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Abstract
In this paper, based on the improved interpolating moving least-squares (IMLS) method and the dimension splitting method, 
the interpolating dimension splitting element-free Galerkin (IDSEFG) method for three-dimensional (3D) potential prob-
lems is proposed. The key of the IDSEFG method is to split a 3D problem domain into many related two-dimensional (2D) 
subdomains. The shape function is constructed by the improved IMLS method on the 2D subdomains, and the Galerkin 
weak form based on the dimension splitting method is used to obtain the discretized equations. The discrete equations on 
these 2D subdomains are coupled by the finite difference method. Take the improved element-free Galerkin (IEFG) method 
as a comparison, the advantage of the IDSEFG method is that the essential boundary conditions can be enforced directly. 
The effects of the number of nodes, the direction of dimension splitting, and the parameters of the influence domain on 
the calculation accuracy are studied through four numerical examples, the numerical solutions of the IDSEFG method are 
compared with the numerical solutions of the IEFG method and the analytical solutions. It is verified that the numerical 
solutions of the IDSEFG method are highly consistent with the analytical solution, and the calculation efficiency of this 
method is significantly higher than that of the IEFG method.

Keywords  Meshless method · Dimension splitting method · Improved interpolating moving least-squares method · Finite 
difference method · Interpolating dimension splitting element-free Galerkin method · Potential problem

1  Introduction

There are many complicated problems, such as crack propa-
gation and large deformation, in science and engineering 
fields must be solved with numerical methods. The boundary 
element method and the finite element method are the major 
numerical methods which based on meshes or elements.

In recent years, the meshless method has made great 
progress [1, 2]. When meshless method is used to solve a 

problem, only discrete nodes are distributed on the problem 
domain and its boundary without meshing. Without domain 
discretization, this method uses a node-based approxima-
tion to construct the approximation function or interpolation 
function. This fully ensures the calculation accuracy and 
efficiency. Moreover, the approach leads to a flexible choice 
of nodes in the domain for the specific characteristics. It is 
shown that the method has good adaptability and calcula-
tion accuracy. Therefore, as a new and efficient method in 
scientific and engineering computing, the meshless method 
has gradually become a research hotspot.

Currently, the element-free Galerkin method (EFG) [3] 
and the reproducing kernel particle method (RKPM) [4, 5] 
are major meshless methods. Based on the moving least-
squares (MLS) approximation [6], the EFG method has 
high calculation accuracy, because the MLS approximation 
is obtained from the ordinary least squares method with 
the best approximation [7–10]. Because of the complicated 
shape function of the MLS approximation, the computa-
tional efficiency of the EFG method is low, especially for 
solving three-dimensional (3D) problems. In addition, the 
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MLS approximation maybe causes an ill-conditioned or sin-
gular system of equations. To improve the computational 
efficiency of the EFG method, the improved MLS approxi-
mation [11, 12] and complex variable moving least-squares 
(CVMLS) approximation [13–15] were presented. In the 
improved MLS approximation, the basis functions of the 
approximation are orthogonal, which can avoid the ill-con-
ditioned or singular equations. The improved MLS approxi-
mation improves the calculation efficiency under similar cal-
culation accuracy because it doesnot require computing the 
inversion of matrices. By using the improved MLS approxi-
mation Zhang et al. [16–18] proposed the improved EFG 
method for wave equations, transient heat conduction and 
elastodynamics problems, and Peng et al. [19] and Cheng 
et al. [20, 21] presented the improved EFG method for vis-
coelasticity, elastoplasticity, and diffusional drug release 
problems. In the CVMLS approximation, the complex vari-
able basis functions are used, which results in the fewer 
number of the coefficients of the basis functions in the trial 
function, then the calculation efficiency is improved. Based 
on the CVMLS approximation, the complex variable EFG 
method has been presented for solving temperature field 
[22], elastoplasticity [23] and plate bending problems [24].

In the above EFG method and the corresponding 
improved methods, the essential boundary conditions are 
enforced indirectly, and the Lagrange multiplier method or 
the penalty function method is used. To enforce the essen-
tial boundary conditions directly, based on the interpolat-
ing moving least-squares (IMLS) method [6], Ren et al. 
presented the improved IMLS method [25], and then the 
interpolating EFG method was proposed for elasticity and 
potential problems [26, 27]. Cheng et al. presented the inter-
polating EFG method for solving elastoplasticity [28] and 
large deformation problems [29, 30]. And Liu et al. solved 
the 3D problems by using the interpolating EFG method 
[31–33]. Based on nonsingular weight functions, the 
improved IMLS method is studied further [34, 35], and then 
the corresponding interpolating EFG method was presented 
for solving potential [36, 37], elasticity [38], elastoplastic-
ity [39], two-point boundary value problems [40]. Liu et al. 
proposed the formulae of the interpolating EFG method for 
solving inhomogeneous swelling of polymer gels [41] and 
large deformation problems [42, 43].

The dimensional splitting method was introduced into 
meshless methods to improve the calculation efficiency of 
the EFG method for 3D problems. Cheng et al. presented 
the hybrid improved complex variable element-free Galer-
kin method for 3D potential [44], wave propagation [45], 
transient heat conduction [46], advection–diffusion [47] and 
elasticity problems [48]. Meng et al. combined the dimen-
sional splitting method with the IEFG method and proposed 
the hybrid element-free Galerkin method for the 3D poten-
tial [49], transient heat conduction [50] and wave equation 

[51]. And Peng et al. presented the hybrid reproducing ker-
nel particle method for solving 3D potential [52], transient 
heat conduction [53] and wave equation [54]. These methods 
can greatly improve the calculation efficiency for 3D prob-
lems greatly while ensuring calculation accuracy. In these 
methods, the essential boundary conditions are enforced 
indirectly.

