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Abstract
This paper presents the generalized nonlinear delay differential equations of fractional variable-order. In this article, a novel 
shifted Jacobi operational matrix technique is introduced for solving a class of multi-terms variable-order fractional delay 
differential equations via reducing the main problem to an algebraic system of equations that can be solved numerically. 
The suggested technique is successfully developed for the aforementioned problem. Comprehensive numerical experiments 
are presented to demonstrate the efficiency, generality, accuracy of proposed scheme and the flexibility of this method. The 
numerical results compared it with other existing methods such as fractional Adams method (FAM), new predictor–corrector 
method (NPCM), a new approach, Adams–Bashforth–Moulton algorithm and L1 predictor–corrector method (L1-PCM). 
Comparing the results of these methods as well as comparing the current method (NSJOM) with the exact solution, indicating 
the efficiency and validity of this method. Note that the procedure is easy to implement and this technique will be considered 
as a generalization of many numerical schemes. Furthermore, the error and its bound are estimated.

Keywords  Nonlinear delay differential equations of fractional variable-order · Jacobi polynomials · Operational matrix 
technique · Caputo differential operator

Mathematics subject classifications  65M99

1  Introduction

The analysis and applications of fractional calculus are an 
active and the fastest growing region for research in the last 
three decades. It has currently become an important tool 
owing to its wide applications in various scientific disci-
plines, such as physics, regular variation in thermodynamics, 
blood flow phenomenons, biophysics, electro-dynamics of 
complex medium, capacitor theory, chemistry, polymer rhe-
ology, dynamical systems, fitting of experimental data, etc. 
([1–3, 7] and references therein). The increasing develop-
ment of appropriate and efficient method to solve FDEs has 
aroused more interest of researchers in this field. Solving the 

nonlinear FDEs is relatively difficult compared to its linear 
type. In this regard, analytical methods such as, homotopy 
perturbation method (HPM), homotopy analysis method 
(HAM), new iterative methods and Adomian decomposi-
tion, have been used in the recent literature widely [8, 9, 
11–14, 53] . On the other hands, some researchers such as 
Diethelm et al [2, 16] have developed standard numerical 
methods, such as Adams–Bashforth methods have been used 
for numerical integration of FDEs. Lakestani et al [54] have 
peresented The construction of operational matrix of frac-
tional derivatives using B-spline functions, Application of 
Taylor series in obtaining the orthogonal operational matrix 
is proposed by Eslahchi and Dehghan [56], Kayedi-Bardeh 
et al have provided A method for obtaining the operational 
matrix of the fractional Jacobi functions and application 
[57].

Inclusion of delay in the differential equations of frac-
tional order creates new perspectives especially in the 
field of bioengineering [6], because in bioengineering, the 
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understanding of the dynamics that occur in biological tis-
sues, is improved by fractional derivatives [4, 6].

In mathematics, delay differential equations (DDEs) are 
a type of differential equation in which the derivative of the 
unknown function at a certain time is given in terms of the 
values of the function at previous times. The DDEs are also 
called time-delay systems, systems with aftereffect or deed-
time, hereditary systems, equations with deviating argument, 
or differential–difference equations [17].

Fractional delay differential equations differ from ordi-
nary differential equations in that the derivative at any time 
depends on the solution (and in the case of neutral equations 
on the derivative) at prior times. Many events in the natural 
world can be modeled to form of fractional order of delay 
differential equations [7]. The fraction order of differential 
equations have many application in various scientific dis-
ciplines by modeling of various problem such as economy, 
electrodynamics, biology, control, finance, chemistry, phys-
ics and so on, for more detail, we refer the interested reader 
to [17–23].

In recent years, Margado et al in [24] analyzed numerical 
solution and approximated it for FDDEs. Cermak et al in 
[25], analyzed stability regions of FDDEs system. Stabil-
ity for FDDEs systems by means of Grünwalds approach is 
analyzed by Lazarovic and Spansic [26]. Abbaszadeh and 
Dehghan have presented Numerical and analytical investi-
gations for neutral delay fractional damped diffusion-wave 
equation based on the stabilized interpolating element free 
Galerkin (IEFG) method [55], Daftardar-Gejji et al in [12] 
have proposed a new predictor–corrector method and based 
on the realizer developed new iteration method presented by 
Daftardar-Gejji and Jafari [27] , for solving FDEs numeri-
cally. Bhalekar and Daftardar-Gejji proposed A predic-
tor–corrector scheme to solve non-linear fractional-order 
delay differential equations in [10]. In [5], the author gener-
alized the Adams–Bashforth–Moulton algorithm introduced 
in [2, 16, 28] to the delay FDEs. Varsha et al [6], have pre-
sented a new approach to solve non-linear fractional- order 
differential equations involving delay. Ghasemi et al [17], 
have employed Reproducing kernel Hilbert Space method 
to solve nonlinear delay differential equation of fractional 
order. Jhing and Daftardar-Gejji have presented a new 
numerical method to solve FDDEs [4].

Moreover, the spectral methods that basically depends on 
a set of orthogonal polynomials, are used to solve the differ-
ential equations of fractional-order. One of the most famous 
of them, is the classical Jacobi polynomials that shown as 
follows:

These polynomials have been used extensively in math-
ematical analysis and practical applications because it has 

P(𝛼,𝛽)
n

(x) (n ≥ 0, 𝛼 > −1, 𝛽 > −1).

the advantages of gaining the numerical solutions in � and � 
parameters. Thus, it would be beneficial to carry out a sys-
tematic study via Jacobi polynomials with general indexes 
� and � and this clearly considered one of the aims and the 
novelly of the time interval t ∈ [0, I] [15]. Furthermore, 
recently interest of researchers has increased in this field 
(field of variable fractional differential equations) [29, 30]. 
So, many methods are used to find the numerical solution of 
these equations [31–33].

Now, the aim of this paper is to generalize the orthogonal 
polynomials in the base of solution. In fact, this technique 
is introduced in [15] and we present a new shifted Jacobi 
operational matrix for the fractional derivative to solve the 
multi-terms variable-order FDDEs which as follows:

where 𝛼j ∈ ℝ(j = 1, 2,… , n + 1) , 𝛼n+1 ≠ 0, 0 < T . and 
D�j(t)w(t) ( j = 1, 2,… , n ) are the derivatives of variable-
order fractional in the Caputo sense.

