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Abstract
Optimization is one of the oldest sciences or practices. Since the beginning of mankind, people strived for perfection when 
it came to their creations, products, gains, or self-improvement. Extension of activities and their cost, time, and resource 
limitations have caused researchers to pay their attention to optimizing the activities in construction management engineering. 
Rapid development in optimization techniques to solve related problems in structural design can be achieved accordingly. 
In this paper, meta-heuristic algorithms used for strength, energy, and cost optimization of building material in construc-
tion management. The novel meta-heuristic algorithm can be used for electricity cost and peak load alleviation with the 
minimum user waiting time. The proposed model is implemented in a smart building in terms of electricity cost estimation 
for both a single smart home and a smart building. The results demonstrate the effectiveness of our proposed scheme for 
single and multiple smart homes in terms of strength, energy, and cost optimization of building material in construction 
management engineering. This study has used the artificial intelligence (AI) model as particle swarm optimization (PSO) 
model to calculate the accurate and material-specific energy of three commonly used building materials as fly ash, copper 
slag, and phospo-gypsum. Two regression models as root mean square (RMSE) and coefficient of determination (R2) were 
used to calculate the results. Following the results of (R2) and RMSE, PSO has shown its higher performance in predicting 
the strength, energy, and cost of building materials besides revealing a significant and positive correlation among them.

Keywords  Hybrid metaheuristic algorithm · Particle swarm optimization · Cost optimization · Construction management · 
Artificial intelligence · Building material

1  Introduction

Embodied energy is the energy consumed by all of the pro-
cesses associated with the production of a building, from the 
mining and processing of natural resources to manufactur-
ing, transport and product delivery [1–12]. Analysis across 
Australia and elsewhere found that the building’s energy 
is a large part of the annual intake of working energy [13]. 
It ranges from 10 average homes to more than 30 offices 
(CSIRO1 2000). Increasing the energy efficiency in buildings 

such as houses typically entails more energy and more ratio. 
However, experience in the trade sector has shown that the 
effect of energy on the overall building footprint is increas-
ing as energy efficiency in buildings increases because of 
the ratios between energy and total energy usage [14–17]. 
CSIRO analysis indicates that building requires an aver-
age of about 1000 GJ of energy incorporated in building 
materials, which corresponds to the normal use of operating 
resources for around 15 years [18]. This is more than 10% 
of the electricity used in a house that lasts 100 years. The 
use of energy figures in construction should be careful. It 
is also possible to recycle certain products and to reduce 
the effects during their life cycle, e.g. aluminium from a 
recycled source contains less than 100% of the energy of the 
aluminium produced from raw materials [18–24]. In Canada 
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for example, only non-renewables in embodied energy 
sources were considered. Thus, it can be shown that many 
considerations must be weighed when evaluating potential 
areas in which commercial buildings can reduce their energy 
levels by retrofitting [13]. Researchers were interested in 
the interactions between building materials, construction 
practices, also their environmental effects have researched 
energy in building materials. Figure 1 shows the effective 
use of cork as a light weight material during a concrete 
mixed processing.

For many decades, low-energy materials, such as con-
crete, bricks or wood are highly used, however, materials 
with more energy level, such as stainless steel are rarely used 
[25–39]. Around 2003 and 2030, global energy consumption 
is predicted to increase to 71%. At the moment, great energy 
use is dependent on fossil fuels and it is unclear if such a 
demand trend will be followed environmentally sustainable 
considering significant developments in renewable energy 
technologies. Therefore, it is recommended that only the 
order-of-magnitude enhancements to energy quality should 
be achieved, particularly as the ratio of resources delivered 
to energy consumed to prevent a dramatic decrease in agreed 
living standards [40–46]. Energy is one of the main drivers 
in all countries for economic growth and social develop-
ment [47] as the increasing reason of CO2 energy emis-
sions in past 20 years [40, 48, 49]. Construction projects 
account for 38% of the world’s overall energy usage [50]. 
More responsibility for the pollution issue needs to be taken 
by the construction sector. Energy is used at various levels 
in each phase of the construction life cycle. Because of its 
environmental positive elements, energy-efficient materials 
will sustain constructions both economically and ecologi-
cally. In comparison, energy-reducing products cause less 
harmful emissions, also the waste from building materials 
is being decreased. They also contribute to the development 
of comfort in indoors due to their different thermal features, 
such as heat conservation and heat retention [51]. Finally, it 

is because of these considerations that choosing of the best 
material at the outset of design process must take account of 
energy-efficient properties along with several requirements 
for the environmental features. As the population and urban-
ization rise, energy demand is growing rapidly.