In this paper, based on the improved IMLS method and 
dimension splitting method, the interpolating dimension 
splitting element-free Galerkin (IDSEFG) method for the 
3D potential problems, is proposed. The key of the IDSEFG 
method is to split a 3D problem domain into a series of 
related two-dimensional (2D) subdomains. The shape func-
tion is constructed with the improved IMLS method on the 
2D subdomain, and the Galerkin weak form based on the 
dimension splitting method is used to obtain the discretized 
equations. The discretized equations are coupled by using 
the finite difference method on these 2D subdomains. The 
essential boundary conditions can be enforced directly to 
improve the calculation accuracy, and the calculation effi-
ciency is greatly improved because of the dimension split-
ting method, they are the advantages of the IDSEFG method. 
The effects of the number of nodes, the direction of dimen-
sion splitting, and the parameters of the influence domain on 
the calculation accuracy are studied through four numerical 
examples. The numerical solutions of the IDSEFG method 
are compared with the numerical solutions of the IEFG 
method and the analytical solutions. It is verified that the 
numerical solutions of the IDSEFG method are highly con-
sistent with the analytical solution, and the calculation effi-
ciency of the IDSEFG method is significantly better than 
that of the IEFG method.

2 � The improved IMLS method

The improved IMLS method [25] is proposed by Ren and 
Cheng. It is based on Lancaster’s IMLS method [6].

Defining inner product of any f(x) and g(x) as

where C0(Ω) is a set of continuous functions in problem 
domain Ω and Ω = Ω ∪ �Ω , there are I = 1, 2,… , n nodes 
in domain of point x. Therefore,

On the space span (d1, d2,… , d
k
) , d1(x) = 1, d2(x),… , d

k
(x) are 

used to express the basis functions, where a function with 
the subscript x is related to the selected point x . Normalizing 
d1(x) we have.

(1)

(f , g)
x
=

n∑
I=1

w(x − xI)f (xI)g(xI), ∀f (x), g(x) ∈ C0(Ω),

(2)f
x
=
[
(f , f )

x

] 1

2 .
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As we know i = 2, 3,… , k , the following functions can be 
generated and they are orthogonal to �(1)

x
,

where

When we make �(1)
x
(x), b

(2)
x
(x),… , b

(k)
x
(x) as the new basis 

functions, the approximation function of the MLS approxima-
tion is

where

Then using the MLS approximation, we have

where

(3)
�(1)
x
(x) =

d1

��d1��x =
1

�
n∑

I=1

w(x − x
I
)

� 1

2

.

(4)

b
(i)
x
(x) = di(x) − (di, �

(1)
x

)
x
�(1)
x

= di(x) −

n∑
I=1

di(xI )w(x − xI )

n∑
I=1

w(x − xI )

= di(x) −

n�
I=1

di(xI )v(x − xI ),

(5)
v(x − x

I
) =

w(x − x
I
)

n∑
I=1

w(x − x
I
)

, (I = 1, 2,… , n).

(6)u
h(x) = v

T (x)u + b
T
(x)a(x)

(7)u
T = (u1, u2,… , un),

(8)v
T = (v(x − x1), v(x − x2),… , v(x − xn)),

(9)b
T (x) = (b(2)

x
(x), b(3)

x
(x),… , b(k)

x
(x)),

(10)a(x) = (a1(x), a2(x),… , ak−1(x))
T .

(11)a(x) = A
−1
x
(x)B

x
(x)u,

(12)A
x
(x) = P

T
x
W(x)P

x
,

(13)B
x
(x) = P

T
x
W(x),

(14)P
x
=

⎡
⎢⎢⎢⎢⎣

b
(2)
x
(x1) b

(3)
x
(x1)

b
(2)
x
(x2) b

(3)
x
(x2)

⋯ b
(k)
x
(x1)

⋯ b
(k)
x
(x2)

⋮ ⋮

b
(2)
x
(xn) b

(3)
x
(xn)

⋱ ⋮

⋯ b
(k)
x
(xn)

⎤
⎥⎥⎥⎥⎦
,

It can be obtained by substituting Eq. (10) into Eq. (6)

Equation (16) can also be written as

where

For the improved IMLS method, the shape function 
which shown as Eq. (18) is simpler than MLS approxima-
tion, it will improve the calculation efficiency, and

where

Then we have

where d1(xI) = 1.
The weight function w(x − xI) in the improved IMLS 

method can be selected as

where � is the radius of the influence domain in the func-
tion and � is an even positive integer, we take � = 4 in all 
examples in this paper.

At any points 
{
xI

}n

I=1
 , uh(x) of Eq. (17) can interpolate, 

so we obtain

(15)W(x) =

⎡⎢⎢⎢⎣

w(x − x1) 0 ⋯ 0

0 w(x − x2) ⋮ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋮ w(x − xn)

⎤⎥⎥⎥⎦
.

(16)uh(x) = v
T (x)u + b

T (x)A−1
x
(x)B

x
(x)u.

(17)uh(x) = �(x)u,

(18)
�(x) = (Φ1(x),Φ2(x),… ,Φn(x)) = v

T (x) + b
T (x)A−1

x
(x)B

x
(x).

(19)

(ΦI(x)),j = (�(x − xI) + b
T (x)A−1

x
(x)(B

x
(x))I),j

= �(x − xI),j + b
T
,j
A
−1
x
(B

x
)I + b

T (A−1
x
),j(Bx

)I + b
T
A
−1
x
(B

x
)I,j,

(20)(B
x
)I,j = w(x − xI),jbx(xI),

(21)(A−1
x
),j = −A−1

x
(A

x
),jA

−1
x
,

(22)

(A
x
),j =

n∑
I=1

w(x − x
I
),jbx(xI)b

T

x
(x

I
) +

n∑
I=1

w(x − x
I
)b

x
(x

I
),jb

T

x
(x

I
)

+

n∑
I=1

w(x − x
I
)b

x
(x

I
)bT

x
(x

I
),j.