Note 1  If �j(t) ( j = 1, 2,… , n ) are constants, then equation 
(1) will be as follows:

Also note that: we can use many polynomials such as Leg-
endre polynomials, Gegenbauer polynomials, all Chebyshev 
polynomials, Lucas polynomials, Vieta-Lucas polynomials, 
and Fibonacci polynomials in our new suggestion technique.

The numerical results obtained for the mentioned equa-
tion in this study reveals that the present method is of highly 
accuracy. By focusing on numerical experiments gained by 
this method with other available methods, and comparing 
them, we can find that the proposed scheme capable of solv-
ing the variable-order fractional delay differential equation, 
playing role of a powerful effective and practical numerical 
technique.

(1)

n∑
j=1

�jD
�j(t)w(t) + �n+1w(t − �)

= F (t, w(t), D�1(t)w(t),

D�2(t)w(t), … , D�n(t)w(t),w(t − � )) , 0 ≤ t ≤ T ,

w(t) = g(t), t ∈ [−�, 0],

w(0) = w0,

(2)

n∑
j=1

�jD
�jw(t) + �n+1w(t − �)

= F (t, w(t), D�1w(t),

D�2w(t), … , D�nw(t),w(t − �)) , 0 ≤ t ≤ T ,

w(t) = g(t), t ∈ [−�, 0],

w(0) = w0,
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2 � Fundamentals and preliminaries

In the first part of this section, we review some of the basic 
and most important properties of fractional calculus theory. 
Then recall some important properties of the Jacobi polyno-
mials which help us for developing the suggested technique. 
So we refuse to include duplicate concepts in other related 
articles and unnecessary content but for more detail, we refer 
the interested reader to [34, 37, 38].

2.1 � The fractional derivative and integral

There are several used definitions for fractional derivatives 
but the three most usual are Riemann–Liouville, Grünwald-
Letincov and Caputo definitions. This article is based on 
Caputo definition because ,as well as know, only the Caputo 
sense has the same form as integer-order differential equa-
tions in initial conditions.

Definition 2.1  The left- and right-sided Caputo fractional 
derivatives of order 𝜂 (n − 1 < 𝜂 ≤ n ) are defined as

that

and

where ⌈.⌉ is the ceiling function and M0 = {0, 1, 2,⋯}.

Also

where �and � are constants.

(3)
D

�

+w(t) =
1

Γ(n − �)
∫ t

0

U(n)(�)

(t − �)�−n+1
d�,

D�
−
w(t) =

(−1)n

Γ(n − �)
∫ T

t

U(n)(�)

(� − t)�−n+1
d�.

(4)D
𝜂

+t
j =

⎧⎪⎨⎪⎩

0 , for j ∈ M0 and j < ⌈𝜂⌉,
Γ(j + 1)

Γ(j − 𝜂 + 1)
tj−𝜂 , for j ∈ M0 and j > ⌈𝜂⌉.

(5)

D𝜂

−
(T − t)j

=

⎧⎪⎨⎪⎩

0 , for j ∈ M0 and j < ⌈𝜂⌉,
(−1)jΓ(j + 1)

Γ(j − 𝜂 + 1)
(T − t)j−𝜂 , for j ∈ M0 and j > ⌈𝜂⌉.

D
�

±(��(t) + ��(t)) = �D
�

±(�(t)) + �D
�

±(�(t)).

Definition 2.2  The Caputo fractional derivatives of variable-
order �(t) for w(t) ∈ Cm[0, T] are given respectively as [30, 
35]:

At the beginning time and for 0 < 𝜂(t) < 1 , we have:

also, if a and b are constant then

According to Eq. (6), we have:

On the other hand

2.2 � Shifted Jacobi polynomials and their properties

Denote P(𝛼,𝛽)
n

(z); 𝛼 > −1 , 𝛽 > −1 as the n− th order Jacobi 
polynomial in z defined on [−1, 1].

As all classic orthogonal polynomials, P(�,�)
n

(z) form 
an orthogonal system with respect to weight function 
�(�,�)(z) = (1 + z)� (1 − z)� , in other words [34]:

where �i,j is the Kronecker function and

also the i-th order Jacobi polynomial has the following ana-
lytical form [15]

(6)
D�(t)w(t) =

1

Γ(1 − �(t)) ∫
t

0+

w�(�)

(t − �)�(t)
d�

+
w(0+) − w(0−)

Γ(1 − �(t))
t−�(t).

(7)D�(t)w(t) =
1

Γ(1 − �(t)) ∫
t

0+

w�(�)

(t − �)�(t)
d�.

(8)D�(t)(aw1(t) + bw2(t)) = aD�(t)w1(t) + bD�(t)w2(t) .

(9)D�(t)C = 0, C is a constant.

(10)D�(t)tk =

⎧⎪⎨⎪⎩

0, for k = 0,

Γ(k + 1)

Γ(k + 1 − �(t))
tk−�(t) for k = 1, 2,⋯ .

(11)∫
1

−1

P
(�,�)

i
(z)P

�,�)

j
(z)�(�,�) dz = h

(�,�)

j
�i,j,

h
(�,�)

j
=

2�+�+1Γ(j + � + 1)Γ(j + � + 1)

(2j + � + � + 1)j! Γ(j + � + � + 1)
,

(12)P
(�,�)

i
(t) =

i∑
k=0

Γ(� + i + 1)Γ(� + i + 1 + � + k)

Γ(� + � + i + 1)Γ(� + 1 + k)Γ(k + 1)Γ(i − k + 1)

(
t − 1

2

)k

,
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If we implement the change of variable z = (
2t

T
− 1) , then 

we can use the polynomial of Eq. (12) on the interval 
t ∈ [0, T] . Therefore, we have so-called the shifted Jacobi 
polynomials P(�,�)

n
(
2t

T
− 1) which denoted by P(�,�)

T ,i
(t) . Then 

P
(�,�)

T ,i
(t) form an orthogonal system with respect to weight 

function �(�,�)

T
(t) = t� (T − t)� in the interval [0, T] with fol-

low orthogonality trait:

where �i,j is the Kronecker function and

also the i-th order Shifted Jacobi polynomial has the follow-
ing analytical form [15]

And in the endpoint values are given as

Also, P(�,�)

T ,i
(t) can be obtained via the recurrence relation, we 

refer the interested reader to [15].

