
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:3815–3830 
https://doi.org/10.1007/s00366-021-01416-5

ORIGINAL ARTICLE

A robust direct modeling method for quadric B‑rep models based 
on geometry–topology inconsistency tracking

Qiang Zou1 · Hsi‑Yung Feng2

Received: 6 May 2020 / Accepted: 27 April 2021 / Published online: 12 May 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Boundary representation (B-rep) model editing plays an essential role in computer-aided design, and has motivated the very 
recent direct modeling paradigm, which features intuitive push–pull manipulation of the model geometry. In mechanical 
design, a substantial part of B-rep models being used are quadric models (composed of linear and quadric surfaces). However, 
push-pulling such models is not trivial due to the possible smooth face–face connections in the models. The major issue is 
that, during push–pull moves, it is often desirable to preserve these connections for functional, manufacturing, or aesthetic 
reasons, but this could cause complex inconsistencies between the geometry and topology in the model and lead to robustness 
issues in updating the model. The challenge lies in effectiveness towards detecting the instants when geometry–topology 
inconsistencies occur during push–pull moves. This paper proposes a novel reverse detection method to solve the challenge 
and then, based on it, presents a robust method for push–pull direct modeling while preserving smooth connections. Case 
studies and comparisons have been conducted to demonstrate the effectiveness of the method.

Keywords Computer-aided design · Direct modeling · Robustness issues · G1 Continuity · Geometry–topology 
inconsistencies

1 Introduction

Boundary representation (B-rep) models are fundamen-
tal to computer-aided design (CAD). Particularly, almost 
all export/import 3D CAD models are B-rep solid models 
made in the STEP/IGES format. Interactive environments 
for editing such models thus play an essential part in modern 
CAD systems. These environments require intuitive, flex-
ible model manipulation and fast model update. The very 
recent direct modeling CAD paradigm encompasses all these 
characteristics. In direct modeling, the primary feature/func-
tion is the intuitive push–pull interaction with the geometry 
(boundary faces) of a model [1, 2]. Such push–pull controls 
allow models to be modified very easily, and ultimately 

leading to faster iterations between design alternatives and 
simulations.

Push–pull direct modeling allows users to effectively edit 
a solid model through grabbing, pushing, and pulling its 
boundary faces, refer to [3] for some examples. On the other 
hand, a push-pulled boundary face could cause changes 
made to the connections between this face and its neighbor-
ing boundary faces. If the changes are intended exactly by 
the user or the changed connections are trivial, this way of 
working is more than adequate. Nevertheless, there are also 
many scenarios in which these boundary faces are connected 
in a smooth manner for considerations like stress concentra-
tion reduction, manufacturability, injury prevention (from 
sharp edges), or even aesthetic design [4], which makes the 
connections non-trivial. In view of these design intents, the 
user may want the smooth connections to be preserved dur-
ing push–pull moves. It is thus necessary for direct modelers 
to provide the option of push–pull direct modeling while 
preserving smooth connections.

The smooth connections can be  G1 or higher.  G1 is the 
first order geometric continuity and states that two faces 
share colinear normal directions along their joint edge (or 
equivalently, they are connected tangentially) [5]. Smooth 

 * Qiang Zou 
 john.qiangzou@gmail.com

 Hsi-Yung Feng 
 feng@mech.ubc.ca

1 State Key Lab of CAD&CG, Zhejiang University, 
Hangzhou 310058, China

2 Department of Mechanical Engineering, The University 
of British Columbia, Vancouver, BC V6T 1Z4, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01416-5&domain=pdf


3816 Engineering with Computers (2022) 38:3815–3830

1 3

connections of a higher order than  G1 are also seen in B-rep 
models but only in those involving free-form surfaces. This 
work focuses on quadric models that are composed of linear 
and quadric surfaces, and such models cover about 95% of 
models in mechanical design [6]. In this regard, the problem 
to be studied in this work is as follows: push–pull direct 
modeling of featureless quadric B-rep solid models while 
preserving the involved  G1 continuous connections (shortly, 
push–pull with  G1 connections).

Push–pull with  G1 connections is no trivial matter. A 
B-rep model consists of information on both geometry and 
topology, which must be consistent with each other to attain 
a valid solid model [7]. When a valid model is push-pulled, 
the moved boundary faces will cause changes made to the 
model’s geometry and topology, which in turn could break 
the information consistency in the model [3]. To success-
fully resolve these inconsistencies, knowing the instants 
when they occur is important [8]. Missing any such instant 
would leave some inconsistencies unaddressed, and conse-
quently the direct modeler gives model update failures and 
exhibits robustness issues. Figure 1 shows model update fail-
ure examples from two top-notch direct modelers. Consider-
ing that the push–pull move is very simple, we can conclude 
that current commercial CAD packages are far from being 
robust, although there is a lot of hype out there by CAD ven-
dors. Detecting geometry–topology inconsistencies (GTI) 
is not an easy task and becomes particularly challenging 
when it comes to push–pull with  G1 connections because, to 
preserve  G1 connections, neighboring faces of push-pulled 
faces need to be made movable, but their motions are not 
quite known. Without knowing the motion information, it is 
clearly difficult to detect GTI effectively.

To be more specific on the above challenge, a closer 
look at movable boundary faces needs to be made. There 
are two types of movable boundary faces in push–pull with 
 G1 connections: (1) the boundary faces push-pulled by the 

user, and (2) the neighboring boundary faces1 driven by the 
push-pulled boundary faces (to keep the  G1 connections). 
The driven boundary faces move according to how the user 
moves the push-pulled boundary faces, and their motions are 
essentially governed by a system of tangent constraints rep-
resenting the  G1 connections. Not until this system is solved 
do we know positions/orientations of the driven boundary 
faces for any intermediate instants during the push–pull 
move. There are thus no explicit expressions for the driven 
boundary faces’ motions. One may obtain an approximation 
to the motions through a brute-force sampling/solving, but 
the resulting high computational load makes this strategy 
unattractive. As a result, there is a lack of the driven bound-
ary faces’ motion information in push–pull with  G1 connec-
tions; GTI detection then becomes a challenging problem.

Although some attempts about GTI detection have been 
made in the literature, their applicability is consistently lim-
ited to push–pull edits without considering smooth connec-
tions. The solutions provided by industry are not satisfac-
tory either; push–pull with  G1 connections is either partially 
supported for a few selected scenarios or fully supported but 
with robustness issues (as will be shown in Sect. 4). New 
developments are thus necessary to have effective GTI detec-
tion and robust push–pull with  G1 connections. This work 
presents a novel method for GTI detection: we typically miss 
instants of GTI first, and then reversely catch the instants 
after they have actually happened, a posteriori. This reverse 
method allows for effective GTI detection while avoiding 
reliance on motion information of movable boundary faces. 
With it, a robust method for push–pull with  G1 connections 
can be developed.