(23)a(x) = A
−1
x
(x)B

x
(x)(u − (vT (x)u)d1),

(24)

w = w(x − xI) =

{
��

| x−xI| � (1 −
�

| x−xI| )
2, ||x − xI

|| ≤ �

0, otherwise
,
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then we have

In the improved IMLS method, the essential boundary 
conditions can be enforced directly when establishing the 
discretized equations because this method satisfies the prop-
erty of the Kronecker delta function, which will definitely 
improve the calculation accuracy.

3 � The IDSEFG method for 3D potential 
problems

The governing equation of 3D potential problems is

with essential boundary condition

and natural boundary condition

where Ω is the problem domain, u(x) is an unknown vari-
able, b(x) is a known function, u(x) is the known potential 
function on Γu , q(x) is the known normal derivative on Γq . 
Notice that Γ = Γu ∪ Γq and Γu ∩ Γq = � , Γ is the bound-
ary of Ω , and n(x) is the outward unit normal vector of the 
boundary Γ.

When using the IDSEFG method to solve 3D potential 
problems, the splitting direction should be selected reason-
ably according to the characteristics of the control equation 
and the boundary conditions, this will bring better comput-
ing efficiency and make programming easier.

When applying the dimension splitting method, Ω can be 
split into L layers along one direction, we choose x3 here. 
Δx3 is the distance between layer to layer, we get L + 1 2D 
subdomains Ω(k)(k = 0, 1, 2,… , L),

where

(25)uh(xI) = u(xI),

(26)Φ
I
(x

J
) =

{
1, I = J,

0, I ≠ J,
.

(27)
�2u

�x2
1

+
�2u

�x2
2

+
�2u

�x2
3

= b(x), (x = (x1, x2, x3) ∈ Ω),

(28)u(x) = u(x), (x ∈ Γu),

(29)q(x) =
�u(x)

�n(x)
= q(x),

(
x ∈ Γ

q

)
,

(30)Ω =
L−1

∪
k=0

Ω(k) × [x
(k)

3
, x

(k+1)

3
) ∪ Ω(L),

(31)a = x
(0)

3
< x

(1)

3
⋯ < x

(L)

3
= c, x3 ∈ [a, c],

(32)Δx3 = x
(k+1)

3
− x

(k)

3
= (c − a)∕L,

Because Δx3 is a fixed value, u and �
2u

�x2
3

 can be consid-

ered as functions of x1 and x2 , therefore, the 3D problem 
of Eq. (27) above can be written as the following series 
of related 2D boundary value problems,

with the boundary conditions

where

u(k)(x1, x2) is the potential on subdomain Ω(k) , 
u(x1, x2, x

(k)

3
) is the known potential function on Γ(k)

u
 , 

q(x1, x2, x
(k)

3
) is the known gradient function on Γ(k)

q  , 
Γ(k) = Γ(k)

u
∪ Γ(k)

q
 and Γ(k)

u
∩ Γ(k)

q
= �.

The key step of the IDSEFG method is to solve the 2D 
boundary value problem (33)–(35) with the interpolating 
EFG method, then the solution of the 3D potential problem 
(Eqs. (27)–(29)) can be obtained by using the finite differ-
ence method in direction x3.

The equivalent function of Eqs. (33)–(35) is

Because the improved IMLS method satisfies the prop-
erty of the Kronecker delta function, thus, the essential 
boundary conditions can be enforced directly.

Let

we obtain the equivalent integral weak form

(33)

�2u(k)

�x2
1

+
�2u(k)

�x2
2

= b(k) −
�2u(k)

�x2
3

,
(
(x1, x2) ∈ Ω(k), x3 = x

(k)

3

)
,

(34)
u(k)(x1, x2) = u

(k)
(x1, x2) = u(x1, x2, x

(k)

3
),

(
(x1, x2) ∈ Γ(k)

u

)
,

(35)
q(k)(x1, x2) = q

(k)
(x1, x2) = q(x1, x2, x

(k)

3
),

(
(x1, x2) ∈ Γ(k)

q

)
,

(36)u(k) = u(x1, x2, x
(k)

3
),

(37)b(k) = b(x1, x2, x
(k)

3
),

(38)

Π = ∫
Ω(k)

[
u(k)

(
�2u(k)

�x2
3

− b(k)

)]
dΩ(k)

− ∫
Ω(k)

1

2

[(
�u(k)

�x1

)2

+

(
�u(k)

�x2

)2
]
dΩ(k)

− ∫
Γ
(k)
q

u(k)q
(k)
dΓ(k)

.

(39)�Π = 0,
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where

We distribute M nodes x(k)
I

 in the 2D subdomain Ω(k) 
obtained after dimension splitting, u(k)(x) at x(k)

I
 can be rep-

resented as

The trial function uh(x(k), x(k)
3
) at x(k) = (x1, x2) is related 

to the function at the node x(k)
I

 where the influence domain 
covers it. Constructing the shape function with the improved 
IMLS method, the trial function is

where �(x(k)) is the shape function and ΦI,j(x
(k)) is its deriva-

tive, they can be expressed as

The following equations can be obtained from Eqs. (41) 
and (43),

where

(40)
∫

Ω(k)

�u(k) ⋅
�2u(k)

�x2
3

dΩ(k) − ∫
Ω(k)

�(Lu(k))T ⋅ (Lu(k))dΩ(k)

− ∫
Ω(k)

�u(k) ⋅ b(k)dΩ(k) − ∫
Γ
(k)
q

�u(k) ⋅ q
(k)
dΓ(k) = 0.

(41)L(⋅) =

[
�

�x1
�

�x2

]
(⋅).

(42)u(k)(x
(k)

I
) = u(x

(k)

I
, x

(k)

3
).

