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Abstract
Failure-probability-based global sensitivity (FP-GS) analysis can measure the effect of the input uncertainty on the failure 
probability. The state-of-the-art for estimating the FP-GS are less efficient for the rare failure event and the implicit perfor-
mance function case. Thus, an adaptive Kriging nested Importance Sampling (AK-IS) method is proposed in this work to 
efficiently estimate the FP-GS. For eliminating the dimensionality dependence in the calculation, an equivalent form of the 
FP-GS transformed by the Bayes’ formula is employed by the proposed method. Then the AK model is nested into IS for 
recognizing the failure samples. After all the failure samples are correctly identified from the IS sample pool, the failure 
samples are transformed into those subjected to the original conditional probability density function (PDF) on the failure 
domain by the Metropolis–Hastings algorithm, on which the conditional PDF of the input on the failure domain can be 
estimated for the FP-GS finally. The proposed method highly improves the efficiency of estimating the FP-GS comparing 
with the state-of-the-art, which is illustrated by the results of several examples in this paper.

Keywords Global sensitivity · Failure probability · AK nested IS · Bayes’ theorem · Kriging model

1 Introduction

In recent years, the uncertainty analysis in the engineering 
structures such as aerospace engineering has attracted much 
attention [1]. Failure probability is the safety degree measure 
of the structural systems under the widely existing random 
uncertainty. The failure-probability-based global sensitivity 
(FP-GS) analysis can quantify the effect of the input uncer-
tainty on the failure probability. After the important random 
inputs are correctly recognized by the FP-GS, the failure 
probability can be reduced at a low price by reducing the 
uncertainties of the important random inputs.

Generally, the failure-probability-based sensitivity can be 
classified into two categories. The first category is the fail-
ure-probability-based local sensitivity [2, 3], it is defined as 
the partial derivative of the failure probability with respect to 
the distribution parameter of the input. The failure-probabil-
ity-based local sensitivity can be estimated by the moment-
based methods [4–6], the sampling-based methods and 

the surrogate-based methods. Usually, the moment-based 
methods include the second moment method, the third one 
and the forth one. The sampling-based methods include the 
Monte Carlo Simulation (MCS) and the advanced MCS such 
as the Importance Sampling (IS) [7], the Subset Simulation 
(SS) [8] and the Line Sampling (LS) [9]. The surrogate-
based methods include the Response Surface Method (RSM) 
[10], the Support Vector Machine (SVM) [11], the Neural 
Network (NN) [12] and the adaptive Kriging (AK) model 
[13]. However, the failure-probability-based local sensitivity 
can only reflect the local effect of the distribution parameter 
on the failure probability at the nominal point. The second 
category is the failure-probability-based global sensitiv-
ity (FP-GS). Considering the uncertainties of the random 
inputs, Cui et al. [14] defined the FP-GS as the average abso-
lute difference between the unconditional failure probability 
and the conditional failure probability when fixing the input 
at its realization generated by the PDF, it is shown in Eq. (1).

(1)
�i =

1

2
EXi

[||P{F} − P{F||Xi}
||]

=
1

2
∫ +∞

−∞
||P{F} − P{F||Xi}

||fXi
(xi)dxi,

 * Zhenzhou Lu 
 zhenzhoulu@nwpu.edu.cn

1 School of Aeronautics, Northwestern Polytechnical 
University, Xi’an 710072, Shaanxi, China

http://orcid.org/0000-0003-3231-9553
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01402-x&domain=pdf


3596 Engineering with Computers (2022) 38:3595–3610

1 3

where E[⋅] is the expectation operator, F means the failure 
event, fXi

(xi) is the probability density function (PDF) of the 
input Xi , and P{⋅} is the probability operator.

It can be seen from Eq. (1) that the FP-GS reflects the 
expected effect of the input Xi over its whole distribution 
on the failure probability. For the sake of computation, 
Li et al. [15] re-expressed Eq. (1) as the form shown in 
Eq. (2)

Based on Eq. (2), Li et al. discovered that the FP-GS is 
the exact expression of the variance-based global sensi-
tivity of the failure domain indicator function IF(X) , i.e.,

where V[⋅] is the variance operator, IF(X)=1 in case the ran-
dom input vector X ∈ F , and IF(X)= 0 in case X ∉ F.