Note 2  Furthermore, since the shifted Jacobi polynomials 
includes unlimited number of orthogonal polynomials such 
as the shifted Gegenbauer polynomials G(�,�)

T ,i
(t) , the shifted 

Legendre polynomials L(�,�)
T ,i

(t) , and the shifted Chebyshev 
polynomials of the first, second, third and fourth kinds 
T
(�,�)

T ,i
(t) , U(�,�)

T ,i
(t) , V (�,�)

T ,i
(t) and W (�,�)

T ,i
(t) , respectively. All 

these orthogonal polynomials are contacted with P(�,�)

T ,i
(t) 

through the relations:

(13)∫
T

0

P
(�,�)

T ,i
(t)P

�,�)

T ,j
(t)�

(�,�)

T
dt = h

(�,�)

T ,j
�i,j,

h
(�,�)

T ,j
=

(
T

2

)�+�+1

h
(�,�)

j
,

(14)

P
(�,�)

T ,i
(t) =

i∑
k=0

(−1)i−k
Γ(� + i + 1)Γ(� + � + k + i + 1)

Γ(� + � + i + 1)Γ(� + 1 + k)Γ(k + 1)Γ(i − k + 1)Tk
t
k
,

=

i∑
k=0

Γ(� + i + 1)Γ(� + � + k + i + 1)

Γ(� + � + i + 1)Γ(� + 1 + k)Γ(k + 1)Γ(i − k + 1)Tk
(T − t)k .

P
(�,�)

T ,i
(0) = (−1)i

Γ(� + i + 1)

Γ(� + 1)Γ(k + 1)
,

P
(�,�)

T ,i
(T) =

Γ(� + i + 1)

Γ(� + 1)Γ(k + 1)
.

3 � Function approximation by shifted Jacobi 
polynomials

The function w(t) , square integrable with respect to �(�,�)

T
(t) 

in [0, T], can be expanded as the following expression [15, 
34]:

where ai (the coefficients of the series) are obtained by

So, we can estimate the approximate solution by taking 
(N + 1)-terms of the series in Eq. (15) and we will have

L
(�,�)

T ,i
(t) = P

(0,0)

T ,i
(t),

G
(�,�)

T ,i
(t) =

Γ(i + 1)Γ

(
� +

1

2

)

Γ

(
� +

1

2
+ i

) P

(
�−
1

2
,�−

1

2

)

T ,i
(t),

T
(�,�)

T ,i
(t) =

Γ(i + 1)Γ

(
1

2

)

Γ

(
1

2
+ i

) P

(
−
1

2
,−
1

2

)

T ,i
(t),

U
(�,�)

T ,i
(t) =

Γ(i + 2)Γ

(
1

2

)

2Γ

(
3

2
+ i

) P

(
1

2
,
1

2

)

T ,i
(t),

V
(�,�)

T ,i
(t) =

22i(Γ(i + 1))2

Γ(2i + 1)
P

(
−
1

2
,
1

2

)

T ,i
(t),

W
(�,�)

T ,i
(t) =

22i(Γ(i + 1))2

Γ(2i + 1)
P

(
1

2
,−
1

2

)

T ,i
(t).

(15)w(t) =

∞∑
i=0

aiP
(�,�)

T ,i
(t),

(16)ai =
1

h
(�,�)

T ,i
∫

T

0

�
(�,�)

T
w(t)P

(�,�)

T ,i
(t)dt, i = 0, 1,⋯ .

(17)w(t) ≃ wN(t) =

N∑
i=0

aiP
(�,�)

T ,i
(t) = ATΦT ,N(t),
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w h e r e  A = [a0, a1,⋯ , aN]
T   ,  a n d 

ΦT ,N(t) = [P
(�,�)

T ,0
(t),P

(�,�)

T ,1
(t),⋯ ,P

(�,�)

T ,N
(t)]T.

Here, we suppose that

By Eq. (17), the vector ΦT ,N(t) can be presented as

where B(�,�) is a square matrix of order (N + 1) × (N + 1) 
that given as follows

for 0 ≤ i, j ≤ N.
For example, if N = 4, � = � = 0 , then B as follows

Hence, using Eq. (19) , we get

Note 3  Note that, we obtain this square matrix B for all 
other orthogonal polynomials as well. For example, if 
N = 4, � =

1

2
, � =

−1

2
 then the square matrix B for the 

fourth kind shifted Chebyshev polynomials as follows

(18)S(t) = [1, t, t2, t3,⋯ , tN]T .

(19)ΦT ,N(t) = B(�,�)S(t).

(20)

bi+1,j+1 =

⎧
⎪⎨⎪⎩

(−1)i−j
(� + i)!(� + � + j + i)!

(� + � + i)!(� + j)!(j!)(i − j)!Tj
, i ≥ j,

0 , otherwise.

(21)B(0,0) =
1

Ti

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−1 2 0 0 0

1 − 6 6 0 0

−1 12 − 30 20 0

1 − 20 90 − 140 70

⎤
⎥⎥⎥⎥⎥⎦

.

(22)S(t) = B−1
(�,�)

ΦT ,N(t).

(23)B�
1

2
,
−1

2

� =
1

Ti

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−1 4 0 0 0

1 − 12 16 0 0

−1 24 − 80 64 0

1 − 40 240 − 448 256

⎤
⎥⎥⎥⎥⎥⎦

.

4 � Shifted Jacobi polynomials operational 
matrix (SJOM)

Operational matrices, which are used in different areas of 
numerical analysis and they are especially important to solve 
a variety of problems in different fields such as integral equa-
tions, differential equations, integro-differential equations, 
ordinary and partial fractional differential equations and 
etc [31, 34–36, 39–47]. In this section, we investigate the 
(SJOM) of fractional variable-order to support the numerical 
solution of Eq. (1). Therefore, we convert the problem into 
the system of algebraic of equations which solved numeri-
cally in collocation points.

