0.97662 − 0.99921 − 1
Std. 2.24E−05 4.17E−03 3.21E−02 2.42E−02 3.18E−02 2.76E−05 3.12E−02 3.93E−03 0
Rank 2 5 9 6 8 3 7 4 1

F52 Best − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629
Mean − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629 − 195.629
Std. 2.21E−09 2.67E−08 4.65E−05 1.86E−06 7.78E−12 7.50E−14 7.18E−14 8.11E−14 5.78E−14
Rank 6 7 9 8 5 1 1 1 1

F53 Best − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085
Mean − 19.2085 − 19.2085 − 19.2085 − 19.1937 − 19.2085 − 19.2085 − 19.2085 − 19.2085 − 19.2085
Std. 5.36E−11 4.58E−07 3.30E−06 5.73E−02 1.35E−12 1.16E−08 8.40E−15 1.12E−09 8.21E−15
Rank 4 7 8 9 3 6 2 5 1

F54 Best − 186.731 − 186.731 − 186.731 − 186.731 − 186.731 − 186.731 − 186.731 − 186.731 − 186.731
Mean − 186.731 − 186.703 − 186.698 − 185.948 − 186.731 − 186.723 − 186.731 − 186.658 − 186.731
Std. 4.67E−05 4.56E−02 7.74E−02 2.40E+00 3.40E−10 1.60E−02 2.99E−14 1.14E−01 2.36E−14
Rank 4 6 7 9 3 5 1 8 1

F55 Best − 29.6759 − 29.6759 − 29.6759 − 29.6759 − 29.6759 − 29.6759 − 29.6759 − 29.6759 − 29.6759
Mean − 29.6759 − 29.6758 − 29.2943 − 29.6345 − 29.6759 − 29.6759 − 29.6759 − 29.6754 − 29.6759
Std. 3.88E−09 1.28E−04 2.07E+00 1.95E−01 1.78E−11 2.09E−04 5.79E−15 9.94E−04 3.61E−15
Rank 4 6 9 8 3 5 1 7 1
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Table 9  (continued)

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F56 Best − 25.7418 − 25.7418 − 25.7418 − 25.7417 − 25.7418 − 25.7418 − 25.7418 − 25.7418 − 25.7418

Mean − 25.7418 − 25.7415 − 25.2942 − 25.2853 − 25.7418 − 25.7415 − 25.7418 − 25.7410 − 25.7418

Std. 1.31E−08 5.17E−04 1.32E+00 1.32E+00 2.10E−11 1.03E−03 6.34E−05 2.48E−03 1.35E−14

Rank 3 6 8 9 2 5 4 7 1
F57 Best − 959.641 − 959.641 − 959.641 − 959.641 − 959.641 − 959.641 − 959.641 − 959.641 − 959.641

Mean − 812.282 − 959.171 − 915.546 − 881.723 − 933.471 − 954.910 − 915.137 − 940.439 − 928.630
Std. 1.13E+02 1.80E+00 3.23E+01 8.28E+01 6.20E+01 1.65E+01 8.16E+01 3.76E+01 5.60E+01
Rank 9 1 6 8 4 2 7 3 5

F58 Best − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163
Mean − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163 − 1.03163
Std. 4.53E−12 9.43E−09 2.37E−07 4.64E−07 9.07E−14 4.40E−16 4.52E−16 1.52E−14 4.52E−16
Rank 6 7 8 9 5 1 1 4 1

F59 Best − 106.765 − 106.765 − 106.765 − 106.765 − 106.765 − 106.765 − 106.765 − 106.765 − 106.765
Mean − 106.116 − 106.765 − 106.763 − 106.114 − 104.171 − 106.765 − 106.765 − 106.765 − 106.765
Std. 3.55E+00 5.73E−06 2.69E−03 3.55E+00 6.73E+00 1.99E−11 1.08E−06 1.61E−11 2.74E−14
Rank 7 5 6 8 9 2 4 3 1