Fig. 1  Model update failures in rotating the blue face (a) of Siemens NX (b) and ANSYS SpaceClaim (c)

1 Their neighboring boundary faces may also be included if neces-
sary, and so forth.



3817Engineering with Computers (2022) 38:3815–3830 

1 3

2  Related work

The notion of push–pull direct modeling was initially pro-
posed by industry to meet the increasing need for efficient 
and flexible model modification in design reuse. Push–pull 
with  G1 connections has been implemented in a few com-
mercial CAD systems, but the implementation information 
is kept private or patented, as it may lead to competitive 
advantages for CAD vendors. As a result, none of the CAD 
systems comes with guarantees or clearly stated limita-
tions. Robust issues are observed in these CAD systems: 
they work well in some scenarios but not in others. In some 
CAD systems, push–pull with  G1 connections is not even 
fully supported. For example, Autodesk Inventor is only able 
to preserve  G1 connections relating to fillets. In this regard, 
the current solutions provided by industry are far from being 
complete.

In the literature, there is a limited number of publica-
tions related to push–pull direct modeling since it is a rela-
tively new notion in CAD. Lipp et al. [8] presented a GTI 
detection method but restricted models to solid polygonal 
meshes that are composed only of planar faces; such models 
do not involve  G1 connections. Zou and Feng [3] proposed a 
continuity-based method for push-pulling solid models, but 
no particular attention was given to smooth connections. In 
both methods, heuristics were employed to detect GTI, and 
knowing beforehand the motion information of all movable 
boundary faces is a necessary condition for the heuristics 
to work properly. This makes their methods inapplicable to 
the problem considered in this work. There are also stud-
ies [9–12] approaching push–pull direct modeling from 
the perspective of feature-based modeling. These methods 
essentially translate push–pull edits to parametric feature 
edits. Such a strategy is clearly not suitable for handling 
featureless B-rep solid models as in this work.

In parametric modeling, there is a collection of studies 
[13–15] that are related but not directly connected to the pre-
sent work. Their interest is to compute the parameter range 
within which the model topology remains unchanged under 
parametric edits [13]. The limits of this parameter range are 
the critical points at which the model topology changes. The 
notion of these critical points is conceptually related to the 
GTI detection task in this work. However, the methods pre-
sented in Refs. [13–15] are not suitable for this work due to 
the reliance on parametric relationships in the model, which 
are not available in featureless B-rep models.

The above review suggests that documented studies and 
the industrial state of the art on the problem of push–pull 
with  G1 connections are quite insufficient. A new method is 
to be presented to address this insufficiency in the follow-
ing Sect. 3, in particular on effective GTI detection. Sec-
tion 4 will validate the proposed method with a series of case 

studies, as well as illustrating its limitations. Conclusions of 
the paper are given in Sect. 5.

3  The proposed methodology

For better presenting the proposed method, several important 
notions to be used in the following text are made precise 
first. A Push–pull is the edit of a model by translating and/or 
rotating its boundary faces. Every push–pull edit is followed 
by a regeneration of the boundary representation for the 
push-pulled model, referred to as model regeneration. This 
regeneration is essentially a boundary evaluation consisting 
of two main steps: (1) repositioning neighboring surfaces 
of the surface(s) undergoing push–pull to maintain the pos-
sible  G1 connections between them; and (2) re-intersecting 
these position-changed surfaces to generate the new bound-
ary faces of the model.2 Figure 2 shows a model regenera-
tion example with varied rotational push-pulls applied to 
the blue face. (Here and later, blue faces in figures indicate 
push-pulled faces.) The aforementioned GTI refers to the 
situation in which the regenerated model possesses more 
connections than those in the pre-edit topology, as shown 
by the newly inserted connection in Fig. 2; or the other way 
around, it is impossible to form some connections in the 
pre-edit topology regarding the configuration of the post-
edit carrier surfaces. (The interested reader is referred to 
Sect. 3, Ref. [3] for a detailed discussion of GTI.) If there 
is any GTI, model regeneration fails to output a valid solid 
model, necessitating model update that resolves the GTI to 
attain a valid modeling result.

The overall method presented in this work is shown in 
Fig. 3. The part in the dashed rectangle represents the main 
body of the method, which iteratively applies two proce-
dures: GTI detection and GTI resolution. GTI detection is to 
evaluate the next critical point at which GTI occurs during 
a push–pull edit of interest; GTI resolution is to resolve the 
GTI immediately after it is detected. The resulting model 
will serve as the base model in the next iteration for carrying 
out the rest part of the push–pull edit. These two procedures 
are repeated until no more critical point can be detected. 
Model regeneration then gives the intended model for the 
whole push–pull edit. It should be noted that this iterative 
strategy is not new; it has been used in the previous work 
[3, 8]. Nevertheless, as already noted, the previously devel-
oped GTI detection methods do not apply to the problem of 
push–pull with  G1 connections. Without an effective GTI 

2 In implementation, one may experience robustness and uniqueness 
issues, which are two long-standing practical issues in B-rep based 
modeling. A complete solution to them is beyond the scope of this 
work. When such problems occur, ad hoc methods will be used.



3818 Engineering with Computers (2022) 38:3815–3830

1 3

detection method, the above iterative strategy cannot be 
made possible. This issue is to be addressed in Sect. 3.1. 
For the GTI resolution module, the methods developed in 
[3, 8] are still applicable since push–pull with  G1 connec-
tions do not introduce additional inconsistency types. Thus, 
a similar method is to be used for the GTI resolution task in 
this work, as will be shown in Sect. 3.2.

3.1  Geometry–topology inconsistency detection

Although presented in different forms, previous studies on 
GTI detection, e.g., [3, 8, 14, 15], share a common idea: 
they predict when GTI will occur during a push–pull edit, 
a priori, based on various GTI pattern libraries. Basically, 
GTI detection was done a priori, and fully knowing motion 
information of all movable boundary faces is a necessity. 
Such a strategy will suffer if the motion information is una-
vailable. For this reason, this work does not seek to improve 
existing methods but to propose a radically different strategy. 