At first, D�i(t)ΦT ,N(t), (i = 1, 2,⋯ , n) can be deduced as 
the following:

since ΦT ,N(t) = B(�,�)S(t) , then we have

Combining Eqs. (10) and (24), it gives

where

(24)

D�i(t)ΦT ,N(t) = D�i(t)(B(�,�)S(t) )

= B(�,�)D
�i(t) [1, t,⋯ , tN]T ,

i = 1, 2,⋯ , n.

(25)

D�i(t)ΦT ,N(t) = B(�,�)D
�i(t)(S(t) )

= B(�,�)

�
0,

Γ(2)t(1−�i(t))

Γ(2 − �i(t))
,⋯ ,

Γ(N + 1)t(N−�i(t))

Γ(N + 1 − �i(t))

�T

= B(�,�)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0

0
Γ(2)t−�i(t)

Γ(2 − �i(t))
0 ⋯ 0

0 0
Γ(3)t−�i(t)

Γ(3 − �i(t))
⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
Γ(N)t−�i(t)

Γ(N + 1 − �i(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

1

t

t2

⋮

tN

⎤⎥⎥⎥⎥⎥⎦

= B(�,�)Qi(t)S(t), i = 1, 2,⋯ , n.

(26)Qi(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ⋯ 0

0
Γ(2)t−�i(t)

Γ(2 − �i(t))
0 ⋯ 0

0 0
Γ(3)t−�i(t)

Γ(3 − �i(t))
⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯
Γ(N)t−�i(t)

Γ(N + 1 − �i(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, i = 1, 2,⋯ , n.
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Using Eq. (22), then

The operational matrix of D�i(t)ΦT ,N(t) , (i = 1, 2,⋯ , n.) 
is B(�,�)Qi(t)B

−1
(�,�)

.
Now, we can estimate the variable-order fractional of 

the approximated function that obtained in Eq. (17) as the 
following

By using Eq. (28), hence the Eq. (1) is turned into

Finally, we use tj (j = 0, 1, 2,⋯ ,m.) where they are the 
roots of P(�,�)

T ,m+1
(t) . Then Eq. (29) can be converted into the 

following algebraic system

So, the system in Eq. (30) can be solved numerically for 
determining the unknown vector A. Therefore, the numerical 
solution that presented in Eq. (17) can be obtained.

5 � Error analysis

In this part of paper, we estimate an upper bound of the 
absolute errors via using the Lagrange interpolation poly-
nomials. Also, by using the current method (NSJOM) with 
error approximation and the residual correction method [48, 
49], an efficient error approximation will be obtained for the 
variable-order fractional differential equations.

(27)
D�i(t)ΦT ,N(t) = B(�,�)Qi(t)B

−1
(�,�)

ΦT ,N(t), i = 1, 2,⋯ , n.

(28)
D�i(t)w(t) ≃ D�i(t)(ATΦT ,N(t) ) = ATD�i(t)ΦT ,N(t)

= ATB(�,�)Qi(t)B
−1
(�,�)

ΦT ,N(t), i = 1, 2,⋯ , n.

(29)

n∑
i=1

�i(A
TB(�,�)Qi(t)B

−1
(�,�)

ΦT ,N(t))

+ �n+1A
TΦT ,N(t − �)

= F (t, ATΦT ,N(t), (A
TB(�,�)Q1(t)B

−1
(�,�)

ΦT ,N(t)),

(ATB(�,�)Q2(t)B
−1
(�,�)

ΦT ,N(t)), … ,

(ATB(�,�)Qn(t)B
−1
(�,�)

ΦT ,N(t)),

ATΦT ,N(t − �)) , 0 ≤ t ≤ T ,

(30)

n∑
i=1

�i(A
TB(�,�)Qi(tj)B

−1
(�,�)

ΦT ,N(tj))

+ �n+1A
TΦT ,N(tj − �)

= F (tj, A
TΦT ,N(tj), (A

TB(�,�)Q1(tj)B
−1
(�,�)

ΦT ,N(tj)),

(ATB(�,�)Q2(tj)B
−1
(�,�)

ΦT ,N(tj)), … ,

(ATB(�,�)Qn(tj)B
−1
(�,�)

ΦT ,N(tj)),

ATΦT ,N(tj − �)) , j = 0, 1, 2,⋯ ,m.

5.1 � Error bound

Now, our aim is to gain an analytic expression of error norm 
for the best approximation of a smooth function w(t) ∈ [0, T] 
via its expansion in terms of Jacobi polynomials. Let

In this part of the discussion, we always assume that 
wN(t) ∈

∏�,�

N
 is the best approximation of w(t), then by 

definition of the best approximation, we have

It’s obvious that the above inequality is also true if 
vN(t) be the interpolating polynomials at node points 
ti (i = 0, 1,⋯ ,m) , where ti are the roots of P(�,�)

T ,m+1
(t) . Then 

by the Lagrange interpolation polynomials formula and its 
error formula, we have

where � ∈ [0, T] , and hence we obtain that

We note that w(t) is a smooth function on [0, T] , there-
fore, there exist a constant C1 , such that

By minimizing the factor ∥
∏N

j=0
(t − tj) ∥∞ as follows, we 

will have:
If use the one-to-one mapping t = T

2
(z + 1) between the 

interval [−1, 1] and [0, T] to deduce that [34, 50]

�,�∏
N

= span
{
P
(�,�)

T ,i
(t), i = 0, 1, 2,⋯ ,N

}
.

(31)∀vN(t) ∈

�,��
N

‖w(t) − wN(t)‖∞ ≤ ‖w(t) − vN(t)‖∞.

(32)w(t) − vN(t) =
w(N+1)(�)

(N + 1)!

N∏
j=0

(t − tj) ,

(33)

∥ w(t) − vN(t) ∥∞≤ max
0≤t≤T ∣ w(N+1)(�) ∣

∥
∏N

j=0
(t − tj) ∥∞

(N + 1)!
.

(34)max
0≤t≤T ∣ w(N+1)(�) ∣≤ C1 .