(43)uh(x(k), x
(k)

3
) =

n∑
I=1

ΦI(x
(k))u

(k)

I
= �(x(k))u,

(44)�(x(k)) = (Φ1(x
(k)),Φ2(x

(k)),… ,Φn(x
(k))) = v

T (x(k)) + b
T (x(k))A−1

x
(x(k))B

x
(x(k)),

(45)ΦI,j(x
(k)) = v(x(k) − x

(k)

I
),j + b

T
,j
A
−1
x
(B

x
)I + b

T (A−1
x
),j(Bx

)I + b
T
A
−1
x
(B

x
)I,j.

(46)
�2u(x(k), x

(k)

3
)

�x2
3

=
�2

�x2
3

n∑
I=1

ΦI(x
(k))u(x

(k)

I
, x

(k)

3
) =

n∑
I=1

ΦI(x
(k))

�2u(x
(k)

I
, x

(k)

3
)

�x2
3

= �(x(k))u��,

(47)Lu(x(k), x
(k)

3
) =

n∑
I=1

[
�

�x1
�

�x2

]
ΦI(x

(k))u(x
(k)

I
, x

(k)

3
) =

n∑
I=1

BI(x
(k))u(x

(k)

I
, x

(k)

3
) = B(x(k))u,

(48)

u
�� =

(
�2u(x

(k)

1
, x

(k)

3
)

�x2
3

,
�2u(x

(k)

2
, x

(k)

3
)

�x2
3

,… ,
�2u(x(k)

n
, x

(k)

3
)

�x2
3

)T

,

(49)B(x(k)) = (B1(x
(k)),B2(x

(k)),… ,Bn(x
(k))),

Substituting Eqs. (43), (46) and (47) into Eq. (40) yields

In order to obtain the discretized equations, every term 
of Eq. (51) need to be discussed.

The first integration term in Eq. (51) is

where

The second integration term in Eq. (51) is

(50)BI(x
(k)) =

[
ΦI,1(x

(k))

ΦI,2(x
(k))

]
.

(51)

∫
Ω(k)

�
[
�(x(k))u

]
⋅
[
�(x(k))u��

]
dΩ(k) − ∫

Ω(k)

�
[
B(x(k))u

]T
⋅
[
B(x(k))u

]
dΩ(k)

− ∫
Ω(k)

�
[
�(x(k))u

]
⋅ b(k)dΩ(k) − ∫

Γ
(k)
q

�
[
�(x(k))u

]
⋅ q

(k)
dΓ(k) = 0.

(52)

∫
Ω(k)

�
[
�(x(k))u

]
⋅
[
�(x(k))u��

]
dΩ(k)

= �uT ⋅

[
∫
Ω(k)

�
T (x(k))�(x(k))dΩ(k)

]
⋅ u

�� = �uT ⋅ C ⋅ u
��
,

(53)C = ∫
Ω(k)

�
T (x(k))�(x(k))dΩ(k).

where

(54)

∫
Ω(k)

�
[
B(x(k))u

]T
⋅
[
B(x(k))u

]
dΩ(k)

= �uT
⋅

[
∫

Ω(k)

B
T (x(k))B(x(k))dΩ(k)

]
⋅ u = �uT

⋅ K ⋅ u,
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The third integration term in Eq. (51) is

where

The fourth integration term in Eq. (51) is

where

Substituting Eqs. (52), (54), (56) and (58) into Eq. (51) 
yields

Because �uT is arbitrary, Eq. (60) can be written as the fol-
lowing differential equation

where

L − 1 nodes are evenly distributed in Ω along the splitting 
direction x3 for solving Eq. (61) (that is, Ω is split into L lay-
ers along this direction, a total of L + 1 planes), except for the 
first and last plane, we can obtain the numerical solutions of 
all nodes on the middle planes x3 = x

(k)

3
, (k = 1, 2,… , L − 1).

We make u(x(k)
3
), (k = 1, 2,… , L − 1) respectively repre-

sent the approximate values of potential on every middle plane 
x3 = x

(k)

3
, (k = 1, 2,… , L − 1) , let

the first and last plane

(55)K = ∫
Ω(k)

B
T (x(k))B(x(k))dΩ(k).

(56)

∫
Ω(k)

�
[
�(x(k))u

]
⋅ b(k)dΩ(k) = �uT ⋅ ∫

Ω(k)

�
T (x(k))b(k)dΩ(k) = �uT ⋅ F1,

(57)F1 = ∫
Ω(k)

�
T (x(k))b(k)dΩ(k).

(58)

∫
Γ
(k)
q

�
[
�(x(k))u

]
⋅ q

(k)
dΓ(k) = �uT ⋅ ∫

Γ
(k)
q

�
T (x(k))q

(k)
dΓ(k) = �uT ⋅ F2,

(59)F2 = ∫
Γ
(k)
q

�
T (x(k))q

(k)
dΓ(k).

(60)�uT ⋅ (Cu�� − Ku − F1 − F2) = 0.

(61)Cu
�� − Ku = F̂,

(62)F̂ = F1 + F2.

(63)u(x
(1)

3
) = u

(1),

(64)u(x
(2)

3
) = u

(2),

⋮

(65)u(x
(L−1)

3
) = u

(L−1),

The following formulas can be obtained by using the finite 
difference method

Equation (61) can be written as

Equations (69)–(72) can be transformed into matrix as

where

Let

(66)u(x
(0)

3
) = u

(0) = u(a),

(67)u(x
(L)

3
) = u

(L) = u(c).

(68)u
��(k) ≈

u
(k−1) − 2u(k) + u

(k+1)

(Δx3)
2

, (k = 1, 2,… , L − 1).