F60 Best − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181
Mean − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181 − 2.02181
Std. 7.78E−16 1.01E−15 1.63E−14 1.90E−10 7.19E−16 1.33E−15 1.21E−15 1.36E−15 1.32E−15
Rank 1 1 8 9 1 1 1 1 1

F61 Best − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130
Mean − 1.80130 − 1.80130 − 1.75492 − 1.80122 − 1.80130 − 1.80130 − 1.80130 − 1.80130 − 1.80130
Std. 1.83E−12 6.54E−14 1.78E−01 7.87E−05 2.87E−13 9.12E−16 1.08E−15 9.69E−16 9.28E−16
Rank 7 5 9 8 6 1 1 1 1

F62 Best − 4.68766 − 4.68749 − 4.47650 − 4.64408 − 4.68766 − 4.68766 − 4.64590 − 4.68759 − 4.68766
Mean − 4.50882 − 4.67206 − 3.37692 − 4.20674 − 3.72675 − 4.61342 − 4.17693 − 4.65866 − 4.68487
Std. 1.90E−01 1.61E−02 6.18E−01 5.04E−01 5.51E−01 7.08E−02 5.31E−01 3.88E−02 1.06E−02
Rank 5 2 9 6 8 4 7 3 1

F63 Best − 9.52020 − 9.00827 − 6.19058 − 8.83736 − 8.89470 − 9.26629 − 8.93011 − 6.47652 − 9.66015
Mean − 8.75760 − 8.16409 − 5.10659 − 7.02720 − 6.80132 − 8.87489 − 7.34173 − 5.70541 − 9.64213
Std. 4.94E−01 4.20E−01 7.70E−01 1.24E+00 9.65E−01 3.46E−01 8.79E−01 4.22E−01 2.59E−02
Rank 3 4 9 6 7 2 5 8 1

F64 Best − 10.1532 − 10.1532 − 10.1448 − 10.1491 − 10.1532 − 10.1532 − 10.1532 − 10.1532 − 10.1532
Mean − 5.89752 − 9.24796 − 7.13412 − 8.19273 − 7.73867 − 9.74563 − 6.39904 − 8.89063 − 7.94407
Std. 3.60E+00 1.92E+00 2.74E+00 3.07E+00 3.50E+00 1.10E+00 3.64E+00 2.36E+00 2.57E+00
Rank 9 2 7 4 6 1 8 3 5

F65 Best − 10.4029 − 10.4025 − 10.3558 − 10.3933 − 10.4029 − 10.4029 − 10.4029 − 10.4029 − 10.4029
Mean − 6.60689 − 10.2583 − 6.08815 − 9.58478 − 7.59579 − 10.3676 − 5.06978 − 10.4028 − 9.08475
Std. 3.67E+00 4.21E−01 3.05E+00 2.06E+00 3.55E+00 1.79E−01 3.19E+00 4.45E−04 2.46E+00
Rank 7 3 8 4 6 2 9 1 5

F66 Best − 10.5364 − 10.5358 − 10.5151 − 10.5272 − 10.5364 − 10.5364 − 10.5364 − 10.5364 − 10.5364
Mean − 6.35726 − 9.50721 − 7.26473 − 10.2847 − 6.83586 − 10.5002 − 5.11045 − 10.32089 − 8.29532
Std. 3.56E+00 1.78E+00 3.13E+00 1.17E+00 3.79E+00 1.59E−01 3.39E+00 1.18E+00 2.82E+00
Rank 8 4 6 3 7 1 9 2 5

F67 Best − 3.86278 − 3.86278 − 3.86264 − 3.86277 − 3.86278 − 3.86278 − 3.86278 − 3.86278 − 3.86278
Mean − 3.86278 − 3.86278 − 3.82028 − 3.86104 − 3.85869 − 3.86278 − 3.86278 − 3.86278 − 3.86278
Std. 1.45E−11 9.86E−09 5.93E−02 2.06E−03 1.11E−02 3.16E−15 2.34E−15 3.19E−15 3.16E−15
Rank 5 6 9 7 8 1 4 1 1
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0, which indicates that PSOBSA has high exploration and 
strong stability. For problem F27, only PSOBSA can find 
the exact optimal value, and it has rank 1 with a standard 
deviation of 0. For problems F30, only PSOBSA can find the 
exact global optimal value and has rank 1. For problems F31, 
all algorithms other than BSA, WOA, and GWO can find 
the exact global optimal value, and after TLBO, PSOBSA 
is second-ranked.