(35)

min
0≤tj≤T max

0≤t≤T ∣

N∏
j=0

(t − tj) ∣

= min
−1≤zj≤1 max

−1≤z≤1 ∣
N∏
j=0

T

2
(z − zj) ∣

=

(
T

2

)N+1

min
−1≤zj≤1 max

−1≤z≤1 ∣
N∏
j=0

(z − zj) ∣

=

(
T

2

)N+1

min
−1≤zj≤1 max

−1≤z≤1 ∣
P
(�,�)

N+1
(z)

�
(�,�)

N

∣,
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where �(�,�)
N

=
Γ(2N + � + � + 1)

2NN!Γ(N + � + � + 1)
 is the leading coeffi-

cient of P(�,�)

N+1
(z) and zj are the roots of P(�,�)

N+1
(z) . It is clear that

Using Eqs. (34) and (35), gives the following result

Then, we estimate an upper bound for absolute error of the 
exact and approximate solutions.

5.2 � Error function estimation

In this subsection, we have introduced the error estimation 
based on the residual error function for the presented tech-
nique and the approximate solution (17) is refined via the 
residual correction scheme. The residual error estimation 
was used for the error estimation of some methods for dif-
ferent equations [36, 49, 51, 52].

At first, we denote eN(t) = wN(t) − w(t) as the error func-
tion of the NSJOM method approximation wN(t) to w(t) , 
where w(t) is the exact solution of Eq. (1).

Therefore, wN(t) satisfies the following equation

where RN(t) is the residual function of Eq. (1), which is esti-
mated by replacing the wN(t) with w(t) in Eq. (1).

By subtract Eq. (1) from Eq. (37), the error problem is 
constructed as follows:

where

max
−1≤z≤1 ∣ P

(�,�)

N+1
(z) ∣= P

(�,�)

N+1
(1) =

Γ(� + N + 2)

Γ(� + 1)(N + 1)!
,

(36)∥ w(t) − wN(t) ∥∞≤ C1

(
T

2
)N+1Γ(� + N + 2)

�
(�,�)

N
((N + 1)!)2 Γ(� + 1)

.

(37)

n∑
j=1

�jD
�j(t)wN(t) + �n+1wN(t − �)

= F (t, wN(t), D
�1(t)wN(t),

D�2(t)wN(t), … , D�n(t)wN(t),wN(t − � )) + RN(t),

0 ≤ t ≤ T ,

wN(0) = w0,

(38)

n∑
j=1

�jD
�j(t)eN(t) + �n+1eN(t − �)

= RN(t) + RN,F(t), 0 ≤ t ≤ T ,

eN(0) = 0,

Thus, the (38) can be solved in the same way as in the previ-
ous section and we obtain the following approximation to 
eN(t).

Then the maximum absolute error can be obtained approxi-
mately by

Note 4  Note that if the exact solution of the problem (1) 
is unknown, in real practical experiment, we have trouble 
with computing RN,F . But, the replacement strategy is to be 
approximated by its bound, say D1|eN(t)| + D2|eN(t − �)| 
with D1 and D2 as positive constants. In fact, it is possible 
by supposing that the nonlinear term F satisfies Lipschitz 
condition with respect to its all arguments.

The above estimation of error (41), depends on the con-
vergence rates of expansions in Jacobi polynomial. Thus, it 
provides reasonable convergence rates in temporal discre-
tizations [34, 52].

6 � Numerical experiments

In this section, based on the previous discussion, some 
numerical examples are given to illustrate the accuracy, effi-
ciency, applicability, generality and validity of the proposed 
technique. In all examples, the results of the present method 
are computed by Mathematica 10 software. In order to test 
our scheme, we compared it with other known methods in 
terms of absolute errors ∣ wexact(t) − wn(t) ∣ , relative errors 
∣
wexact(t) − wn(t)

wexact(t)
∣ and the CPU time required for solving all 

examples.
Comparison of the results obtained by this scheme with 

the exact solution of each example shows that this new tech-
nique has a better agreement than other methods. The stabil-
ity, consistency and easy implementation of this technique 
cause this method to be more applicable and reliable.

Example 6.1  [6, 10] Consider the following delay fractional 
order equation for 0 < 𝜂 ≤ 1 , 𝜏 > 0

(39)

RN,F(t) = F (t, wN(t), D
�1(t)wN(t),

D�2(t)wN(t), … , D�n(t)wN(t),wN(t − � ))

− F (t, w(t), D�1(t)w(t),

D�2(t)w(t), … , D�n(t)w(t),w(t − � )).

(40)�N(t) =

N∑
i=0

diP
(�,�)

T ,i
(t) = DTΦT ,N(t),

(41)�N(t) = max{�N(t) , 0 ≤ t ≤ T}.
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Note that  w(t) = t2 is  the exact  solution and 
0 ≤ t ≤ T , T = 2, � = 0.3 , � = 0.6.

By the concepts presented in Sect. 4, we consider the 
approximate solution with (N + 1) finite terms that pre-
sented in Eq. (17) for this problem and substitute in main 
problem. Then by using Eq. (28), this problem is converted 
to form of the Eq. (29), finally using ti , therefore, a sys-
tem of algebraic equations emerges which can be solved 
numerically to determine the unknown vector A with initial 
value w0 = 0 . The solution of the Eq. (42) approximated 
using new method compared to other methods, is in the 

(42)

D�w(t) =
2w(t)

1−
�

2

Γ(3 − �)
+ w(t − �) − w(t) + 2�

√
w(t) − �2,

w(t) = 0, t ≤ 0.