Regenerated Model 

(Valid) 

Push-Pull Blue Face

F1 

F5 

F3 

F2 F4 

F6 

Pre-Edit Topology Pre-Edit Carrier Surfaces 

F5 

F3 
F1 F4 

F6 

Pre-Edit B-Rep Model 

Post-Edit Carrier Surfaces 

New 

Connection 

Inserted 

Regenerated Model 

(Invalid) 
Post-Edit Carrier Surfaces 

F2 

Fig. 2  Illustration of model regeneration and geometry–topology inconsistency

Fig. 3  Schematic diagram of the overall method



3819Engineering with Computers (2022) 38:3815–3830 

1 3

The basic idea is to detect GTI, a posteriori: we first miss 
instants of GTI, then investigate the generated GTI in the 
regenerated model, and finally reversely trackback to the 
critical points where the GTI occurred, a concept similar 
to reverse engineering. This way, the motion information 
does not need to be made available ahead of time, and then 
the challenge stated in Sect. 1 can be properly solved. The 
above idea is to be referred to as the reverse inference idea.

The reverse inference idea is implemented using a three-
stage scheme, as illustrated in Fig. 4. An example based on 
a mechanical connecting rod part is also given to assist the 
understanding of the workflow. At Stage 1, a model regen-
eration is first performed. If there is no GTI in the regener-
ated model (i.e., a valid model is produced), nothing further 
needs to be done. If otherwise, the GTI in the regenerated 
model is extracted. As already noted, GTI takes the form 
of newly added connections and/or lost connections. Such 
connection changes are reflected in the changes made to the 
edge topology on the boundary faces [3], as connections 
essentially define intersections between carrier surfaces, as 
shown by the circled face in Fig. 4. Then, the extraction can 

be done by collecting topology-changed boundary faces in 
the regenerated model.

Stage 2 investigates how the topology changes on indi-
vidual ill-bounded faces collected at Stage 1. This is done 
by first identifying the edges involved in the changed topol-
ogy (as shown by the blue and red edges in Fig. 4) and then 
analyzing how their connection states alter: how two edges 
change from being apart to being connected, or the other 
way around. This analysis serves as a basis for reversely 
inferring the critical events where the edge connection states 
change abruptly. For example, the critical event for the blue 
and red edges in Fig. 4 is the tangency between them, as 
depicted in the transition illustration. Inferring such events 
may be straightforward using human intuition but not the 
case with a computer. In the following, an effective method 
will be presented to handle this issue.

At Stage 3, we model the relationship between the 
push–pull parameter and the critical events attained at Stage 
2. A push–pull operation can be represented by the rigid 
transformation matrix T(t), t ∈ [0,1] specified by the user. 
The parameter t  here is the push–pull parameter, and the 
parameter domain has been normalized into the unit interval 

Regenerate Model &  

Extract Topology-Changed Faces 

Stage 1: GTI Extraction 

Topology 

Changed 

Input B-rep Model 

and Push-Pull Edit 

Push-Pull 

Blue Faces 

Stage 3: Push-Pull Parameter Calculation 

Relate Critical Events to Push-Pull Parameter & 

Choose the Lowest Calculated Parameter Value
Next GTI 

Critical Point 

Stage 2: GTI Critical Events Inference 

Identify Involved Face Edges & 

Infer Critical Events for Topology Changes 

Tangency From Edges 

to Events 

Regenerated Model 

Illustration of Edge 

Connection State Transition  

Fig. 4  Workflow of geometry–topology inconsistency detection



3820 Engineering with Computers (2022) 38:3815–3830

1 3

[0,1] . Each critical event has a corresponding push–pull 
parameter value (called a critical point) indicating when 
the critical event occurred, and it is to be shown that this 
correspondence can be described by a system of nonlinear 
equations. Solving this system for individual critical events 
gives a collective list of critical points, and the lowest value 
of these critical points is the intended GTI detection result.

Among the three stages stated above, the essential parts 
are the reverse inferring from topology-changed faces to crit-
ical events and the relating of these events to the push–pull 
parameter. Novel methods are to be presented to deal with 
them in the next few subsections.

3.2  Reverse inferring of critical events

This subsection addresses the problem of attaining critical 
events that characterize abrupt topology changes on given 
topology-changed boundary faces. A topology-changed face 
is a face in the regenerated model, and thus to be called 
the regenerated face; its corresponding face in the pre-edit 
model is to be referred to as the reference face. Recall that 
the very first task in the reverse inference is to attain the 
edges involved in topology changes, which gives rise to the 
need for retrieving and manipulating the topological infor-
mation of a boundary face. To facilitate such processing, 
a graph-based face representation scheme is used: connec-
tions of bounding edges on a boundary face are represented 
by a graph structure in which graph nodes encode the edge 
entities and graph arcs describe the connections between 
them. Figure 5 shows an example of this graph representa-
tion scheme, using the reference face and regenerated face 
of the connecting rod example in Fig. 4.

The primary advantage of using the graph representa-
tion is the many operators available for manipulating graphs. 

Those of interest are the Boolean operations that can extract 
the difference between the two graphs. To be more specific, 
the difference between the reference and regenerated faces’ 
connection graphs Gref , Greg is given by:

where the operators “ − ” and “ ∪ ” denote the Boolean 
subtraction and Boolean union on graphs. Boolean 
operations on graphs have various definitions [16], 
and the one used here is as follows. Let two graphs 
be G1 =

(
V1,A1

)
 and G2 =

(
V2,A2

)
 , where V1 and V2 

are the graphs’ node sets, and A1 and A2 are the graphs’ 
arc sets. The Boolean subtraction is then given by 
G1 − G2 =

({
nodes induced fromA1 − A2

}
,A1 − A2

)
 , where 

the operator “ − ” is the ordinary set difference; the Boolean 
union can be defined similarly. Following this definition, the 
first subtraction Greg − Gref in Eq. (1) acquires arcs presented 
in Greg but not in Gref . As arcs represent connections between 
edges entities on a face, Greg − Gref essentially describes con-
nections that Greg has but Gref does not; such connections are 
referred to as newly added connections. Similarly, Gref − Greg 
gives connections that Gref has but Greg does not, referred to 
as lost connections. Then the union of these two terms yields 
the difference between Greg and Gref in terms of connections. 
For example, applying Eq. (1) to the two connection graphs 
in Fig. 5 yields a difference graph that correctly captures the 
newly added connection between edges e1 and e5.