The direct method For estimating the FP-GS defined 
in Eq. (2) is the double-loop MCS. In the inner loop of 
the double-loop MCS, the unconditional failure prob-
ability P{F} is estimated by the MCS. In the outer loop, 
the realization of Xi is sampled for estimating the con-
ditional failure probability P{F||Xi} and the expectation 
of [P{F} − P{F||Xi}] . The double-loop MCS is obviously 
time-consuming especially for the rare failure event, in 
which the failure probability is small, such as 10−4 ∼ 10−7

(e.g., example 5.2.1 in this work), and the implicit perfor-
mance function case, in which the performance function 
cannot be explicitly expressed by an analytical formulation 
(e.g., example 5.2.2 in this work). Guaranteed by the law 
of the large number, the results of the double-loop MCS 
can be used as the reference, it converges to the real values 
as the number of the samples tends to be infinite.

Wei et al. [16] divided Eq. (3) by the variance of IF(�) , 
and the normalized FP-GS is obtained as Eq. (4),
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2{F} . Equation (4) implies the nor-
malized FP-GS is the main sensitivity index of IF(�).

Since �i is the normalized form of �i , the importance of 
the inputs estimated by these two indexes are the same. This 
work focuses on the efficient estimation method of �i , the 
main sensitivity index based on the failure probability, and �i 
can be used to determine the prioritization of the important 
random inputs for effectively reducing the failure probability.
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The rest of the context is organized as follows. The lit-
erature review of methods for estimating the FP-GS and 
those introduced in this work are presented in Sect. 2. The 
double-loop MCS for estimating the FP-GS is briefly intro-
duced according to the definition in Eq. (4) in Sect. 3. Sec-
tion 3 also describes the Bayes’ formula transformation of 
the FP-GS and its corresponding estimation process by the 
direct MCS. An efficient method for estimating the FP-GS 
by nesting the AK into IS is constructed in Sect. 4. In Sect. 5, 
several examples are employed to verify the accuracy and 
efficiency of the proposed method by comparing with the 
state-of-the-art. Conclusions are drawn in Sect. 6.

2  Literature review

The single-loop MCS, the IS method and the truncated 
IS method were presented to estimate the FP-GS in [16]. 
The computational efficiencies of the single-loop MCS, IS 
method and truncated IS method are greatly improved com-
pared to the double-loop MCS, but their computational cost 
is still too large for practical engineering. Through the maxi-
mum entropy constrained by the fractional moments, Ref. 
[17] presented an efficient method to estimate the FP-GS. 
However, this method is limited by the applicability of the 
multiplication dimensionality reduction method (M-DRM) 
for approximating the fractional moments [18].

Recently, several methods based on the classification of 
the model output were developed for estimating the FP-GS 
[19–22]. The classification method for estimating FP-GS 
originates from the Bayes’ formula. In the classification-
based method, the model output is classified into two catego-
ries corresponding to that the output value is less than zero 
or bigger than zero, i.e., the failure one or the safety one, 
on which the FP-GS can be easily evaluated by employing 
the Bayes’ formula. In the classification method for estimat-
ing the FP-GS, the failure probability and the conditional 

PDFs of all inputs on the failure domain are necessary and 
sufficient for obtaining the FP-GS. When the failure prob-
ability is approached by the sampling-based methods such 
as the MCS, the Importance Sampling (IS) and the Subset 
Simulation (SS), the estimation of the conditional PDFs 
of all inputs on the failure domain can be simultaneously 
obtained by the failure samples as byproducts. Since the 
FP-GS estimations for all inputs can be obtained by the same 
set of samples, the dimensionality dependence of the com-
putational cost is eliminated by the classification method.
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However, an efficient method for estimating the FP-GS 
is still a challenge for engineering application with the rare 
failure probability and the implicit performance function.

From the definition of �i , it is well known that the key for 
estimating �i is to efficiently obtain the conditional failure 
probability P{F||Xi} on the realization Xi = xi . The Bayes’ 
formula [23] provides an alternative way for obtaining 
P{F||Xi = xi},

where fXi

(
xi
)
 is the known original PDF of Xi , and fXi

(
xi|F

)
 

is the unknown conditional PDF of Xi on the failure domain 
F.

By the Bayes’ formula transformation, P{F||Xi} at the 
realization Xi = xi can be estimated by the ratio of fXi

(
xi|F

)
 

to fXi

(
xi
)
 at Xi = xi multiplying by the failure probability 

P{F} . If the conditional PDF fXi

(
xi|F

)
 of Xi on the fail-

ure domain F can be easily estimated, then the FP-GS �i 
can be further obtained without any extra computational 
cost. To estimate fXi

(
xi|F

)
 , the classification method does 

use the i-th dimension failure samples xF
li

(
l = 1, 2,… ,MF

)
 

( MF is the number of the failure samples) screened from 
the failure samples �F

l

(
l = 1, 2,… ,MF

)
 of the input vec-

tor � =
{
X1,X2,… ,Xn

}
 , where the failure samples �F

l(
l = 1, 2,… ,MF

)
 of the input vector are classified once the 

failure probability P{F} is estimated by the AK-based sam-
pling method.