Table 1   Comparison the absolute errors between results in [6, 10] and our results with � = 0, � = 0 and T = 2 for Ex.1

t ∈ [0,T] New technique,N = 2 New technique, N = 7 Method in [6] , N = 2000 Method in [10],N = 2000

0.2 5.19525 × 10−7 4.23272 × 10−16 7.81197 × 10−2 7.81550 × 10−2

0.4 1.00211 × 10−6 1.38778 × 10−17 1.29928 × 10−1 1.29978 × 10−1

0.6 1.44777 × 10−6 1.66533 × 10−16 1.90687 × 10−1 1.90760 × 10−1

0.8 1.85649 × 10−6 0 2.48601 × 10−1 2.48694 × 10−1

1.0 2.22827 × 10−6 0 3.07649 × 10−1 3.07763 × 10−1

1.2 2.56312 × 10−6 0 3.66427 × 10−1 3.66563 × 10−1

1.4 2.86104 × 10−6 0 4.25322 × 10−1 4.25479 × 10−1

1.6 3.12202 × 10−6 0 4.84208 × 10−1 4.84387 × 10−1

1.8 3.34607 × 10−6 0 5.43110 × 10−1 5.43312 × 10−1

2.0 3.53318 × 10−6 0 6.02019 × 10−1 6.02243 × 10−1

CPU time 0.01560 s 0.63960 s 104.343750 s 215.031250 s

(a) Exact solution (b) Approximate solution

Fig. 1   Comparison of between approximate solution ( w5 ) of NSJOM method and exact solution for example 1

Fig. 2   The absolute errors comparison between numerical solution 
( w5 ) and exact solution for Example 1
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best agreement with the exact solution. The absolute errors 
( at some nodal points) of this method and methods in [6, 
10] are presented and compared in Table 1, also the CPU 
time needed for these methods is given in this Table. From 
this Table, it is observed that the numerical results are very 
close to the exact solution and we achieved an excellent 
approximation for the exact solution by employing current 
scheme and it was found the our method in comparison 
with mentioned methods is better with view to utilization, 
accuracy and more time efficiency. Figure 1 compares the 
exact and approximated solution which confirms the reli-
ability of NSJOM method. Moreover, in Fig. 2 we plot the 
absolute error for this example. Note that the Figs. 1 and 2 
show a proper agreement between approximate and exact 
solutions. In this example for N = 2 and N = 7 , we have 

A = [1.33333, 2, 0.66667]T , A = [1.33333, 2, 0.66667,

496 × 10−16, 8.71848 × 10−17, 0, 3.55601 × 10−16,

.82553 × 10−16]T

 , 

respectively.

Example 6.2  [4, 27] Consider the following delay fractional 
order equation for 0 < 𝜂 ≤ 1 , 𝜏 > 0

In above problem w(t) = t2 − t is the exact solution and 
0 ≤ t ≤ T , T = 10, � = 0.1 , � = 0.9.

Using the process mentioned in Ex. 1, we get the solution 
of this problem. The solution of the Eq. (43) approximated 
using current method compared to other methods, is in the 
best agreement with the exact solution. The absolute and rel-
ative errors ( at some nodal points) of this method and meth-
ods in [4, 27] are presented and compared in Tables 2, 3, also 
the CPU time needed for these methods is given in these 
Tables. From these Tables, it is observed that the numerical 
results are very close to the exact solution and we achieved 
an excellent approximation for the exact solution by employ-
ing new technique and it was found the current method in 
comparison with mentioned methods is better with view to 

(43)
D0.9w(t) =

2t1.1

Γ(2.1)
−

t0.1

Γ(1.1)

+ w(t − 0.1) − w(t) + 0.2t − 0.11,

w(t) = 0, t ≤ 0.

Table 2   Comparison the 
absolute errors between results 
in [4, 27] and our results with 
� = 0, � = 0 and T = 10 for 
Ex.2

t ∈ [0,T] New technique,N = 2 New technique, N = 3 Method in [27] 
, N = 1000

Method in [4],N = 1000

1 3.33067 × 10−15 3.24185 × 10−14 4.393 × 10−3 4.118 × 10−3

2 9.76996 × 10−15 5.50671 × 10−14 4.117 × 10−3 3.477 × 10−3

3 1.59872 × 10−14 7.10543 × 10−14 3.964 × 10−3 2.986 × 10−3

4 2.13163 × 10−14 8.17124 × 10−14 3.859 × 10−3 2.562 × 10−3

5 2.48390 × 10−14 8.52651 × 10−14 3.780 × 10−3 2.178 × 10−3

6 3.19744 × 10−14 8.17124 × 10−14 3.716 × 10−3 1.824 × 10−3

7 2.84217 × 10−14 7.815973 × 10−14 3.663 × 10−3 1.492 × 10−3

8 4.26326 × 10−14 5.68434 × 10−14 3.618 × 10−3 1.179 × 10−3

9 4.26326 × 10−14 2.84217 × 10−14 3.578 × 10−3 8.820 × 10−4

10 4.26326 × 10−14 1.42109 × 10−14 3.543 × 10−3 6.000 × 10−3

CPU time 0 s 0.01560 s 2361.58699 s 1504.27468 s

Table 3   Comparison the 
relative errors between results 
in [4, 27] and our results with 
� = 0, � = 0 and T = 10 for 
Ex.2

t ∈ [0,T] New technique,N = 2 New technique, N = 3 Method in [27] 
, N = 1000

Method in [4],N = 1000

2 4.8849 × 10−15 2.7533 × 10−14 2.0585 × 10−3 1.7385 × 10−3

3 2.6645 × 10−15 1.1842 × 10−14 6.6060 × 10−4 4.9770 × 10−4

4 1.7763 × 10−15 6.8093 × 10−15 3.2160 × 10−4 2.1350 × 10−4

5 1.2434 × 10−15 4.2632 × 10−15 1.8900 × 10−4 1.0890 × 10−4

6 1.06580 × 10−15 2.7237 × 10−15 1.2390 × 10−4 6.0800 × 10−5

7 6.7670 × 10−16 1.8609 × 10−15 8.7000 × 10−5 3.5000 × 10−5

8 7.6129 × 10−16 1.0150 × 10−15 6.4600 × 10−5 2.1000 × 10−5

9 5.92116 × 10−16 3.9474 × 10−16 4.9700 × 10−5 1.2250 × 10−5

10 4.7369 × 10−16 1.5789 × 10−16 3.9300 × 10−5 6.6700 × 10−5

CPU time 0 s 0.01560 s 2361.58699 s 1504.27468 s
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utilization, accuracy and more time efficiency. Figure 3 com-
pares the exact and approximated solution which confirms 
the reliability of NSJOM method. Moreover, in Fig. 4 we 
plot the absolute error for this example. Note that the Figs. 3 
and 4 show a proper agreement between approximate and 
exact solution. In this example for N = 2 and N = 3 , we have 

A = [28.33333, 45, 16.66667]T , A = [28.33333, 45, 16.66667, 0]T   , 
respectively.