(69)C ⋅
u
(0) − 2u(1) + u

(2)

(Δx3)
2

+ Ku
(1) = F̂

(1)
,

(
x3 = x

(1)

3

)
,

(70)C ⋅
u
(1) − 2u(2) + u

(3)

(Δx3)
2

+ Ku
(2) = F̂

(2)
,

(
x3 = x

(2)

3

)
,

(71)C ⋅
u
(2) − 2u(3) + u

(4)

(Δx3)
2

+ Ku
(3) = F̂

(3)
,

(
x3 = x

(3)

3

)
,

⋮

(72)

C ⋅
u
(L−2) − 2u(L−1) + u

(L)

(Δx3)
2

+ Ku
(L−1) = F̂

(L−1)
,

(
x3 = x

(L−1)

3

)
.

(73)

1

(Δx3)
2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

H C

C H C

C H C

⋱ ⋱ ⋱

C H C

C H

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u
(1)

u
(2)

u
(3)

⋮

u
(L−2)

u
(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

F̂

(1)
−

Cu
(0)

(Δx3)
2

F̂

(2)

F̂

(3)

⋮

F̂

(L−2)

F̂

(L−1)
−

Cu
(L)

(Δx3)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(74)H = −2C − (Δx3)
2
K.

(75)E =
1

(Δx3)
2

⎡⎢⎢⎢⎢⎢⎢⎣

H C

C H C

C H C

⋱ ⋱ ⋱

C H C

C H

⎤⎥⎥⎥⎥⎥⎥⎦

,

(76)U = (u(1)T ,u(2)T ,u(3)T ,… ,u(L−2)T ,u(L−1)T )T ,
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Equation (73) can be written as

The solutions of Eq. (77) are the potential values of 
nodes on the middle planes x3 = x

(k)

3
, (k = 1, 2,… , L − 1) , 

then we can obtain the approximate value of the poten-
tial of any node with the linear interpolation method, let 
Δx3 = x

(k+1)

3
− x

(k)

3
 , u(x3) can be expressed as

It is the IDSEFG method for 3D potential problems.

4 � Algorithm implementation process

The IDSEFG method proposed in this paper is used to solve 
3D potential problems, it is necessary to select an appropri-
ate dimension splitting direction. In the solution process, the 
interpolating EFG method requires nodes to be placed evenly 
in these related subdomains, and the influence domain of 
these nodes must contain the entire 2D subdomain, which 
is a necessary condition. In this paper, Gauss integration is 
used to calculate the numerical integration, and the layout of 
the integration grid is regular, which provides convenience 
for establishing Gauss integration points. The integration 
grid is rectangular.

The algorithm implementation process of the IDSEFG 
method for 3D potential problems is:

	 1.	 According to the different boundary conditions and the 
governing equation, an appropriate dimension split-
ting direction need to be selected, then enter the cor-
responding parameters;

	 2.	 Determining each variable and coordinate system of 
the corresponding 2D potential problem, M nodes 
x
(k)

I
, I = (1, 2,… ,M) are distributed on Ω(k) and its 

boundary Γ(k) = Γ(k)
u

∪ Γ(k)
q

 , then number these nodes 
according to certain rules, node coordinates can be 
generated through the program, so as to quickly select 
the required nodes later;

	 3.	 For numerical integration, a background integration 
grid needs to be set up;

	 4.	 Establishing the integral element and corresponding 
corner information on the Γq boundary;

	 5.	 Establishing Gauss integration points, using the back-
ground integration grid and boundary information in 

(77)G =

((
F̂

(1)
−

Cu
(0)

(Δx3)
2

)T

, F̂
(2)T

, F̂
(3)T

,… , F̂
(L−2)T

,

(
F̂

(L−1)
−

Cu
(L)

(Δx3)
2

)T
)T

,

(78)EU = G.

(79)u(x3) =
x3 − x

(k)

3

Δx3
u(x

(k)

3
) +

x
(k+1)

3
− x3

Δx3
u(x

(k+1)

3
).

Steps 3 and 4 to calculate the coordinates, integration 
weights, and Jacobian of the integration points;

	 6.	 Establishing the Matrix C , Matrix K and the first term 
F1 of Array F;

A.	 Looping through all background integration grids;

a)	 In every integration grid, looping all Gauss 
points;

b)	 If it is verified that the Gauss point is inside the 
2D subdomains Ω(k) , then continue to Steps (c)–
(f), if not, proceed directly to Step (f) to end the 
integration point loop;

c)	 Finding these node numbers located in domain 
of the Gauss point x(k)

Q
;

d)	 Calculating shape function �(x
(k)

Q
) and its deriv-

ative ΦI,j(x
(k)

Q
);

e)	 Calculating the contribution values of Gauss 
points to the Matrix C , K and the first term F1 
of Array F with Eqs. (53), (55), (57);

f)	 Finishing the Gauss integration points loop.

B.	 Finishing the background grids loop.

	 7.	 The numerical integration calculation on the boundary 
of Γ(k)

q
 : the process is similar to Step 6, and finally obtain 

the second term F2 of the load Array F̂ by Eq. (59);
	 8.	 Adding the F1 obtained in Step 6 and the F2 obtained 

in Step 7 to get F̂;
	 9.	 Substituting displacement boundary conditions directly 

into the Matrix K and Array F̂;
	10.	 Using Eqs. (74), (75), (77) and Matrix C , Matrix K , 

Array F̂ to obtain the Matrix E and Matrix G;
	11.	 Substituting the Matrix E and Matrix G into the system 

of Eq. (78), the numerical solution U of the poten-
tial function at each node in the original 3D problem 
domain Ω can be obtained;

	12.	 According to the obtained numerical solution U and 
Eq. (79), the numerical solution of the potential func-
tion at any point in Ω can be obtained by fitting;

	13.	 Outputting the potential values.

5 � Numerical examples

It is necessary to verify the effectiveness and efficiency of 
the IDSEFG method for 3D potential problems, the influence 
domain of the weight function is rectangular, 4 × 4 Gaussian 
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integration points are chosen in each integration cell. Four 
numerical examples are calculated using this method. By 
selecting different node distributions, the number of dimen-
sion splitting layers and the influence domain parameter 
dmax , its convergence is discussed and the calculation results 
are compared with the results of the IEFG method and the 
analytical solution.