AK-based sampling methods are popular in estimating the 
failure probability recently for their good balance between 
the estimation accuracy and efficiency. These methods firstly 
construct the initial Kriging model with some training sam-
ples by the design of experiment (DOE), and then new sam-
ples selected by the learning function are iteratively added to 
the training sets to update the Kriging model until the con-
vergence criterion is satisfied. Based on the convergent Krig-
ing model, the failure probability can be obtained accurately 
[24]. There are many AK-based sampling methods, such as 
AK-MCS [24], AK-IS [25–27], AK-SS [28] and AK-LS 
[29], etc., they, respectively, combine the AK model with 
the Monte Carlo Simulation (MCS), the Importance Sam-
pling (IS), the Subset Simulation (SS) and the Line Sam-
pling (LS). In this kind of AK-based sampling method, the 
AK model is used as the representation of the performance 
function. Based on the convergent AK instead of the perfor-
mance function, whether the sample is the failure one or the 
safety one can be evaluated efficiently. Since the AK model 
is nested into the sampling methods to estimate the failure 
probability, the sample classification information obtained 
from these AK-based sampling processes can be directly 
used for estimating the FP-GS without extra evaluation of 
the performance function.

(5)P
{
F|Xi = xi

}
=

fXi

(
xi|F

)

fXi

(
xi
) P{F},

Two ways, including the separating way of AK from the 
sampling process as well as the nesting way of AK into the 
sampling process, are usually adopted. In a separating way, 
a sampling pool is generated first for constructing the AK 
model. After the AK model is updated completely, the fail-
ure probability is estimated by another sample pool, in which 
the performance function value of each sample is evaluated 
by the constructed AK model. This way may not guarantee 
the precision because the samples used to estimate the fail-
ure probability may not be included in the sample pool for 
training the AK model. While in the nesting way, the sample 
pool for training the AK model is the same as that for esti-
mating the failure probability. The AK model is iteratively 
updated by screening all the samples, and the failure prob-
ability is estimated by the convergent AK model trained by 
the same sample pool, in which the prediction precision of 
the sample classification can be guaranteed. Thus the nest-
ing way is preferred and adopted in this work for the FP-GS.

IS is an advanced MCS for estimating the failure prob-
ability [30]. By introducing the IS PDF, the sampling effi-
ciency can be improved. In theory, the optimal IS PDF 
denoted as h∗

X
(x) is shown in Eq. (6).

Due to the unknown failure probability P{F} in advance 
and the implicit performance function, the analytical expres-
sion of the optimal IS PDF shown in Eq. (6) cannot be avail-
able. Usually, the IS PDF is constructed by shifting the sam-
pling center of the original PDF to the most probable failure 
point (MPP), where the MPP can be searched by several 
existing methods [31, 32] such as advanced first order and 
second moment (AFOSM).

The Metropolis–Hastings (M–H) algorithm is employed 
to generate a set of random samples subjected to a desired 
probability distribution which is difficult to directly sample 
in statistics [33]. The M–H algorithm generates samples 
in such a way that the next sample is only dependent on 
the current sample. At each iteration, the M–H algorithm 
generates a candidate for the next sample according to the 
proposal probability distribution, and then the candidate is 
either accepted (in this case the candidate is selected as the 
sample in the next iteration) or rejected (in this case the cur-
rent sample is selected as the sample in the next iteration) 
according to the Metropolis–Hastings criterion [33].

Kernel density estimation (KDE) was first proposed by 
Rosenblatt [34], and then further described and demon-
strated by Parzen [35] and Cacoullos [36]. Traditional den-
sity estimation by the histogram is simple and intuitive for 
observation, but it is difficult to determine the observation 
interval of the histogram. KDE method avoids the disad-
vantages of the histogram. The basic theory of the KDE 

(6)h∗
X
(x) =

IF(x)fX(x)

P{F}
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is modelling the real probability density using the smooth 
kernel function to approximate the existing samples. Many 
kernel functions can be used in this method, such as the 
uniform type, the triangular type and the Gaussian type [34]. 

Because the Gaussian type kernel function usually performs 
well for different problems (i.e., linear and non-linear) and 
has been widely used in many engineering applications, the 
Gaussian type kernel function is used in this work.