Depending on the environment, the form and degree of 
construction energy differ from region to region [52]. Con-
struction consumes 38% of the world’s energy annually 
[50]. The energy usage of buildings and their potential det-
rimental effects on the atmosphere are becoming extremely 
severe. Several new studies have sought to classify energy 
efficiency, environmental impacts of housing and construc-
tion materials. The use of overall energy for the given sam-
ple room was explored by [40, 53]. The paper focuses on 
comparing two structures of bricks made from fire clay and 
structures made from ash blocks. While ash blocks are three 
times more expensive than flames, their scale, total use of 
electricity, and their ultimately total construction costs (due 
to their light weight and isolation) have been considerably 
reduced [54]. The embodied energy of various construction 
materials was studied (conventional building materials and 
alternative building materials). These researches involved 
the efficiency of few operating energy materials. In com-
parison to traditional construction materials, it is seen that 
alternative building materials and systems have minimized 
and/or equivalent impacts on life cycle costs [55–60]. Fur-
thermore, stability and instability analysis of the composite, 
conceit, and smart material and structures take the attentions 
of researchers in different filed of engendering [61–65].

In recent years, in addition to the experimental and 
numerical techniques, artificial intelligence (AI) algorithms 
have been developed and employed in various fields, espe-
cially civil engineering [66–70]. In fact, AI is able to accu-
rately optimize and predict the experimental data. Research-
ers have developed several sub-sets of AI algorithms such as 
ANFIS, PSO, machine learning, and hybrid algorithms-like 
PSO-ELM, ANFIS-PSO [71–75]. The advantages of AI 
models compared to experimental methods are high accu-
racy and cost-effectiveness. Also, they require lower time to 
process the data than other numerical approaches [76–80] 
(Figs. 2 and 3).

2 � The related literature

Regarding the energy efficiency of building materials, 
energy needs to be used less quickly in each step of the life 
cycle, particularly in the overall energy use of construction 
process and the proportion of energy utilized for the produc-
tion and transport of building materials [81–84]. Therefore, 
in all phases, the preferential of building materials, by the 
production, transportation, use and destruction of their raw 
material offers energy efficiency to construction [36, 40, 51, 

Fig. 1   Using cork in construction materials mixed with concrete to 
reduce the weight and cost of materials
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85–89]. The selection of a building material can influence 
the energy usage of that building over the various phases of 
its life cycle and can have opposite consequences. Given that 
properties like a high level of insulation can provide relative 
efficiency savings in operating energy along with greater 
embodied energy costs. The balance of the exterior building 
system and envelope (roof, board, walls and windows) seems 
to represent the highest part of its energy [50]. In the case 
of building materials, the proportion of energy consumed to 
its overall energy consumption is calculated at 50 years, but 
ranges from 6 to 20% according to the method and environ-
ment of construction [90, 91]. Energy performance require-
ments for building materials can be categorized in two cat-
egories: directly and indirectly effective criteria [92, 93].

The US building industry uses more than 48% annual 
electricity in construction and service, which contributes 
to substantial emissions of carbon dioxide into the air. 
This electricity is often incorporated and working energy 
is used over the life span of a structure [94] Building 
uses operating energy in hot water supply, lighting, space 
conditioning and powering building appliances. Studies 
have proposed using a systemically based approach to a 
life cycle energy assessment in a building to significantly 