The following relative error is defined to compare the 
accuracy of the results of the IEFG method and the IDSEFG 
method.

where

is the L2-norm of the error.

5.1 � A Laplace’s equation in a 3D cube

The governing equation is

with boundary conditions

(80)u − uhrel
L2(Ω)

=
u − uh

L2(Ω)

uL2(Ω)
,

(81)u − uh
L2(Ω)

=

[
∫
Ω
(u − uh)2dΩ

]1∕2
,

(82)∇2u =
�2u(x)

�x2
1

+
�2u(x)

�x2
2

+
�2u(x)

�x2
3

= 0, (x ∈ Ω),

(83)u = sin(�x2) sin(�x3),
(
x1 = 0

)
,

The problem domain is Ω = [0, 1] × [0, 1] × [0, 1].

The analytical solution is

According to the boundary conditions and the form of 
governing equation, direction x1 is chosen as splitting direc-
tion. Splitting the problem domain Ω into L subdomains uni-
formly along x1 , then M nodes should be distributed in 2D 
subdomain on the plane O(k)x2x3.

(84)u = 2 sin(�x2) sin(�x3),
(
x1 = 1

)
,

(85)u = 0,
(
x2 = 0, x2 = 1, x3 = 0, x3 = 1

)
.

(86)

u =
sin(�x2) sin(�x3)

sinh(�
√
2)

�
2 sinh(�

√
2x1) + sinh(�

√
2(1 − x1)

�
.

Fig. 1   The numerical results of IDSEFG method for different number 
of nodes

Fig. 2   The numerical results of IDSEFG method for different d
max

Fig. 3   The relative error for different number of splitting layers
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The following results are given to verify the effectiveness 
and convergence of the IDSEFG method.

Figure 1 is the result of the IDSEFG method with differ-
ent node distributions for this numerical example. It can be 
seen that in the case of different node distributions but dmax 
is taken to be 1.15, the numerical solutions obtained by this 
method are very close to the analytical solution.

dmax is a parameter of the size of the influence domain of a 
node, and it is directly related to the computational accuracy 
of the numerical results. The value of dmax should ensure 
the problem domain covered by the influence domains of 
the weight functions of all nodes, and the inverse matrix in 
the improved IMLS method can be obtained. If the value 
of dmax is too small, the singularity of the equation systems 
maybe exists. Therefore, we need to find an appropriate 
value of dmax for different examples according to the numeri-
cal results.

Figure 2 shows the result that the IDSEFG method with 
different dmax . When the node distribution is 15 × 15 × 15 
but different dmax , it can be seen that the relative error of 
the numerical solutions is very small compared with the 
analytical solution.

Figure  3 shows the results obtained by the IDSEFG 
method in this example when a different number of splitting 
layer is selected. (L + 1) × 15 × 15 is chosen as the node dis-
tribution on Ω . We can see that the relative error gradually 
decreases and tends to be stable as the number of splitting 
layer increases, indicating that the method is convergent.

Figure 4 shows the relative error of the IDSEFG method 
with different dmax . We found that when dmax = 1.15 and 

Fig. 4   The relative error for different d
max

Table 1   The comparison of relative error and CPU time of the 
IDSEFG method and IEFG method with different node distributions

Nodes Error CPU time (s)

IDSEFG (%) IEFG (%) IDSEFG IEFG

9 × 9 × 9 1.01 1.85 1.54 30.14
10 × 10 × 10 0.73 1.3 2.18 33.89
11 × 11 × 11 0.54 1.24 2.92 35.64
12 × 12 × 12 0.41 1.23 4.02 35.91
13 × 13 × 13 0.32 0.67 5.18 37.7
14 × 14 × 14 0.26 1.32 6.22 40.8
15 × 15 × 15 0.21 1.35 7.88 46.8
16 × 16 × 16 0.17 1.88 10.29 53.11
17 × 17 × 17 0.14 1.25 12.98 59.16
18 × 18 × 18 0.12 0.86 15.64 67.41
19 × 19 × 19 0.1 0.25 19.1 81.23

Fig. 5   The numerical results of IDSEFG method and IEFG method at 
(x

1
, 1∕2, 1∕2)

Fig. 6   The numerical results of IDSEFG method and IEFG method at 
(2∕7, x

2
, 9∕14)
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15 × 15 × 15 node distribution is used, the relative error 
reaches the minimum.

Table 1 shows that when different node distributions 
are chosen, the CPU time and calculation accuracy of the 
IDSEFG method and the IEFG method. It can be concluded 
that the IDSEFG method is significantly better than the 
IEFG method in terms of calculation accuracy and efficiency 
when the same node distribution is chosen.

Further analysis of the results, the IEFG method has 
a tendency to improve the calculation accuracy when the 
number of nodes continues to increase, but the results are 
not stable and the CPU time keeps extending. In contrast, 
the IDSEFG method will improve the calculation accuracy 
when the number of nodes gradually increases. We can 
select an appropriate number of nodes according to the accu-
racy requirements to save calculation time. In this example, 
15 × 15 × 15 node distribution is used, then we got a rela-
tively high calculation accuracy while taking relatively little 
time to calculate.

If the smaller relative error 0.25% obtained by the IEFG 
method is compared with the relative error 0.26% obtained 
by the IDSEFG method, we found that the calculation effi-
ciency of the IDSEFG method is about 13 times that of the 
IEFG method when the calculation accuracy is similar.

