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Abstract
The use of an adaptive iterative sampling method is proposed to analyze the post-buckling reliability of stiffened composite 
panel structures. First, a post-buckling yield strength model for a stiffened composite panel is established based on a semi-
empirical equation, and its accuracy is experimentally verified. On this basis, a reliability analysis model is proposed for 
a stiffened composite panel. The probability of post-buckling failure is then estimated by the adaptive iterative sampling 
method. By continuously optimizing the sampling center and establishing an appropriate sampling function, the sampling 
efficiency of the reliability analysis is shown to be improved compared with the Monte Carlo method while ensuring a small 
relative error. The two-norm value of the sampling center position is shown to decrease continuously and converge to stabil-
ity, meeting the accuracy requirements and providing a more reliable result. The proposed method, therefore, represents an 
efficient reliability evaluation method for stiffened composite panels that can be used to improve research into their post-
buckling behavior.

Keywords  Stiffened composite panel · Post-buckling reliability · Adaptive iterative sampling · Failure probability · 
Sampling efficiency

1  Introduction

Composite materials have the advantages of high specific 
strength, lightweight, and good chemical corrosion resist-
ance, making them well-suited to widespread use in the 
aircraft industry [1, 2]. During aircraft use, stiffened com-
posite structures are subjected to tensile, compressive, bend-
ing, shear, and impact loads that result in complex stress 
forms, with buckling being a common failure mode [3, 4]. 
When subjected to axial load, a stiffened composite panel 
will remain undamaged after buckling and still exhibit suffi-
cient bearing capacity; that is, it has excellent post-buckling 
strength. The bearing efficiency of a structure can therefore 
be considerably improved by making full use of this char-
acteristic [5, 6]. The study of the post-buckling reliability 
of stiffened composite structures thus has important value 
in engineering applications [7–12]. For example, Moham-
med et al. [7] proposed a finite element modeling strategy 
to capture failure modes associated with steel bar buckling 
and low cycle fatigue. Salami et al. [8] proposed a nonlinear 
fiber beam-column model, which can simulate a variety of 
failure modes of reinforced concrete columns under dynamic 
loads. Huang et al. [9] combined with the random damage 

 *	 Feng Zhang 
	 nwpuwindy@nwpu.edu.cn

	 Mingying Wu 
	 wumingying@mail.nwpu.edu.cn

	 Xinting Hou 
	 hxtxinting@mail.nwpu.edu.cn

	 Cheng Han 
	 hancheng@mail.nwpu.edu.cn

	 Xinhe Wang 
	 wangxinhe0213@mail.nwpu.edu.cn

	 Xiayu Xu 
	 XuXiayu@mail.nwpu.edu.cn

1	 School of Mechanics, Civil Engineering and Architecture, 
Northwestern Polytechnical University, Xi’an 710129, China

2	 Key Laboratory of Icing and Anti/De‑Icing, China 
Aerodynamics Research and Development Center, 
Mianyang 621000, Sichuan, China

3	 The Aviation Industry Corporation of China, Xi’an Flight 
Automatic Control Institute, Xi’an 710065, China

http://orcid.org/0000-0003-2987-8418
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01424-5&domain=pdf


S2652	 Engineering with Computers (2022) 38 (Suppl 4):S2651–S2661

1 3

constitutive model of concrete, and carried out numerical 
simulation work on material failure, member fracture and 
structural buckling.

Many scholars have studied the buckling of stiffened com-
posite panels [13–18]. For example, Yu et al. [15] studied the 
post-buckling behavior of fixed laminated beams under axial 
compression and shear deformation, and established the 
analytical solution of the original governing equation. Guo 
et al. [16] studied the buckling and post-buckling of copper 
nanobeams under uniaxial compression by theoretical analy-
sis and atomic simulation. Hu et al. [17] studied the axial 
and eccentric compression behavior of Q420 double angle 
composite columns. Sun et al. [18] established a seismic 
vulnerability analysis framework based on machine learning 
to assess the risk of structures under seismic loading.