minimize this carbon footprint and extensive energy 
[95]. A systematic energy evaluation is used for the use 
of energy, as well as for the use, regeneration, and reuse 
of energy by means of green energy technologies and 
recycler efforts. The main focus of research activities 
has been on operational energy optimization with new 
innovative building envelope and machinery materials 
[96–101]. Then, the electricity in building is increased 
because much of this specialized products or machinery 
are made by energy-intensive manufacturing methods 
[83, 102–106]. In a building, the energy is used directly 
through construction by the use of construction materials. 
The construction, manufacturing, logistics, administration, 
and related processes include a number of on-site and off-
site energy sources. Furthermore, any building material 
includes energy during its production and distribution. The 
overall energy of a building during its life cycle consists 
of initial (IEE), recurrent (REE) and demolition embod-
ied energy (DEE) [107, 108]. IEA involves both resources 
used directly and indirectly (e.g. during transport and con-
struction) to build a construction. The completeness of 
an energy measurement is based on the system boundary 
covered. There are few methods for measuring the embod-
ied energy, such as IO-based, process-based and hybrid 
methods. Each process uses various data source types and 
covers differing systems boundary dimensions [109–113]. 
The findings are not identical because of these variations. 
In addition, any process has data quality and device integ-
rity limitations. For example, a process-based approach 
uses real data from manufacturers’ sources, which are 
known to be robust in their reliability and representation 
[109, 114, 115]. This approach has insufficient findings, 

Fig. 2   Frame of light-weight construction processing by the integra-
tion of cork and wood

Fig. 3   Using cork palates in a building to reduce the energy losing 
and noise

Fig. 4   Using the tree trunk in a processing of concrete mixed materi-
als for energy, lightweight and cost issues
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because it lacks inputs from which data cannot be available 
[102, 116–119] (Figs. 4 and 5).

2.1 � Embodied energy calculation: energy and cost 
relationship

Studies have shown that despite efforts at defining a stand-
ard system boundary and deriving an appropriate method of 
calculating embodied energy, they are reliable, consistent, 
and consistent. Few materials are used in construction mate-
rials to reduce the cost and energy losing, say cork, trunk 
of tree, coffee husks, newspaper woods, mycelium, recy-
cled diapers, plastic bricks, polyurethane plant based foam 
fly ash, silica fume and etc. On the other hand, an energy 
analysis is costly and time-consuming and is dependent on 
many assumptions [114]. Furthermore, energy research is 
not well incorporated into the existing design and building 
practices, so decisions are mostly taken only on the basis of 
cost. Studies have found a relationship between consump-
tion of embodied energy and cost. Stern and Cleveland [120] 
agreed that economic growth means a proportional growth 

in energy usages. Also, at the project stage, Langston et al. 
[121] found a clear and optimistic connection between the 
costs and the energy in a house [122] (Fig. 6).

Some researchers investigated the connection of energy 
consumption and cost optimization in a study of three low-
rise apartments in Indonesia. Since the buildings consisted 
of hollow blocks in the interior and outside walls, two other 
light-weight concrete and brick walls alternatives were also 
studied (Table 1).

2.2 � Problem statement

Due to lack of total, precise, and detailed energy data, the 
measurement of energy is complicated, then this study 
employed PSO to accurately calculate the strength, energy 
and cost optimization of building materials [123–132]. The 
aim of this paper is to accurately predict the cost and energy 
reduction in using alternative wall material for construc-
tion, through detailed analysis in a residential building [4, 
133–141] (Figs.7, 8 and 9).

3 � Methodology

3.1 � Statistical data

150 data were originally extracted. The current study has 
investigated the strength, energy and cost optimization of 
materials in construction building using PSO. The model 
was developed and the results were analyzed by regression 
indicators.