As shown in Table 8, the sum rank PSOBSA is again 
significantly better than the other algorithms, and it has the 
first final rank compared with the other algorithms. Also, DE 
and BSA provide poor results, and they have the worst rank, 
respectively. As shown in Fig. 7, For problem F22, PSOBSA 
has a higher convergence rate than other algorithms. For 

problems F20 and F23–F24, PSOBSA has higher conver-
gence accuracy than other algorithms. For problem F27, 
PSOBSA has a higher convergence rate than WOA and other 
algorithms.

For problems F25–F26 and F28–F30, PSOBSA has 
higher convergence accuracy than other algorithms. For 
problems F32–F33, all algorithms can find the exact global 
optimal value, but on problems F32, only PSOBSA has a 
better mean and standard deviation of the best solutions, and 
it also has rank 1, and on problem F33, PSOBSA, GWO, and 
TLBO have rank 1 with standard deviation 0. For problem 
F34, PSOBSA, TLBO, and WCA can find the highest accu-
racy, but PSOBSA and WCA have a better mean and stand-
ard deviation of the best solutions, and it also has rank 1. For 

Table 9  (continued)

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F68 Best − 3.13449 − 3.13449 − 3.13434 − 3.13449 − 3.13449 − 3.13449 − 3.13449 − 3.13449 − 3.13449

Mean − 3.05514 − 3.13449 − 3.07873 − 3.12652 − 3.10269 − 3.13449 − 3.09659 − 3.12656 − 3.10275

Std. 1.14E−01 1.19E−05 1.09E−01 4.35E−02 8.25E−02 5.11E−12 8.67E−02 4.35E−02 8.23E−02

Rank 9 2 8 4 6 1 7 3 5
F69 Best − 3.04246 − 3.04245 − 3.04017 − 3.04244 − 3.04246 − 3.04246 − 3.04246 − 3.04246 − 3.04246

Mean − 3.01173 − 3.04222 − 2.97570 − 3.01358 − 2.99562 − 3.03485 − 3.00559 − 2.99125 − 3.01788
Std. 3.12E−02 4.60E−04 8.58E−02 3.95E−02 4.51E−02 1.65E−02 3.06E−02 2.33E−02 3.06E−02
Rank 5 1 9 4 7 2 6 8 3

F70 Best − 377.525 − 391.315 − 391.553 − 391.629 − 377.525 − 391.662 − 377.525 − 390.149 − 391.662
Mean − 344.539 − 386.756 − 357.336 − 351.181 − 341.703 − 368.962 − 343.126 − 365.066 − 391.662
Std. 1.41E+01 4.91E+00 3.43E+01 2.03E+01 1.85E+01 1.16E+01 2.31E+01 1.96E+01 1.49E−14
Rank 7 2 5 6 9 3 8 4 1

Sum rank 228 212 297 224 229 95 172 152 61
Total rank 7 5 9 6 8 2 4 3 1

Table 10  Comparison of optimization results obtained for the Rosenbrock problem

No. Res PSO BSA WOA GWO SSA TLBO WCA DE PSOBSA

F08
D = 10

Best 2.99E−08 0 1.11E+00 4.26E+00 8.18E−02 1.12E−28 4.36E−14 0 1.49E−30
Mean 5.32E−01 1.76E−29 2.93E+00 5.90E+00 3.57E+01 5.36E−07 3.99E−01 2.37E−29 1.95E−28
Std. 1.38E+00 2.57E−29 3.91E−01 6.95E−01 8.01E+01 2.90E−06 1.22E+00 2.87E−29 1.05E−28
Rank 6 1 7 8 9 4 5 2 3