In a traditional composite structure design, the mechani-
cal model is first determined [19, 20], then the safety fac-
tor method is applied. This design method is able to reduce 
the instance of structural failure to some extent, but can-
not completely prevent it. Indeed, due to the current lack 
of quantitative analyses on the variability of the relevant 
design parameters, any applied safety factor cannot accu-
rately reflect the degree of safety of an engineering structure 
[21, 22]. A particularly large number of uncertainties exist 
in composite structures, including those related to material 
properties, geometric parameters, applied loads, and bound-
ary conditions, etc., none of which are typically consistent. 
These uncertainties will notably have a significant impact 
on the performance of stiffened composite panels [23, 24]. 
Therefore, it is necessary to study the reliability of such 
composite structures [25, 26].

At present, the most commonly used methods for the reli-
ability analysis of composite structures include approximate 
analytical methods [27] and digital simulation methods [28, 
29]. Approximate analytical methods include the first-order 
second-moment method [30], which requires minimal cal-
culation but results in a large relative error, making it only 
suitable for the reliability problem of an explicit limit state 
equation. Among the digital simulation methods, the Monte 
Carlo method [31] uses the joint probability density func-
tion of random variables for sampling. This method is sim-
ple, but its sampling efficiency is low so that large-scale 
calculation is necessary to obtain results that meet most 
accuracy requirements. The importance sampling method 
[32] is another type of digital simulation method that takes 
the design point of the limit state equation as the sampling 
center, considerably improving the sampling efficiency. 
However, this design point must be obtained in advance. 
When determining the post-buckling reliability of a stiff-
ened composite panel, it is difficult to directly obtain the 
design point of the limit state equation, restricting the direct 
use of the importance sampling method. Therefore, the use 
of an adaptive iterative sampling method that is able to 

continuously optimize the sampling center and estimate the 
failure probability using pre-sampling is proposed in this 
paper. In this method, the sampling efficiency—that is, the 
ratio of the number of samples falling into the failure area to 
the total number of samples—is defined during the process 
of sampling to provide a basis for the quantitative evaluation 
of optimality.

To study the post-buckling characteristics of stiffened 
composite panels and ensure full utilization of the excellent 
properties of composite materials, the failure limit stress 
of stiffened composite panels was calculated using a semi-
empirical equation and the results were compared with the 
corresponding experimental results. A failure analysis of 
the stiffened composite panel was then conducted using the 
adaptive iterative sampling method, and the results were 
discussed. The results of this study indicate that the pro-
posed adaptive iterative sampling method provides higher 
sampling efficiency, smaller error, and greater accuracy than 
the conventional Monte Carlo method, demonstrating that 
it is a more efficient and reliable method for post-buckling 
reliability research.

Nomenclature

D Bending stiffness Pcr Euler load
ET Tensile and compressive 

stiffness
Pe Buckling load

GT Shear stiffness coefficient �
co

Failure stress
EI Buckling stiffness Load Failure load

2 � Post‑buckling failure model of a stiffened 
composite panel

2.1 � Post‑buckling analysis based on semi‑empirical 
equations

A sketch of the stiffened composite panel structure studied 
in this paper, consisting of a skin plate laminate and stiffen-
ers, is shown in Fig. 1. To define the bending stiffness of 
the skin plate and overall stiffened panel, in this section, the 
post-buckling limit load of a stiffened composite panel is 
first calculated using semi-empirical equations [33] and a 
buckling analysis is conducted.

(1)	 The stiffness coefficients of the skin plate laminate are 
calculated by

(1)Aij =

M
∑

k=1

(

Qij

)

k

(

Zk − Zk−1
)
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where Aij is the in-plane stiffness coefficient of the lam-
inate; Bij is the tension bending stiffness coefficient of 
the laminate; Dij is the bending stiffness coefficient of 
the laminate; i, j are the directions of stress, given as 1, 
2, and 6; M is the total number of plies; Zk and Zk−1 are 
the z-direction coordinates of plies k and k—1, respec-
tively; and (Qij)k is the off-axis modulus of the k-th ply.