The difference graph in Eq. (1) not only tells the subjects 
of topology changes but also carries information on the pro-
gression history of topology changes. Given a difference 
graph ΔG = (ΔV ,ΔA) , we can easily check if an arc a ∈ ΔA 
is from the regenerated connection graph Greg or the refer-
ence connection graph Gref . If a is from Greg , it represents 

(1)ΔG =
(
Greg − Gref

)
∪
(
Gref − Greg

)

Fig. 5  Graph representation of 
boundary faces and identifica-
tion of topology change subjects 
and history

Regenerated Face 

1 

2 

5 4 

3 

1 

5 

Difference Graph: 

Reference Face 
Identified Topology Change

Subjects & History 

1 

2 

5 4 

3 

Connection Graph Connection Graph 



3821Engineering with Computers (2022) 38:3815–3830 

1 3

an newly added connection, and the two edges’ connection 
state progressed from being apart to being connected. If a is 
from Gref , it represents an lost connection, and the connec-
tion state progressed from being connected to being apart. 
Consider again the example in Fig. 5. The only arc of the dif-
ference graph comes from the connection graph B (i.e., Greg ), 
and then the topology change is a consequence of edges e1 
and e5 moving into each other, as illustrated by the red arrow.

A difference graph ΔG gives a list of edge pairs with 
altered connection states and their individual progres-
sion histories. Each progression thread makes either two 
originally disconnected edges connected, or the other way 
around. (Please note that this does not mean they are the 
only two forms topology changes can take, but two funda-
mental configurations making up general complex topology 
changes.) The critical event for the progression from discon-
nection to connection is the collision between the two edges. 
Generally, edge-edge collision has two configurations (1) 
involving only interior points of both edges and (2) having 
end points involved, as shown in Fig. 6. These two con-
figurations have different characteristic events. As can be 
seen from Fig. 6, the event for the left configuration is the 
interior-point tangency between the two edges, and that for 
the right one is the end-point incidence. It should be noted 
here that no further information is available for us to deter-
mine which of the two critical events has actually occurred 

since we do not have the motion information of all movable 
boundary faces. As a result, both events are possible and 
need to be checked. For the second progression type, i.e., 
from connection to disconnection, the critical event is the 
separation between the carrier curves of the two edges, as 
shown in Fig. 7. More precisely, one of the curves moved 
beyond the size limit of the other curve, and the characteris-
tic event is the tangency at the ends of the two edges.

3.2.1  Mathematical modeling of critical events

With critical events in place, we need to relate them to the 
push–pull parameter so as to attain the critical points at 
which these events occur. From the previous discussion, 
there are three critical events: interior-point tangency, end-
point incidence, and end-point tangency. They can be further 
reduced to the following two basic types: tangency and inci-
dence. It will be shown in the following that these two event 
types can be formulated as systems of quadric equations.

A tangency (interior-point or end-point) between two 
edges can be expressed sequentially in terms of (1) the tan-
gency between the two edges’ carrier curves and (2) the 
examination of the tangency locating inside or right at the 
limits of the edges. More formally, let the edges be repre-
sented as e1, e2 , their respective carrier curves be c1, c2 , and 

Fig. 6  Example configurations 
of edge-edge collision

Fig. 7  Example process of 
edge-edge separation



3822 Engineering with Computers (2022) 38:3815–3830

1 3

assume that the tangency of the two curves is at point p . 
Then, p clearly has to satisfy the on-curve conditions:

In general, carrier curves in a B-rep model are intersec-
tions of surfaces [17]. Thus, the on-curve conditions can be 
modeled as:

where F1(⋅) = 0 , F2(⋅) = 0 and F3(⋅) = 0 denote the equa-
tions of the surfaces adjacent to carrier curves c1, c2 , refer 
to Fig. 8 for an illustration of their relationship.

In addition to the on-curve conditions, point p also needs 
to satisfy the tangency condition that the two curves have 
collinear tangents at point p . The tangent for curve c1 (or c2 ) 
is given by the cross product of the normals of the surfaces 
F1 and F2 (or, F2 and F3 ). The normal of an surface 
F(x, y, z) = 0 is given by its gradient: ∇F =

(
�F

�x
,
�F

�Y
,
�F

�Z

)
 

[18]. The tangency condition can then be formulated as:

where operators “ × ” and “ ⋅ ” denote the cross product and 
dot product, respectively. Combining Eq. (4) with Eq. (3) 
yields the mathematical modeling of tangency events. It 
should, however, be noted that there is a special situation 
for Eq. (4): surfaces F1 and F2 (or, F2 and F3 ) are tangent at 
point p , ultimately leading to triviality in Eq. (4). As a result, 
Eq. (4) cannot be used without considerable additions, which 
can be found in Appendix A.

For an incidence event at edge ends, it should first satisfy 
the on-curve conditions (Eq. (3)) as well, and then satisfy 
the additional constraint that point p is at edge ends. As 
shown in Fig. 8, the top end of edge e1 is the intersection of 
curve c1 and the surface F4 . Thus, to impose the edge end 

(2)p ∈ c1 and p ∈ c2

(3)
p ∈ c1 ⇔

{
F1(p) = 0

F2(p) = 0

p ∈ c2 ⇔

{
F2(p) = 0

F3(p) = 0

(4)

(
∇F1(p) × ∇F2(p)

)
×
(
∇F2(p) × ∇F3(p)

)
= 0

⇔

∇F2(p) ⋅
(
∇F1(p) × ∇F3(p)

)
= mathbf0

constraint, we only need to require that point p is on surface 
F4 , which is given by:

This equation, together with Eq. (3), gives the mathemati-
cal modeling of incidence events.

In the above formulations, there are four equations 
but three variables (i.e., the three coordinates of point p ) 
for the tangency event (Eqs. (3) and (4)), and the same 
for the incidence event (Eqs. (3) and (5)). The missing 
variable is reserved for the push–pull parameter. Let the 
push–pull edit be represented by a rigid transformation 
matrix T(t), t ∈ [0, 1] . This transformation matrix imposes 
the motion on push-pulled boundary faces, which in turn 
drive the neighboring boundary faces to move due to the  G1 
connections between them, and so forth for their neighboring 
boundary faces, if necessary. The motions of all the driven 
boundary faces are governed by a system of tangent con-
straints between their carrier surfaces, which ensures that the 
 G1 connections between the boundary faces are preserved 
during the push–pull move. These tangent constraints can be 
translated straightforwardly to a system of nonlinear equa-
tions using the existing research results in geometric con-
straint solving such as [19–21]. Combining these equations 
with Eq. (3) and (4) (or (5)) yields a new system of nonlinear 
equations that relate the push–pull parameter to a previously 
detected critical event. In other words, by solving this new 
system, we can attain the exact value (up to a given preci-
sion) of the parameter at which a critical event occurs.

