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Abstract
In the current research, a comprehensive wave propagation analysis is performed on rotating viscoelastic nanobeams rest-
ing on Winkler-Pasternak foundations under thermal effects. Here, a novel non-classical mechanical model is developed to 
describe accurate wave propagation behavior for viscoelastic nanobeams. Employing nonlocal Eringen’s theory along with 
modified couple stress theory, our proposed model, for the first time, simultaneously takes into account particle interactions 
and size dependency effects in nanobeams during wave propagation. To capture both hardening and softening behaviors of 
materials during wave propagation, nonlocal Eringen’s theory and modified couple stress theories are merged. As a higher-
order shear deformation theory, Reddy’s beam theory (RBT) is adopted to develop motion equations for nanobeams, which 
are then analytically solved to obtain numerical results. The results are illustrated for all torsional (TO), transverse (TA) 
and longitudinal (LA) wave propagation patterns are comprehensively discussed in detail. Finally, the effects of nonlocal 
parameter to length scale ratios, Winkler-Pasternak coefficients, thermal gradient, slenderness ratios and rotating velocity 
of viscoelastic nanobeam are investigated and discussed.
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1  Introduction

Recently, micro/nano structures are increasingly applied 
because of their extraordinary electrical, thermal and 
mechanical properties [1–7]. Since micro/nano structures 

emerge as the next-generation technology, which are capa-
ble of making a significant difference in people’s lives and 
nanobeams are an important element of micro/nano struc-
tures, comprehensive studies such as these structures are 
necessary [8–14]. Some practical applications of micro/nano 
structures are: sensors, MEMS/NEMS devices, miniature 
robots, micro/nano tools, lens, and lasers [15, 16]. These 
devices have been applied in several industries such as aero-
space, wireless networks, optical, biomedical, drug delivery 
systems and consumer products. Accordingly, accurate eval-
uation and detailed investigation of the mechanical behav-
iors of micro/nano structures including bending [17–19], 
buckling [10, 20], vibration [21–25] and wave propagation 
[26–30] are necessary to increase their reliability and obtain 
the proper design of small-scale systems. Due to the defi-
ciency of classical continuum mechanics theories in ana-
lyzing the mechanical behaviors of micro/nano structures, 
modified elasticity theories such as couple stress (CS), strain 
gradient (SG), general nonlocal (GN) and Eringen’s nonlo-
cal (EN) theories [4, 31–36] have been proposed to resolve 
these problems. Also, in the past 2 years, combined non-
classical elasticity theories such as nonlocal strain gradient 
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(NL-SG) theory have attracted the interests of researchers 
[37–40]. Ebrahimi et al. [41] investigated the wave propaga-
tion-thermal behaviors of graphene nanoplatelet-reinforced 
composite (GNPRC) porous cylindrical nanoshells on the 
basis of nonlocal strain gradient theory (NSGT) taking into 
account the calibrated values of nonlocal constant and mate-
rial length scale parameter. Al-Furjan et al. [42] performed 
wave propagation simulations on multi-hybrid nanocompos-
ite (MHC) reinforced doubly curved panels covered with 
piezoelectric actuators to reveal the effects of electrical load 
on the wave responses of smart panels. Zenkour and Sobhy 
[43] studied size-dependent wave propagation in function-
ally graded (FG) graphene platelet (GPL)-reinforced com-
posite bi-layer nanobeams embedded in Pasternak elastic 
foundation.

Many researchers have considered the mechanical behav-
iors of micro/nano structures in recent years. The following 
literature review is allocated to the investigation of wave 
propagation behaviors of such small-scale elements. Koca-
turk and Akbas [44] employed Bernoulli–Euler beam model 
and modified couple stress theory (MCST) to investigate the 
wave propagation behavior of nanobeams. Lim et al. [45] 
proposed a higher-order model capable of coupling nonlocal 
stresses and strain gradients to analyze wave propagation. 
They considered Timoshenko and Euler–Bernoulli nano-
beams as examples and performed comprehensive tests. Li 
et al. [46] used Euler–Bernoulli beam model and nonlocal 
SG theory to study wave propagation in FG nanobeams. 
Ma et al. [47] illustrated wave propagation of smart nano-
beam structures on the basis of nonlocal Timoshenko beam 
theory. Arefi and Zenkour [48] studied wave propagation in 
smart Timoshenko FG nanobeams via nonlocal elasticity 
theory. Barati and Zenkour [49] studied wave propagations 
in porous nanobeams establishing a general bi-Helmholtz 
NL-SG model. Narendar and Gopalakrishnan [50] inves-
tigated wave propagation performance in a rotating nano-
tube on the basis of EN theory. In another work, Sobhi and 
Zenkour [51] studied the bending of viscoelastic nanobeams 
laying on visco-Pasternak elastic foundations on the basis of 
a new shear and normal deformations beam theory. Zenkour 
et al. [52] showed that damping time and deflection were 
inversely proportional to thickness ratio, modes, thickness 
and aspect ratio of magnetostrictive layer to viscoelastic 
layer. In another work, Zenkour and El-Shahrany [53] inves-
tigated the vibration behaviors of magnetostrictive laminated 
beams resting on visco-Pasternak foundation.

Ebrahimi and Haghi [54] reported wave propagations 
in rotating FG nanoscale-beams by taking thermal effects 
into account on the basis of NL-SG theory. Moreover, they 
investigated the effect of fiber angle on the wave propagation 
behaviors of laminated cylindrical micro-shells. Zeigham-
pour and Tadi Bani [55] preformed wave desperation in FG-
CNTRC cylindrical micro-shells considering NL-SG and 