(2)	 The equivalent bending stiffness D of a symmetric 
laminate is calculated by

where Dx is the equivalent bending stiffness of the lam-
inate along the x direction; Dy is the equivalent bending 
stiffness of the laminate along the y direction; Dxy is the 
equivalent in-plane bending stiffness of the laminate; 
and D11,D12,D22,D66,D16,D26 are the bending stiff-
ness coefficients of the laminate for each direction of 
stress.

(3)	 The equivalent in-plane tensile/compressive stiffness 
coefficients along with the x and y directions, (ET)x and 

(2)Bij =
1

2

M
∑

k=1

(

Qij

)

k

(

Z2

k
− Z2

k−1

)

(3)Dij =
1

3

M
∑

k=1

(

Qij

)

k

(

Z3

k
− Z3

k−1

)

,

(4)Dx = D11 +
2D12D16D26 − D22D

2

16
− D2

12
D66

D22D66 − D2

26

(5)Dy = D22 +
2D12D16D26 − D11D

2

26
− D2

12
D66

D11D66 − D2

16

(6)Dxy =
2D12D16D26 − D11D

2

26
− D2

22
D16

D11D12 − D2

12

,

(ET)y , respectively, and shear stiffness coefficient GT of 
the laminate are calculated by

where t is the thickness of the laminate; A11 , A12 , A22 , 
A16 , A26 , and A66 are the in-plane stiffness coefficients 
of the laminate; Ex and Ey are the equivalent tensile/
compressive elastic moduli of the laminate in the x and 
y directions, respectively; and Gxy is the equivalent in-
plane shear modulus of the laminate.

(4)	 The overall buckling stiffness EI of the stiffened panel 
is calculated by

where bi is the width of the i-th strip element; zc is the 
position of the neutral axis of the section of the stiff-
ened laminate; and (zi − zc) is the distance from the 
center of the section of the i-th element to the neutral 
axis.

(5)	 The overall bearing capacity of the stiffened panel is 
calculated by

(7)

(ET)x = Ext = A11 +
2A12A16A26 − A22A

2

16
− A2

12
A66

A22A66 − A2

26

(8)

(ET)y = Eyt = A22 +
2A12A16A26 − A11A

2

26
− A2

12
A66

A11A66 − A2

16

(9)

(GT) = Gxyt = A66 +
2A12A16A26 − A22A

2

16
− A11A

2

26

A11A22 − A2

12

,

(10)

EI =

n
∑

i=1

[(

D11i −
D2

12i

D22i

)

bi +

(

A11i −
A2

12i

A22i

)

bi

(

zi − zc

)2

]

,

Fig. 1   Structural diagram of 
the stiffened composite panel 
a stiffener and b skin plate 
laminate

W2

W1

t2

t 3

a

b

H
t 1

(a)          (b) 
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where the support coefficient c is 2.04; the shape factor 
� is 1.2; Pcr is the Euler load; G is the equivalent shear 
stiffness of the vertical web; A is the area of the vertical 
web; and Pe is the buckling load.

(6)	 The failure stress �co of the stiffened laminate plate is 
calculated by

where �r is the global buckling stress of the stiffened 
laminate calculated by the Euler equation without 
considering the effect of stiffness reduction after local 
buckling of either the skin plate or stiffener; �cc is the 
short-plate compressive failure stress of the stiffened 
laminate, which is approximately 0.75 times that of the 
pure compressive failure stress of the skin laminate; �co 
is the failure stress of the stiffened laminate; and �cr is 
the local buckling stress of the skin laminate.

(7)	 The failure load of the stiffened composite panel is 
obtained by

where �co is the failure stress of the stiffened laminate 
and A is it’s area.

(11)Pcr =
Pe

1 + �Pe∕
(

GA
)

(12)Pe =
c�2(EI)

L2
,

(13)�co =

[

1 −

(

1 −
�cr

�cc

)

�cr

�r

]

�cc,

(14)Load = �coA,

This study employed a composite skin plate thickness of 
0.125 mm, ply angle of 0°, skin width a of 710 mm, hori-
zontal edge strip width W1 of 55 mm, horizontal edge strip 
width W2 of 25 mm, edge strip height H of 45 mm, and the 
stiffened laminated plate length b of 570 mm, resulting in a 
post-buckling stiffened composite panel failure load of 1300 
kN, as calculated by Eqs. (1)–(14).

