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Abstract
Variable-fidelity surrogate-based efficient global optimization (EGO) method with the ability to adaptively select low-fidelity 
(LF) and high-fidelity (HF) infill point has emerged as an alternative to further save the computational cost of the single-
fidelity EGO method. However, in terms of the variable-fidelity surrogate-assisted multi-objective optimization methods, 
existing methods rely on empirical parameters or are unable to adaptively select LF/HF sample in the optimal search process. 
In this paper, two variable-fidelity hypervolume-based expected improvement criteria with analytic expressions for variable-
fidelity multi-objective EGO method are proposed. The first criterion relies on the concept of variable-fidelity expected 
improvement matrix (VFEIM) and is obtained by aggregating the VFEIM using a simplified hypervolume-based aggrega-
tion scheme. The second criterion termed as VFEMHVI is derived analytically based on a modified hypervolume definition. 
Both criteria can adaptively select new LF/HF samples in the iterative optimal search process to update the variable-fidelity 
models towards the HF Pareto front, distinguishing the proposed methods to the rests in the open literature. The constrained 
versions of the two criteria are also derived for problems with constraints. The effectiveness and efficiency of the proposed 
methods are verified and validated over analytic problems and demonstrated by two engineering problems including aerody-
namic shape optimizations of the NACA0012 and RAE2822 airfoils. The results show that the VFEMHVI combined with 
the normalization-based strategy to define the reference point is the most efficient one over the compared methods.

Keywords Variable-fidelity surrogate · Multi-objective efficient global optimization · Surrogate · Expected improvement · 
Hypervolume

1 Introduction

Surrogate-based optimization (SBO) method is a promis-
ing approach to reduce the computational cost in expensive 
simulation-based engineering design optimization problems, 
as the surrogate model can be used to replace the expensive 
simulations during the optimization and the cost of build-
ing a surrogate model is almost negligible compared with 
an expensive simulation. Among the available surrogate 

models, Kriging [1] or Gaussian process regression [2] has 
gained popularity due to its capability of providing the pre-
diction of a function and the uncertainty of the prediction. 
In the field of engineering optimization design, the Kriging-
based efficient global optimization (EGO) [3] method utiliz-
ing the expected improvement (EI) criterion has gotten pop-
ularity after its birth, for it enables the searching of global 
optimum with much less number of expensive function eval-
uations than the methods such as evolutionary algorithms. 
For example, EGO has been applied to improve the perfor-
mance of the axial flow compressor rotor [4] or cascades [5], 
cryogenic liquid turbine stage [6] and turbine blade [7], etc. 
The advent of the EGO method greatly inspired the research 
and development of the SBO [8, 9], including utilizing the 
variable-fidelity (VF) surrogate to save the computational 
cost of the optimization task further [10, 11] or extending 
the EGO for single-objective optimization to solve multi-
objective problems [12, 13], etc.
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VF surrogate uses a set of numerical methods with vary-
ing degrees of fidelity and computational expense (e.g., 
potential theory, Euler equations, and Navier–Stokes equa-
tions) to approximate the unknown function of interest as 
a function of the independent variables while reducing 
the more expensive high-fidelity simulations [14]. Among 
the different types of VF surrogate, the Co-Kriging and 
its variants [15, 16], have gained much attention and been 
adapted to develop VF surrogate-assisted EGO-like method 
(VFEGO). The augmented expected improvement and the 
statistic lower bounding criterion were proposed to guide the 
selection of the location and fidelity level of the next infill 
sample in [17, 18], respectively. More recently, the extended 
expected improvement-based on an enhanced Co-Kriging, 
VF expected improvement (VF-EI) based on Hierarchical 
Kriging (HK), VF lower confidence bound based on addi-
tive scaling VF surrogate, and the expected improvement-
based criterion for gradient-enhanced VF surrogate were 
developed in [19–22], respectively. Those methods can be 
viewed as a generalized EGO method using different types 
of VF surrogate models and infill sampling criteria (ISC). 
Compared with the EI criterion for the single-fidelity EGO 
method, the distinct feature of the ISCs used in the various 
VFEGO methods is the ability to adaptively determine the 
fidelity level of the infill sampling point to be evaluated at.

On extending the EGO to treat multi-objective problems, 
the multi-objective efficient global optimization (MOEGO) 
is one of the most frequently studied surrogate model-based 
optimization algorithms as it enforces a more careful search 
since it integrates both the prediction and error estimates 
[23–31]. The MOEGO method shares the same framework 
of EGO method, consisting of the initialization phase and 
the iterative search phase. In the initialization phase, the 
initial samples are generated by the design of experiments 
(DOE) method and then evaluated using the computational 
expensive simulation tools. Based on those initial samples, 
the Kriging models for each objective function are con-
structed. Then MOEGO proceeds to the iterative phase. At 
each iteration, the multi-objective EI function is maximized 
to obtain one infill point which is evaluated with the expen-
sive function. Such a procedure will iterate until the stopping 
rule is met. It can be noted that the MOEGO approach dif-
fers from the EGO method at two aspects: multiple Kriging 
models are built for each objective and multi-objective EI-
based criterion is adopted to guide the selection of the next 
infill point. The efficiency of the MOEGO method mainly 
depends on the multi-objective EI infill criterion used [31]. 
There are different kinds of criteria to be used in MOEGO, 
the expected angle-penalized length improvement criterion 
[13], the hypervolume-based EI criterion [24], probability 
of hypervolume improvement criterion [25], the Euclidean 
distance-based EI criterion [26], the maximin distance-based 
EI criterion [27], the expected inverted penalty boundary 

intersection improvement [28], the expected improvement 
matrix-based infill criterion [29], the modified hypervol-
ume-based EI criterion [32], etc. Among those criteria, the 
last two criteria are of the distinct feature being cheap-to-
evaluate and yet efficient to obtain well-distributed solutions 
compared to other aforementioned criteria, but the perfor-
mance comparison between those two criteria has never 
been conducted. Nevertheless, the MOEGO method has 
been demonstrated to be effective and efficient in engineer-
ing applications, such as the airfoil shape optimization [31], 
bump inlet shape optimization to minimize the total pressure 
distortions [33], S-shape supersonic axial flow compressor 
cascade optimization [5], etc.

In terms of using the VF surrogate-based optimization 
method to solve the expensive multi-objective engineering 
problems, the existing method can be classified into three 
categories. The first group of VF surrogate-based algorithms 
[34–38] finds the Pareto Front (PF) on the LF surrogate first, 
followed by choosing promising solutions on the PF to be 
evaluated by HF simulations. With HF samples, the iterative 
optimization process starts with tuning VF surrogate and 
followed by determining the PF on the VF surrogate. The 
third step of the iterative phase is choosing solutions on the 
obtained PF to be evaluated at the HF level. The termina-
tion condition is checked and if not met, the VF surrogate is 
updated with the newly obtained HF samples. This kind of 
method has been applied to optimize the antenna [34] and 
airfoil [37]. It should be noted that how to select a limited 
number of promising solutions from a large amount of PF 
solutions is still a challenging task. Moreover, for methods 
belonging to the first group, the number of LF samples is 
fixed during the design, while HF samples are repetitively 
added in the iterative optimization stage. It is, of course, not 
the most efficient way, since it is always questionable how 
many LF samples would be sufficient. The other way, and a 
potentially better way, is that both LF and HF samples are 
adaptively added. The second group of methods incorporates 
the VF surrogate into the population-based evolutionary 
algorithms [39–46]. Such algorithms usually start from the 
population initialization and then evaluate the individuals 
using LF and HF simulators, respectively. With the available 
LF and HF samples, the VF surrogates for each objective 
are then constructed. The population is evolved iteratively 
with the fitness of each individual calculated by using the 
VF surrogate model. After certain evolutionary iterations, 
individuals in the current population are chosen by sophis-
ticated model manage strategies and to be evaluated by LF/
HF simulators. Effectiveness of such VF surrogate-based 
evolutionary algorithms have been demonstrated by optimiz-
ing a torque arm [42] and a stiffened cylindrical shell [43]. 
Disappointedly, the population-based methods still need 
thousands of function evaluations which might be unaccep-
table in some scenarios and the sophisticated model manage 
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strategy usually relies on empirical parameters. For example, 
a threshold of the minimum of minimum distance is required 
for the online variable-fidelity surrogate-assisted multi-
objective genetic algorithm [42]. The VF surrogate-based 
method following the MOEGO framework (VFMOEGO) 
is classified into the third group, including an output space 
entropy search method [47] in the Bayesian optimization 
field. With the initialization stage to prepare the initial data 
set and build the VF surrogates for each objective, the itera-
tive optimization process starts. In each iteration, an output 
space entropy-based ISC is utilized to determine the spatial 
position and fidelity level of the next sample point to be 
evaluated at. In other words, the LF and HF samples will be 
adaptively added. It can be noted that such VF surrogate-
based method follows the MOEGO framework and is free 
of the empirical parameter. Like MOEGO, the efficiency 
of this kind of method heavily relies on the adopted ISC. 
Unfortunately, the ISC proposed in the output space entropy 
search method stands on the assumption that the value of 
lower fidelity of an objective must be smaller than that of 
the corresponding higher fidelity [47]. This indicates the 
output space entropy search method is applicable to solve 
problems with such features, limiting its usefulness in engi-
neering applications. Therefore, proposing a general ISC 
for VFMOEGO method is required to solve engineering 
problems.