shear deformable shell theory. Ebrahimi and Dabbagh [56] 
studied wave propagation behaviors of piezoelectric nano-
plates on elastic foundations. They employed NL-SG and 
Kirchhoff plate theories for model development. They also 
considered surface effects in extracting results. Shahsavari 
et al. [57] studied wave propagations in FG nano-plates on 
hybrid foundations considering thermal effects. They applied 
bi-Helmholtz NL-SG along with refined-higher order shear 
deformation plate theory for model establishing. Barati [58] 
studied wave propagation in bonded nanobeams with imper-
fections. He used general NL-SG model and refined shear 
deformation beam theory for the investigation of the effects 
of porosity and temperature on wave dispersion. Liu and Lv 
[59] investigated the effects of uncertain material properties 
on the wave propagations of smart nanobeams on the basis 
of nonlocal theory and Euler–Bernoulli beam model. Amiri 
et al. [60] employed NL-SG theory for the evaluation of 
wave propagation of smart piezoelectric nanotubes convey-
ing viscous fluids. They took into account slip boundary 
conditions and surface stress effects. Ma et al. [61] reported 
wave dispersion behaviors of piezoelectric nano-plates 
on the basis of the NL theory and Kirchhoff and Mindlin 
nano-plate models considering thermo-electro-mechanical 
loads. Karami et al. [62] utilized NL-SG theory to evalu-
ate hydrothermal wave propagation in viscoelastic graphene 
and nano-plate porous heterogeneous materials exposed to 
magnetic fields. She et al. [63] employed NL-SG theory to 
analyze the wave propagations of nano-tube wave propa-
gations. More recently, She et al. [64] employed NL-SG 
theory and Reddy’s high order beam model to explore wave 
propagations in FG porous nanobeams. Zeighampour et al. 
[65] studied the wave propagation behaviors of viscoelastic 
nanotubes according to NL-SG and shell theories. Sobhy 
and Zenkour [51] applied normal and shear deformations 
beam theory to investigate the static and dynamic bendings 
of viscoelastic nanobeams resting on visco-Pasternak elastic 
foundations.

Recently, Ebrahimi and Dabbagh [66] performed detailed 
investigations on wave propagation in FG porous nano-m 
structures. They took into account coupling effects between 
Young’s moduli and density in porous materials. Masoumi 
et al. [67] explored the wave propagations of piezoelectric 
nanobeams using NL-SG theory and Reddy’s beam model 
to derive their governing equations and harmonic wave dis-
persion. Karami and Janghorban [68] reported transverse 
and longitudinal wave desperations of triclinic nanobeams 
for the first time on the basis of NL-SG and size-dependent 
shear deformation theories considering stretching effect. 
Wang and Liang [69] studied wave dispersion behaviors of 
nanobeams made of nano-porous metal foams using nonlo-
cal elasticity theory and Timoshenko and Euler–Bernoulli 
beam models. Sobhy and Zenkour [70] utilized NL-SG the-
ory to investigate wave propagations in bi-layer porous FG 
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nano-plates in Winkler elastic medium. Also, Abouelregal 
and Zenkour [71] studied the vibrations of viscoelastic FG 
Euler–Bernoulli nanostructure beams using fractional-order 
calculus. Arani et al. [72] used NL theory considering sur-
face and flexoelectric effects to illustrate wave propagations 
in FG nanobeams resting on elastic media. They extracted 
motion governing equations on the basis of Timoshenko 
beam model with residual surface stress. Ebrahimi et al. 
[41] used NL-SG theory for the analysis of wave propaga-
tion in graphene nano-platelet-reinforced composite porous 
cylindrical nano-shells considering thermal effects. Cao 
and Wang [73] employed NL-SG Rayleigh beam theory 
for the evaluation of wave propagations in viscoelastic lipid 
nanotubes conveying protein. Faroughi et al. [74] studied 
wave propagations in bi-directional FG rotating nanobe-
ams based on GN theory and higher-order Reddy’s beam 
model. Recently, to more accurately capture size effects, 
some researchers have proposed the consolidation of non-
classical theories for the analysis of micro/nano structures 
[75, 76]. Hence, in the current work, we have tried to pre-
sent different possibilities of coupling effects of nonlocal 
elasticity and modified couple stress theories, so-called 
nonlocal modified couple stress theory (NL-MCST), for 
rotating nanobeams resting on visco-elastic foundations. We 
employed NL-MCST to capture the effect of the rotational 
degree of freedom of particles as well as nonlocal and long-
range interactions between particles simultaneously. We 
propose to study the accuracy of our model in comparison 
to other models. Some other investigations have considered 
the coupling effects of modified couple stress and Eringen’s 
nonlocal theories simultaneously [77, 78]. Ebrahimi and 
Barati [79] performed vibration analyses on FG nanobeams 
using nonlocal elasticity and modified couple stress theories. 
They also applied Galerkin’s method to obtain numerical 
results. Shariati et al. [80] presented the vibrational char-
acteristics of FG nanobeams via the combination of nonlo-
cal and couple stress theories considering surface effects. 
Ramezani and Mojra [81] conducted stability analyses on 
carbon nanotubes conveying nano-fluid under magnetic 
field. They used nonlocal elasticity and couple stress theo-
ries to construct a model and coupled Euler–Bernoulli beam 
theory with Navier–Stokes’s equation of magnetic-fluid flow 
to determine fluid–structure interactions. Attar et al. [82] 
investigated the vibrational behaviors of FG piezoelectric 
(FGP) plates considering simultaneous effects of nonlocal 
and couple stress based on Kirchhoff thin plate theory and 
Navier’s approach.

According to the above literature review, it was found 
that the existing reports on wave propagation in small-scale 
beams are mainly based on EN, SG, MCST and especially 
NL-SG theories. It is noteworthy that, unlike NL-SG theory, 
a clear gap in other studies is that the consolidation of Erin-
gen’s nonlocal and modified couple stress theories has not 

been considered for wave propagation analysis yet. Hence, 
in this study, the combined effects of modified couple stress 
and nonlocal Eringen’s theories are employed to indicate the 
effect of local rotational DOF. Then, this effect is expressed 
in the framework of ENT which covers long-range and non-
local interactions among particles. To capture both softening 
and hardening behaviors of materials, modified couple stress 
and nonlocal Eringen’s theories are combined. Actually, we 
illustrated that the waiver of couple stress effect decreases 
frequencies by decreasing nanobeam stiffness. Also, waiver 
the effect of nonlocal parameter makes nanobeams stiffer, 
which increases frequencies. Hence, the wave frequency pre-
dicted by NL-MCST theory is always between the values 
obtained from ENT and MCST theories. Furthermore, as 
a higher-order shear deformation theory, RBT is adopted 
to establish an accurate model and corresponding analytic 
solutions are obtained as numerical results. The results are 
illustrated for all torsional (TO), transverse (TA) and longi-
tudinal (LA) wave propagations and are comprehensively 
discussed. In addition to this novel consideration, the current 
comprehensive study encompasses the interactions of rota-
tion, thermal and viscoelastic effects of higher-order-shear 
deformation beam model.

2 � Formulation

2.1 � Description

As shown in Fig. 1, a rotating viscoelastic nanobeam resting 
on a Winkler-Pasternak foundation is adopted to consider 
thermal effects. The nanobeam has length L, width b, rec-
tangular cross-section a and thickness h.

2.2 � Kinematics

Reddy’s beam theory, namely third-order shear deformation 
theory, is adopted to develop the kinematics model of vis-
coelastic nanobeams resting on Winkler-Pasternak founda-
tions. Displacement fields are described as:

Fig. 1   Rotating viscoelastic nanobeam resting on a Winkler-Paster-
nak foundation
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where w and u are transverse and longitudinal displace-
ments, � is the rotation of neutral axis cross-section and 
c1 = 4∕(3h2).