Example 6.3  [5] Consider the following delay fractional 
order equation for 0 < 𝜂 ≤ 1 , 𝜏 > 0

In this problem w(t) = t2 − t is the exact solution and 
0 ≤ t ≤ T .

Like pervious examples, we get the solution of this prob-
lem in accordance with delay being constant or time vary-
ing. The solution of the Eq. (44) approximated using current 
method compared to other methods, is in the best agree-
ment with the exact solution. The absolute ( EA ) and relative 
errors ( ER ) (at t = T  ) of this method and method in [5] are 
displayed and compared in Tables 4, 5. From these Tables, 
it is observed that the numerical results are very close to the 
exact solution and we gained an excellent approximation for 
the exact solution by employing new technique and it was 
found the current technique in comparison with mentioned 

(44)
D�w(t) =

2t2−�

Γ(3 − �)
−

t1−�

Γ(2 − �)

+ w(t − �) − w(t) + 2�t − �2 − �,

w(t) = 0, t ≤ 0.

(a) Exact solution (b) Approximate solution

Fig. 3   Comparison of between approximate solution( w2 ) of NSJOM method and exact solution for example 2

Fig. 4   The absolute errors comparison between numerical solution( 
w2 ) and exact solution for Example. 2

Table 4   Comparison the error 
treatment between results 
in [5] and our results with 
� = 0, � = 0, � = 0.9, � = 0.01 exp(−t) 
at t = T  for Ex.3

T E New technique, N = 2 New technique, N = 4 Method in [5]N = 1600

5 E
A 1.10371 × 10−15 6.00893 × 10−16 1.0000 × 10−3

E
R 9.20416 × 10−17 4.29713 × 10−17 5.2136 × 10−5

10 E
A 1.503711 × 10−14 2.55424 × 10−15 4.7115 × 10−4

E
R 5.99321 × 10−16 1.33251 × 10−16 5.2350 × 10−6

50 E
A 2.37010 × 10−14 6.00964 × 10−15 7.0303 × 10−4

E
R 7.00541 × 10−16 8.31663 × 10−17 2.7081 × 10−8
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method is better with view to utilization, accuracy and more 
time efficiency. Figures 5, 7 compare the exact and approxi-
mated solution which confirms the reliability of NSJOM 
method. Moreover, in Figs. 6, 8 we plot the absolute errors 
of this example in accordance with delay being constant or 

time varying. Note that the Figs. 5 ,6, 7 and 8 show a proper 
agreement between approximate and exact solution.

Example 6.4  [6, 10] As the last and general example, con-
sider the following delay fractional order equation for 
0 < 𝜂(t) ≤ 1 , 𝜏 > 0

Note that  w(t) = t2 is  the exact  solution and 
0 ≤ t ≤ T , T = 1, � = 0.3 , �(t) = 0.6t.

By the concepts presented in Sect. 4, we consider the 
approximate solution with (N + 1) finite terms that presented 
in Eq. (17) for this problem and substitute in main problem. 
Then by using Eq. (28), this problem is converted to form 
of the Eq. (29), finally using ti , therefore, a system of alge-
braic equations emerges which can be solved numerically 
to determine the unknown vector A. The solutions of the 

(45)
D�(t)w(t) =

2w(t)
1−
�(t)

2

Γ(3 − �(t))

+ w(t − �) − w(t) + 2�
√
w(t) − �2,

w(t) = 0, t ≤ 0.

Table 5   Comparison the error 
treatment between results 
in [5] and our results with 
� = 0, � = 0, � = 0.1, � = 0.9 
at t = T  for Ex.3

T E New technique, N = 2 New technique, N = 4 Method in [5],N = 1600

5 E
A 7.10543 × 10−15 3.55271 × 10−15 3.3000 × 10−3

E
R 3.552715 × 10−16 1.77636 × 10−16 1.6663 × 10−4

10 E
A 4.26326 × 10−14 5.68434 × 10−14 3.1000 × 10−3

E
R 4.73695 × 10−16 6.31594 × 10−16 3.4191 × 10−5

50 E
A 3.63798 × 10−12 4.54747 × 10−13 2.3000 × 10−3

E
R 1.48489 × 10−15 1.85611 × 10−16 9.2911 × 10−7

(a) Exact solution (b) Approximate solution

Fig. 5   Comparison of between approximate solution( w2 ) of NSJOM method and exact solution for example. 3. ( � = 0.1, � = 0.9)

Fig. 6   The absolute errors comparison between numerical solution( 
w2 ) and exact solution for Example. 3. ( � = 0.1, � = 0.9)
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(a) Exact solution (b) Approximate solution

Fig. 7   Comparison of between approximate solution ( w2 ) of NSJOM method and exact solution for example. 3. ( � = 0.01 exp (−t), � = 0.9)

Fig. 8   The absolute errors comparison between numerical solution( 
w2 ) and exact solution for Example. 3. ( � = 0.01 exp(−t), � = 0.9)