To fill in this gap, two general cheap-to-evaluate ISCs 
for VFMOEGO method are proposed, by extending the 
HK model-based VF-EI criterion for single-objective opti-
mization to the multi-objective scenario. The performance 
of the VFMOEGO methods utilizing the proposed ISCs is 
illustrated using analytic examples and two real-world engi-
neering examples. The comparisons between the proposed 
approaches and existing approaches considering the compu-
tational efficiency and robustness are made. The merits of 
the proposed approach are analyzed and summarized.

The remainder of this paper is organized as follows. 
Sect. 2 recalls the theoretical background. Then, in Sect. 3, 
the proposed ISCs are introduced in detail with the imple-
mentation and illustration. The compared methods, analytic, 
and real-world test problems for the comparative study, and 
the results of the comparative study are given in Sect. 4. 
Conclusions and future works are summarized in Sect. 5.

2  Background and terminology

This study aims to solve the following multi-objective opti-
mization (MOO) problem based on HF expensive numerical 
simulation with the assistance of LF but cheaper numerical 
analysis:

where F(�) and Flf (�) denote the objective functions evalu-
ated by HF and LF numerical simulators, respectively, � 
is the vector of design parameters with length being d , M 
represents the number of objectives, Ω ∈ ℝ

d is the design 
space. A point � is said to Pareto-dominate another point �′ if 
fi(�) ≤ fi

(
��
)
∀i and there exists some j ∈ {1, 2,… ,M} such 

that fj(�) < fj
(
��
)
 . The optimal solutions of a MOO prob-

lem is a set of points X∗ ⊂ Ω such that no point �� ∈ Ω�X∗ 
Pareto-dominates a point � ∈ X

∗ . The solution set X∗ is 
called the optimal Pareto set and the corresponding set of 
function values F∗ is called the optimal Pareto front (PF). 
The PF with k solutions is denoted as:

Our goal is to approximate PF by minimizing the com-
putational cost through the VFMOEGO method or obtain a 
better approximation of PF with a budgeted cost. In the pro-
posed VFMOEGO methods, each objective is to be approxi-
mated by an HK model. Meanwhile, the HK model is built 
based on Kriging. And the ISCs used in the VFMOEGO 
methods are developed by extending the VF-EI function for 
single-objective VFEGO method to VFMOEGO. Thus, the 
basics of the Kriging, HK, and VF-EI are briefed as follows.

2.1  Kriging

Kriging is an interpolation technique that originated from 
the geostatistical community and then applied to approxi-
mate expensive black-box functions [1]. It hypothesizes that 
a random process exits in each sampling site, and consists of 
two parts: the trend function and the random process:

For ordinary Kriging, the trend function �0 is an unknown 
constant and Z(�) is a stationary random process with zero 
mean and process variance �2 . The covariance of Z(�) can 
be expressed as:

where R
(
�, �′

)
 is the spatial correlation function depending 

on the Euclidean distance between two sites � and �′ . The 
common-used correlation functions are the squared expo-
nential function, the Matérn function, and the exponential 
function. In the field of design and analysis of computer 
experiment (DACE), the widely used squared exponential 
function (aka Gaussian correlation) is expressed as:

(1)

min
�∈Ω

F(�) =
{
f1(�), f2(�),… , fi(�),… , fM(�)

}

with assistance of Flf (�) =
{
f1,lf (�), f2,lf (�),… , fi,lf (�),… , fM,lf (�)

}
,

(2)PF =
{
f
j

1
, f

j

2
,… f

j

M

}
, j = 1, 2,… , k.

(3)Y(�) = �0 + Z(�).

(4)CoV
(
Z(�), Z

(
��
))

= �2R
(
�, ��

)
,
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where �i, i = 1, 2,… d are parameters measuring the activ-
ity of the variable and being determined in the model fitting 
process.

By minimizing the mean square error (MSE) of the ran-
dom process subject to the unbiasedness constraint, the 
Kriging prediction ŷ(�) along with the MSE s2(�) of the 
prediction at any unvisited point � can be derived as:

where � is a correlation vector between the unobserved 
point and the sample points, � is the correlation matrix 
whose elements are correlation functions between sample 
points, �s is the column vector that contains the responses at 
the sample points, � is a column vector filled with ones. For 
more details about Kriging refer to [1].

2.2  Hierarchical Kriging for variable‑fidelity 
surrogate modeling

HK [48] is distinct from other VF model by taking the low-
fidelity (LF) function as the model trend for the HF model 
to avoid calculating the covariance matrix between LF and 
HF samples. HK has been proved to be more computational 
efficient without losing accuracy compared with Co-Kriging 
[49–51]. To begin with, the Kriging model of LF function 
is built based on the LF samples. The prediction and MSE 
of the LF Kriging are denoted as ŷlf(�) and s2

lf
(�) respec-

tively. Then the LF Kriging is used as the model trend of the 
Kriging for the HF function of the form:

where �lf  is a scaling factor representing how the LF Kriging 
ŷlf (�) correlates the HF function, Z(�) represents the random 
process having zero mean and variance with the same form 
shown in (4). Via minimizing the MSE of the random pro-
cess subject to the unbiasedness constraint, the HK predictor 
ŷ(�) and its MSE s2(�) are formulated as:

where �lf=
(
�T�−1�

)−1
�T�−1�s , � is a correlation vector 

between the unobserved point and the HF sample points, 
� is the correlation matrix whose elements are correlation 
functions between HF sample points, �s is the column vector 

(5)R
(
�, ��

)
= exp

(
−

d∑
i=1

�i
||xi − x�

i
||2
)
,

(6)

ŷ(�) = 𝛽0 + �T�−1
(
�s − 𝛽0�

)

s2(�) = 𝜎2
{
1.0 − �T�−1� +

[
�T�−1� − 1

]2/(
�T�−1�

)}
,

(7)Y(�) = 𝛽lf ŷlf (�) + Z(�),

(8)

ŷ(�) = 𝛽lf ŷlf (�) + �T�−1
(
�s − 𝛽lf�

)

s2(�) = 𝜎2
{
1 − �T�−1� +

[
�T�−1� − ŷlf (�)

]2/(
�T�−1�

)}
,

that contains the true responses at the HF sample points, 
� =

[
ŷlf
(
�(1)

)
,… , ŷlf

(
�(n)

)]T represents the n predictions 
from the LF Kriging at the HF sample sites 

[
�(1),… , �(n)

]T . 
Details about the HK model can be found in [48].

2.3  HK‑based variable‑fidelity EI

In the VFEGO method proposed in [19], a new infill sample 
point is obtained by the VF-EI criterion at each iteration of 
the iterative optimization phase to update the HK model to 
reach the global optimum of the HF function efficiently. The 
VF-EI is derived based on the assumption that the predic-
tion from the HK model for the objective function at any 
unvisited point � obeys the following normal distribution:

with

With this, the improvement w.r.t. the best-observed HF 
objective value so far fmin is formulated as:

which is a function of both the spatial location � and fidelity 
level l . Then the VF-EI relating to the above improvement 
function can be derived as:

where Φ(⋅) and �(⋅) are the cumulative distribution function 
and probability density function of the standard normal dis-
tribution. It can be noted that the above VF-EI only relates 
to the improvement of the HF function, which means the 
infilling of both LF and HF samples are HF-optimum ori-
ented. It should be noted that, in the above VF-EI function, 
the cost ratio between LF and HF simulations are not taken 
into consideration. The disadvantage of such a feature is it 
might not be as efficient as other methods including a cost-
control strategy in some applications [21]. But for problems 
with varying cost over the design space or the cost ratio 
between LF and HF simulations are not know beforehand, 
its performance will be more robust [52]. The new sample 
point � and its fidelity l at each iteration are determined by 
maximizing the VF-EI, that is:

If the new sample is found to be an LF one ( l = 1 ), 
which means that adding an LF sample will improve the HF 
objective function most, it will be evaluated by the cheaper 

(9)Ŷ(�, l) ∼ N
[
ŷ(�), s2(�, l)

]
, l = 1, 2 ,

(10)s2(�, l) =

{
�2
lf
s2
lf
(�), l = 1 for LF level

s2(�), l = 2 for HF level
.

(11)Ivf(�, l) = max
(
fmin − Ŷ(�, l), 0

)
,

(12)

EIvf (�, l) =
(
fmin − ŷ(�)

)
Φ

(
fmin − ŷ(�)

s(�, l)

)
+ s(�, l)𝜙

(
fmin − ŷ(�)

s(�, l)

)
,

(13)�, l = argmax
�∈Ω,l=1,2

EIvf (�, l).
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analysis; otherwise, the new sample will be evaluated by the 
expensive analysis ( l = 2).

3  Proposed criteria for VFMOEGO

This work aims to develop the ISCs for the VFMOEGO 
method. The overall steps of the VFMOEGO are described 
first. VFMOEGO follows the framework of EGO/MOEGO 
and consists of the initialization and iterative optimization 
phases. The initialization phase includes the generation of 
the LF and HF initial samples by the DOE method indi-
vidually and the evaluation of the LF and HF samples using 
the simulation tool at the corresponding fidelity level. The 
iterative optimization stage proceeds with the construction 
of the HK models for each objective function based on the 
initial data set. Then the spatial position and fidelity level to 
be evaluated at the next sample point are obtained by maxi-
mizing the ISC. Third, the simulator is invoked to get the LF/
HF response of the sample point. The data set is augmented 
before the check of the termination condition. The iterative 
optimization phase will continue iteratively until the stop-
ping rule is met.