The strains of Reddy beam model are expressed as:

where rotation vector � and symmetric curvature tensor �ij 
are given as:

Substitution of Eq. (5) in Eq. (4) yields:

where c2 = 3c1.

3 � Modified couple stress theory

According to modified couple stress theory [34], strain 
energy density Πs is given in terms of strain and curvature 
conjugated with stress and couple stress, respectively, as:

where �, �,� are stress, strain and curvature tensors, respec-
tively and, m is the deviatoric part of couple stress tensor and 
can be expressed as:

where G and lm are shear modulus of rigidity and non-classi-
cal length scale parameter, respectively. By substituting Eqs. 
(3) and (6) into Eq. (7) and using some algebraic simplifica-
tions, strain energy density is obtained as:

(1)u =
(
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)
,

(2)u1 = u + z� − c1z
3
(
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(7)Πs = ∫
L

0∫ A
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(8)mij = 2Gl2
m
�ij,

where:

4 � Governing equations of motion

Based on Hamilton’s principle, motion equations can be 
defined as:

where Πk,Πs and Πw indicate kinetic energy, strain energy 
and the work done by external forces, respectively.

Kinetic energy Πk is defined as:

where:

(9)Πs = ∫
L

0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M(0)
xx

�u

�x
+M(1)

xx

��

�x
− c1M

(3)
xx
(
��

�x
+

�2w

�x2
)

+Q(0)
xz
(� +

�w

�x
) − c2Q

(2)
xz
(� +

�w

�x
)

+
1

2
Y (0)
yx
(
��

�x
−

�2w

�x2
)

−
c2

2
Y (2)
yx
(
��

�x
+

�2w

�x2
)

−c2Y
(1)
yz
(� +

�w

�x
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx,

(10)

M(i)
xx

= ∫ A

�xxz
idA;Q(i)

xz
= ∫ A

�xzz
idA;Y (i)

yx

= ∫ A

myxz
idA;Y (i)

yz
= ∫ A

myzz
idA.

(11)�H = �∫
t2

t1

(
Πk − (Πs + Πw)

)
dt = 0,

(12)

Π
k
=

1

2
�∫

L

0
∫

A

�
(
�u1
�t

)2 + (
�u2
�t

)2 + (
�u3
�t

)2
�
dAdx

=
1

2∫
L

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0(
�u

�t
)2 + m2(

��

�t
)2

+c2
1
m6(

��

�t
+

�2w

�x�t
)2

+2m1(
�u

�t
)(

��

�t
)

−2c1m3(
�u

�t
)(

��

�t
+

�2w

�x�t
)

−2c1m4(
��

�t
)(

��

�t

+
�2w

�x�t
) + m0(

�w

�t
)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

dx,

(13)mi = ∫ A

�zidA,
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Also, the first variations of Πk,Πs and Πw are defined as 
the following:

in which:

NT = ∫
A
(E�ΔT)dA is applied axial thermal force, and q and 

f  are transverse and longitudinal distributed forces, respec-
tively. Also, Kw,Kd,Kp are Winkler, Pasternak and damping 
coefficients due to elastic foundation, respectively, and T(x) 
is the axial force due to centrifugal stiffening resulting from 
nanobeam rotation given as:

In which, ∼� is the rotation speed of nanobeam. Motion 
equations can be derived by substituting Eqs. (15) to (17) 
into (11) based on MCST as follow:
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5 � Nonlocal (Eringen) theory

According to Eringen [33], the stress field at any random 
point x is a function of both strain field of that point (hyper-
elastic case) and all other strain fields in the configuration. 
So, nonlocal stress tensor is denoted as:

where t(.) indicates local stress tensor at point (.) and 
�(
|||x

�

− x
|||, �) referees to nonlocal modulus. Thus, the general 

from of nonlocal characteristic equation is represented as 
[33]:

where tij and � illustrate nonlocal stress and strain tensor, 
respectively, �ij is Kronecker delta, � and G are Lame’s con-
stants and (e0a)

2 denotes nonlocal parameter. Therefore, non-
local constitutive relations can be expressed in the following 
forms [83]:
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Using Eq. (10), nonlocal constitutive relations in Eqs. 
(24) can be developed as:
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2
�2myz

�x2
= 2Gl2

m
�yz.

(25a)M(0)
xx

− (e0a)
2
�2M(0)

xx

�x2
= EI0

�u

�x
,

(25b)

M̄(1)
xx

− (e0a)
2
𝜕2M̄(1)

xx

𝜕x2
= EĪ2

𝜕𝜑

𝜕x
− c1EĪ4

(
𝜕𝜑

𝜕x
+

𝜕2w

𝜕x2

)
,

(25c)

M(3)
xx

− (e0a)
2
�2M(3)

xx

�x2
= EI4

��

�x
− c1EI6

(
��

�x
+

�2w

�x2

)
,

(25d)̄̄Q
(0)

xz
− (e0a)

2
𝜕2 ̄̄Q

(0)

xz

𝜕x2
= GĨ0

(
𝜑 +

𝜕w

𝜕x

)
,

(25e)̄̄Y
(0)

yx
− (e0a)

2
𝜕2 ̄̄Y

(0)

yx

𝜕x2
=

1

4
Gl2

m

(
I∗
0

(
𝜕𝜑

𝜕x
−

𝜕2w

𝜕x2

)
− c2I

∗
2

(
𝜕𝜑

𝜕x
+

𝜕2w

𝜕x2

))
,

(25f)Ȳ (0)
yx

− (e0a)
2
𝜕2Ȳ (0)

yx

𝜕x2
=

1

4
Gl2

m

(
̄̄I0

(
𝜕𝜑

𝜕x
−

𝜕2w

𝜕x2

)
− c2

̄̄I2

(
𝜕𝜑

𝜕x
+

𝜕2w

𝜕x2

))
,

(25g)Y (1)
yz

− (e0a)
2
�2Y (1)

yz

�x2
= −c2Gl

2
m
I2

(
� +

�w

�x

)
,

in which:

Calculating �
2M

(0)
xx

�x2
 from Eq. (21a) yields:

By substituting Eq.  (28) into Eq.  (25a) and applying 
Eq. (21a), it is found that:

Moreover, calculating ̄̄Q
(0)

xz
 and 𝜕

2 ̄̄Q
(0)

xz

𝜕x2
 from Eq. (21b) results 

in:

Substituting Eqs. (30) and (31) into Eq. (25d) and apply-
ing Eqs. (25b), (25e) and (25g) lead to:

Also, ̄̄Q
(0)

xz
 can be obtained by calculating 𝜕

2 ̄̄Q
(0)

xz

𝜕x2
 from 

Eq. (21c) and substituting it into Eq. (25d) as:

(26)Ii = ∫ A

zidA,

(27)
Īi = Ii − c1Ii+2;

̄̄Ii = Ii + c2Ii+2;Ĩi = Īi − c2Īi+2;I
∗
i
= Ii − c2Ii+2.