2.2 � Experimental verification of failure modes

Axial compression tests of stiffened composite panels with 
the same parameters as those used to calculate the failure 
load in Sect. 2.1 were then conducted as discussed in this 
section as shown in Fig. 2. The local buckling of the skin 
was observed to occur first, followed by the overall buckling 
failure of the stiffened plate. The test results are shown in the 
load–displacement curve in Fig. 3, which indicates that the 
maximum failure load was 1417.89 kN. The calculated fail-
ure load is compared with the experimental result in Table 1.

2.3 � Post‑buckling simulation of composite stiffened 
panels

Abaqus software is used to simulate the composite stiff-
ened panel with the same parameters for simulation, and 
the load–displacement curve is obtained, as shown in Fig. 4 
below.

It can be seen from Fig. 4 that the simulation specimen is 
damaged at 1589 kN.

The calculated and simulated failure loads are compared 
with the experimental results in Table 1.

It can be observed in Table 1 that the experimentally 
obtained value agrees well with the value calculated 
using the semi-empirical equations, with a relative error 

Fig. 2   Axial compression test
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of approximately 8.3%. And when using Abaqus software, 
different people will get different results due to different 
mesh generation, while there is only one result calculated 
by semi-empirical equations. This indicates that the semi-
empirical equations are highly accurate, establishing a 
good foundation for the subsequent structural reliability 
analysis.

3 � Reliability analysis of stiffened composite 
panel post‑buckling failure

3.1 � Reliability modeling of post‑buckling failure

There is a wide range of uncertainties in the structure of 
a stiffened composite panel, including the distribution of 
material properties, manufacturing process errors, and struc-
tural size deviations. Combining engineering experience and 
theoretical analysis, the thickness, width, and ply angle of 
the composite skin plate, as well as the edge strip widths, 
height, and length of the stiffened composite plate can be 
regarded as random variables, as defined in Table 2.

The failure load Load{X1,X2,… ,X7} can be obtained by 
substituting the relevant composite structure parameters into 
Eqs. (1)–(14). Combined with the actual load on the subject 
structure, the post-buckling analysis function is established 
as:

Fig. 3   Experimentally obtained 
load–displacement curve for the 
stiffened composite panel

Table 1   Comparison of results

Method Failure load (kN) Relative error

Experiment 1418 –
Simulation 1589 12.06%
Calculation 1300 8.3%

Fig. 4   Overall displacement-
load diagram in Abaqus
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where � = {X1,X2,… ,X8}.
When g(�) < 0 the post-buckling behavior X falls into the 

failure domain Rn; when g(�) ≥ 0 , there is no failure, and X 
falls into the safety region Rs.

3.2 � Adaptive iterative sampling method

The adaptive iterative sampling applied in this study is based 
on the Monte Carlo method. By constantly modifying the 
sampling center during the calculation process to limit it 
as much as possible to the “important areas” that have a 
significant impact on the results, the sampling of irrelevant 
events is minimized, improving the calculation efficiency.

The traditional method used for sampling in a structural 
reliability analysis is the Monte Carlo method. The integral 
equation expressing the Monte Carlo method used to deter-
mine failure probability is

where f (�) is the joint probability density function, which 
in this study is based on the variables � =

{

X1,X2,⋯ ,X8

}T ; 
Rn is the failure domain; and Pf is the failure probability, 
which in this study is the evaluation index of the post-buck-
ling reliability of the stiffened composite panel.

According to the joint probability density function f (�) , 
N samples {�1,�2,⋯ ,�N}

T of input vector variable X are 
extracted, then the estimated value of failure probability ̂Pf 
is given by

where �s is the s-th sample (s = 1, 2,… ,N) extracted by the 
joint probability density function f (�) ; I(�) is the indicator 

function; I(�s)=

{

1 �s ∈ Rn

0 �s ∉ Rn
 ; Nf is the number of samples 

(15)g(�) = Load{X1,X2,… ,X7} − X8,

(16)Pf = ∫
Rn

f (�)d�,

(17)̂Pf =
1

N

N
∑

s=1

I(�s) =
Nf

N
,

falling within the failure domain Rn, and N is the total num-
ber of samples.