In VFMOEGO, each objective is approximated by an HK 
model. The objective vector of the studying point � then can 
be considered as the following M-dimensional independent 
Gaussian random variables:

where ŷi(�) is the prediction of the studying point � offered 
by the ith HK model, si(�, l) with l = 1 or l = 2 represents 
the variance at LF or HF level offered by the ith HK model. 
With this, the proposed two criteria are derived as follows.

3.1  Variable‑fidelity expected improvement 
matrix‑based criterion

When dealing with the MOO problem, the current best-
observed HF objective value fmin in single-objective VFEGO 
expands in two directions: (1) the number of points in the 
current best solution increases from one to k and (2) the 
dimension of each point changes from one to M . Hence the 
current best solution for MOO is a 2-D matrix:

Inspired by this, the scalar function VF-EI for single 
objective VFEGO can also be expanded into a 2-D matrix 
for MOO. Correspondingly, the variable-fidelity expected 
improvement matrix (VFEIM) is formulated as:

(14)Ŷi(�, l) ∼ N
[
ŷi(�), s

2
i
(�, l)

]
, l = 1, 2 , i = 1,… ,M,

(15)

⎡⎢⎢⎢⎣

f 1
1
f 2
1
⋯ f M

1

f 1
2
f 2
2
⋯ f M

2

⋮ ⋮ ⋱ ⋮

f 1
k
f 2
k
⋯ f M

k

⎤⎥⎥⎥⎦
.

with

where Fj =
{
f i
j

}
, i = 1, 2,… ,M, j = 1, 2,… , k are the k 

non-dominated front points in the current HF sample set. 
Figure 1a, b illustrate the VFEIM with l = 1 (LF level) and 
l = 2 (HF level), respectively. It can be noted that the ith row 
in the matrix represents the VF-EIs beyond the ith non-dom-
inated point in all objectives and the jth column in the matrix 
represents the VF-EI in jth objective beyond all the non-
dominated points. To sum up, the VFEIM contains all the 
information about the VF-EIs of the studying point � beyond 
all the non-dominated front points in each direction.

It can be noted that the VFEIM is a simple and natural 
extension. However, the VFEIM gives no comprehensive 
measurement of how much the studying point can improve 
the PF approximation. Thus, a strategy to aggregate VFEIM 
into a scalar value to judge the overall improvement of the 
studying point compared against the current PF approxima-
tion should be utilized. The aggregation scheme based on 
hypervolume measurement in [29] is adopted.

Hypervolume is an indicator measuring the volume (or 
hypervolume in high dimensional space) of the region domi-
nated by the PF approximation � and bounded by a reference 
point � ∈ ℝ

M:

where � ≺ � means � Pareto-dominates � , V(⋅) denotes 
the hypervolume of a bounded space. Figure 2 presents the 
hypervolume in 2-D space. The reference point � is speci-
fied by the user with a relatively large value to ensure that 
it is dominated by any point in the PF. A higher value of 
the hypervolume indicator means a better distribution of 
a PF approximation. However, the hypervolume indicator 
is expensive to compute when the number of objectives is 
larger than two.

For a given point � ∈ ℝ
M , the hypervolume improvement 

related to add it into the current PF approximation is defined 
as the growth of H(�) . It is illustrated in Fig. 3 and formu-
lated as:

(16)

⎡
⎢⎢⎢⎢⎣

EI
1,1

vf
(�, l) EI2,1

vf
(�, l) ⋯ EI

M,1

vf
(�, l)

EI
1,2

vf
(�, l) EI

2,2

vf
(�, l) ⋯ EI

M,2

vf
(�, l)

⋮ ⋮ ⋱ ⋮

EI
1,k

vf
(�, l) EI

2,k

vf
(�, l) ⋯ EI

M,k

vf
(�, l)

⎤
⎥⎥⎥⎥⎦
,

(17)

EI
i,j

vf
(�, l) =

(
f i
j
− ŷi(�)

)
Φ

(
f i
j
− ŷi(�)

si(�, l)

)
+ si(�, l)𝜙

(
f i
j
− ŷi(�)

si(�, l)

)
,

(18)si(�, l) =

{
�2
0
s2
lf ,i
(�), l = 1 for LF level

s2
i
(�), l = 2 for HF level

,

(19)H(�) = V
(
� ∈ ℝ

M|� ≺ � ≺ �
)
,
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As the Ihv(�) being the difference between two hypervol-
umes, it inherits the computational burden of hypervolume 
when the number of objectives is larger than two. Therefore, 
a simplified hypervolume improvement function is proposed 
in [29] and defined to be the minimum of the k hypervol-
ume improvements of � with respect to each point on the PF 
approximation, which is expressed as:

(20)Ihv(�) = H(� ∪ �) − H(�).

where �j =
(
f
j

1
, f

j

2
,… , f

j

i
,… , f

j

M

)
 . The above formula is 

cheap-to-evaluate as the hypervolume improvement of a 
point over the other single point can be calculated analyti-
cally and formula (21) can be expressed as:

Notably, in Eq. (22), yi(�) = f
j

i
−
(
f
j

i
− yi(�)

)
 . Then tak-

ing the form of the simplified hypervolume improvement 
and replacing the improvement f

j

i
− yi(�) by the 

(21)Ihvs(�) =
k

min
j=1

[
H
(
�j ∪ �

)
− H

(
�j

)]
,

(22)Ihvs(�) =
k

min
j=1

[
M∏
i=1

(
ri − yi(�)

)
−

M∏
i=1

(
ri − f

j

i

)]
.

Fig. 1  2-D illustrations of the VF-EIM

Fig. 2   2-D illustration of the hypervolume

Fig. 3  The 2-D illustration of the hypervolume improvement
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corresponding expected improvement, i.e. the (i, j) element 
of the VFEIM EIi,j

vf
(�, l) , the VFEIM can be aggregated as:

It is clear to note that the VFEIMh(�, l) is cheap-to-eval-
uate as it is expressed in the closed-form. Though the 
VFEIMh(�, l) is obtained by simply taking the form of the 
simplified hypervolume improvement function, it is still 
interpretable. The following example with two objectives is 
adopted to illustrate this. Assuming an arbitrary point �j on 
the current PF approximation set as shown in Fig. 4, then the 
expected improvements over �j with respect to a studying 
point �(�) ∈ ℝ

2 are 
(
EI

1,j

vf
(�, l),EI

2,j

vf
(�, l)

)
 and illustrated as 

the dashed arrows in the figure. With this, the term (
f
j

1
− EI

1,j

vf
(�, l), f

j

2
− EI

2,j

vf
(�, l)

)
 can be interpreted as the 

expected position of the concerned non-dominated front 
point �j , denoted as �′

j in the figure. The hypervolume 
improvement of �′

j over �j will be calculated exactly as 
2∏
i=1

�
ri −

�
f
j

i
− EI

i,j

vf
(�, l)

��
−

2∏
i=1

�
ri − f

j

i

�
 , which is termed as 

the simplified expected hypervolume improvement and indi-
cated by the region filled with the darker color.

It is worth to note that aggregated VFEIM function 
VFEIMh(�, l) only relates to the improvement of the HF 
approximation of PF. The aggregated VFEIM function 
for the HF level, VFEIMh(�, l = 2) , indicates the expected 
improvement of the HF approximation of PF if an HF sam-
ple point is added. But aggregated VFEIM function for the 
LF level, VFEIMh(�, l = 1) , is the expected improvement of 
the HF approximation of PF when an LF sample is added. In 
a word, the infillings of both LF and HF samples are toward 

(23)

VFEIMh(�, l) =
k

min
j=1

[
M∏
i=1

[
ri −

(
f
j

i
− EI

i,j

vf
(�, l)

)]
−

M∏
i=1

(
ri − f

j

i

)]
.

to improve the HF approximation of PF, which is a unique 
property of the VFEIM-based criteria.

As the VFEIMh(�, l) function takes the minimal of the 
k simplified expected hypervolume improvements, then 
the PF approximation will get the integral improvement if 
VFEIMh(�, l) is maximized. In other words, in VFMOEGO 
with the VFEIM-based criterion, the new sample point � and 
its fidelity level l can be determined by solving the following 
maximization problem:

If the fidelity level l = 1 , which means that adding an LF 
sample will improve the PF approximation most, the true 
responses of the sample point � will be obtained by calling 
the cheaper analysis tool; otherwise, the new sample will be 
evaluated at the HF level (i.e. l = 2 ). It should be mentioned 
that the responses of the sample point � for each objective 
can also be evaluated at different fidelity levels by solving 
the following sub-optimization problem:

where � is now a vector containing the fidelity levels for 
each objective to be evaluated at; Ωl represents the design 
space of the fidelity level. For a 2-objective problem 
with two fidelity levels, the possible value for � includes 
[(1, 1), (1, 2), (2, 1), (2, 2)] . The criterion (25) will lead to 
a more flexible VFMOEGO method and it is possible to 
utilizing such setting in the above ISC. Empirically to say, 
it depends on the problem to be solved in choosing (24) 
or (25). If the objectives are all obtained by using a single 
simulator or the evaluation costs for the different objectives 
are identical, the criterion (24) should be adopted as it will 
reduce the implementation effort and the difficulty in solv-
ing the mixed-integer maximization problem. Otherwise, the 
criterion (25) is recommended. For example, for an aircraft 
wing optimization problem, the drag coefficient CD is to be 
minimized and the lift coefficient CL is to be maximized. As 
both the drag and lift coefficient are calculated through the 
computational fluid dynamic (CFD) simulator, it would be 
more convenient to use criterion (24) as the CFD simulator 
will be invoked once in evaluating the sample point � at the 
identical fidelity level. While, if the drag coefficient and the 
structural stress of the wing are to be minimized, two simu-
lators are involved to obtain the responses no matter what 
the fidelity level vector is. Hence, the more flexible criterion 
(25) is recommended. As the two real-world problems to be 
solved later are both based on CFD simulations, the criterion 
(24) is to be used hereafter.