(28)
�2M(0)

xx

�x2
= m0

�3u

�x�t2
+ m1

�3�

�x�t2
− c1m3

�4w

�x2�t2
−

�f

�x
.

(29)

−m0

[
�2u

�t2
− (e0a)

2 �4u

�x2�t2

]
− m1

[
�2�

�t2
− (e0a)

2 �4�

�x2�t2

]

+ c1m3

[
�3w

�x�t2
− (e0a)

2 �5w

�x3�t2

]

+

[
f − (e0a)

2 �
2f

�x2

]
+ EI0

�2u

�x2
= 0.

(30)

̄̄Q
(0)

xz
= −m̄1

𝜕2u

𝜕t2
− �m2

𝜕2𝜑

𝜕t2
+ c1m̄4

𝜕3w

𝜕x𝜕t2
+

𝜕M̄(1)
xx

𝜕x
+

𝜕 ̄̄Y
(0)

yx

𝜕x
+ c2Y

(1)
yz
,

(31)𝜕2 ̄̄Q
(0)

xz

𝜕x2
= −m̄1

𝜕4u

𝜕x2𝜕t2
− �m2

𝜕4𝜑

𝜕x2𝜕t2
+ c1m̄4

𝜕5w

𝜕x3𝜕t2
+

𝜕3M̄(1)
xx

𝜕x3
+

𝜕3 ̄̄Y
(0)

yx

𝜕x3
+ c2

𝜕2Y (1)
yz

𝜕x2
.

(32)
m̄1

[
𝜕2u

𝜕t2
− (e0a)

2 𝜕4u

𝜕x2𝜕t2

]
+ �m2

[
𝜕2𝜑

𝜕t2
− (e0a)

2 𝜕4𝜑

𝜕x2𝜕t2

]
− c1m̄4

[
𝜕3w

𝜕x𝜕t2
− (e0a)

2 𝜕5w

𝜕x3𝜕t2

]

+
[
GĨ0 + c2

2
Gl2

m
I2
]
𝜑 −

[
E�I2 −

1

4
Gl2

m
I
�

0

]𝜕2𝜑
𝜕x2

+
[
GĨ0 + c2

2
Gl2

m
I2
]𝜕w
𝜕x

+
[
c1EĪ4 +

1

4
Gl2

m
Ĩ0

]
𝜕3w

𝜕x3
= 0.
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Substitution of the first derivative of ̄̄Q
(0)

xz
 from Eq. (33) 

into Eq. (21c) and the application of Eqs. (25c), (25f) and 
(25g) results in:

 where:

Equations (29), (32) and (34) are motion equations in 
terms of generalized displacements. These equations are 
obtained by considering the effects of visco-elastic foun-
dation, thermal forces and centrifugal stiffening due to the 
rotation of nanobeam.

To establish dimensionless motion equations, dimension-
less parameters are achieved as the following:

(33)
Q

(0)

xz
= (e0a)

2

⎡
⎢⎢⎢⎢⎣

m0

𝜕3w

𝜕x𝜕t2
+ c1m3

𝜕4u

𝜕x2𝜕t2
+ c1m4

𝜕4𝜑

𝜕x2𝜕t2
− c2

1
m6

𝜕5w

𝜕x3𝜕t2
− c1

𝜕3M(3)
xx

𝜕x3
−

𝜕2Y
(0)

yx

𝜕x2
+

c2

𝜕2Y (1)
yz

𝜕x2
−

𝜕2

𝜕x2
(NT

𝜕w

𝜕x
) −

𝜕q

𝜕x
+ Kw

𝜕w

𝜕x
+ Kd

𝜕2w

𝜕x𝜕t
− Kp

𝜕3w

𝜕x3
−

𝜕2

𝜕x2
(T(x)

𝜕w

𝜕x
)

⎤
⎥⎥⎥⎥⎦
+

GĨ0(𝜑 +
𝜕w

𝜕x
).

(34)

− c1m3

[
𝜕3u

𝜕x𝜕t2
− (e0a)

2 𝜕5u

𝜕x3𝜕t2

]
− c1m̄4

[
𝜕3𝜑

𝜕x𝜕t2
− (e0a)

2 𝜕5𝜑

𝜕x3𝜕t2

]

−

[
m0

𝜕2w

𝜕t2
− (c2

1
m6 + (e0a)

2m0)
𝜕4w

𝜕x2𝜕t2
+ (e0a)

2c2
1
m6

𝜕6w

𝜕x4𝜕t2

]
− Kd

[
𝜕w

𝜕t
− (e0a)

2 𝜕3w

𝜕x2𝜕t

]

+
[
GĨ0 + c2

2
Gl2

m
I2
]𝜕𝜑
𝜕x

+
[
c1EĪ4 +

1

4
Gl2

m
Ĩ0

]𝜕3𝜑
𝜕x3

− Kww +

[
𝜕T

𝜕x
− (e0a)

2 𝜕
3T

𝜕x3

]
𝜕w

𝜕x

+

[
GĨ0 + c2

2
Gl2

m
I2 + Kp + (e0a)

2Kw − NT + T − 3(e0a)
2 𝜕

2T

𝜕x2

]
𝜕2w

𝜕x2
−
[
3(e0a)

2 𝜕T

𝜕x

]
𝜕3w

𝜕x3

−
[
c2
1
EI6 +

1

4
Gl2

m
I
��

0
+ (e0a)

2Kp + (e0a)
2T − (e0a)

2NT

]
𝜕4w

𝜕x4
+ q − (e0a)

2 𝜕
2q

𝜕x2
= 0.

(35)
I
�

i
= I∗

i
− c2I

∗
i+2

;I
��

i
= ̄̄Ii + c2

̄̄Ii+2

�Ii = Īi − c1 Īi+2;Ĩi = I∗
i
+ c2I

∗
i+2

= ̄̄Ii − c2
̄̄Ii+2.