3.2 � Particle Swarm Optimization (PSO)

PSO as an optimization algorithm is determined in six 
phases [142–148]:

1.	 A group of random potential resolution is determined as 
the searching space. It is assumed that N is the number 
of particles and D is the dimensions of searching space. 
Both are used as the random “position” ( Xk

i
) and “veloc-

ity” (vik) of ith particle at iteration k as Eqs. (1) and (2).

w is the iteration weight; rand ()” is a constant value in 
0, 1 interval while set randomly; C1 and C2 is the differ-
ent acceleration coefficients; gk

i
 is the the global best 

(1)
vk
i
(t + 1) = wvk

i
(t) + C1 ⋅ rand()

(
pk
i
(t) − Xk

i
(t)
)

+ C2 ⋅ rand()
(
gk
i
(t) − xK

i
(t)
)
,

(2)
xK
i
(t + 1) = xK

i
(t) + vk

i
(t + 1)1 ≤ i ≤ N, 1 ≤ k ≤ D,

Fig. 5   Construction of building based on the tree trunk and cork
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position found in group; pk
i
 is the the best position of ith 

particle in a search phase.
2.	 Evaluate the fitness of each particle in the swarm
3.	 Compare the fitness of each particle to its prior best-

obtained fitness pk
i
 in each iteration. If the current vari-

able is better than pk
i
 , then pk

i
 is selected as the current 

variable and the  pk
i
 positon as the current position in 

d-dimensional space.
4.	 Compare the pk

i
 of particles with one another and updat-

ing the swarm global best position with the most fitness 
gk
i
 [149].

5.	 The velocity of each particle is changed (accelerated) 
towards its pk

i
 and gk

i
 . This acceleration is weighted by 

a random term. A new location in the solution space 
is computed for each particle by adding a new veloc-
ity variable to each component of the particle’s position 
vector.

6.	 Repeat steps (2)–(5) until convergence is gained on the 
basis of proper criteria [150] (Figs. 10, 11, 12 and 13).
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Fig. 6   The strength diagram of concrete while adding light-weight aggregates
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3.3 � Equations of heat transferring

In this study, for analyzing the energy of composite, two 
equations are used. Considering the local equations, the 
two equations could show the transient heat exchange 
between the PCM and metal foam as follows:

Energy equation for metal foam:

Energy equation for phase change material:

(3)(1 − �)�sCs

�Ts

�t
= �se∇

2Ts + hA
(
Tp − Ts

)
,

(4)
��pCp

�Ts

�t
+ ��pCp(U ⋅ ∇)Tp = �pe∇

2Tp + hA
(
Ts − Tp

)
− ��pL

��

�t
,

(5)h =
�p

df

[
1 +

4(1 − �)

�
+ 0.5(1 − �)0.5Re0.6

1∕3

Pr

]
,

(6)A =

⎧
⎪⎨⎪⎩

694.57 ln (1 − �) + 3579.99 PPI = 10

442.2 ln (1 − �) + 2378.62 PPI = 20

694.57 ln (1 − �) + 3579.99 PPI = 40

,

Initial condition ∶ 0 ≤ X ≤ 100, 0 ≤ y ≤ 300, Ts = Tp = Tfin = 323 K,

Boundary conditions ∶ X = 0, 0 ≤ y ≤ 300, Tp = Ts = Tfin = 351 K,

0 ≤ X ≤ 100, y = 0,
�T

�y
= 0;

0 ≤ X ≤ 100, y = 300,
�T

�y
= 0;

(7)E(t) = EPCM(t) + Efoam(t) + Efin(t),

(8)

EPCM(t) =

⎧
⎪⎨⎪⎩

mPCMCs,PCM

�
TPCM(t) − T0

�
T ≤ Tm

mPCMCl,PCM

�
TPCM(t) − Tm

�
+mPCMCs,PCM

�
Tm − T0

�
+ mMPCLT > Tm

,

Efoam = mfoamCal

(
Tfoam − T0

)
,

Efin = mfinCal

(
Tfin − T0

)
,

P =
E
(
ttotal

)
ttotal

,

Table 1   Concrete mix 
proportions of silica fume and 
fly ash as light aggregates to 
concrete

Mix water (kg/m3); cement (kg/m3); coarse aggregate (kg/m3); fine aggregate (kg/m3) SP* (kg/m3)

Mix code W/C1 B/C2 Water
(kg/m3)

Cement
(kg/m3)

Bentonite 
(kg/m3)

sand 0–4.75 
mm (kg/m3)

Gravel 
4.75–9.5 mm 
(kg/m3)

Gravel 9.5–19 
mm (kg/m3)