The Monte Carlo method requires a large number of sam-
ples to obtain converging results, and its sampling efficiency 
is very low. Therefore, researchers have proposed improved 
digital simulation methods [29], of which the importance 
sampling method is one of the more common. By introducing 
the importance sampling density function h(�) , the integral 
equation for solving the failure probability is transformed into

If N samples of input variable X are extracted according to 
the importance sampling density function h(�) , the estimated 
failure probability ̂Pf  is:

The challenge when using the importance sampling method 
to solve the reliability problem of the post-buckling behav-
ior of stiffened composite panels is to select an appropriate 
importance sampling function h(�) . The simple explicit func-
tion g(�) can be obtained by improving the first-order second-
moment method. For the post-buckling problem of stiffened 
composite panels, the form of function g(�) is complex, and 
it is difficult to obtain it directly. Therefore, in this study, the 
adaptive iterative strategy was used to modify the sampling 
center and construct the next sampling function.

For the adaptive iterative importance sampling function 
hq(�)(q = 1, 2,… ,m) , the number of samples extracted is 
N(q)(q = 1, 2,… ,m) . Therefore,

(18)Pf = ∫
Rn

f (�)

h(�)
h(�)d� .

(19)̂Pf =
1

N

N
∑

s=1

[

I
(

�s

) f
(

�s

)

h
(

�s

)

]

.

(20)Pf (q) = ∫
Rn

f (�)

h(q)(�)
h(q)(�)d�

(21)̂Pf (q) =
1

N(q)

N(q)
∑

s=1

[

IF
(

�(q)s

)
f
(

�(q)s

)

h(q)
(

�(q)s

)

]

.

Table 2   Probability 
characteristics of stiffened 
composite plate parameters

Parameter Identification Mean value Standard deviation Distribution type

Thickness (mm) X
1

0.125 0.00125 Normal
Ply angle (°) X

2
0 0.1 Normal

Skin width a (mm) X
3

710 0.071 Normal
Horizontal edge strip width w1 (mm) X

4
55 0.0055 Normal

Horizontal edge strip width w2 (mm) X
5

25 0.0025 Normal
Edge strip height H (mm) X

6
45 0.0045 Normal

Stiffened laminate length b (mm) X
7

570 0.057 Normal
Actual load (N) X

8
1.256 × 106 1 × 104 Normal
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Finally, the failure probability estimation based on the 
adaptive iterative importance sampling method can be 
defined as

To effectively evaluate the sampling efficiency of the pro-
posed method, the sampling efficiency � is defined as the 
ratio of the number of samples falling into the failure area 
Rn to the total number of samples.

The sampling efficiency � of the Monte Carlo method is 
given by

For the adaptive iterative importance sampling method, 
if the number of samples falling into the failure area in the 
q-th (q = 1, 2,… ,m) sampling is N(q)f (q = 1, 2,… ,m) , then 
the sampling efficiency �q is

Thus, the total sampling efficiency � for the adaptive 
iterative sampling is

3.3 � Obtaining failure probability

According to the principle of the adaptive iterative impor-
tance sampling method, the specific steps used to calculate 
the post-buckling reliability of a stiffened composite panel 
are as follows.

1.	 The first importance sampling function is h(1)(�) , and 
the sampling center ��(1) of h(1)(�) is its mean point. 
The variance vector of the sampling function is consist-
ent with the variance vector of the joint probability den-
sity function of the input vector, that is, �h(1) = �� and 
the variance vector �2

h(1)
= �2 . According to the impor-

tance sampling function h(1)(�) , N(1) samples are 
s e l e c t e d  t o  j u d ge  w h e t h e r  t h e  s a mp l e 
�(1)s(s = 1, 2,… ,N(1)) falls into the failure region Rn. 
For the sampling points falling into Rn, the failure prob-
ability is calculated by Eq. (21), and the sample point 
corresponding to the current maximum value of f (�) is 
marked as � ∗ . The sampling center ��(2) of the second 
importance sampling function h(2)(�) is thus defined as 

(22)̂Pf =
1

m

m
∑

q=1

̂Pf (q)

(23)�=
Nf

N
=Pf.