(36)

𝜁 =
x

L
; U =

u

L
; W =

w

L
; Φ = 𝜑; 𝜇 =

e0a

L
; l0 =

lm

h

𝜏 =
T

Tmax

; q =
qL

EI0
; f =

fL

EI0
; 𝜗 =

NT

EI0
; Ω2

w
=

m2 𝜔
2

EI0

M0 =
m0 L

2

m2

;M1 =
m1 L

m2

; M2 =
m̂2

m2

;M3 =
c1m3 L

m2

; M4 =
c1m4

m2

; M6 =
c2
1
m6

m2

𝛼0 =
GĨ0

EI0
; 𝛼2 =

EÎ2

EI0L
2
; 𝛼4 =

c1EI4

EI0L
2
; 𝛼6 =

c2
1
EI6

EI0L
2

𝛽�
0
=

Gl2
m
I�
0

4EI0L
2
; 𝛽��

0
=

Gl2
m
I��
0

4EI0L
2
; 𝛽

∼

0

=

Gl2
m
I
∼

0

4EI0L
2
; 𝛽2 =

c2
2
Gl2

m
I2

EI0

kd =
Kd L

2

√
EI0m2

; kw =
Kw L

2

EI0
; kp =

Kp

EI0
; ℑ =

Tmax

EI0

where:

Substituting Eq. (36) into Eqs. (29), (32) and (34) gives 
non-dimensional motion governing equations in terms of 
rotation and displacement as:

(37)Tmax =
1

2
m0L

2𝜔̃2.

(38a)

[
−M̄0

𝜕2U

𝜕t2
+ 𝜇2

M̄0

𝜕4U

𝜕𝜁2𝜕t2
− M̄1

𝜕2Φ

𝜕t2

+𝜇2
M̄1

𝜕4Φ

𝜕𝜁2𝜕t2
+ M̄3

𝜕3W

𝜕𝜁𝜕t2
− 𝜇2

M̄3

𝜕5W

𝜕𝜁3𝜕t2

]

+
𝜕2U

𝜕𝜁2
+ f̄ − 𝜇2

𝜕2 f̄

𝜕𝜁2
= 0,
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6 � Solution procedure

In this section, the analytical solutions of wave propaga-
tion governing equations of rotating viscoelastic nanobe-
ams resting on elastic foundations under thermal effects are 
described. Adopting harmonic method, wave propagation 
displacement fields are defined as [84]:

(38b)

[
M̄1

𝜕2U

𝜕t2
− 𝜇2

M̄1

𝜕4U

𝜕𝜁2𝜕t2
+ M̄2

𝜕2Φ

𝜕t2

−𝜇2
M̄2

𝜕4Φ

𝜕𝜁2𝜕t2
− M̄4

𝜕3W

𝜕𝜁𝜕t2
+ 𝜇2

M̄4

𝜕5W

𝜕𝜁3𝜕t2

]

+
[
𝛼0 + 𝛽2

]
Φ −

[
𝛼2 + 𝛽

�

0

]𝜕2Φ
𝜕𝜁2

+
[
𝛼0 + 𝛽2

]𝜕W
𝜕𝜁

+

[
𝛼4 +

∼

𝛽0

]
𝜕3W

𝜕𝜁3
= 0,

(38c)

[
−M̄3

𝜕2U

𝜕𝜁𝜕t
+ 𝜇2M̄3

𝜕5U

𝜕𝜁3𝜕t2
− M̄4

𝜕3Φ

𝜕𝜁𝜕t2
+ 𝜇2M̄4

𝜕5Φ

𝜕𝜁3𝜕t2
− M̄0

𝜕2W

𝜕t2

+(M̄6 + 𝜇2M̄0)
𝜕4W

𝜕𝜁2𝜕t2
− 𝜇2M̄6

𝜕6W

𝜕𝜁4𝜕t2

]

+

[
−kd

𝜕W

𝜕t
+ 𝜇2kd

𝜕3W

𝜕𝜁2𝜕t

]
+
[
𝛼0 + 𝛽2

]𝜕Φ
𝜕𝜁

+

[
𝛼4 +

∼

𝛽0

]
𝜕3Φ

𝜕𝜁3
− kwW

+ℑ

[
𝜕𝜏

𝜕𝜁
− 𝜇2 𝜕

3𝜏

𝜕𝜁3

]
𝜕W

𝜕𝜁
+

[
ℑ𝜏 − 3𝜇2

ℑ
𝜕2𝜏

𝜕𝜁2
+ 𝛼0 + 𝛽2 + kp + 𝜇2kw − 𝜗

]
𝜕2W

𝜕𝜁2

−

[
3𝜇2

ℑ
𝜕𝜏

𝜕𝜁

]
𝜕3W

𝜕𝜁3
−
[
−𝜇2

ℑ𝜏 + 𝛼6 + 𝛽
��

0
+ 𝜇2kp − 𝜇2𝜗

]𝜕4W
𝜕𝜁4

+ q̄ − 𝜇2 𝜕
2q̄

𝜕𝜁2
= 0.

(39)

⎧⎪⎨⎪⎩

U(� , t)

W(� , t)

Φ(� , t)

⎫⎪⎬⎪⎭
=

⎧⎪⎨⎪⎩

U0 exp[i(K� − Ωwt)]

W0 exp[i(K� − Ωwt)]

Φ0 exp[i(K� − Ωwt)]

⎫⎪⎬⎪⎭
,

where Ωw and K are non-dimensional circular frequency and 
non-dimensional wave number, respectively, X = (U0,W0,Φ0) 
is wave amplitude and i =

√
−1 . Since in this work wave propa-

gation is considered in unbounded elastic domains, boundary 
conditions cannot be taken into account [85–88].

By substituting Eq. (39) and its derivatives into Eqs. (38), 
the characteristic equation is extracted as:

where M, K and C are mass, stiffness and damping matrices, 
respectively, and include complex terms:

In which:

(40)(K + ΩwC + Ω2
w
M)X = 0,

(41)M =

⎡⎢⎢⎣

mU0U0
mU0Φ0

mU0W0

mΦ0U0
mΦ0Φ0

mΦ0W0

mW0U0
mW0Φ0

mW0W0

⎤⎥⎥⎦
; K =

⎡⎢⎢⎣

kU0U0
kU0Φ0

kU0W0

kΦ0U0
kΦ0Φ0

kΦ0W0

kW0U0
kW0Φ0

kW0W0

⎤⎥⎥⎦
; C =

⎡⎢⎢⎣

cU0U0
cU0Φ0

cU0W0

cΦ0U0
cΦ0Φ0

cΦ0W0

cW0U0
cW0Φ0

cW0W0

⎤⎥⎥⎦
.