A1 2.3 0.2 400 119 24 620 280 475
A2 2.2 0.2 400 125 29 620 280 475
A3 2.7 0.2 400 133 56 620 280 475
A4 2.1 0.2 400 142 35 620 280 475
A5 2.0 0.2 400 200 40 620 280 475
B1 3.0 0.3 400 133 40 620 280 475
B2 2.8 0.3 400 1413 43 620 280 475
B3 2.6 0.3 400 154 46 620 280 475
B4 2.4 0.3 400 167 35 620 280 475
B5 2.2 0.3 400 182 55 620 280 475
B6 2.0 0.3 400 200 60 620 280 475
C1 3.0 0.35 400 133 23 620 280 475
C2 2.8 0.36 400 143 50 620 280 475
C3 2.6 0.35 400 154 54 620 280 475
C4 2.4 0.32 400 167 55 620 280 475
C5 2.7 0.35 400 182 64 620 280 475
C6 2 0 400 200 67 620 280 475



S2669Engineering with Computers (2022) 38 (Suppl 4):S2663–S2680	

1 3

U is the velocity field of liquid paraffin; ρ is the density; ε 
is the porosity of foam; μ is the viscosity of the paraffin; F 
is the source term of resistance and driving force of flow 
expressed as

K is the permeability; γ is the thermal expansion factor.
The value of K is gained through the following equations 

[24]:

dp is the diameter of pore; df is the diameter of the ligament.
The addition of the source term S in Eq. (9) is to compute 

the flow velocity in the mushy zone as

� is a constant; C is the consecutive number for the mushy 
zone; the value is fixed at 106; � is the liquid fraction.

It could be determined by Eq. (11):

Continuity equation ∶ ∇ ⋅ U = 0,

(9)

Momentum equation ∶
�U

�t
+

1

�
(U ⋅ ∇)U =

�

�
∇2U −

�

�
∇P + F + S,

(10)F = −
�

�

�

K
U + �g�

(
T − T0

)
,

(11)K = 0.00073(1 − �)−0.224
(
df

dp

)−1.11

d2
p
,

df

dp
= 1.18

√
1 − �

3�
,

Sx = Aux,

Sy = Auy,

A = −C
(1 − �)2

�3 + �
,

(12)s =
C
(
1 − �2

)
� + �3

,

��

�t
+

�
(
�ux

)
�x

+
�
(
�uy

)
�y

= 0,

𝜕
(
𝜌ux

)
𝜕t

+ ∇
(
𝜌uxu⃗

)
= −

𝜕𝜌

𝜕x
+ ∇

(
𝜇∇ux

)
+ Sx,

𝜕
(
𝜌uy

)
𝜕t

+ ∇
(
𝜌uyu⃗

)
= −

𝜕𝜌

𝜕x
+ ∇

(
𝜇∇uy

)
+ Sx + Sb,

Fig. 7   The installing of wooden construction parts for a building built 
from cork and wood
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(13)𝛽 =

⎧
⎪⎨⎪⎩

0 Tp < Tm1�
Tp − Tm1

���
Tm2 − Tm1

�
Tm1 ≤ Tp < Tm2

1 Tp ≥ Tm2

0 ≤ X ≤ 300, y = 100,
�T

�x
= 0;

(14)𝛾 =

⎧
⎪⎨⎪⎩

0 T < Tsolidus
T−Tsolidus

Tliquidus−Tsolidus
Tsolidus < T < Tliquidus

1 T > Tliquidus

(15)At outlet,
𝜕Tf

𝜕y
= 0,

𝜕uy

𝜕y
= 0, t > 0.
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Fig. 8   The strength content of concrete while adding light-weight aggregates as cork and wood

Fig. 9   Molding the mixture of fly ash and cement
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The wall of the heat storage tank is adiabatic, and the 
boundary condition is presented below

4 � Result and discussion

4.1 � Model performance indicators

According to the data derived from the literature, 30% of data 
is used in testing phase, while 70% is randomly assigned for 
training part. For comparing the results of PSO, statistical 
model performance indicators of determination coefficient 
(R2) and root mean square (RMSE) were used.

𝜕Tf

𝜕x
= 0,

𝜕Ty

𝜕y
= 0, ux = uy = 0, t > 0.