Although constructing the tangent constraints and the 
associated equations is straightforward, a practical note 
about these equations’ solvability should be made here. 
There is a special case where the equation system could 
become under-constrained: the push-pulled surface has  G1 
connections with its neighboring surfaces, which in turn 
have  G1 connections with their neighboring surfaces as well, 
and so forth. In such under-constrained situations, the sys-
tem’s degrees of freedom have to be reduced. To do so, one 
needs to restrict these surfaces’ movability by specifying 
which surfaces involved in the above chain of G1 connec-
tions are fixed, and which surfaces are movable. In this work, 
the restriction scheme being used is as follows: whenever 
under-constrained situations occur, we only allow the push-
pulled surfaces and their immediate neighboring surfaces to 
move, a scheme similar to that used by Siemens NX. As a 
side note, there are often more than one way to carry out the 
restriction, and determining the best restriction scheme is a 
very challenging task, if at all possible. From a theoretical 
point of view, which specific restriction scheme to use does 
not make any difference to the reverse inference method, 
as long as it can ensure consistency among all push–pull 
moves, as demonstrated by the examples in Fig. 17.

(5)F4(p) = 0

Fig. 8  Illustration of edge-curve-surface relationship



3823Engineering with Computers (2022) 38:3815–3830 

1 3

To summarize, Algorithm 1 shows how to combine the 
methods described previously to attain an effective GTI 
detection method. This algorithm follows the workflow 
presented in Fig. 4: first attain topology-changed boundary 
faces (Line 2); then collect critical events using the method 
described in Sect. 3.1.1 (Line 5); then relate the collected 
critical events to the push–pull parameter with the method 
described in Sect. 3.1.2 (Lines 6–9); finally set the next 
critical point to the lowest value of all the calculated critical 
points.

Algorithm 1: Geometry-Topology Inconsistency Detection

Input: , ( ), ∈ [0,1] − the B-rep model and push-pull edit

Output: the next critical point

1. ′ ← RegenerateModel( , ( = 1))
2. ← GetTopologyChangedFaces( ′ )

3. ′ ← ∅ // for storing critical points

4. for each face ∈ do
5. ← InferCriticalEvents( )

6. for each event ∈ do
7. ′ ← RelateEventToPushPullParameter( , ) // Eq. (3), (4) and (5)

8. add ′ to ′ if 0 ≤ ′ ≤ 1 // filter out invalid critical points

9. end for
10. end for
11. Return Min( ′ )

3.3  Geometry–topology inconsistency resolution

As can be seen from the workflow in Fig. 3, the subsequent 
task after attaining the next critical point is to resolve the 
GTI generated when the push–pull edit crosses this critical 
point. The main task is to ensure that the model after resolu-
tion remains as a valid solid model. The authors have pre-
viously presented a Boolean-based GTI resolution method 
to address this problem [3]. This method can ensure valid 
modeling results and attain continuous model variations. It 
is summarized below.

Let the push–pull edit be represented by a rigid trans-
formation matrix T(t), t ∈ [0, 1] , and the model varia-
tion over this push–pull move by M(t), t ∈ [0, 1] . The first 
next critical point is assumed to be at 0 < 𝜏 < 1 . As there 
is no GTI at any point before � , the model M(t) is sim-
ply the regenerated model at t  , for 0 < t < 𝜏 . For such a 
model variation, it is found that the model volume change 
ΔM(t) = M(0) −M(t), t ∈ (0, �) can be expressed in terms 
of the volume swept by the push-pulled face from 0 to t and 
bounded by its neighboring faces. Here, the operator “ − ” 
denotes the regularized Boolean difference on the model 
volume. Then, the model M(t) before the critical point � can 
be obtained by a simple Boolean difference operation:

In the above expression, it is evident that if ΔM(t) is nega-
tive, material/volume will be added to the original model 
M(0) . In implementation, the volume ΔM(t) is constructed 
by first extending neighboring faces and then trimming them 
with respect to the push-pulled surface at t = 0 and its new 
position at t = � . Because the extending and trimming are 
performed without really crossing a GTI critical point, there 

(6)M(t) = M(0) − ΔM(t), t ∈ [0, �)

is no complex topology changes in this process. Please note 
that, for clarity, the above discussion is focused on the first 
iteration (i.e., the range from 0 to � ), but it applies to any 
iteration from an intermediate GTI critical point to the next.

As the model variation is required to follow a continu-
ous change pattern, the following relationship holds for the 
critical point: M(�) = lim∈→0 M(�− ∈) . The model M(�− ∈) 
can be evaluated using Eq. (6). Eventually, the model M(�) 
is given by:

where ΔM(�) is, again, the volume swept by the push-pulled 
face from 0 to � and bounded by its neighboring faces. With 
Eq. (7), resolving the GTI at a critical point is formulated 
to be Boolean operations on the model volume. The above 
statements represent a very brief, high-level description of 
the Boolean-based resolution method. The method clearly 
involves more technical details such as addressing interfer-
ences among the model ΔM(t) for multiple moved boundary 
faces. These issues can be solved with variations of the idea 
stated above, and the details can be found in Sect. 5, Ref. [3].

Use of Boolean operations to carry out GTI resolution 
provides substantial advantages. Most notably, Boolean 

(7)M(�) = M(0) − lim
∈→0

ΔM(�− ∈) = M(0) − ΔM(�)



3824 Engineering with Computers (2022) 38:3815–3830

1 3

operations on the model volume can guarantee that the 
resulting model is a valid solid model [9]. In addition, they 
allow an easy implementation of push–pull with  G1 connec-
tions using existing CAD research and engineering results. 
However, it should be noted that, although in almost all 
cases the input and output models in the proposed algorithm 
are manifold models, there could be some very special cases 
that the input models are manifold models, while the output 
model is non-manifold. Therefore, the Boolean operations 
here should be able to deal with non-manifold models.

3.4  Overall algorithm for push–pull with  G1 
connections

With the GTI detection method (Sect. 3.1) and the GTI reso-
lution method (Sect. 3.2) in place, an algorithm is readily 
available for handling any possible GTI in push–pull with 
 G1 connections. The algorithm is essentially an implemen-
tation of the diagram in Fig. 3 by replacing the two blocks 
of Detect GTI and Resolve GTI with the respective meth-
ods in Sects. 3.1 and 3.2. The specific procedures of the 
algorithm are shown in Algorithm 2. Line 2 corresponds to 
the inconsistency detection method described in Sect. 3.1. 
Line 4 corresponds to the Boolean-based resolution method 
described in Sect. 3.2. Line 5 updates the B-rep model with 
the model resulting from the inconsistency resolution, and 
Line 6 updates the push–pull edit with the rest part, which 
is given by T(1)T

(
t
�)−1 . These updates (Lines 5–7) prepare 

the model and push–pull edit for the next iteration.