(24)�, l = argmax
�∈Ω,l=1,2

VFEIMh(�, l).

(25)�, � = argmax
�∈Ω,�∈Ωl

VFEIMh(�, �),

Fig. 4  2-D illustration of the simplified hypervolume improvement
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3.2  Variable‑fidelity expected modified 
hypervolume improvement‑based criterion

The second criterion is developed based on a modified 
hypervolume improvement function proposed in [32]. First, 
the hypervolume improvement function in (20) is reorgan-
ized into the following form by introducing the local upper 
bounds � (LUBs) [53]:

whe re  m  i nd i ca t e s  t he  number  o f  LUBs , 
�j ∈ ℝ

M , j = 1, 2,…m represents the LUBs related to the 
current PF approximation. The LUBs denote a set of points 
that cannot be dominated by one another that 
∀�i ∈ �,∀�j ∈ � ⇒ �i ⊀ �j (The procedure and code to 
generate LUBs with a reference point and an initial PF 
approximation can be found in [32]). With LUBs, the non-
d o m i n a t e d  r e g i o n  c a n  b e  d e f i n e d  a s 
Θ =

{
� ∈ ℝ

M|∃�i ∈ � ∶ � ≺≺ �i

}
 , ( ≺≺ means strong 

Pareto-dominance, i.e. � ≺≺ � ⇔ ∀1 ≤ i ≤ M ∶ ai < bi ). The 
relationship between the LUBs � and current PF approxima-
tion is exemplified in Fig. 5. Detail properties of the LUBs 
can be found in [53]. In (26), V

([
�,�i

])
 represents the 

hypervolume of the hyper-rectangle with the two points � 
and �j as the diagonal points, the first term 

m∑
j=1

V
��
�,�j

��
 

denotes the volume sum of those regions dominated by � , 
Voverlap(�) is the volume of the overlapped part in the first 
term. As shown in Fig. 5, the areas with different shaded 
lines represent the regions for different 

[
�,�j

]
 and the colored 

area relates to the value of Voverlap.
As the Voverlap(�) cannot be calculated analytically 

when the number of objectives is larger than two. Hence a 

(26)Ihv(�)=

m∑
j=1

V
([
�,�j

])
− Voverlap(�),

modified hypervolume improvement function is defined by 
neglecting the second term of (26) and expressed in detail 
as:

It has been proved that Ihvm(�) ≥ 0 and Ihvm(�) > 0 when 
and only when � ∈ Θ[32]. Moreover, it has been demon-
strated that the above modified hypervolume improvement 
shares the identical properties with the original hypervol-
ume improvement function in MOO, e.g. the improve-
ment function is monotonically decreasing with increas-
ing yi(i = 1, 2,⋯M) . While the modified hypervolume 
improvement can be calculated analytically compared with 
the original one. Recall that, in VFMOEGO, the objective 
vector yi(�), i = 1, 2,… ,M of the studying point � fol-
lows M-dimensional independent Gaussian distribution as 
shown in (14), the expectation of the modified hypervolume 
improvement (VFEMHVI) function can be derived as:

where

It can be also noted that the infillings of both LF and HF 
samples based on VFEMHVI are toward improving the HF 
approximation of PF. Moreover, Eq. (29) takes the identical 
form of Eq. (17) but the values of LUBs are used in (29) as 
the reference value instead of the current PF approxima-
tion. Thus Eq. (28) can be regarded as the aggregation result 
of the variable-fidelity LUBs-based expected improvement 
matrix which is expressed as:

In other words, the VFEMHVI function can also be 
regarded as based on the VFEIM concept. But the reference 
values used in each element of the VFEIM and the aggre-
gation scheme are different from that of the  VFEIMh. For 

(27)Ihvm(�)=

m∑
j=1

V
([
�,�j

])
=

m∑
j=1

[
M∏
i=1

(
Ui

j
− yi(�)

)]
.

(28)

VFEMHVI(�, l) = E
[
Ihvm(�)

]
= E

[
m∑
j=1

[
M∏
i=1

(
Ui

j
− yi(�)

)]]
,

=

m∑
j=1

[
M∏
i=1

E
(
Ui

j
− yi(�)

)]
=

m∑
j=1

[
M∏
i=1

EI
i,j

vf
(�, l,Ui

j
)

]

(29)

EI
i,j

vf
(�, l,Ui

j
) =

(
Ui

j
− ŷi(�)

)
Φ

(
Ui

j
− ŷi(�)

si(�, l)

)

+ si(�, l)𝜙

(
Ui

j
− ŷi(�)

si(�, l)

)
.

(30)

⎡⎢⎢⎢⎢⎣

EI
1,1

vf
(�, l,U1

1
) EI

2,1

vf
(�, l,U2

1
) ⋯ EI

M,1

vf
(�, l,UM

1
)

EI
1,2

vf
(�, l,U1

2
) EI

2,2

vf
(�, l,U2

2
) ⋯ EI

M,2

vf
(�, l,UM

2
)

⋮ ⋮ ⋱ ⋮

EI
1,m

vf
(�, l,U1

m
) EI2,m

vf
(�, l,U2

m
) ⋯ EI

M,m

vf
(�, l,UM

m
)

⎤
⎥⎥⎥⎥⎦
.

Fig. 5  LUBs and the modified hypervolume improvement
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VFMOEGO with the VFEMHVI-based criterion, the new 
sample point � and its fidelity level l can be determined by 
solving the following maximization problem:

The VFEMHVI criterion is derived analytically hence to 
be computational efficient when solving (31). It should be 
mentioned that, in criterion (31), treating l as a vector as that 
of the VFEIM-based criterion in (25) is also possible. The 
reason for proposing a criterion with l as a scalar is identical 
to that explained in the last subsection.

3.3  Constraints handling

For a problem with MC computationally expensive inequal-
ity constraints gi(�) ≤ 0, i = 1,… ,MC , the constraints are 
also modeled by HK. The prediction of the HK model for 
the constraints at a point can be considered as the following 
normal distribution,

where ĝi(�) is the prediction of the ith HK model for con-
straint, s2

g,i
(�, l), l = 1, 2 represents the uncertainty of the ith 

model due to the lack of LF and HF samples. Then, the 
probability of satisfying the ith constraint is

(31)�, l = argmax
�∈Ω,l=1,2

VFEMHVI(�, l).

(32)Ĝi(�, l) ∼ N
[
ĝi(�), s

2
g,i
(�, l)

]
, l = 1, 2 , i = 1,… ,MC,

(33)P[Gi(�, l) ≤ 0] = Φ

(
0 − ĝi(�)

sg,i(�, l)

)
.

Eventually, the criteria for the constrained problem can 
be formulated as:

By maximizing the above criteria, the spatial location of 
a new sample point and its fidelity level to be evaluated at 
can then be determined.

3.4  Implementation of the VFMOEGO method

The algorithm  1 is given as the implementation of the 
VFMOEGO with the VFEMHVI criterion and the corre-
sponding framework is sketched in Fig. 6a. It is noted that a 
reference point is required from the user for both criteria. In 
this work, except for imputing the reference point from the 
user, introducing a normalization procedure to release such a 
burden for the user is also available. In detail, all the LF and 
HF objective responses are scaled using the minima and max-
ima of the HF objective responses of the current HF samples, 
then the reference point is set to rj = 1.1 for j = 1, 2,… ,M . 
Figure 6b shows the VFMOEGO method using such a nor-
malization procedure. The influence of the two strategies to 
specify the reference point will be discussed within the sec-
tion of numerical experiments. For VFMOEGO with  VFEIMh 
criterion, the procedure is identical thus not repeated.

(34)CVFEIMh(�, l) = VFEIMh(�, l) ⋅

MC∏
i=1

P
[
Gi(�, l) ≤ 0

]
,

(35)

CVFEMHVI(�, l) = VFEMHVI(�, l) ⋅

MC∏
i=1

P
[
Gi(�, l) ≤ 0

]
.

Fig. 6  Flowchart of the 
VFMOEGO method with a 
reference point provided by user 
and b introducing normalization 
procedure
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3.5  Illustration of the proposed criteria and method

In this subsection, a two-objective ZDT2 test problem [42] 
is employed to illustrate the proposed criteria and methods. 
The formulation of the ZDT2 problem is given as:

(36)

min
�∈Ω

F(�) =
�
f1(�), f2(�)

�

with assistance of Flf (�) =
�
f1,lf (�), f2,lf (�)

�

f1(�) = f1,lf (�) = x1

f2(�) = g(�) × h(�)

f2,lf (�) = (0.9 × g(�) + 1.1) × (1.1 × h(�) − 0.1)

where g(�) = 1 +
9

n − 1

n�
i=2

xi

h(�) = 1 −
√
f1(�)∕g(�)

0 ≤ xi ≤ 1, i = 1,… , n.