Table 6   Absolute errors of w(t) with � = 0, � = 0 and T = 1 for 
Ex.4

t ∈ [0,T] New technique N = 5 New technique N = 2

0.1 6.80012 × 10−16 8.01146 × 10−9

0.2 6.93889 × 10−16 1.86878 × 10−8

0.3 7.21645 × 10−16 3.2.2292 × 10−8

0.4 8.88178 × 10−16 4.80354 × 10−8

0.5 8.88178 × 10−16 6.67066 × 10−8

0.6 1.11022 × 10−15 8.80427 × 10−8

0.7 1.11022 × 10−15 1.12044 × 10−7

0.8 8.88178 × 10−16 1.38710 × 10−7

0.9 4.44089 × 10−16 1.6804 × 10−7

1.0 4.44089 × 10−16 2.00036 × 10−7

Table 7   Relative errors of w(t) with � = 0, � = 0 and T = 1 for Ex.4

t ∈ [0,T] New technique N = 5 New technique N = 2

0.1 1.70030 × 10−14 2.00286 × 10−7

0.2 4.33681 × 10−15 1.16799 × 10−7

0.3 2.00457 × 10−15 8.89699 × 10−8

0.4 1.38778 × 10−15 7.50553 × 10−8

0.5 8.88178 × 10−16 6.67066 × 10−8

0.6 7.70988 × 10−16 6.11407 × 10−8

0.7 5.66440 × 10−16 5.41834 × 10−8

0.8 3.46945 × 10−16 5.18643 × 10−8

0.9 1.37065 × 10−16 5.18643 × 10−8

1.0 1.11022 × 10−16 5.00091 × 10−8

Table 8   Absolute errors of w(t) with � = 1, � = 1 and T = 1 for 
Ex.4

t ∈ [0,T] New technique N = 5 New technique N = 2

0.1 3.88578 × 10−16 8.01146 × 10−9

0.2 2.22045 × 10−16 1.86878 × 10−8

0.3 5.55112 × 10−16 3.2.2292 × 10−8

0.4 1.11022 × 10−16 4.80354 × 10−8

0.5 0 6.67066 × 10−8

0.6 4.44089 × 10−15 8.80427 × 10−8

0.7 2.22045 × 10−15 1.12044 × 10−7

0.8 0 1.38710 × 10−7

0.9 0 1.68040 × 10−7

1.0 4.44089 × 10−16 2.00036 × 10−7
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Eq. (45) approximated for various values of �, � , via new 
method compared to other methods, is in the best agreement 
with the exact solution. The absolute and relative errors ( at 
some nodal points) of this method are shown in Tables 6, 
7, 8, 9, 10, 11. From these Tables, it is observed that the 
numerical results are very close to the exact solution and 
we achieved an excellent approximation for the exact solu-
tion by employing current scheme and it was found the our 
method in comparison with mentioned methods is better 
with view to utilization, accuracy and more time efficiency. 
Figure 9 compares the exact and approximated solution 
which confirms the reliability of NSJOM method. Moreo-
ver, in Fig. 10 we plot the absolute error with � = 1, � = 1 
for this example . Note that the Figs. 9 and 10 show a proper 

Table 9   Relative errors of w(t) with � = 1, � = 1 and T = 1 for Ex.4

t ∈ [0,T] New technique N = 5 New technique N = 2

0.1 9.71445 × 10−15 2.00286 × 10−7

0.2 1.38778 × 10−15 1.16799 × 10−7

0.3 1.54198 × 10−16 8.89699 × 10−8

0.4 1.73472 × 10−16 7.50553 × 10−8

0.5 0 6.67066 × 10−8

0.6 3.08395 × 10−16 6.11407 × 10−8

0.7 1.13288 × 10−16 5.71651 × 10−8

0.8 0 5.41834 × 10−8

0.9 0 5.18643 × 10−8

1.0 1.11022 × 10−16 5.00091 × 10−8

Table 10   Absolute errors of w(t) with � =
1

2
, � =

1

2
 and T = 1 for 

Ex.4

t ∈ [0,T] New technique, N = 5 New technique, N = 2

0.1 3.81639 × 10−16 8.01146 × 10−9

0.2 2.49800 × 10−16 1.86878 × 10−8

0.3 1.11022 × 10−15 3.20292 × 10−8

0.4 1.77336 × 10−15 4.80354 × 10−8

0.5 1.99840 × 10−15 6.67066 × 10−8

0.6 1.11022 × 10−15 8.80427 × 10−8

0.7 1∕55431 × 10−15 1.12044 × 10−7

0.8 6.66134 × 10−15 1.38710 × 10−7

0.9 1.42109 × 10−14 1.68040 × 10−7

1.0 2.62013 × 10−14 2.00036 × 10−7

Table 11   Relative errors of w(t) with � =
1

2
, � =

1

2
 and T = 1 for 

Ex.4

t ∈ [0,T] New technique, N = 5 New technique, N = 2

0.1 9.54098 × 10−15 2.00286 × 10−7

0.2 1.56125 × 10−15 1.16799 × 10−7

0.3 3.08395 × 10−15 8.89699 × 10−8

0.4 2.77556 × 10−15 7.50553 × 10−8

0.5 1.99740 × 10−15 6.67066 × 10−8

0.6 7.70988 × 10−16 6.11407 × 10−8

0.7 7.93016 × 10−16 5.71651 × 10−8

0.8 2.60209 × 10−15 5.41834 × 10−8

0.9 4.38607 × 10−15 5.18643 × 10−8

1.0 6.55032 × 10−15 5.00091 × 10−8

(a) Exact solution (b) Approximate solution

Fig. 9   Comparison of between approximate solution( w5 ) of NSJOM method and exact solution for example. 4. ( � = 0.3, �(t) = 0.6 t)
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agreement between approximate and exact solution. In this 
example, we have

7 � Conclusions

In the current paper, we have proposed the novel shifted 
Jacobi operational matrix (NSJOM) scheme for variable-
order fractional delay differential equations via reducing the 

If � = 0, � = 0 and N = 2, then

A = [1.33333, 2, 0.66667]T , CPU time = 0 s ,

if � = 0, � = 0 and N = 5, then

A = [1.33333, 2, 0.66667, 1.77479 × 10−16, 0,

− 1.44702 × 10−16]T , CPU time = 0.01560 s ,

if � =
1

2
, � =

1

2
and N = 2, then

A = [1.25, 1.33333, 0.4]T , CPU time = 0.01560 s ,

if � =
1

2
, � =

1

2
and N = 5, then

A = [1.25, 1.33333, 0.4,−2.66269 × 10−15,

− 3.52736 × 10−16,−1.04701 × 10−16]T ,

CPU time = 0.21840 s ,

if � = 1, � = 1 and N = 2, then

A = [1.2, 1, 0.26667]T , CPU time = 0.01560 s ,

if � = 1, � = 1 and N = 5, then

A = [1.2, 1, 0.26667, 7.94864 × 10−17, 5.29022 × 10−17,

− 7.42853 × 10−17]T , CPU time = 0.21840 s .

main problem to an algebraic system of equations that can 
be solved numerically. We have shown that the proposed 
method has good convergence, is easy to implement and 
its concepts are simple. The obtained results are excellent 
compared to other methods. Finally, the numerical results 
have been presented to clarify the effectiveness and accuracy 
of this technique.
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