(24)�q=
N(q)f

N(q)

.

(25)�=

∑m

q=1
N(q)f

∑m

q=1
N(q)

.

�∗ . The variance vector of the second importance sam-
pling function is consistent with the variance vector of 
the joint probability density function of the input vector.

2.	 The q-th (q = 2, 3,…, m) importance sampling density 
function h(q)(�) is normal, and the sampling center is 
��(q) . The variance vector of this importance sampling 
density function is consistent with the variance vector 
of the joint probability density function of the input vec-
tor; that is, �h(q) = ��(q) and the variance vector 
�2

h(q)
= �2 . According to the importance sampling func-

tion h(q)(�) , N(q) samples are selected to judge whether 
sample �(q)s(s = 1, 2,… ,N(q)) falls into the failure 
region Rn. For the sampling points falling into Rn, the 
failure probability is calculated by Eq. (21), and the sam-
ple point corresponding to the current maximum value 
of f (�) is marked as � ∗ . Then, the joint probability 
density functions f (��(q)) and f (� ∗) , respectively cor-
responding to ��(q) and � ∗ are compared; if 
f (� ∗) ≥ f (��(q)) , the sampling center ��(q+1) of the 
(q + 1)-th importance sampling function h(q+1)(�) is 
selected as � ∗ ; otherwise, the sampling center ��(q+1) 
of the (q + 1)-th importance sampling function h(q+1)(�) 
is selected as ��(q).

3.	 A total of M samplings are conducted. The failure prob-
ability ̂Pf of the stiffened composite panel structure is 
calculated by Eq. (22), and the algorithm is finished.

The flow chart for determining the failure probability 
using the proposed adaptive iterative sampling method is 
shown in Fig. 5.

4 � Analysis and discussion

The typical method for reliability modeling and analysis pri-
marily relies upon the collection of a large quantity of failure 
data to design and evaluate the reliability based on probabil-
ity theory. In this study, a reliability analysis is applied to 
quantitatively determine the post-buckling reliability of stiff-
ened composite panels based on probability and statistics.

In this study, the adaptive iterative sampling method 
was used for the reliability analysis. In order to evaluate 
the calculation accuracy and efficiency of this method, its 
results are compared with those of the Monte Carlo method 
in Table 3.

It can be seen from the results in Table 3 that for the 
same total number of samples, the relative error between the 
results obtained using the adaptive iterative sampling method 
and those obtained using the Monte Carlo method is only = �
(5.6077 × 10–5–5.525 × 10–5)/(5.6077 × 10–5) = 1.47%, which 
indicates consistent results. It can be seen in Fig. 6 that the 
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failure probability curve corresponding to the adaptive 
iterative sampling method fluctuates only slightly, while 
that corresponding to the Monte Carlo method fluctuates 
relatively large. This demonstrates that compared with the 
traditional Monte Carlo method, the failure probability 
obtained by the adaptive iterative sampling method tends to 
stability much faster. Indeed, the simulation times required 
to obtain a convergent solution using the proposed method 
are much less than those using the Monte Carlo method, 
indicating improved efficiency. Comparing the total sam-
pling efficiency of the adaptive iterative sampling method 
with that of the Monte Carlo method as reported in Table 3, 
an improvement of 0.4912/(5.4 × 10–5) = 8.8931 × 103 can be 
observed. Therefore, the adaptive iterative sampling method 
is just as accurate as the Monte Carlo method, but much 
more efficient.

The two-norm describes the linear distance between two 
vector matrices in space. By calculating the two-norm of 
the sampling center positions obtained in each iteration of 
the adaptive iterative sampling process, we can observe the 
correction of sampling centers between iterations.