F08
D = 20

Best 2.40E−06 4.77E−20 1.32E+01 1.52E+01 9.98E+00 4.12E−21 5.34E−05 1.95E−15 1.75E−28
Mean 5.77E−01 8.66E−01 1.36E+01 1.62E+01 5.09E+01 1.44E−02 1.23E+00 1.33E−01 4.67E−26
Std. 1.38E+00 1.48E+00 1.96E−01 7.43E−01 6.77E+01 7.87E−02 1.86E+00 7.28E−01 6.74E−26
Rank 4 5 7 8 9 2 6 3 1

F08
D = 30

Best 1.60E−04 5.76E−10 2.33E+01 2.42E+01 1.41E+01 1.07E−06 2.29E−04 8.28E−06 0
Mean 2.96E+00 1.75E+01 2.39E+01 2.63E+01 5.01E+01 1.36E−02 7.81E+00 1.44E−01 6.54E−18
Std. 3.42E+00 2.20E+01 2.17E−01 7.97E−01 5.82E+01 3.73E−02 1.32E+01 7.27E−01 2.14E−17
Rank 4 6 7 8 9 2 5 3 1

Sum rank 14 12 21 24 27 8 16 8 5
Total rank 5 4 7 8 9 2 6 2 1
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problem F35, PSOBSA and WCA can find the exact global 
optimal value, but only PSOBSA has a better mean of the 
best solutions, and it also has rank 1. For problems F36–F37, 
F39–F40, PSOBSA can find the highest accuracy and has a 
rank of 1. For problems F38, PSOBSA and WCA can find 
the exact global optimal value, but only PSOBSA has a bet-
ter mean and standard deviation of the best solutions, and 

it also has rank. For problem F41, PSOBSA, TLBO, WCA, 
and DE reach the best global minimum and have zero stand-
ard deviation. Also, WOA obtains optimal global value, but 
its results are not stable. For problem F42, PSOBSA, GWO, 
TLBO, and DE reach the best global minimum, and they 
have zero standard deviation. Also, WOA and WCA obtain 
optimal global value, but their results are not stable.
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Fig. 5  The convergence curves of PSOBSA and other algorithms on F1–F12 problems
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For problem F43, PSOBSA, TLBO, and WCA reach the 
best global minimum and have zero standard deviation. 
Also, GWO and DE obtain optimal global value, but their 
results are not stable. For problem F44, PSOBSA, GWO, and 
TLBO reach the best global minimum, and they have zero 
standard deviation. Also, WOA, WCA, and DE obtain opti-
mal global value, but their results are not stable. For problem 

F44, PSOBSA, GWO, and WCA reach the best global mini-
mum and have zero standard deviation. Also, WOA, SSA, 
TLBO, and DE obtain optimal global value, but their results 
are not stable. For problem F46, all algorithms other than 
BSA can find the exact global optimal value, but PSOBSA 
has a better mean and standard deviation of the best solu-
tions, and it also has rank 1. For problems F47, F53–F56, 
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Fig. 5  (continued)
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F58–F59, all algorithms can find the exact global optimal 
value, but PSOBSA has a better mean and standard deviation 
of the best solutions, and it also has rank 1. For problems 
F48–F49, F52, and F62, all algorithms can find the exact 
global optimal value. In this problem, PSOBSA, TLBO, 
WCA, and DE have rank 1. For problem F50, PSOBSA, 
PSO, and WCA can find the exact global optimal value, but 
only PSOBSA has a better mean of the best solutions, and 
it also has rank 1.

For problem F51, all algorithms can find the exact global 
optimal value, but only PSOBSA has a standard deviation of 
0, indicating that PSOBSA has high exploration and strong 
stability. For problem F57, all algorithms can find the exact 
global optimal value, and BSA has rank 1. The PSOBSA in 
this problem has rank 5. For problem F60, PSOBSA, PSO, 
BSA, SSA, TLBO, WCA, and DE has rank 1. For problem 
F62, PSOBSA, SSA, and TLBO can find the exact global 
optimal value, but only PSOBSA has rank 1. For problem 
F63, only PSOBSA can find the exact global optimal value 
and has rank 1. For problem F64, all algorithms other than 
WOA and GWO can find the exact global optimal value, 