First, the  VFEIMh criterion employing the normalization 
procedure, the VFEMHVI criterion with the user specifying 
the reference point, and the VFEMHVI utilizing the nor-
malization procedure (denoted as VFEMHVIN for short) 
are compared. For the reference point of the ZDT2 problem, 
� = [11, 11] is adopted here. Identical initial LF/HF samples 
are used to calculate the 2-objective criteria and the contours 
in the 2-D design space are shown in Fig. 7, respectively. In 
these figures, the dots present the sampled points, the color 
of the contours indicates the value of the criteria. The darker 
the color the higher the value. First, it can be noted that, by 
comparing Fig. 7a, b, the contours of the  VFEIMh criteria 
at LF level (i.e. l = 2 ) have very similar trends to its cor-
responding HF criteria (i.e. l = 2 ) but differ in magnitude. 
This observation holds for VFEMHVI criteria as shown in 
Fig. 7c–f. Through comparing the  VFEIMh and VFEMH-
VIN criterion at HF level by observing the Fig. 7b, f, it is 
expected to see that the trend and magnitude of the contours 
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of those two criteria are different as the two criteria differ 
at the reference values used and the aggregation scheme. 
The dissimilarity of the criteria at the LF level can also be 
noticed through Fig. 7a, e. Though the trend and magnitude 
of the  VFEIMh and VFEMHVIN criterion are different, they 
suggest the identical next sample point shown as the pen-
tagrams in those figures. The third observation that can be 
noticed is the influence of the strategy on specifying the 
reference point. With Fig. 7d, f shown the VFEMHVI and 
VFEMHVIN criterion at the HF level, not only the trend 
but also the next sample point suggested are disparate. 
This indicates the performance of the method utilizing the 

normalization procedure might deviate from that by receiv-
ing the reference point from the user.

Second, the first five refine steps of the VFMOEGO 
method with different criteria in solving the ZDT2 problem 
of six design variables using identical initial LF and HF sam-
ples are sketched in Fig. 8 and Tables 1, 2, and 3. The initial 
HF non-dominated solutions (HFNDS), representing the 
initial HF approximation of PF, are represented by the filled 
squares. The added LF/HF samples in the iterative optimi-
zation procedure are shown by filled triangles/circles. The 
true PF of the ZDT2 problem is also presented in those fig-
ures. It can be noted that all methods select LF/HF samples 
adaptively in the iterative optimization process, which is the 

Fig. 7  Plots of the criteria 
in the design space of ZDT2 
problem. a  VFEIMh with l = 1 . 
b  VFEIMh with l = 2 . c VFEM-
HVI with l = 1 . d VFEMHVI 
with l = 2 . e VFEMHVIN with 
l = 1 . f VFEMHVIN with l = 2
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unique property of the proposed criteria. For example, the 
five sample points selected by  VFEIMh are evaluated at the 
LF–HF–LF–HF–LF level. While the VFEMHVI determined 
the first five points to be evaluated at LF–HF–HF–HF–HF 
level. In terms of the spatial position the samples added in 

the first five iterations (see Tables 1, 2, and 3), the three 
criteria have diverse favors. For instance, the first point 
chosen by the three criteria is all evaluated at the LF level 
but with different spatial locations, i.e. [6.2e−5, 2.0165], 
[0.8969, 0.2339], and [3.7e−5, 2.0077] respectively. Even 
though, the performance metric, i.e. the normalized hyper-
volume (NHV), is increased continuously indicating that 
the HF approximation of PF is improved remarkably by all 
methods (The NHV will be detailed in the section of the 
numerical experiment). The above illustrations demonstrate 
the effectiveness of the proposed criteria on improving the 
HF approximation of PF and the ability to adaptively select 
LF and HF samples in the iterative phase of the VFMOEGO 
method. More numerical examples are included in the next 
section to support this observation.

Fig. 8  Refinement process of 
the VFMOEGO method on the 
ZDT2 problem with different 
criterion: a  VFEIMh, b VFEM-
HVI, c VFEMHVIN

Table 1  Refinement process of the  VFEIMh-based optimization of 
the ZDT2 problem

Iteration Added sample Fidelity level NHV

1
[
f
1
, f
2

]
=[6.2e−5, 2.0165] 1 (LF) 0

2
[
f
1
, f
2

]
=[0, 1.0001] 2 (HF) 0.0908

3
[
f
1
, f
2

]
=[0, 5.1639] 1 (LF) 0.0908

4
[
f
1
, f
2

]
= [0.8970, 0.1957] 2 (HF) 0.2257

5
[
f
1
, f
2

]
= [0, 2.9710] 1 (LF) 0.2257

Table 2  Refinement process of the VFEMHVI-based optimization of 
the ZDT2 problem

Iteration Added sample Fidelity level NHV

1
[
f
1
, f
2

]
=[0.8969, 0.2339] 1 (LF) 0

2
[
f
1
, f
2

]
=[0.9496, 0.0987] 2 (HF) 0.1245

3
[
f
1
, f
2

]
=[2.9e-5, 1.0036] 2 (HF) 0.2001

4
[
f
1
, f
2

]
=[0.8728, 0.2385] 2 (HF) 0.2487

5
[
f
1
, f
2

]
=[0, 2.4314] 2 (HF) 0.2487

Table 3  Refinement process of the VFEMHVIN-based optimization 
of the ZDT2 problem

Iteration Added sample Fidelity level NHV

1
[
f
1
, f
2

]
=[3.7e−5, 2.0077] 1 (LF) 0

2
[
f
1
, f
2

]
=[1.8e−5, 2.0016] 1 (LF) 0

3
[
f
1
, f
2

]
=[0, 1.003] 2 (HF) 0.0906

4
[
f
1
, f
2

]
=[0, 2.4295] 1 (LF) 0.0906

5
[
f
1
, f
2

]
=[0.8637, 0.2584] 2 (HF) 0.2355
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4  Examples and results

4.1  Analytic test cases

In this subsection, analytic numerical examples are adopted 
to demonstrate the applicability and efficiency of the 

proposed criteria. These examples are also solved by the 
corresponding single-fidelity methods employing the criteria 
of HF level only, i.e. setting l = 2 in (24) or (31). The three 
single-fidelity methods utilizing HF simulations are denoted 
as  EIMh, EMHVI, EMHVIN, and the three variable-fidelity 
approaches are termed as  VFEIMh, VFEMHVI, VFEMH-
VIN, respectively.

Table 4  Formulations and true PF for numerical examples
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For clarity, the procedure of single-fidelity MOEGO 
employing the  EIMh criteria is introduced briefly. In the 
initialization phase, HF initial samples are generated by 
DOE method and then HF simulator is invoked to obtain 
the responses of those HF samples. The iterative optimi-
zation stage proceeds with the construction of the Krig-
ing models for each objective function based on the ini-
tial data set. Then the spatial position of the next sample 
point is obtained by maximizing the  EIMh function (i.e. 
EIMh(�)=VFEIMh(�, l= 2) ). Third, the simulator is called 
to get the HF response of the sample point. The HF data set 
is augmented before the check of the termination condition. 
The iterative optimization phase will continue iteratively 
until the stopping rule is met.

The formulations of analytic numerical examples from 
[41, 42] are summarized in Table 4. The computational cost 
ratio (CR) between an HF evaluation and an LF one for all 
the test cases is set to be 4. On 6-D ZDT problems, the initial 
HF sample size for single-fidelity MOEGO method is set as 
11d-1 following [29], where d represents the dimension of 
the design variable; for variable-fidelity methods, the ini-
tial HF and LF sample sizes are set as 5d and (6d-1)*CR 
to ensure the cost on the evaluation of the initial samples 
are identical to that of the single-fidelity methods. On the 
2-D POL problem, 21 HF initial samples are used in sin-
gle-fidelity method, 16 HF and 20 LF samples are adopted 
for the variable-fidelity methods. For the maximization of 
the VFEIM or VFEMHVI-based criterion, which is a mix-
integer problem of one integer variable with two levels, 
it is maximized at LF (i.e. l = 1 ) and HF (i.e. l = 2 ) level 
respectively by the genetic algorithm (GA) as depicted in 

Algorithm 1. The GA is used with the following settings: 
the maximum generation being 100, population size being 
100, probability of mutation and crossover being 0.2 and 
0.8, respectively. Such settings are also employed to maxi-
mize single-fidelity criteria. A maximal equivalent iteration 
number for the iterative phase is adopted as the termination 
condition of each algorithm. For the equivalent iteration 
number is expressed as:

where iterLF and iterHF represent the number of iterations 
choosing an LF and HF simulation calls. Notably, the num-
ber of equivalent iterations reduces to the iteration number 
for the single-fidelity method. The maximal allowed equiva-
lent iteration for all methods on the 6-D ZDT problems and 
the 2-D POL problem is set as 100 and 70, respectively. 
Considering the randomness of the LHS method and GA, 
all problems are solved by each method with 11 times. The 
reference point needed for EMHVI and VFEMHVI is set as 
(11, 11) for three ZDT problems and (80, 80) for the POL 
problem.