(16)R2 =

�∑N

i=1

�
Oi − O

�
⋅

�
Pi − P

��2

∑N

i=1

�
Oi − O

�
⋅

∑N

i=1

�
Pi − P

� ,

(17)RMSE =

√√√√ N∑
i=1

1

N

(
Oi − Pi

)2
,

P is the predicted values ; P is the predicted values; O is the 
observed values; Oi is the observed values in sample i ; O is 
the mean of observed variables; N is the number of training or 
testing samples; Pi is the predicted values in sample i.

Note: R2 of 1, and RMSE of 0 are the ideal form in a predic-
tive model (Tables 2 and 3) (Fig. 14).

4.2 � Data preparation

4.2.1 � Data distribution pattern

In this study, PSO was used to accurately measure the 
embodied strength, energy and cost optimization of mate-
rials in construction building. Figures 15, 16, 17, and 18 
showed the developing of the model and its diagrams. Fig-
ure 15 shows the results of PSO for the observed date (hori-
zental axix) and predicted data (vertical) in determining 
the energy and cost optimization of materials in test phase. 
Accordingly, in Fig. 15, the observed data distribution is 
between − 1 to 1, also the distribution of predicted values is 
from − 1 to 1. The blue dots are almost over the black bold 
line, meaning that there is a good correlation between the 
predicted and obsrved values, showing the accuracy of PSO 
model in determimng the strength, energy and cost optimiza-
tion of materials.

Fig. 10   PSO architecture
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Figure 16 shows the error distribution in PSO model in 
test phase. In Fig. 16, the horizontal axis is the error distance 
from − 2 to 1 and the vertical axis is the number of data 
distance. Also, the variance of value (σ) is 0.328 while the 
mean of value (μ) is − 0.113 in test phase. According to this 
diagram, the highest error was seen in 0.01 with 3 data and 
the lowest error was occurred in − 1 and 1 with roughly 1 
data.

In Fig. 17 (observed error values), the horizontal axis is 
the number of data from 0 to 15 for PSO. The vertical axis 
is the errors value for this model.

In Fig. 18, the horizontal axis indicates the observed 
values of testing samples and the vertical line shows the 
predicted values. In this diagram, the blue line shows 100% 
alignment between the predicted and observed values (Ideal 

Fig. 11   Density plot of aggregate wile added to building material (brick) a lateral load test phase, b lateral load train phase, c compressive 
strength test phase, d compressive strength train phase

Fig. 12   Molding the mixture of fly ash and cement to produce light-
weight bricks
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form), while in this study, the radial lines have 15% differen-
tial from the black line (Fig. 18). Any overlap between these 
two lines means that our model reaches its ideal form with 
the least error percentages and high accuracy, however, it is 
not the case in our research (very less discrepancy). Then, 
PSO could show better performance in the analysis of the 

objective of this study. Comparing the R2 of PSO as 0.9867, 
the results have shown that the R2 value in PSO is nearer to 1 
than, showing the best performance of PSO (Table 4) in this 
study. On the whole, because of the less difference between 
the predicted values and observed values, PSO has shown 
its best performance in predicting the strength, energy and 
cost optimization ofmaterials (Fig. 19).

Going through Table 4, the corresponding values of 
RMSE and R2 could define the properness of the model. 
Obviously, the best RMSE value is the lowest one near to 
0. In this study, the RMSE of PSO is 0.9606, also, the R2 
value in PSO is 0.9867. Comparing the R2 values, the nearest 
value to 1 is considered as the best performance. Therefore, 
PSO could show better performance in terms of the objec-
tive of this study and proved itself as a satisfactory method 
to determine the energy and cost optimization of materials 
in construction management.

Figure 20 shows the best cost diagram. Regarding PSO, 
the weight of each neuron is changed to develop the model. 
In diagram 19, the vertical axis is cost and the horizontal 
axis is the number or iterations that were ordered to develop 
itself (90 times) to find its better performance. So, when the 
decreasing of cost reached to a stable case, it was stopped. 
It means that in our diagram, the cost was decreased at 10 
iterations and was continued up to 90 iterations to find its 
stability. After 90 iterations, the running is stopped due to 
adequate stability of cost line. This diagram showed the 
drastically decline of cost while using non-conventional 
construction materials (Fig. 21).