and TLBO has rank 1. The PSOBSA in this problem has 
rank 5. However, PSO and WCA can find the exact global 
optimal value. The best solutions obtained from these algo-
rithms worse than all algorithms and have the worst rank. 
For problems F65 and F66, all algorithms other than BSA, 
WOA, and GWO can find the exact global optimal value, 
and DE has rank 1. The PSOBSA in this problem has rank 5. 
For problem F67, PSOBSA, TLBO, and DE have rank1. For 
problem F68, all algorithms other than WOA can find the 
exact global optimal value, and TLBO has rank 1. Moreo-
ver, the PSOBSA has rank 5. Although PSO can find the 
exact global optimal value, the best solutions obtained this 
algorithm worse than all algorithms and have the worst rank. 
For problem F69, all algorithms other than BSA, WOA, and 
GWO can find the exact global optimal value. The PSOBSA 
in this problem has rank 3. For problem F70, PSOBSA and 
TLBO can find the exact global optimal value, but only 
PSOBSA has rank 1.

As shown in Table 9, the sum rank PSOBSA is signifi-
cantly better than the other algorithms, and it has the first 
final rank compared with the other algorithms. In this table, 
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Fig. 6  The convergence curves of PSOBSA and other algorithms on F13, F15, F16, and F17 problems
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Fig. 7  The convergence curves 
of PSOBSA and other algo-
rithms on F20 and F22–F30 
problems
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the WOA and SSA provide poor results and have the worst 
rank. As shown in Fig. 8, For problem F34, PSOBSA has a 
higher convergence rate than WCA and other algorithms. For 
problems F35 and F38, PSOBSA after WCA has the highest 
convergence rate. For problems F36–F37 and F39, PSOBSA 
has higher convergence accuracy than other algorithms. 

For problem F41–F45, PSOBSA has a higher convergence 
rate than other algorithms. For problem F40, PSOBSA has 
higher convergence accuracy than other algorithms.

In summary, according to the above analysis results 
of unimodal benchmark problems, the PSOBSA can find 
the highest accuracy and exact optimal value. Therefore, 
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Fig. 8  The convergence curves of PSOBSA and other algorithms on F34–F45 problems
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the PSOBSA has high exploitation ability and conver-
gence accuracy. In multimodal benchmark problems, 
the PSOBSA can find the exact global optimum or near 
optimum global value and avoid local optimum solutions. 
Therefore, PSOBSA has a high global exploration ability.

5.2  The effect of the proposed mutation on PSOBSA

As a unique constituent element of PSOBSA, the search 
process by proposed mutation plays a vital role in increase 
convergence when solving the unimodal problems and 
preventing premature convergence when solving the mul-
timodal problems. To investigate the effect of the search 

0 20 40 60 80 100
Iteration

10-4

10-2

100

102

104

Fi
tn

es
s

F40

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

0 20 40 60 80 100
Iteration

10-15

10-10

10-5

100

105

Fi
tn

es
s

F41

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

0 20 40 60 80 100
Iteration

10-15

10-10

10-5

100

105

Fi
tn

es
s

F42

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

0 20 40 60 80 100
Iteration

10-15

10-10

10-5

100

105

Fi
tn

es
s

F43

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

0 20 40 60 80 100
Iteration

10-15

10-10

10-5

100

Fi
tn

es
s

F44

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

0 20 40 60 80 100
Iteration

10-15

10-10

10-5

100

Fi
tn

es
s

F45

PSO
BSA
WOA
GWO
SSA
TLBO
WCA
DE
PSOBSA

Fig. 8  (continued)
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Fig. 9  The convergence curves of PSOBSA and other algorithms on the Rosenbrock problem. a 20 dimensions, b 30 dimensions
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Fig. 10  The convergence curves of PSOBSA with and without the search process by proposed mutation for F01–F02, F04, and F10
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process by a proposed mutation on PSOBSA, we done the 
comparative experiments on eight benchmark problems: F01 
(Sphere), F02 (Schwefel 1.2), F04 (Schwefel 2.21), and F10 
(Zakharov), which are listed in Table 1 and F22 (Griewank), 
F23 (Salomon), F26 (Powell) and F27 (Rastrigin), which are 
listed in Table 3.