The numerical experiments over those analytic problems 
are conducted with the aid of PlatEMO, an open-source 
platform for comparison of multi-objective optimization 
method [54]. In the platform, several metrics are available 
to measure the quality of solutions obtained. In this work, 
two metrics are employed to compare the performance of 
different methods on solving analytic problems, that is, nor-
malized hypervolume (NHV) [55] and inverted generational 
distance (IGD) [56] that measure the proximity to the true 

(37)EquivIter =
1

CR
iterLF + iterHF,

Table 5  Statistics of the 
NHV values of the final PF 
approximation obtained by the 
compared methods

Problem ZDT1 ZDT2 ZDT3 POL +/–/=

EIMh

 Mean 6.6025e–1
2.34e–2 (–)

1.5710e–1
7.75e–2 (–)

6.0475e–1
6.60e–2 (=)

8.7684e–1
6.50e–4 (–)

0/3/1
 STD

EMHVI
 Mean 6.9726e–1

6.62e–3 (=)
3.2743e–1
8.58e–2 (–)

5.4310e–1
2.88e–2 (–)

8.7745e–1
1.85e–4 (=)

0/2/2
 STD

EMHVIN
 Mean 6.9987e–1

4.19e–3 (=)
3.0096e–1
8.04e–2 (–)

5.8567e–1
5.34e–2 (=)

8.7749e–1
1.30e–4 (=)

0/1/3
 STD

VFEIMh

 Mean 6.9720e–1
4.29e–3 (=)

4.1127e–1
9.40e–3 (–)

5.8321e–1
1.15e–2 (=)

8.7545e–1
1.54e–3 (–)

0/2/2
 STD

VFEMHVI
 Mean 7.0220e–1

4.14e–3 (=)
4.2088e–1
3.28e–3 (=)

5.7471e–1
1.98e–3 (=)

8.7738e–1
2.17e–4 (=)

0/0/4
 STD

VFEMHVIN
 Mean 7.0106e–1

5.07e–3
4.1928e–1
3.93e–3

5.7546e–1
2.43e–3

8.7751e–1
1.31e–4 STD
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PF and the diversity of solutions simultaneously. NHV and 
IGD have widely been adopted for fair assessing the per-
formance of multi-objective algorithms [57, 58]. A larger 
value of NHV or a smaller value of IGD indicates better 
quality of the HF approximation of the PF. The definition of 
reference points for NHV calculation and true PF for IGD 
calculation of those analytic problems can be found in [54]. 
The number of HF solutions to approximate the PF is also 
counted to show the differences among all compared meth-
ods. The Wilcoxon rank-sum test with significance level 
0.05 is applied to identify whether the means of the results 
obtained by one criterion is significantly different from the 
results obtained by the VFEMHVIN criterion. The result is 
labeled by the signs ‘ + ’, ‘–’ and ‘≈’, which indicate that the 
result is significantly better, significantly worst, and compa-
rable statistically.

Tables 5 and 6 present the statistic results of NHV and 
IGD over the analytic test instances. The Wilcoxon rank-
sum test results between one method and VFEMHVIN are 
presented in the parentheses in those tables. Moreover, the 
number of one method performs significantly better, worst, 
and comparable statistically to VFEMHVIN is counted and 
listed in Tables 5 and 6. From the statistic results of NHV 
metric shown in Table 5, it can be noted that the VFEMH-
VIN performs better or comparative to all the rest five meth-
ods over all test problems. In detail, compared with the three 
single-fidelity methods, VFEMHVIN is better on 3, 2, and 
1 of the four problems and comparable on 1, 2, and 3 of the 
four problems. This demonstrates the optimization gains can 
be improved by utilizing VF surrogate-based method. The 
 VFEIMh performs statistically worse than VFEMHVIN on 

ZDT2 and POL problems, and comparable to VFEMHVIN 
on ZDT1 and ZDT3 problems. Recall the two differences 
between  VFEIMh and VFEMHVIN, it can be concluded that 
the reference values and the adopted aggregation scheme for 
the variable-fidelity expected improvement matrix affects the 
performance of the corresponding criterion. The VFEMHVI 
is statistically comparable to VFEMHVIN over all analytic 
test cases. As VFEMHVI and VFEMHVIN only differ at the 
way to generate the reference point, this indicates that the 
normalization-based strategy to generate the reference point 
preserves the ability of the VFEMHVI criterion in finding 
solutions with a high level of convergence and diversity, 
while is superior on without the need to specify the reference 
point by the user/designer. Though the effects of reference 
point specification strategy are not obvious in above test 
results, it should be admitted that the strategy does affect 
the performance of the method relying on the hypervolume 
concept based on our preliminary studies. Such a phenom-
enon has been pointed out before and more suggestions 
on specifying the reference point can be found in [59–61]. 
Inspired by this, a dynamic reference point specification 
strategy will be investigated the future work. With the IGD 
statistic results shown in Table 6, the comparison conclusion 
is identical, i.e. VFEMHVIN performs better or comparative 
to all the rest five methods over all test problems. While the 
VFEMHVIN is now superior to  EIMh, EMHVI, EMHVIN, 
and  VFEIMh over 4, 3, 3, and 2 problems.

The number of HF solutions to approximate the PF of 
each method is counted in Table 7. Generally, the single- 
and variable-fidelity expected improvement matrix-based 
methods, i.e.  EIMh and  VFEIMh can obtain more solutions 

Table 6  Statistics of the 
IGD values of the final PF 
approximation obtained by the 
compared methods

ZDT1 ZDT2 ZDT3 POL  +/–/ = 

EIMh

 Mean 4.7183e–2
1.39e–2 (–)

4.2143e–1
1.62e–1 (–)

7.0382e–2
2.50e–2 (–)

2.1338e–1
5.87e–2 (–)

0/4/0
 STD

EMHVI
 Mean 2.3495e–2

4.85e–3 (–)
1.7151e–1
1.53e–1 (–)

6.5344e–2
2.30e–2 (–)

1.4722e–1
1.83e–2 (=)

0/3/1
 STD

EMHVIN
 Mean 2.1767e–2

2.82e–3 (–)
1.8908e–1
1.46e–1 (–)

8.8467e–2
3.54e–2 (–)

1.3975e–1
8.25e–3 (=)

0/3/1
 STD

VFEIMh

 Mean 2.3948e–2
3.69e–3 (–)

3.5003e–2
7.48e–3 (=)

2.6038e–2
3.95e–3 (=)

1.7746e–1
3.50e–2 (–)

0/2/2
 STD

VFEMHVI
 Mean 1.8361e–2

3.16e–3 (=)
2.8651e–2
2.89e–3 (=)

2.8579e–2
5.41e–3 (=)

1.4750e–1
2.61e–2 (=)

0/0/4
 STD

VFEMHVIN
 Mean 1.9028e–2

3.75e–3
2.9102e–2
4.05e–3

2.6137e–2
4.08e–3

1.3581e–1
1.29e–2 STD
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to approximate the PF on one or two problems. While the 
EMHVI, EMHVIN performs worst in terms of the number 
of solutions on the approximated PF. The ability of VFEM-
HVI and VFEMHVIN in this aspect is still comparable. 
Figure 9 shows the final PF approximation by each algo-
rithm with the median IGD value on the 11 runs on all 
the analytic test problems. The differences of the number 
of HF solutions approximating the PF can be observed in 
Fig. 9 institutively. Moreover, it can be also seen that all 
methods can obtain promising PF approximations on the 
ZDT1 and ZDT2 problems with continuous PF. While, on 
the two problems with discrete PF (ZDT3 and POL), the VF 
surrogate-based methods approximate the PF better as the 
single-fidelity method generally missed part of the discrete 
PF. Especially in the ZDT3 problem, it can be noted that 
the rightmost part of the discrete PF is missed by the three 
single-fidelity methods.

Table 8 compares the number of LF/HF samples added 
during the iterative optimization process of each method. 
From Table 8, the ability of the VF surrogate-based method 
in adaptively selecting LF/HF samples during the iterative 
optimization process can be observed. In terms of the por-
tion of LF or HF samples on the whole sample set added, 
it depends on the problem. For example, the LF samples 
chosen by the three variable-fidelity methods took up nearly 
half of the total added samples on the three ZDT problems. 
While, on the POL problem, the three variable-fidelity meth-
ods spent most computational cost on HF samples. Gener-
ally, this is determined by the correlation between LF and 
HF functions. If the LF function correlates well to the HF 
function, added more LF samples is beneficial to improve 

the accuracy of the HK model and hence the optimization 
performance.

The Wilcoxon rank-sum tests among the three single-
fidelity methods are also conducted to reveal the best one 
as the comparison among the three single-fidelity methods 
has never been reported in the open literature. Table 9 shows 
the test results using the IGD values. It can be noted that 
the  EIMh is significantly worse than EMHVIN on three 
cases over the four test problems and performs comparably 
to EMHVIN on the ZDT3 problem. Again, normalization-
based reference point specification strategy still maintains 
the ability of EMHVI-based method as the comparable per-
formance between EMHVI and EMHVIN can be observed 
in Table 9.

Finally, the effect of cost ratio on the three variable-
fidelity methods is investigated. Though no cost-control 
strategy is incorporated in the proposed criteria, the cost 
ratio affects the number of initial LF samples hence the ini-
tial surrogates and optimization process. Before presenting 
the experiment results, it is expected that the variable-fidel-
ity method will perform better if the cost ratio increases. 
This is due to more LF samples can be used with a larger 
cost ratio within the setting context. Providing the LF and 
HF functions correlate well, more LF samples will gen-
erally improve the accuracy of the VF surrogate models 
which will benefit the optimization task. In detail, addi-
tional experiments with CR = 3 and CR = 8 are conducted 
on the ZDT2 and ZDT3 problems with the obtained results 
shown in Table 10. The results of CR = 4 are taken from 
Table 5 and 6. Indeed, the statistic results of NHV and 
IGD values follows the above expectation. For instance, 

Table 7  Statistics of the number 
of HF solutions for the final PF 
approximation obtained by the 
compared methods

Problem ZDT1 ZDT2 ZDT3 POL  +/–/ = 

EIMh

 Mean 1.9091e+1
3.65e+0 (–)

2.7273e+0
1.10e+0 (–)

1.5545e+1
1.69e+0 (–)

5.7273e+1
2.83e+0 ( +)

1/3/0
 STD

EMHVI
 Mean 1.9273e+1

2.87e+0 (–)
6.0909e+0
2.17e+0 (–)

1.2909e+1
2.63e+0 (–)

4.8091e+1
4.35e+0 (–)

0/4/0
 STD

EMHVIN
 Mean 1.9545e+1

1.86e+0 (–)
5.0000e+0
1.90e+0 (–)

1.1909e+1
2.63e+0 (–)

4.9273e+1
2.41e+0 (–)

0/4/0
 STD

VFEIMh

 Mean 3.1182e+1
4.12e+0 (=)

2.2000e+1
2.97e+0 ( +)

2.4727e+1
3.90e+0 (=)

5.5818e+1
3.79e+0 ( +)

2/0/2
 STD

VFEMHVI
 Mean 2.7909e+1

6.79e+0 (=)
1.7636e+1
1.86e+0 (=)

2.6727e+1
4.29e+0 (=)

4.8727e+1
4.13e+0 (=)

0/0/4
 STD

VFEMHVIN
 Mean 2.8364e+1

5.18e+0
1.7091e+1
2.81e+0

2.5909e+1
3.02e+0

5.1636e+1
3.20e+0 STD
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the mean IGD values of  VFEIMh on ZDT3 problem with 
CR = 3, 4, and 8 are 2.6102e-2, 2.6038e-2, and 2.3487e-2, 
respectively, indicating the method performs better with 
the increase of CR.