Figures 5, 6, 7 are the comparison results of the IDSEFG, 
IEFG method and analytical solution at (x1, 1∕2, 1∕2) , 
(2∕7, x2, 9∕14) , (1∕2, 4∕7, x3) respectively. The node distri-
bution of the two methods is 15 × 15 × 15 , the dmax of the 
IDSEFG method is 1.15, and the dmax of the IEFG method 
is 1.3, penalty factor � = 1.0 × 103 . It can be concluded that 
the accuracy of the results of the IDSEFG method is good 
enough, and there is still small error on individual nodes of 
the IEFG method.

To sum up, the IDSEFG method is not only significantly 
higher in accuracy than the IEFG method, but its efficiency 
has increased several times or even more than ten times.

5.2 � A Poisson’s equation in a cuboid

The governing equation is

with the boundary condition

In the example, the values of a, b and c are 1, 2, 3, 
Ω = [0, 1] × [0, 2] × [0, 3] is the problem domain. The ana-
lytical solution is

Because the solution domain is a cuboid with different 
lengths in three directions, it is necessary to consider that 
different splitting directions may affect the calculation accu-
racy and efficiency.

First, according to the length of the problem domain in 
the three directions of x1 , x2 , and x3 are 1, 2, and 3, respec-
tively, using 9 × 17 × 25 node distribution.

5.2.1 � x
1
 as the splitting direction

In 2D subdomain on the plane O(k)x2x3 , the node distribution 
is 17 × 25 , and 9 nodes are distributed in the splitting direc-
tion x1 , dmax = 1.91 , running the program to get a relative 
error of 0.96% and a CPU time of 13.81 s.

5.2.2 � x
2
 as the splitting direction

In 2D subdomain on the plane O(k)x1x3 , the node distribution 
is 9 × 25 , and 17 nodes are distributed in the splitting direc-
tion x2 , dmax = 1.15 , running the program to get a relative 
error of 0.80% and a CPU time of 10.18 s.

5.2.3 � x
3
 as the splitting direction

In 2D subdomain on the plane O(k)x1x2 , the node distribution 
is 9 × 17 , and 25 nodes are distributed in the splitting direc-
tion x3 , dmax = 1.15 , running the program to get a relative 
error of 0.95% and a CPU time of 9.65 s.

It can be seen from the above results that when the 
node distribution is the same, selecting different splitting 

(87)∇2u(x) = f (x), (x ∈ Ω),

(88)f (x) = −
(
1

a2
+

1

b2
+

1

c2

)
�2 sin

�x1

a
sin

�x2

b
sin

�x3

c
,

(89)u(x) = 0, (x ∈ Γ).

(90)u(x) = sin�x1 sin
�x2

2
sin

�x3

3
.

Fig. 7   The numerical results of IDSEFG method and IEFG method at 
(1∕2, 4∕7, x

3
)
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directions will get different calculation accuracy and effi-
ciency, so it is necessary to select an appropriate splitting 
direction to obtain better calculation results. In this example, 
the results when the splitting direction is x2 or x3 are sig-
nificantly better than the results obtained by choosing direc-
tion x1 , but there are both advantages and disadvantages in 
accuracy and efficiency with choosing x2 and x3 , we need to 
continue the discussion.

Table 2 shows the results of the IDSEFG method with 
different splitting layers in this example when x3 is chosen as 
the splitting direction, 9 × 17 node distribution is used in 2D 
subdomain on the plane O(k)x1x2 . From this table, we can see 
that with the continuous increase of the number of splitting 
layers, the calculation accuracy is slightly improved and then 
the relative error is stabilized at 0.95%, and the calculation 
time continues to increase. Therefore, the number of split-
ting layers has a relatively small impact on the calculation 
accuracy for this example, but it has a greater impact on the 
CPU time. In general, choosing a direction with long length 
as the splitting direction can save time and get a better result.

To sum up, we select x3 as the splitting direction 
finally, the node distribution in 2D subdomain on the 

Table 2   The comparison of relative error and CPU time of the 
IDSEFG method at different splitting layers

Splitting layers (L) Error (%) CPU time (s)

6 1.0 2.98
7 0.98 3.42
8 0.97 3.75
9 0.97 4.27
10 0.96 4.71
11 0.96 5.17
12 0.96 5.53
13 0.96 5.88
14 0.96 6.4
15 0.95 6.67
16 0.95 6.95
17 0.95 7.31
18 0.95 7.78
19 0.95 8.21
20 0.95 8.62
21 0.95 9.04
22 0.95 9.43
23 0.95 9.65

Fig. 8   The numerical results of IDSEFG method and IEFG method at 
(x

1
, 14∕25, 6∕7)

Fig. 9   The numerical results of IDSEFG method and IEFG method at 
(9∕13, x

2
, 12∕7)

Fig. 10   The numerical results of IDSEFG method and IEFG method 
at (5∕13, 28∕25, x

3
)
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plane O(k)x1x2 is 14 × 26 , and 8 nodes are distributed on 
the splitting direction, dmax = 1.14 , then the relative error 
is 0.28% and CPU time is 8.51 s. The node distribution of 
the IEFG method is also 14 × 26 × 8 , dmax = 1.23 , penalty 
factor � = 4.5 × 106 , then the relative error we got is 0.68% 
and the CPU time is 29.89 s.

Figures 8, 9, 10 are the comparison results of IDSEFG, 
IEFG method and analytical solution at (x1, 14∕25, 6∕7) , 
(9∕13, x2, 12∕7) , (5∕13, 28∕25, x3) respectively. The node 
distribution of the two methods is 14 × 26 × 8 , the dmax 
of the IDSEFG method is 1.14 and the dmax of the IEFG 
method is 1.22. It can be concluded that the results 
obtained by the two methods are very close to the analyti-
cal solution, but the calculation accuracy and calculation 
efficiency of the IDSEFG method are 2.43 times and 3.51 
times that of the IEFG method, respectively, indicating 
that the IDSEFG method has significant advantages.