In this experiment, the number of particles was set to 40, 
the maximum number of iterations is set to 100, and other 
parameters are the same as that first experiment. The typi-
cal convergence curves of the PSOBSA with and without 
the search process by proposed mutation are illustrated in 
Figs. 10 and 11. As shown in Fig. 10, it can be seen that on 
the multi-dimension unimodal problems F01–F02, F04, and 
F10, the PSOBSA without the search process by proposed 
mutation compares poorly with the complete PSOBSA in 
terms of convergence accuracy. It indicates that the search 
process by proposed mutation plays a vital role in increase 
convergence in solving such complex problems. Accord-
ing to Fig. 11, we observe that the PSOBSA without the 
search process by proposed mutation suffers the premature 

convergence problem in the optimizations on all four of the 
multimodal problems of F22, F23, F26, and F27.

5.3  Comparison of PSOBSA with several 
state‑of‑the‑art PSO variants

In this section, the performance of proposed PSOBSA is 
compared with CLPSO [79], PSOCO [79], LPSO [67], 
VPSO [67], APSO [33], OLPSO [80], CAPSO [81], NHPSO 
[82], PSOTD [83], FIPS [84] and GL-PSO [85] on thirteen 
benchmark problems, which are listed in Tables 1 and 4. The 
parameter configurations of these algorithms are accord-
ing to the corresponding references, which are shown in 
Table 11.

For the proposed PSOBSA, the inertia weight coefficient 
is set the random numerical in the range of (0.1, 0.8), the 
acceleration coefficients are set as c1 and c2 = 1.4962, the 
parameters mix rate, neighborhood size, and mutation prob-
ability are set to 1.0, 10, and 0.2, respectively, the parameters 
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Fig. 11  The convergence curves of PSOBSA with and without the search process by proposed mutation for F22–F23 and F26–F27
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F and A are set to 2 × rand(0, 1) , the population size and 
a maximum number of iterations are set to 40 and 2000, 
respectively, and the maximum number of iterations for 
problem F08 is considered 10,000 because of high com-
plexity. For each benchmark problem, each algorithm is per-
formed 30 times independently to obtain statistical results. 
In Table 12, for the problems with an optimal value of zero, 
if the algorithms obtain near-optimal value solutions, the 
results are shown in the scientific notation with decimal 
place 2.

Table 12 shows the mean and standard deviation of each 
algorithm’s best solutions on thirteen benchmark problems, 
where the algorithms are ranked based on the mean best 
solutions. The unimodal problems without local optimum, 
best solution accuracy are the paramount criterion to com-
pare the proposed PSOBSA with state-of-the-art PSO vari-
ants. However, as shown in Table 12, PSOBSA can find the 
exact optimal value in unimodal benchmark problems, indi-
cating that PSOBSA has better performance and high con-
vergence accuracy. For problems F01 and F05, the PSOBSA, 
CAPSO, and NHPSO can find the exact optimal value, and 
they have rank 1. The FIPS and CLPSO provide poor results, 
and they have the worst rank, respectively. For problem F02, 
PSOBSA and CAPSO can find the exact optimal value, and 
they have rank 1. The local topology of PSO (LPSO) and 
FIPS provide poor results and have the worst rank. For prob-
lem F07, all algorithms can find the exact optimal value, and 

they have rank 1. For problem F08, PSOBSA can find the 
highest accuracy and has rank 1. The VPSO and GPSO pro-
vide poor results, and they have the worst rank, respectively. 
For problem F09, only PSOBSA can find the exact optimal 
value. For problem F11, after NHPSO, PSOBSA is second-
ranked. The PSOCO and OLPSO-L provide poor results, and 
they have the worst rank, respectively.