Fig. 9  Plots of the final PF approximation obtained by each algorithm with the median IGD value in the 11 runs on different problems: a ZDT1, 
b ZDT2, c ZDT3, d POL

Table 8  Added LF and HF samples of each method

Sizes ZDT1 ZDT2 ZDT3 POL

EIMh LF – – – –
HF 100 100 100 70

EMHVI LF – – – –
HF 100 100 100 70

EMHVIN LF – – – –
HF 100 100 100 70

VFEIMh LF 77.4 65.2 96.0 12.2
HF 81.8 84.1 76.7 67.4

VFEMHVI LF 78.3 59.0 93.8 30.4
HF 80.9 85.7 77.0 62.8

VFEMHVIN LF 73.5 69.1 99.0 25.4
HF 82.1 83.1 75.7 64.1

Table 9  Wilcoxon rank sum test results of IGD metric among three 
single-fidelity methods

Problem ZDT1 ZDT2 ZDT3 POL  +/–/ = 

EIM vs EMHVIN – –  = – 0/3/1
EMHVI vs EMHVIN  =  =  =  = 0/0/4
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5  Engineering optimization design cases

5.1  NACA0012 airfoil optimization in transonic 
inviscid flow

The first engineering design case is the drag minimiza-
tion and lift maximization of the NACA0012 airfoil. The 
2-objective minimization problem is formulated as:

(38)min
�∈Ω

F(�) =
{
CD,−CL

}
,

where CD,CL is the drag and lift coefficient respectively at 
the angle of attack 1.25 and free-stream Mach number 0.8. 
The HF and LF analysis are defined as CFD simulations 
solving the Euler equations with different convergence cri-
teria. The transonic inviscid flow simulation is conducted 
by the open-source CFD simulator SU2 [62]. The grid cor-
responding to the simulation for the baseline airfoil is pre-
sented in Fig. 10. The LF CFD simulation terminates after 
120 iteration and the HF simulation stops until the den-
sity residual is lower than  10–8. The histories of residual, 
drag, and lift coefficients for the baseline airfoil is shown 
in Fig. 11. The lift and drag coefficients for the baseline 
NACA0012 airfoil from the inviscid simulation are 0.3269 
and 0.0214, respectively. It should be mentioned that this 
problem is not a much expensive problem to allow multi-
ple runs to obtain statistical performance of each method 
on this problem. From Fig. 11, it can also be observed 
that the computational cost ratio of the HF simulation to 
the LF simulation for the baseline airfoil is approximately 
2.6. However, it is found the number of iteration for an HF 
simulation to reach the specified residual is dependent on 
the spatial position of a sample point in the optimization 
process, resulting in cost ratio varying between 2 and 60 
over the design space. Varying cost for expensive engi-
neering design problems has been observed before and a 
specified strategy to treat the varying cost in design space 
exploration for a single-fidelity method is proposed in [52]. 
While the inclusion of a scheme to deal with varying cost 
over the design space is out of the scope of this work and 
will be conducted in the future. To this end, the cost ratio 
is specified to be 3 for the NACA0012 airfoil optimization 
problem.

Hicks–Henne bump functions [63] with a total of 18 
design variables are used in the geometry parameteriza-
tion of the NACA0012 airfoil. The new airfoil is obtained 
by adding disturbation (the summation of bump functions) 
on the lower and upper surfaces of the baseline shape. The 
lower and upper profile disturbation Δl and Δu are expressed 
as:

The amplitudes of bumps �li and �ui, (i = 1,⋯ , 9) are the 
18 design variables of the optimization. The initial sample 
size for single-fidelity methods is set as 5d. For variable-
fidelity methods, the number of initial HF and LF samples 

(39)

⎧
⎪⎪⎨⎪⎪⎩

Δl = −
9∑
i=1

�lifi(x), �li ∈ [−0.01, 0.01]

Δu =
9∑
i=1

�uifi(x), �ui ∈ [−0.01, 0.01]

,

fi(x) = sin3
�
�xe(i)

�
, e(i) = log(0.5)∕ log

�
xi
�
, i = 1,… , 9

x = [0.05, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.95]

Table 10  Statistic results of variable-fidelity methods with different 
cost ratios

Metric Problem CR VFEIMh VFEMHVI VFEMHVIN

3
 Mean 4.1056e–1 4.2022e–1 4.2087e–1
 STD 9.72e–3 4.70e–3 5.41e–3

ZDT2 4
 Mean 4.1127e–1 4.2088e–1 4.1928e–1
 STD 9.40e–3 3.28e–3 3.93e–3

NHV 8
 Mean 4.1451e–1 4.2043e–1 4.2125e–1
 STD 7.91e–3 3.87e–3 5.76e–3

3
 Mean 5.7966e–1 5.7446e–1 5.7616e–1
 STD 1.04e–2 1.85e–3 1.05e–2

ZDT3 4
 Mean 5.8321e–1 5.7471e–1 5.7546e–1
 STD 1.15e–2 1.98e–3 2.43e–3

8
 Mean 5.7353e–1 5.7506e–1 5.7552e–1
 STD 4.92e–3 3.39e–3 2.61e–3

3
 Mean 3.5346e–2 2.8590e–2 2.6191e–2
 STD 1.11e–2 4.68e–3 4.79e–3

ZDT2 4
 Mean 3.5003e–2 2.8651e–2 2.9102e–2
 STD 7.48e–3 2.89e–3 4.05e–3

8
IGD  Mean 3.6385e–2 2.9090e–2 2.8402e–2

 STD 1.36e–2 3.23e–3 4.74e–3
3
 Mean 2.6102e–2 2.7918e–2 3.1732e–2
 STD 6.25e–3 3.51e–3 8.51e–3

ZDT3 4
 Mean 2.6038e–2 2.8579e–2 2.6137e–2
 STD 3.95e–3 5.41e–3 4.08e–3

8
 Mean 2.3487e–2 2.6629e–2 2.4100e–2
 STD 3.44e–3 7.82e–3 7.19e–3
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is set as 2d and 3d × CR , respectively. All methods stop once 
the 90 allowed equivalent iteration is used out. Only NHV 
is adopted in the performance assessment, as no true PF is 
available for the calculation of IGD of the practical prob-
lem. The reference point used for NHV estimation is [0.1, 
0]. To demonstrate the effectiveness of the variable-fidelity 
methods as well as release the computational burden of the 
experiments, the EMHVI method is chosen among the three 
single-fidelity methods to solve the practical engineering 
design problem. The EMHVI is chosen as it performs better 
than  EIMh and comparative to EMHVIN in the experiments 
over the analytic problems.

Table 11  Statistic results of compared methods on NACA0012 airfoil 
optimization

NHV No. of final HF 
solutions for PF

No. of samples

EMHVI
 Mean 8.6963e–1 1.5545e+1 LF –
 STD 3.39e–2 (–) 3.83e+0 HF 180

VFEIMh

 Mean 8.7642e–1 1.5000e+1 LF 175.5
 STD 5.14e–2 (=) 4.20e+0 HF 122.2

VFEMHVI
 Mean 8.5421e–1 1.4545e+1 LF 172.2
 STD 3.83e–2 (–) 2.16e+0 HF 123.2

VFEMHVIN
 Mean 9.0534e–1 1.2727e+1 LF 170.8
 STD 2.33e–2 2.24e+0 HF 123.7

Fig. 10  Sketch of grid for CFD simulation for baseline NACA0012 
airfoil

Fig. 11  Convergence histories for the baseline NACA0012 airfoil

Fig. 12  PF approximations with median NHV value by each method 
on NACA0012 airfoil optimization problem

Fig. 13  Comparison of baseline NACA0012 and optimal airfoils
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The NACA0012 airfoil optimization problem is solved 
by each method with 11 times and Table 11 presents the 
statistic results of the compared methods over this prob-
lem. As observed, the VFEMHVIN performs statistically 
better than EMHVI and VFEMHVI, and is comparable to 
the  VFEIMh method. The slightly worse performance of 
VFEMHVI compared with the VFEMHVIN indicates that 
an inappropriate reference point for the hypervolume calcu-
lation in the VFEMHVI criterion will deteriorate its perfor-
mance and the normalization-based strategy to define the 
reference point is still applicable in practical problem. From 
the number of LF/HF samples for each method shown in 
Table 11, the ability to adaptively determining LF/HF sam-
ple in the iterative optimization phase is well demonstrated 
in the practical engineering design problem. PF approxima-
tions with median NHV value among the 11 runs by each 
method are shown in Fig. 12. Recall the objective values of 
the baseline airfoil (0.0214, − 0.3269), it can be noted that all 
methods can obtain improved solutions. Representative opti-
mal solutions are selected to show the details. The objective 
values for the three optimal solutions (denoted as the Min. 
drag, Balance, Max. lift) are (0.001612, − 0.2909), (0.0163, 
-0.7506), (0.05986, − 0.9263), respectively. Figures 13 and 
14 compare the shapes and the Mach number contours of the 
baseline NACA0012 and optimal airfoils. It can be seen the 
optimal airfoils are all asymmetrical and generally thinner 
especially at the backward parts.