4  Case studies

4.1  Implementation

The method presented previously has been implemented in 
an Apple Macintosh environment using C++. The imple-
mentation was built on top of the open source geometric 
modeling kernel Open CASCADE (7.0); the graphical user 
interface was designed using QT (5.7); the software’s archi-
tecture is similar to the geometry processing and rendering 
framework OpenFlipper [22]. When a STEP/IGES model 
is imported, its boundary representation is displayed in the 
View window, and its handle is listed in the Objects tool-
box (labeled as 1 in Fig. 9a). The handle allows the user to 
control the model’s display parameters like hide/show. To 
push–pull a B-rep model displayed in the View window, the 
user first activates the push–pull direct modeling function by 
pressing the left button in the Push–Pull toolbox (labeled as 
2 in Fig. 9a) and then selects the boundary faces of interest. 
Once done, a push–pull handle (labeled as 3–5 in Fig. 9a) 
pops up. By selecting and moving the three rectangular sub-
handles in the push–pull handle, users can push–pull the 
selected boundary faces as they see fit. After the push–pull 
parameters are specified, the computer uses the method pre-
sented in Sect. 3 to carry out the model update. For instance, 
Fig. 9b shows the updated model for translating the blue 
faces by 7.5 mm.

Algorithm 2: Push-Pull with G1 Connections

Input: , ( ), ∈ [0,1] − the B-rep model and push-pull edit

Output: the updated model

1. while TRUE
2. ′ ← DetectNextCriticalPoint( , )  // Algorithms 1, Section 3.1

3. if ′ ≠ NULL then // NULL means there is no critical point

4. ′ ← ResolveInconsistency( , ( ′ ))  // Section 3.2

5. ← ′ // update the B-rep model

6. ← (1) ( ′)−1 // update the push-pull edit 

7. Reparametrize to the domain [0,1]
8. else break the loop

9. end while
10. ← RegenerateModel( , (1))
11. Return



3825Engineering with Computers (2022) 38:3815–3830 

1 3

Fig. 9  Graphical user interface a of the push–pull with  G1 connection system and b modeling result of translating blue faces

Fig. 10  Push-pulling the axis 
support model and the modeling 
results: a an ordinary push–pull 
edit; and b an arbitrary push–
pull edit



3826 Engineering with Computers (2022) 38:3815–3830

1 3

4.2  Case studies

A series of case studies are to be presented to demonstrate 
the effectiveness of the proposed method by comparisons 
with commercial CAD systems. Five leading CAD systems 
were tested: ANSYS SpaceClaim (19), Autodesk Inventor 
(2019), PTC Creo (Elements/Direct modeling 19), Siemens 
NX (11), and SolidWorks (2019). SolidWorks barely sup-
ports push–pull with  G1 connections; Autodesk Inventor and 

Fig. 11  Push-pulling the 
connecting rod model and the 
modeling results

Fig. 12  Push-pulling the hook model and the modeling results

Fig. 13  Push-pulling the motorcycle triple clamp model and the modeling results

Fig. 14  Push-pulling the motorcycle triple clamp model and the mod-
eling results

Fig. 15  Push-pulling the connector model with a long range and its 
modeling results



3827Engineering with Computers (2022) 38:3815–3830 

1 3

PTC Creo partially support push–pull with  G1 connections in 
a few selected scenarios; ANSYS SpaceClaim and Siemens 
NX fully support push–pull with  G1 connections. Therefore, 
Siemens NX and SpaceClaim were chosen for demonstrating 
the comparisons. From the case studies conducted, it has 
been found that Siemens NX has a better performance in 
terms of preserving  G1 connections; ANSYS SpaceClaim 
sometimes the former even gives nonsense model shapes. 
(ANSYS SpaceClaim, however, outperforms Siemens NX 
for push–pull without  G1 connections.)

There are in total eight case studies, which are based on 
six real-world mechanical parts obtained from the GrabCAD 
part library (https:// grabc ad. com/ libra ry). Case study 1 con-
sidered push-pulling an axis support part model where no 
critical points could be detected during the push–pull edit 
(Fig. 10). Case study 2 involved a connecting rod part model 
with one critical point in the push–pull edit (Fig. 11). Case 

study 3 analyzed push-pulling a hook part model with one 
critical point in the push–pull edit (Fig. 12). The varied mod-
eling results in these three case studies will be used to show 
the essential role GTI detection plays in attaining robust 
push–pull with  G1 connections, as well as the effectiveness 
of the proposed GTI detection method. Case studies 4–7 
considered three comprehensive modeling examples where 
various push–pull edits were applied (Figs. 13, 14, 15, 16); 
they will be used to show the effectiveness of the proposed 
method as a whole. Case study 8 (Fig. 17) is intended to 
show some important limitations of the proposed method.

4.3  Discussion and limitations

In case study 1, there was no critical point in the push–pull 
edit. Model update was thus made trivial and only involved 
model regeneration. Siemens NX, SpaceCl and the pro-
posed method successfully gave satisfactory modeling 
results (Fig. 10), even when the push–pull was made wild 
(Fig. 10b). In case study 2, similar faces to those in case 
study 1 were push-pulled, but an invalid modeling result 
was generated in Siemens NX, and a valid yet unpredictable 
result (as indicated by the red circle) was given by Space-
Claim (Fig. 11). (Siemens NX colors boundary faces in red 
whenever there is a model update failure, as shown by the 
circled face in Fig. 11.) The major difference between case 
studies 1 and 2 is that the latter involves a critical point of 
GTI. It can thus be concluded that crossing critical points 
could cause model update failures.

In case study 3 (Fig. 12), there was also one critical point 
of GTI, and the GTI configurations were almost the same 
as those in case study 2. Despite the similarity, Siemens 
NX failed in case study 2 and succeeded in case study 3, 
thereby leading to the conclusion that the failure in case 

Fig. 16  Modeling results of 
various push–pull edits in a row 
using the proposed method (cir-
cles indicate changed parts)

Fig. 17  Push-pulling the bracket model under various  G1 connection 
choosing schemes: a push–pull edit; b, c, and d modeling results

https://grabcad.com/library


3828 Engineering with Computers (2022) 38:3815–3830

1 3

study 2 was likely not due to GTI resolution but GTI detec-
tion. The failure was not likely due to numerical instability 
[23] either, because the geometric configurations in the two 
cases are also very similar. As such, the significance of GTI 
detection in attaining robust push–pull with  G1 connections 
can be partly confirmed. Besides, by comparing the mod-
eling results of Siemens NX and the proposed method, the 
proposed GTI detection method is seen to be effective.