(42)

mU0U0
= M̄0

(
1 + 𝜇2K2

)
; mU0Φ0

= M̄1(1 + 𝜇2K2); mU0W0
= −iM̄3K(1 + 𝜇2K2)

mΦ0U0
= −M̄1

(
1 + 𝜇2K2

)
; mΦ0Φ0

= −M̄2(1 + 𝜇2K2); mΦ0W0
= iM̄4K(1 + 𝜇2K2)

mW0U0
= iM̄3K

(
1 + 𝜇2K2

)
; mW0Φ0

= iM̄4K
(
1 + 𝜇2K2

)
; mW0W0

= (M̄0 + K2M̄6)(1 + 𝜇2K2)

kU0U0
= −K2

; kU0Φ0
= kΦ0U0

= kU0W0
= kU0W0

= 0;

kΦ0Φ0
=
(
𝛼0 + 𝛽2

)
+
(
𝛼0 + 𝛽

�

0

)
K2

; kΦ0W0
= kW0Φ0

= iK

[
(𝛼0 + 𝛽2) − (𝛼4 +

∼

𝛽0)K
2

]

kW0W0
= −kw + iℑ(

𝜕𝜏

𝜕𝜁
− 𝜇2 𝜕

3𝜏

𝜕𝜁3
)K − (ℑ𝜏 − 3𝜇2

ℑ
𝜕2𝜏

𝜕𝜁2
+ 𝛼0 + 𝛽2 + kp + 𝜇2kw − 𝜗)K2

− i(3𝜇2
ℑ
𝜕𝜏

𝜕𝜁
)K3 + (𝛼6 + 𝛽

��

0
+ 𝜇2kp − 𝜇2𝜗 − 𝜇2

ℑ𝜏)K4

cW0W0
= ikd

(
1 + 𝜇2K2

)
; cU0U0

= cU0Φ0
= cU0W0

= cΦ0U0
= cΦ0Φ0

= cΦ0W0
= cW0U0

= cW0Φ0
= 0.

Table 1   Material properties

E (GPa) G(GPa) � � (kg∕m3) � (◦C−1) h (nm)

210 80 0.3 7800 12.33e-6 1
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A l s o ,  i t  i s  o b v i o u s  t h a t : 
mU0Φ0

= mU0W0
= mΦ0U0

= mW0U0
= 0.

The standard form for eigenvalue problem solution in 
Eq. (40) is:

Equation (43) is an eigenvalue problem in which, by set-
ting the determinant of the above matrix to zero, TA, LA 
and TO wave frequencies can be easily estimated. In addi-
tion, phase velocities of waves can be simply calculated by 
c = Ωw∕K.

7 � Numerical results and discussions

In this section, numerical results are obtained and evaluated 
for the wave propagation of rotating viscoelastic nanobeams 
considering the variations of the six parameters of 
e0a

lm
, kw, kp,ΔT ,Ωb and L

h
 . Also, the effects of the ratio of non-

local to length scale e0a
lm

 , non-dimensional Winkler and Pas-
ternak coefficients kw and kp , temperature gradient ΔT  , non-
dimensional beam rotating velocity Ωb and slenderness ratio 
L

h
 are described. Therefore, we kept five out of six parameters 

constant in each step and changed the value of the remaining 
parameter to evaluate parameter effects and interactions. The 
thermo-mechanical characteristics of rotating viscoelastic 
nanobeams are given in Table 1.

(43)
[
−M−1

C −M−1
K

I 0

]{
Ẋ

X

}
= Ωw

{
Ẋ

X

}
.

The results obtained for three TO, TA and LA wave prop-
agation types in nano beams are illustrated and discussed 
in detail.

8 � Model validation

For the validation of the developed model and accuracy 
verification of the findings, numerical results are obtained 
based on NL-MCST model with materials of Ref. [74] and 
compared with those reported in the mentioned reference. 
To this end, we reduced the presented NL-MCST into NL 
by considering lm = 0 . Also, we used mechanical properties 
given in Ref. [74] considering nx = nz = � = 0 to establish 
the results for comparison and model validation. The results 
are compared for two different slenderness ratios ( L

h
= 10 

and 15) and three different values of nonlocal parameter 
e0a = 1, 2 and 3(nm) . Comparison results are summarized 
in Table 2 for all TA, LA and TO wave propagation types. 
The comparison results given in Table 2 show good agree-
ment between the results obtained by the developed method 
and those reported in Ref. [74] verifying the accuracy of 
our model.

8.1 � Effects of e
0
a and lm

Figure 2 illustrates the trends of TO, TA and LA wave propa-
gation frequencies based on non-dimensional wave number. 
As can be seen, by the increase of non-dimensional wave 

Table 2   Model validation by comparison of frequencies for three types of wave propagation (THz) ( ΔT = kw = kp = 0andΩb = 2Grad∕s)

e0a (nm) TA-Wave LA-Wave TO-Wave

Ref. [74] Present Model Ref. [74] Present Model Ref. [74] Present model

l
m
= 0 and L

h
= 10 K = 1(nm)−1 1 0.8613 0.8609 9.0997 9.0995 3.3147 3.3147

2 0.5447 0.5445 5.7552 5.7550 2.0964 2.0964
3 0.3852 0.3851 4.0695 4.0695 1.4824 1.4824

K = 3(nm)−1 1 2.2998 2.2997 6.1578 6.1577 4.4472 4.4470
2 1.1956 1.1954 3.2013 3.2011 2.3120 2.3121
3 0.8031 0.8030 2.1504 2.1504 1.5530 1.5530

K = 5(nm)−1 1 2.8201 2.8202 5.4038 5.4040 4.5967 4.5967
2 1.4308 1.4306 2.7417 2.7419 2.3323 2.3325
3 0.9565 0.9566 1.8329 1.8325 1.5591 1.5592

l
m
= 0 and L

h
= 15 K = 1(nm)−1 1 0.6064 0.6065 12.9216 12.9209 3.3148 3.3147

2 0.3835 0.3833 8.1723 8.1722 2.0964 2.0964
3 0.2712 0.2706 5.7787 5.7788 1.4824 1.4824

K = 3(nm)−1 1 1.8817 1.8814 7.5085 7.5081 4.4472 4.4471
2 0.9782 0.9781 3.9035 3.9033 2.3120 3.3120
3 0.6571 0.6572 2.6220 2.6220 1.5530 1.5531

K = 5(nm)−1 1 2.4792 2.4792 6.1086 6.1087 4.5968 4.5967
2 1.2579 1.2581 3.0993 3.0992 2.3323 2.3325
3 0.8409 0.8408 2.0719 2.0720 1.5591 1.5592
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Fig. 2   Wave propagation 
frequencies based on NL and 
NL-MCSTs. a Longitudinal 
(LA) waves. b Transverse (TA) 
wave. c Torsional (TO) wave. 
(ΔT = kw = kp = Ωb = 0)
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Fig. 3   Wave propagation 
frequencies for different 
nonlocal parameter to length 
scale ratios. a Longitudinal 
(LA) wave. b Transverse (TA) 
wave. c Torsional (TO) wave. 
(ΔT = kw = kp = Ωb = 0)
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number, LA wave propagation frequency is decreased but 
for TA and TO wave propagations, the values of non-dimen-
sional frequencies are increased.