5.2  RAE2822 airfoil optimization in viscous 
turbulent flow

The second engineering design case is the drag minimization 
and lift maximization of the RAE2822 airfoil. The 2-objec-
tive minimization problem is formulated as:

where CD,CL are the drag and lift coefficient respectively at 
the angle of attack 2.9 and free-stream Mach number 0.734. 
The HF and LF analysis are defined as CFD simulations 
solving the Reynolds-averaged Naiver–Stokes equations 
with different convergence criteria in SU2. The grid cor-
responding to the simulation for the baseline airfoil is pre-
sented in Fig. 15. The LF CFD simulation terminates after 
800 iterations and the HF simulation stops until the density 

(40)min
�∈Ω

F(�) =
{
CD,−CL

}
,

Fig. 14  Mach number con-
tour comparison of baseline 
NACA0012 and optimal airfoils

Fig. 15  Sketch of grid for CFD simulation for baseline RAE2822 air-
foil
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residual is lower than  10–7, resulting in the CR ≈ 6. The his-
tories of residual, drag, and lift coefficients for the baseline 
airfoil is shown in Fig. 16. The lift and drag coefficients 
for the baseline RAE2822 airfoil from the viscous turbu-
lent flow simulation are 0.8210 and 0.0206, respectively. 
Airfoil parameterization strategy in the NACA0012 case is 
employed. The amplitudes of bumps �li and �ui, (i = 1,… , 9) 
are the 18 design variables of the optimization but with a 
reduced range for each variable as [− 0.0001, 0.0001] to 
ensure the possibility of encountering simulation failures 

as low as possible. It should be mentioned that such treat-
ment will limit the optimization gain, but it is necessary 
to conduct the comparative study smoothly. Strategy to 
deal with the simulation failures in our previous work [64] 
can be incorporated to potentially improve the robustness 
and efficiency of the proposed methods in solving practi-
cal engineering problems in presence of simulation failures 
and is left for future work. The settings of the initial sample 
size and termination criterion hold identical to that in the 
NACA0012 case. The reference point used for NHV estima-
tion is [0.05, − 0.4] (See Fig. 16).

The RAE airfoil optimization problem is solved by each 
method with 11 times and Table 11 presents the statistic 
results of the compared methods over this problem. As 
observed, the VFEMHVIN performs statistically better 
than EMHVI and VFEMHVI, and is comparable to the 
 VFEIMh method. Again, the slightly worse performance 
of VFEMHVI compared with the VFEMHVIN indicates 
that an inappropriate reference point for the hypervolume 
calculation in the VFEMHVI criterion will deteriorate its 
performance and the normalization-based strategy to define 
the reference point is still applicable in this more expensive 
practical problem. The ability to adaptively choosing LF/HF 

Fig. 16  Convergence histories for the baseline RAE2822 airfoil

Table 12  Statistic results of compared methods on RAE2822 airfoil 
optimization

NHV No. of final HF 
solutions for PF

No. of samples

EMHVI
 Mean 7.0741e–1 1.3091e+1 LF –
 STD 2.62e–2 (–) 2.39e+0 HF 180

VFEIMh

 Mean 7.3248e–1 1.3455e+1 LF 353.0
 STD 1.80e–2 (=) 2.34e+0 HF 121.5

VFEMHVI
 Mean 6.8278e–1 1.2636e+1 LF 363.2
 STD 1.67e–2 (–) 2.66e+0 HF 119.8

VFEMHVIN
 Mean 7.2659e–1 1.0364e+1 LF 365.2
 STD 1.42e–2 2.06e+0 HF 119.5

Fig. 17  PF approximations with median NHV value by each method 
on RAE2822 airfoil optimization problem

Fig. 18  Comparison of baseline RAE2822 and optimal airfoils
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sample in the iterative optimization phase is demonstrated 
from the number of LF/HF samples for each method shown 
in Table 12. PF approximations with median NHV value 
among the 11 runs by each method are shown in Fig. 17. 
It can be noted that all methods can improve the baseline 
design in at least one of the objectives. Representative opti-
mal solutions are selected to show the details. The objective 
values for the three optimal solutions (denoted as the Min. 
drag, Balance, Max. lift) are (0.0105, − 0.6315), (0.01649, 
− 0.9918), (0.05298, − 1.197), respectively. Figures 18 and 
19 compare the shapes and the Mach number contours of 
the baseline RAE2822 and optimal airfoils. It can be seen 
the optimal airfoils are all asymmetrical and generally thin-
ner especially at the backward parts. The shock intensity is 
decreased significantly for the Min. drag optimal solution 
and increased sharply for the Max. lift design.

6  Discussion

This section presents a discussion on the merits, limitations, 
and avenues of improvements of the proposed approaches. 
The discussion is based on the introduction in Sect. 3 and 
above experimental results but also extends to broader 
comments.

Comparison between the two criteria Both criteria are 
formulated explicitly and cheap-to-evaluate. The  VFEIMh 
criterion is obtained heuristically via replacing the improve-
ment in the simplified hypervolume improvement function 
by the corresponding expected improvement. The idea is 
simple and straightforward. While the VFEMHVI is derived 
analytically based on the modified hypervolume improve-
ment. The modified hypervolume improvement shares the 
identical properties with the original hypervolume improve-
ment function in MOO but the properties of the simplified 
hypervolume improvement function behind  VFEIMh is not 
clear. From the test results, it can be concluded that the 
VFEMHVI incorporating the normalization-based strat-
egy to define the reference point is the more efficient one. 
Though the  VFEIMh performs slightly worse in obtaining 
solutions with high quality, it still has an advantage of being 
able to obtain more solutions to approximate the PF.

Limitations As presented in Sect. 3, the current criteria 
are developed for application with two levels of fidelity. We 
believe that extending the two-level HK model to multi-
fidelity one and developing dedicated criteria can be a rem-
edy to tackle this problem.

Fig. 19  Mach number contour comparison of baseline RAE2822 and optimal airfoils
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Avenues for improvement Beside the development of cri-
terion for multi-fidelity applications, several other avenues 
for improvements can be envisioned. For problems with 
varying cost over the design space, incorporation of a cost-
control strategy might be helpful to potentially enhance the 
efficiency of the proposed method in such application. The 
simulation failures in practical engineer problems, espe-
cially for CFD-based applications, is critical to the proposed 
sequential method since it will lead to the premature halt of 
the iterative optimization process. Integration of an efficient 
strategy to attack the simulation failures might improve the 
robustness and optimization efficiency of the approaches. 
Parallelizing the proposed criteria can be an alternative to 
deal with simulation failures and accelerate the optimization 
process with the aid of parallel computation.

7  Summary and future works

In this paper, two variable-fidelity hypervolume-based 
expected improvement criteria for multi-objective efficient 
global optimization of expensive-to-evaluate functions 
with the assistance of cheaper-to-evaluate functions were 
proposed. Both criteria can be regarded as a multi-objective 
extension of the variable-fidelity expected improvement 
for the single-objective variable-fidelity EGO method. 
The first criterion,  VFEIMh, was obtained by aggregating 
the variable-fidelity expected improvement matrix using 

a simplified hypervolume-based aggregation scheme. The 
second criterion, VFEMHVI, was derived analytically based 
on a modified hypervolume definition. It was found the sec-
ond criterion can also be obtained by using the variable-
fidelity expected improvement matrix via replacing the ref-
erence values and utilizing the other aggregation scheme. 
Both criteria can adaptively select new LF/HF samples in 
the iterative optimal search process to update the variable-
fidelity models towards the HF Pareto front, distinguishing 
the proposed methods to the rests in the open literature. The 
constrained versions of the two criteria were also derived. As 
both criteria are based on the hypervolume measure, a refer-
ence point for hypervolume calculation is necessary. Except 
for specifying it by the user/designer, a strategy based on 
normalization was also proposed and implemented. The 
effectiveness and efficiency of the proposed methods were 
then verified and validated over analytic multi-objective 
problems and demonstrated for aerodynamic shape optimi-
zations of the NACA0012 airfoil in transonic inviscid flow 
and RAE2822 in a viscous turbulent flow. It was shown that 
the VFEMHVI combined with the normalization-based 
strategy to define the reference point is the most efficient 
method over the compared single-fidelity and variable-
fidelity ones. Except for applying the proposed method to 
more complex test problems and real-world engineering 
problems from the application view, the performance of the 
general criterion (25), which allows the objectives of the 
newly selected sample to be evaluated as different fidelities, 
will be explored.



3686 Engineering with Computers (2022) 38:3663–3689

1 3

Appendix



3687Engineering with Computers (2022) 38:3663–3689 

1 3

Gaussian_CDF and Gaussian_PDF are the Gaussian cumu-
lative distribution function and probability density function 
respectively, and are defined as follows.
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