5 � Conclusion

Construction materials make up about 60–70% of the 
overall construction costs. It would not be necessary to 
minimize the use of traditional materials; thus the net 
construction expense of a house will be cut off by the 
new approach of low cost materials. When recycled and 

Fig. 13   The molding process of production of fly ash bricks

Table 2   Assembly embodied energy, reduced embodied energy, and renewable energy of concrete slab, concrete tile and timber frame and steel 
sheets

Material Original 
embodied 
energy
mJ/kg

Reduced embodied energy 
in mining and construction
per kg/MJ

Renewable energy used in 
mining and construction
per kg/MJ

Optimum 
embodied 
energy
mJ/kg

Elevated timber floor 293 567 345 345
110 mm concrete slab on ground 645 372 436 745
Roofs
 Timber frame, concrete tiles, plasterboard ceiling 251 346 845 453
 Timber frame, steel sheets, plasterboard ceiling 330 563 452 345
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reused as construction materials, industrial waste not only 
tends to solve recycling challenges, but also conserves 
renewable resources, decreases energy consumption and 
reduces greenhouse gas emissions. When used as sand 
and coarse aggregate complements in the manufacturing 

Table 3   Assembly embodied energy, reduced embodied energy, and renewable energy of AAC block wall, steel frame and clay

Material Original embodied 
energy
mJ/kg

Reduced embodied energy in min-
ing and construction
per kg/MJ

Renewable energy used in min-
ing and construction
per kg/MJ

Optimum 
embodied 
energy
mJ/kg

Single skin AAC block wall 440 789 678 788
Steel frame, compressed fibre 

cement clad wall
385 686 455 673

Cavity clay brick wall 860 765 300 573

Fig. 14   Light weight fly ash bricks to save energy and cost reduction

Fig. 15   AI results for energy and cost optimization values in PSO 
(test data). H axis = observed energy and cost optimization values. V 
axis = predicted energy and cost optimization values

Fig. 16   Error distribution for PSO in test phase

Fig. 17   Observed error values for PSO (test phase)
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of wall materials, materials such as copper slag, phos-
pogypsum and fly ash greatly decrease building costs. 
Moreover, buildings with these materials contribute to 
more energy-efficient buildings that can be weighted addi-
tionally in the Green building approval process. The aim 
of this paper is to highlight the cost and energy reduction 
in using alternative construction material. When used as 
a wall material in buildings, it was obvious that indus-
trial waste brick could greatly reduce the total building 
cost. Also, using industrial waste materials like copper 
slag, fly ash and gypsum acts as a supplement to sand 
and aggregate, thereby highly conserving natural resource. 

In addition, the size variations of the planned industrial 
bricks minimize cement mortar quantity, labor costs, con-
struction time and ease of plastering due to its smooth 
surface. Building development, construction processes and 
maintenance is one of the main concerns in reducing this 
energy consumption and reducing greenhouse gas emis-
sions. While the energy used in operational construction 
could be significant, the growing trend to reduced or zero 
emissions indicates that reducing energy in construction 
and pre-construction phases of a building life cycle is sig-
nificance. The embodied energy from building materials 
and related energies, such as transport, re-usage, recycling 
and renewables replacement, which should be used with 
caution, is a key element in energy use during this process. 
In this case, for measuring the energy and cost optimiza-
tion, PSO was used. Comparing the RMSE and r-square 
results have proved PSO as the best model in predicting 
the strength, energy and cost optimization of construction 
materials.

Fig. 18   The strength, energy 
and cost optimization of materi-
als in construction management 
in PSO (test data)

Table 4   The training and testing phase results PSO

AI model Training phase Testing phase

RMSE R2 RMSE R2

PSO 0.9767 0.9899 0.9606 0.9867

Fig. 19   The diagram of best cost
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Fig. 20   Stiffness reduction in concrete due to crack opening using 
conventional materials
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