5.3 � A Laplace’s equation in a 3D cube

The governing equation is

with the boundary conditions

(91)∇2u(x) = 0, (x ∈ Ω),

(92)
�u(0, x2, x3)

�x1
=

�u(1, x2, x3)

�x1
= 0,

(93)
�u(x1, 0, x3)

�x2
=

�u(x1, 1, x3)

�x2
= 0,

Ω = [0, 1] × [0, 1] × [0, 1] is the problem domain. The 
analytical solution is

(94)
�u(x1, x2, 0)

�x3
= cos(�x1) cos(�x2),

(95)
�u(x1, x2, 1)

�x3
= 0.

(96)

u(x) =

�
sinh(

√
2�x3)√
2�

−
cosh(

√
2�x3)√

2� tanh(
√
2�)

�
cos(�x1) cos(�x2).

Fig. 11   The numerical results of IDSEFG method and IEFG method 
at (x

1
, 1, 0)

Fig. 12   The numerical results of IDSEFG method and IEFG method 
at (0, x

2
, 0)

Fig. 13   The numerical results of IDSEFG ethod and IEFG method at 
(1∕5, 1∕5, x

3
)
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The splitting direction is direction x3 , 6 × 6 × 7 node dis-
tribution is chosen and dmax is 1.0. Running the program 
to get a relative error 0.074% and a CPU time 0.43 s of the 
IDSEFG method. As a comparison, the node distribution of 
the IEFG method is 11 × 11 × 13 , dmax is taken as 1.49, then 
the relative error is 0.36% and the CPU time is 6.69 s.

Figures  11, 12, 13 are the comparison results of the 
IDSEFG, IEFG method and analytical solution at (x1, 1, 0) , 
(0, x2, 0) , (1∕5, 1∕5, x3) respectively. It can be concluded that 
the numerical results of two methods are close to the ana-
lytical solution, but the calculation efficiency of the IDSEFG 
method is 15.6 times that of the IEFG method, and even if the 
IDSEFG method has fewer nodes, the calculation accuracy is 
still improved by 386.5% that of the IEFG method.

5.4 � A Laplace’s equation in a half circular cylinder

The governing equation is

with following boundary conditions

The analytical solution is

(97)∇2u(x) = 0, (r ∈ [1, 2], � ∈ [0,�], x3 ∈ [0, 1]),

(98)u(1, �, x3) = sin � + x3,

(99)u(2, �, x3) = x3,

(100)u(r, 0, x3) = x3,

(101)u(r,�, x3) = x3,

(102)u(r, �, 0) =
4

3
(
1

r
−

r

4
) sin �,

(103)u(r, �, 1) =
4

3

(
1

r
−

r

4

)
sin � + 1.

The splitting direction is direction x3 , 29 × 7 × 11 is the 
node distribution, and dmax = 1.0 . Splitting 11 subdomains 
uniformly in the direction x3 , the node distribution on the 2D 
half-circle subdomain is 29 × 7 as shown in Fig. 14.

The relative error and the CPU time obtained by the 
IDSEFG method are 0.14% and 1.63 s. With the same node 
distribution and dmax = 1.11 , penalty factor � = 1.0 × 104 , 
the relative error and the CPU time of the IEFG method are 
0.21% and 53.73 s.

Figures 15, 16, 17 are the comparisons of the numerical 
solutions of the IDSEFG, IEFG method and the analytical 

(104)u(r, �, x3) =
4

3

(
1

r
−

r

4

)
sin � + x3.

Fig. 14   The node distribution in the 2D subdomain of a harf-torus

Fig. 15   The numerical results of IDSEFG method and IEFG method 
along direction r

Fig. 16   The numerical results of IDSEFG method and IEFG method 
along direction �



S2716	 Engineering with Computers (2022) 38 (Suppl 4):S2703–S2717

1 3

solutions in three directions. The numerical results of the 
IEFG method and the IDSEFG method are very accurate, 
but we can see that the running time of the IDSEFG method 
is only 3.03% of the IEFG method. This result once illus-
trates the excellent computational efficiency of the IDSEFG 
method again.

6 � Conclusions

In this paper, the IDSEFG method for 3D potential prob-
lems is established. The key of the IDSEFG method is to 
split a 3D solution domain into many related 2D subdo-
mains. The shape function is constructed by the improved 
IMLS method on the 2D subdomain, and the discretized 
equations are obtained by the Galerkin weak form based 
on dimension splitting method. The discrete equations on 
these 2D subdomains are coupled by the finite difference 
method. Finally, the numerical solution of the potential of 
any node can be obtained. The number of undetermined 
coefficients of the approximation function constructed by 
the improved IMLS method is less than that of the MLS 
approximation, which improves the computational effi-
ciency. The essential boundary conditions can be enforced 
directly because the IDSEFG method satisfies the property 
of the Kronecker delta function. Comparing the results of 
IDSEFG method and IEFG method with analytical solu-
tion through four numerical examples, it is proved that both 
methods are effective and further shows that the IDSEFG 
method improves the calculation efficiency and calculation 

accuracy. At the same time, the last numerical example 
shows that the IDSEFG method is also applicable to the 
ring-like problem domain.

We have discussed how to choose the splitting direc-
tion in Eg. 2 because its problem domain is a cuboid with 
different lengths in three directions. In the Example, we 
finally found that if we choose a direction with a long 
length as the splitting direction can save CPU time and 
obtain better results. In other examples, we chose the 
direction with more complicated boundary conditions as 
the splitting direction. During the test of the examples, we 
found that if the boundary conditions of the two-dimen-
sional problem after the dimension splitting are compli-
cated, it will not only bring some difficulties to program 
code but also reduce the efficiency. Choosing the direction 
with more complicated boundary conditions as the dimen-
sion splitting direction is easier to program code, and bet-
ter results can be obtained.

Funding  National Natural Science Foundation of China, Grant/Award 
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