In normal space, the two-norm of the sampling center 
position in the adaptive iterative sampling method can be 
calculated by.

with the results shown per iteration in Table 4 and Fig. 7.
It can be seen in Table 4 that the two-norm of the sam-

pling center consistently decreases with increasing itera-
tions. Starting at the fourth sampling iteration, the two-norm 
of the sampling center changes only slightly in the next itera-
tion, indicating that the sampling center is constantly being 
adaptively adjusted.

It can be seen in Table 4 that after many iterations, the 
two-norm of the sampling center position in the normal 
distribution decreases and gradually converges to a stable 
value. From the plot of two-norm sampling center position 
in Fig. 7, it can be confirmed that the overall curve shows a 
decreasing trend with a very small fluctuation, proving that 
there is an optimal design point. The selection of design 
point directly affects the efficiency and accuracy of the cal-
culation as the adaptive iterative sampling method depends 
on the selection of design points. The existence of an optimal 
design point thus indicates that the results obtained using the 
adaptive iterative sampling method are reliable, stable, and 

(26)
Δ

X
− �

X

�

Start

The important sampling density function h(X) is constructed,
and the average point is taken as the initial sampling center
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Fig. 5   Flow chart for determining failure probability using the adap-
tive iterative sampling method

Table 3   Resulting failure 
probability according to the 
calculation method

Failure probability  p
f

Samples Sampling efficiency

Monte Carlo method 5.525 × 10–5 4 × 106 5.4 × 10–5

Adaptive iterative sampling 
method

5.6077 × 10–5 4 × 106 0.4913
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effective. It is therefore proven that the proposed use of the 
adaptive iterative sampling method can effectively analyze 
the post-buckling reliability of stiffened composite panels.

5 � Conclusion

In this study, a semi-empirical equation was first derived and 
used to determine the ultimate load of a stiffened composite 
panel, which was then experimentally verified; the experi-
mental and semi-empirical results agreed well, and the error 
is about 8.3%. It was then demonstrated that some processing 
methods and algorithms for capturing uncertainty in the semi-
empirical equations are more effective and accurate than oth-
ers. Based on the semi-empirical equations, the post-buckling 
reliability of a stiffened composite panel was then analyzed 
and discussed using the proposed adaptive iterative sampling 
method to obtain the failure probability. Compared with the 
traditional Monte Carlo method, the adaptive iterative sam-
pling method was shown to reduce the sampling of events that 
are irrelevant to the analysis results, improving the calculation 
efficiency. Notably, the adaptive iterative sampling method is 
independent as it did not need to find the sampling center of 
the panel using any other method. An analysis and discussion 
of the two-norm of the sampling center position during sam-
pling indicated that after several iterations, its value gradually 
decreases and converges to stability. This proved that there 
was an optimal design point, indicating that the adaptive itera-
tive sampling method based on the derived semi-empirical 
equations is effective and the results obtained are reliable and 
stable. The results of this research are of significance to the 
study of the post-buckling reliability of stiffened composite 
panels and can be used to improve and consolidate the appli-
cation of composite materials in aircraft.

Fig. 6   Change in probability of 
failure with sample size

Table 4   Two-norms of sampling center location

Number of 
iterations

Total samples Two-norm of 
sampling center

Sampling efficiency

1 200,000 4.5842 5 × 10–5

2 400,000 3.9435 0.6577
3 600,000 3.9213 0.5083
4 800,000 3.9156 0.5068
5 1,000,000 3.9156 0.5108
6 1,200,000 3.9156 0.5119
7 1,400,000 3.9156 0.5112
8 1,600,000 3.9156 0.5111
9 1,800,000 3.9156 0.5100
10 2,000,000 3.9156 0.5099
11 2,200,000 3.9156 0.5115
12 2,400,000 3.9156 0.5093
13 2,600,000 3.9156 0.5101
14 2,800,000 3.9156 0.5116
15 3,000,000 3.9156 0.5128
16 3,200,000 3.9150 0.5112
17 3,400,000 3.9150 0.5085
18 3,600,000 3.9102 0.5086
19 3,800,000 3.9102 0.5028
20 4,000,000 3.9102 0.5028
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