Case studies 1–3 focused primarily on the GTI detection 
module, and thus the effectiveness of the presented method 
as a whole was not sufficiently demonstrated. For this reason, 
three more case studies that are comprehensive were carried 
out. Considering that complexity of push-pulling a model 
lies in how many critical points it needs to cross, and how 
complex the associated GTI configurations are, case study 
4 (Fig. 13) analyzed a situation with multiple critical points. 
Push-pulling the triple clamp model in Fig. 13 involved 10 
critical points in total, and some of them occurred concur-
rently. As a result, the GTI configurations are very complex, 
and the associated detection task is challenging. Siemens 
NX was only able to successfully cross the first two criti-
cal points, and SpaceClaim was not even able to cross a 
single critical point (yielding a weird resulting geometry), 
while the proposed method can correctly detect all the criti-
cal points and resolve the generated GTI. In case study 5 
(Fig. 14), instead of linearly adding more critical points to 
the push–pull move, the comprehensiveness was attained 
by push-puling a same model under various situations: (1) 
push–pull the blue faces and stop in between the first and 
second critical pointsz; (2) push–pull the blue faces, and 
stop in between, then continue the push–pull until the end; 
and (3) push–pull the blue faces until the end. The modeling 
result for the first situation is shown in the middle of the 
upper row in Fig. 14, that for the second situation is shown 
in the upper-right, and that for the third situation is the same 
as the second one. Siemens NX failed to update the model 
for all of the three situations, while the proposed method can 
successfully update the model for all of them.

The comparisons in case studies 1–5 are sufficient to 
show that the proposed method outperforms the state of the 
art in terms of robustness. Nevertheless, only translational 
push-pulls were used in these case studies, and the push–pull 
ranges were small. One more case study (Fig. 15) was thus 
carried out to show that this work also applies to rotational 
push–pull with a long range in the edit. The case study 
shown in Fig. 16 further demonstrates effectiveness of the 
proposed method by including multiple push-pulls in a row 
and different push–pull types (translational and rotational). 
Specifically, four push–pull edits were performed in a row, 
containing both the rotational push–pull type (e.g., the first 
push–pull operation) and the translational push–pull type 
(e.g., the third push–pull operation), as well as single-face 
push–pull operations (e.g., the second push–pull operation) 

and multiple-face push–pull operations (e.g., the fourth 
push–pull operation). This case study represents a very com-
prehensive push–pull situation.

As one may have already noticed, driven faces in all 
the above case studies were restricted to the intermediate 
neighboring faces of the push-pulled faces. We did this to 
be in line with the way of working in Siemens NX for the 
modeling results of the proposed method to be comparable 
with those of Siemens NX. However, there are also cases 
where the user wants driven faces to be broader and include 
more faces such as second-ring neighboring faces [24]. 
This basically asks: which  G1 connections are to be used in 
constructing the system of tangent constraints discussed in 
Sect. 3.1.2. Although different choices among the  G1 con-
nections yield different constraint systems, they make no dif-
ference once assembled with Eqs. (3), (4), and (5), as long as 
they are well-constrained. Thus, the choosing scheme being 
used does not alter the essence of the proposed method in 
this work. Case study 7 (Fig. 17) shows an example in which 
different choosing schemes can be incorporated into the pro-
posed method, based on a simplified version of the model 
used in case study 6. In Fig. 17b, driven faces are interme-
diate neighboring faces; in Fig. 17c, driven faces include 
intermediate neighboring faces and second-ring neighboring 
faces; in Fig. 17d, driven faces are intermediate neighbor-
ing faces, and both the face position and face size parameter 
(i.e., the radius) are made changeable to accommodate the 
 G1 connections.

Although the proposed method can interface with any 
possible choosing scheme, the present work, in its current 
form, is not able to automatically determine which of the 
choosing schemes is to be used, given a specific push–pull 
edit. The user needs to specify the choosing scheme and 
uses it as an input to the proposed method. This states the 
main limitation of the present work. Having an automatic 
mechanism for decisions among the choosing schemes is 
absolutely desirable. This is, however, a challenging task, 
partly because the decision is closely related to the user’s 
design intent. Design intent is generally too complicated to 
infer satisfactorily by the computer [25].

5  Conclusions

A robust method for push–pull direct modeling of quad-
ric B-rep models while preserving smooth connections has 
been presented in this paper. This kind of direct modeling 
is of practical significance, but current academic methods 
and industrial implementations are far from being sufficient 
in terms of robustness. The major challenge of the robust-
ness issues has been found to be the lack of information on 
motions of movable boundary faces during push–pull moves 
and effectiveness towards GTI detection. A novel, effective 



3829Engineering with Computers (2022) 38:3815–3830 

1 3

method has thus been proposed to solve the challenge and 
attain robust push–pull direct modeling. This method fea-
tures the ability to detect GTI while avoiding the reliance on 
the motion information. Case studies and comparisons have 
been conducted to validate the proposed method.

A couple of practical notes need to be made here. In the 
GTI resolution module (Sect. 3.2), Boolean operations have 
been used. Such operations are often criticized for not being 
very stable. This is true to a certain extent as a systematic, 
theoretical treatment to this issue is still unavailable. Nev-
ertheless, from a practical perspective, Boolean operations 
implemented in most geometric modeling kernels have been 
refined through decades of incremental improvements (in 
particular, use of the adaptive tolerance technique [26]), 
and they now work fairly reliably, as reported by experts 
from industry [27]. In addition, the proposed GTI detection 
method, in its current form, cannot handle critical points 
caused by global face–face penetration, as they cannot be 
caught by edge-based topology changes. It should also be 
noted that, as the proposed method conducts GTI detection 
through solving systems of nonlinear equations, the compu-
tation load may become significant when the push–pull edit 
involves many GTI critical points and the model being push-
pulled is complex. Geometric constraint system decompo-
sition and parallel computing techniques may be used to 
address this issue. Improving the proposed method’s com-
putational efficiency is among the direct modeling research 
studies to be carried out in our research group. In addition, 
combining the present work with virtual/augmented reality 
techniques is of great interest for future studies.