Also, Fig. 2 presents the comparison of wave propaga-
tion fundamental frequencies extracted by Eringen’s nonlo-
cal (NL) and nonlocal modified couple stress (NL-MCST) 
theories. As is clear, for LA and TA wave propagations, 

Fig. 4   Wave propagation frequencies for different temperatures. a–d Transverse (TA) wave. e Torsional (TO) wave. f Longitudinal (LA) wave. 
(kw = kp = Ωb = 0)
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the results obtained by NL-MCST were higher than those 
obtained by NL for all non-dimensional wave number. How-
ever, there was no difference between NL and NL-MSCT 
results for TO wave propagation. The results obtained for 
LA and TA wave propagations show that for the same value 
of e0a in NL and NL-MCST, the effect of length parameter 
lm on NL-MCST increases wave propagation frequency but 
has no effect on wave propagation. Also, it can be concluded 
that, for LA wave propagation, increase of non-dimensional 
wave number decreases the difference between NL and NL-
MCST wave frequencies whereas for TA wave propagation, 
this is opposite.

The effects of different nonlocal parameter to length 
scale ratios e0a∕lm on non-dimensional fundamental wave 
propagation frequency for all wave propagation types are 

indicated in Fig. 3. The results shown here are obtained by 
three different slenderness ratios of L∕h = 5,10 and 20 . As 
it is obvious from the figure and due to the decrease of stiff-
ness, TO, TA and LA wave frequencies decrease with the 
increase of e0a∕lm . Also, by increasing slenderness ratio, 
frequency difference for different e0a∕lm ratios decreases.

8.2 � Effects of temperature

Figure 4 displays the effect of temperature variation on 
non-dimensional frequencies of LA, TA and TO wave 
propagations.

In this section, T0 = 20◦C is considered as the reference 
temperature and temperature variation is considered at five 
different levels from ΔT = 0◦C to ΔT = +45◦C . According 

Fig. 5   Wave propagation frequencies for different non-dimensional Winkler coefficients. a Longitudinal (LA) waves. b Transverse (TA) wave. c 
Torsional (TO) wave. (ΔT = kp = Ωb = 0)
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to Fig. 4, temperature gradient has no significant effects on 
TO and LA wave propagations. However, it strongly affects 
TA wave propagation. Figure 4a–c show TA wave frequen-
cies for constant values of e0a∕lm = 20 and lm = 1.5h and 
defferent slenderness ratio values of L∕h = 10,20 and 50. 
Also, Fig. 4d shows the results obtained for local case with 
e0a = lm = 0 and L∕h = 20. Based on the results obtained 
for TA wave propagation, with the increase of temperature, 
the initiaton of TA wave propagation is delayed. Moreover, 
an increase in temperature reduces the value of TA wave 
frequencies. Also, with increasing slenderness ratio, wave 
propagation delay due to increasing temperature gradient 
increases.

8.3 � Effects of Winkler‑Pasternak coefficients

In this section, Winkler coefficient effect on non-dimensional 
wave frequency is considered. The effect of dimensionless 
Winkler coefficient kw on all types of wave propagation is 

presented in Fig. 5. The results are obtained for the constant 
values of e0a∕lm = 15, lm = 0.5h and L∕h = 15 but different 
values of 0 ≤ kw ≤ 1 in five steps. As it is clear, LA wave 
propagation is not affected by different values of kw and 
indicates the same behavior for all values of kw. However, 
the variation of kw has considerable effects on TO and TA 
wave propagations. In TA wave and for kw > 0 , with the 
increase of non-dimensional wave number up to a certain 
value, frequency is not affected by kw but for higher non-
dimensional wavenumbers, frequency trend is changed. It 
is obvious that the increase of kw increases the value of TA 
wave frequency. For TO wave type, by increasing kw , the 
wave propagation initiates with high frequencies. Also, 
TO frequency remains constant up to certain value of non-
dimensional wave number but for higher non-dimensional 
wavenumbers, frequency trend tracks similar paths to that 
of kw = 0. In other words, the variation of kw above a certain 
value of non-dimensional wave number has no considerable 
influence on wave frequency.

Fig. 6   Wave propagation frequencies for different non-dimensional Pasternak coefficients. a Longitudinal (LA) wave. b Transverse (TA) wave. c 
Torsional (TO) wave. (ΔT = kw = Ωb = 0)
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Fig. 7   Wave propagation 
frequencies for different beam 
rotating velocity. a Longitudinal 
(LA) wave. b Torsional (TO) 
wave. c Transverse (TA) wave. 
(ΔT = kw = kp = 0)
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Pasternak coefficient effect on the non-dimensional fre-
quency of all wave propagation types is illustrated in Fig. 6. 
Similar to the effect of kw on LA wave, different values of 
kp has no effect on frequency. However, the effects of kp 
on TO and TA wave propagations is slightly different from 
that of kw which is clear in Fig. 6. It can be concluded that, 
with the increase of kp from 0 to 1, TA frequency increases. 
For kp > 0 , frequency difference is affected by the value of 
non-dimensional wave number. In other words, for kp > 0 
and higher non-dimensional wavenumbers (here K > 1.3 ), 
all frequencies converge to the same trend as that of kp = 1 
(Fig. 6b). For TO wave frequency and with increasing kp , 
first, the frequency trend up to certain value of non-dimen-
sional wave number follows the same trend of kp = 0 . Then, 
for higher non-dimensional wave numbers, TO frequency 
increases with increasing kp (Fig. 2c).

8.4 � Effects of beam rotating velocity

In this section, the effects of dimensionless rotating veloci-
ties of viscoelastic nanobeams Ωb on all types of wave 
propagations are considered. Dimensionless beam rotating 
velocity is defined as:

where A,
∼
�, L, I are cross-section area, beam rotating veloc-

ity, length, and second moment of cross-section area, respec-
tively, E is Young’s modulus and � is the density of beam.