Comparisons of the algorithms on multimodal problems 
F22, F24, and F27–F30 are reported in Table 12. These 
problems contain several local optimums, which may lead 
to premature convergence of PSO algorithms. As shown 
in Table 12, PSOBSA, PSOCO, OLPSO-L, NHPSO, and 
PSOTD, are not trapped in the low local optimum of the 
problem F22. On the contrary, the other nine algorithms 
have seen difficulties locating the global optimum of prob-
lem F22 because this problem has many local optimums 
being far from the global optimum. For problem F24, after 
NHPSO, PSOBSA is second-ranked, and OLPSO-L has a 
standard deviation of 0 on this problem. For problem F27, 
the PSOBSA, PSOCO, OLPSO-L, NHPSO, and PSOTD can 
find the exact global optimal value and rank 1. The other 
nine algorithms are trapped in a poor local optimum. For 
problems F28 and F29, the PSOBSA, PSOCO, OLPSO-
L, PSOTD, and GL-PSO can find the exact global optimal 
value and rank 1. The other algorithms are trapped in a poor 
local optimum.

Table 11  The parameters of the 
algorithms and their values

Algorithms Year Parameter settings Pop Refs.

GPSO 1998 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 20 [82]
CLPSO 2006 � = 0.9 ∼ 0.2 c1 = c2 = 1.49445 50 [79]
PSOCO 2018 � = 0.7298 c1 = c2 = 1.49618 50 [79]

G = 7 CR = 0.05

LPSO 2002 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 20 [33]
VPSO 2002 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 20 [33]
APSO 2009 � = 0.9 c1 = c2 = 2.0 20 [33]

� = 1.0 ∼ 0.1 � = rand(0.05, 0.1)

OLPSO-G 2011 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 40 [80]
G = 5

OLPSO-L 2011 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 40 [80]
G = 5

CAPSO 2014 � = 0.9 ∼ 0.4 c1 = c2 = 2.0 20 [81]
NHPSO 2016 � = 0.9 ∼ 0.4 c = 2.0 20 [82]

u1 + u2 = 1

PSOTD 2017 � = 0.7298 c1 = c2 = 1.49618 50 [83]
CR1 = 0.025 and CR2 = 0.9F = 0.5

FIPS 2004 � = 0.7298
∑

ci = 4.1 50 [78]
GL-PSO 2016 � = 0.7298 c = 1.49618 50 [85]

pm = 0.01 sg = 7
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Problem F30 (Schwefel) is a complex multimodal prob-
lem with a significant number of local optimums. For this 
problem, an algorithm maintaining more extensive diversity 
is more likely to yield good results. It can be observed in 
Table 12 that PSOBSA performs the best on this problem 
(mean and standard deviation), which means that the BSA’s 
mutation and crossover operation modified by the particle 
neighborhood with search process by proposed mutation 
effectively maintains the population diversity. This success 
owes much to the mutation operation, diversifying the solu-
tion and diversifying particles’ search most. In general, in 
terms of solution accuracy, the PSOBSA performs the best 
in five out of the six multimodal problems with fewer itera-
tions than the other algorithms.

6  Conclusions and future work

This paper proposed an improved PSO with BSA called 
PSOBSA to resolve the original PSO algorithm’s problems 
for solving continuous optimization problems. In the pro-
posed PSOBSA approach, the BSA’s mutation and crossover 
operation were modified through the particle’s neighborhood 
to increase the convergence rate. Moreover, a new mutation 
operator was introduced to improve the convergence accu-
racy and evade the local optimum. The search process by 
proposed mutation plays a vital role in increase convergence 
when solving the unimodal problems and preventing prema-
ture convergence with maintaining more considerable diver-
sity when solving the multimodal problems, which is shown 
in the second experiment. As shown in the first experiment, 
the sum rank PSOBSA is significantly better than the other 
algorithms, and it has the first final rank compared with the 
other algorithms. The criteria showed that the PSOBSA 
produced better performance than the PSO, BSA, and other 
well-known metaheuristic algorithms. The third experiment 
indicates that the PSOBSA has better-searching performance 
than most of the other state-of-the-art PSO variants. This 
success owes much to the mutation operation, diversifying 
the solution and diversifying particles’ search most. We 
intend to develop a binary and multi-objective version of 
the PSOBSA to solve real-world problems in future works.
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