Appendix A

The tangent v of two intersected surfaces F1 and F2 at point 
p is given by the cross product of the two surfaces’ normals, 
i.e., ∇F1(p) × ∇F2(p) . However, when the two surfaces have 
parallel normals at point p , the tangent v becomes ill-defined 
since ∇F1(p) × ∇F2(p) vanishes. This is a problem that has 
been extensively studied in the surface/surface intersection 
domain [28]. A typical solution to this problem uses addi-
tional information of local surface curvatures to identify the 
tangent v . Specifically, the tangent v should satisfy the condi-
tion of equal normal curvatures at point p . Take a plane and 
a cylinder as an example. If they are tangent to each other, v 
should point to the axial direction along which the cylinder 
has zero curvature, and this is consistent with curvatures of 
a plane.

For a surface F , its curvature tensor C at point p is given 
by ∇

�
∇F(p)

‖∇F(p)‖

�
 , and the normal curvature in direction d is a 

quadric form, as dTCd [18]. To apply the above condition of 

equal normal curvatures, we introduce a new variable, the 
tangent v , to Eq. (4), as follows:

where C1 and C2 are the respective curvature tensors for sur-
faces F1 and F2 at point p . Here, we assume that surfaces F2 
and F3 does not have parallel normals; if otherwise, what 
has been done to surfaces F1 and F2 also applies to surfaces 
F2 and F3.

Acknowledgements This work was in part funded by a UBC Ph.D. 
Fellowship, the Natural Sciences and Engineering Research Council 
of Canada (NSERC) under the Discovery Grants program, and the 
QiangJi Program (TC190A4DA/3).

Funding This work was partially funded by a UBC Ph.D. Fellowship 
and the Natural Sciences and Engineering Research Council of Canada 
(NSERC) under the Discovery Grants program, and the QiangJi Pro-
gram (TC190A4DA/3).

Declarations 

Conflict of interest The authors declare that there are no competing 
financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

References

 1. Tornincasa S, Monaco FD (2010) The future and the evolution of 
CAD. In: Proceedings of the 14th international research/expert 
conference, pp 11–18.

 2. Ault H, Phillips A (2016) Direct modeling: easy changes in CAD. 
In: Proceedings of the 70th ASEE EDGD Midyear Conference, 
pp 99–106.

 3. Zou Q, Feng H-Y (2019) Push-pull direct modeling of solid CAD 
models. Adv Eng Softw 127:59–69

 4. Hashemian A, Imani BM (2018) Surface fairness: a quality metric 
for aesthetic assessment of compliant automotive bodies. J Eng 
Des 29:41–64

 5. Piegl LA, Tiller W (1997) The NURBS book. Springer
 6. Rabbani T, Van Den Heuvel F (2005) Efficient Hough transform 

for automatic detection of cylinders in point clouds. In: Proceed-
ings of the 11th annual conference of the advanced school for 
computing and imaging, pp 60–65.

 7. Requicha AAG (1980) Representations for rigid solids: theory, 
methods, and systems. ACM Comput Surv 12:437–464

 8. Lipp M, Wonka P, Müller P (2014) PushPull++. ACM Trans 
Graphics 33:1–9

 9. Rossignac JR (1990) Issues on feature-based editing and inter-
rogation of solid models. Comput Graph 14:149–172

 10. Woo Y, Lee SH (2006) Volumetric modification of solid 
CAD models independent of design features. Adv Eng Softw 
37:826–835

 11. Kim BC, Mun DW (2014) Stepwise volume decomposition for 
the modification of B-rep models. Int J Adv Manuf Technol 
75:1393–1403

(A1)
vTC1v = vTC2v

v ×
(
∇F2(p) × ∇F3(p)

)
= 0



3830 Engineering with Computers (2022) 38:3815–3830

1 3

 12. Fu J, Chen X, Gao S (2017) Automatic synchronization of a fea-
ture model with direct editing based on cellular model. Comput-
Aided Des Appl 14:680–692

 13. Hoffmann CM, Kim KJ (2001) Towards valid parametric CAD 
models. Comput Aided Des 33:81–90

 14. Van der Meiden HA, Bronsvoort WF (2010) Tracking topo-
logical changes in parametric models. Comput Aided Geom Des 
27:281–293

 15. Hidalgo M, Joan-Arinyo R (2012) Computing parameter ranges 
in constructive geometric constraint solving: implementation and 
correctness proof. Comput Aided Des 44:709–720

 16 Bondy JA, Murty USR (1976) Graph theory with applications. 
Macmillan

 17 Braid IC (1986) Geometric modelling. Advances in computer 
graphics I. Springer, pp 325–362

 18. Do Carmo MP (1976) Differential geometry of curves and sur-
faces. Prentice Hall

 19. Bettig B, Shah J (2001) Derivation of a standard set of geometric 
constraints for parametric modeling and data exchange. Comput 
Aided Des 33:17–33

 20. Zou Q, Feng H-Y (2019) Variational B-rep model analysis for 
direct modeling using geometric perturbation. J Comput Des Eng 
6:606–616

 21. Zou Q, Feng H-Y (2020) A decision-support method for informa-
tion inconsistency resolution in direct modeling of CAD models. 
Adv Eng Inf 44:101087

 22. Möbius J, Kobbelt L (2012) OpenFlipper: an open source geom-
etry processing and rendering framework. In: Proceedings of the 
international conference on curves and surfaces, pp 488–500.

 23. Hoffmann CM (2001) Robustness in geometric computations. J 
Comput Inf Sci Eng 1:143–155

 24. Botsch M, Kobbelt L, Pauly M, Alliez P, Lévy B (2010) Polygon 
mesh Processing. CRC Press

 25. Camba JD, Contero M (2015) Assessing the impact of geometric 
design intent annotations on parametric model alteration activi-
ties. Comput Ind 71:35–45

 26. Jackson DJ (1995) Boundary representation modelling with local 
tolerances. In: Symposium on Solid Modeling and Applications, 
pp 247–253.

 27. Allen G. Geometric modeling problems in industrial CAD/CAM/
CAE. In: 10th SIAM conference on geometric design and comput-
ing, pp 109–126.

 28. Krishnan S, Manocha D (1997) An efficient surface intersection 
algorithm based on lower-dimensional formulation. ACM Trans 
Graphics 16:74–106

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A robust direct modeling method for quadric B-rep models based on geometry–topology inconsistency tracking
	Abstract
	1 Introduction
	2 Related work
	3 The proposed methodology
	3.1 Geometry–topology inconsistency detection
	3.2 Reverse inferring of critical events
	3.2.1 Mathematical modeling of critical events

	3.3 Geometry–topology inconsistency resolution
	3.4 Overall algorithm for push–pull with G1 connections

	4 Case studies
	4.1 Implementation
	4.2 Case studies
	4.3 Discussion and limitations

	5 Conclusions
	Acknowledgements 
	References