The effects of Ωb on TO, TA and LA wave propaga-
tions are presented in Fig. 7. The results are obtained for 
constant values of e0a∕lm = 15, lm = 1.5h and L∕h = 15 . 
Also, to perform a comperhensvie investigatin on the effect 
of dimensionless rotating velocity on wave propagation, 

(44)Ωb =
∼
� L2

√
�A

EI
,

Fig. 8   Wave propagation frequencies based on different slenderness ratio. a Longitudinal (LA) Waves. b Transverse (TA) Wave. c Torsional 
(TO) Wave. (ΔT = kw = kp = Ωb = 0)
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rotating velocity Ωb is applied in three different catego-
ries 0 ≤ Ωb ≤ 20 , 20 ≤ Ωb ≤ 50 and 50 ≤ Ωb ≤ 150 . For 
LA wave propagations illustrated in graphs (a-1) to (a-3) 
of Fig. 7, the increase of Ωb up to Ωb = 50 has no effect 
on wave frequency and it shows descending trend for all 

Ωb ≤ 50 . However, for 50 < Ωb ≤ 150 and after a certain 
value of non-dimensional wave number, the descending 
trend is stopped and presents constant or ascending behav-
iors, as indicated in the Fig. 7a-3.

Fig. 9   Wave propagation frequencies based on different visco-damping coefficient. a Longitudinal (LA) Waves. b Torsional (TO) Wave. c–f 
Transverse (TA) Wave with different slenderness ratio. (ΔT = kw = kp = Ωb = 0)
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Also, in TO wave propagations displayed in graphs (b-1) 
to (b-3) of Fig. 7, Ωb ≤ 16 has no effect on wave frequency. 
On the other hand, the increase of Ωb has dual effects on 
wave frequency. For 20 ≤ Ωb ≤ 50 , wave frequency has a 
strictly ascending trend. However, for Ωb > 50 , the trend 
is ascending up to a certain value of non-dimensional wave 
number and then it descends and then tracks identical trend.

Graphs (c-1) to (c-3) of Fig. 7 indicate the effect of Ωb on 
TA waves. It can be concluded that, only for Ωb ≤ 20 , the 
frequency of TA wave propagation increases by the increase 
of Ωb . However, high values of Ωb > 20 has no significant 
influence on TA wave frequency.

8.5 � Effects of slenderness ratio

Figure 8 shows the effects of slenderness ratio on all types 
of wave propagation. The results are illustrated for constant 
values of e0a∕lm = 20, lm = 1.5h . To obtain the results, the 
value of slenderness ratio was varied from 2.5 to 50 in five 
steps. According to the obtained results for TA wave propa-
gation, slenderness ratio has considerable effects at all non-
dimensional wavenumbers. However, in LA and TO waves 
and for high non-dimensional wavenumbers, frequencies 
reach a constant value above which slenderness ratio has no 
significant effect. As shown, with the increase of slender-
ness ratio, the frequencies of TA and TO wave propagation 
types decrease but that of TA type increases. It is obvious 
that, by the increase of slenderness ratio, frequency gradi-
ent becomes smoother for all types of wave propagation. In 
other words, with the increase of slenderness ratio, the fre-
quencies of LA and TA types of wave propagation reach to 
a constant value in higher non-dimensional wave numbers.

8.6 � Effects of slenderness ratio

The effect of non-dimensional visco-damping coefficient 
kd on all types of wave propagation is illustrated in Fig. 9. 
The results are extracted based on different non-dimensional 
visco-damping coefficient values of kd = 0, 1, 2, 4 and 8 for, 
LA, TO and TA types of wave propagation. It can be con-
cluded easily that, the variation of kd only affects the TA type 
of wave and has no effect on To and LA types of wave propa-
gation. Also, it is clear from Fig. 9c–f that, wave propaga-
tion for TA type is postponed by the increment of the value 
of kd . For example, in Fig. 9c, until non-dimensional wave 
number K reaches 5, the TA type of wave for kd = 8 has not 
propagated. However, the wave propagates for kd = 0, 1, 2 
and 4 before K = 5.

On the other hand, at the same value of non-dimensional 
wave number, wave frequency for TA type decreases with 
increasing the value of kd . Finally, by increasing the value 
of L/h, the TA type of wave will propagate in small value of 
non-dimensional wave number. Also, with the increase of 

slenderness ratio, the increment of kd value loses its effect 
on the frequency of TA type of wave for higher non-dimen-
sional wave numbers.

9 � Conclusion

The aim of this research was to develop a comprehensive 
mathematical-mechanical model for the investigation of 
wave propagations in rotating viscoelastic nanobeams rest-
ing on Winkler-Pasternak foundations considering thermal 
effects. In this work, to capture both hardening and soften-
ing behaviors of materials in wave propagation, nonlocal 
Eringen’s and modified couple stress theories are incorpo-
rated to obtain governing equations of motion. In addition, 
higher order shear deformation beam model is applied to 
obtain motion equations and an analytic method is utilized 
to solve them. The results are illustrated for LA, TA and TO 
wave propagations and are discussed in detail. Moreover, the 
effects of nonlocal parameter to length scale ratios, thermal 
gradient, Winkler-Pasternak coefficients, rotating velocity of 
viscoelastic nanobeams and slenderness ratios are captured 
and are comprehensively discussed. The following major 
conclusions were drawn:

•	 By increasing non-dimensional wave number, LA wave 
propagation frequency decreases but, for TA and TO 
wave propagation types, the value of non-dimensional 
frequency increases.

•	 For LA and TA wave propagation types, the results 
obtained from NL-MCST are higher than those of NL 
for all non-dimensional wavenumbers. On the other hand, 
there is no difference between NL and NL-MSCT results 
for TO wave propagation.

•	 LA, TA and TO types of wave frequencies decrease with 
the increase of e0a∕lm.

•	 Temperature gradient has no significant effects on LA 
and TO wave propagations. However, it strongly affects 
TA wave propagation.

•	 With the increase of temperature, TA wave propagation is 
delayed. Also, increase of temperature reduces TA wave 
frequency.

•	 LA wave propagation is not affected by different values 
of kw and kp . However, the variation of kw and kp have 
considerable effects on TO and TA wave propagations.

•	 The frequencies of TA wave propagations are affected 
only at Ωb ≤ 20.

•	 The increase of Ωb has dual effects on TA and TO wave 
frequencies.

•	 With the increase of slenderness ratio, the frequencies of 
TA and TO wave propagations decrease but that of TA 
type increases.
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•	 The variation of non-dimensional visco-damping coef-
ficient affects only the TA type of wave propagation.

•	 For the same value of the non-dimensional wave number, 
the wave frequency of TA type decreases with increasing 
the value of non-dimensional visco-damping coefficient.

•	 The wave propagation of TA type delays by increasing 
non-dimensional visco-damping coefficient.
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