In summary, using the Bayes’ formula, the key estima-
tion of the conditional failure probability in FP-GS is trans-
formed to that of the conditional PDF of each input on the 
failure domain. The latter one can be simultaneously esti-
mated by the failure samples recognized by the AK nested 
IS method. After the failure samples from the IS sample 
pool are transformed into those subjected to the original con-
ditional probability density function on the failure domain 
by the Metropolis–Hastings algorithm, the conditional PDF 
of the input on the failure domain can be estimated by the 
KDE method.

3  The definition of the FP‑GS and its Bayes’ 
formula transformation

3.1  Definition of the FP‑GS and its estimation 
by the double‑loop MCS

For the structure with n-dimensional input vec-
tor X = (X1,X2, ...,Xn) described by the joint PDF 
f
X
(x) =

∏n

i=1
fXi

�
xi
�
(where fXi

(xi) is the marginal PDF of the 
i-th input Xi ), assume the performance function is denoted 

by Y = g(X) . The failure domain F is defined by g(x) ≤ 0 as 
F = {x∶g(x) ≤ 0} . The definition of the FP-GS is shown in 
Eq. (4), in which the failure probability of the structure can 
be estimated by Eq. (7).

where the failure domain indicator function IF(x) is defined 
by Eq. (8).

(7)P{F} = P{g(�) ≤ 0} = � IF(�)f�(x)dx = E
�

[
IF(�)

]
,

The conditional failure probability on fixing Xi = xi can 
be estimated by Eq. (9).

where X∼i =
(
X1,… ,Xi−1,Xi+1 …Xn

)
 and f

X∼i
(x∼i) is the 

joint PDF of X∼i.
Based on Eqs. (4), (7) and (9), the following double-loop 

MCS can be constructed to estimate the FP-GS.

(1) Estimate the failure probability by the MCS.
  Generate an N-size sample set (x1,⋯ , xk,⋯ , xN)

T

(where xk = (xk1, xk2, ..., xkn) ) according to the joint 
PDF f

X(x) for the failure probability estimation P̂{F} , 
where N is determined by the criterion that the varia-
tion coefficient of P̂{F} is less than 5%. The MCS esti-
mation P̂{F} of the failure probability P{F} is shown 
in Eq. (10).

(2) Estimate the conditional failure probability by the 
MCS.

  Generate an N1-size sample set (x1i, x2i, ..., xN1i
)T 

according to the PDF fXi
(xi) of the input Xi , where N1 

is determined by the criterion that the variation coef-
ficient of the estimation 𝜉i of �i is less than 5%. For a 
certain realization x

ji
( j = 1,⋯ ,N1 ), generate an N2-size 

sample set (x1,∼i, x2,∼i,⋯ , xN2,∼i
)T according to the joint 

PDF of f
X∼i

(
x∼i

)
 , where N2 is determined by the crite-

rion that the variation coefficient of the estimation 
P̂{F|x

ji
} of P{F|x

ji
} is less than 5%. Then the condi-

tional failure probability P{F|x
ji
}( j = 1,⋯ ,N1 ) can be 

estimated by Eq. (11)

(3) Estimate the FP-GS �i by the estimation 𝜉i shown in 
Eq. (12).

It is shown from the estimation process of the double-
loop MCS that a total number of evaluating the performance 
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{
g(�) ≤ 0|xi

}
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[IF(X∼i, xi)],
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⋯ x

l,n
).

(12)𝜉i =

1

N1
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[P̂{F} − P̂{F�xji}]2

P̂{F} − P̂2{F}
.
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function is N + n × N1 × N2 for estimating the FP-GS of all 
inputs, where the number of the performance function evalu-
ations for P̂{F} is N , and that for P̂{F||Xi } is n × N1 × N2 for 
the n-dimensional input vector. It is easy to conclude that 
the computational cost depends on the dimensionality of 
the input vector. For the rare failure event which is common 
in engineering, N and N2 should be large for obtaining the 
convergent estimations of P̂{F} and P̂{F|Xi}, respectively, 
thus the computational cost of the double-loop MCS is too 
large to be affordable for the engineering application.

3.2  The Bayes’ formula transformation of the FP‑GS 
and its corresponding MCS estimation

Substitute Eq.  (5) into Eq.  (4), a new expression of the 
FP-GS �i can be obtained by Eq. (13) [21].

It can be seen from Eq. (13) that the FP-GS of Xi requires 
estimating the failure probability and the integral of the 
square difference between the original PDF fXi

(xi) and the 
conditional PDF fXi

(xi|F) of Xi on the failure domain. The 
larger the square difference between fXi

(
xi
)
 and fXi

(
xi|F

)
 

is, the larger the effect of Xi has on the failure probability.
From Eq. (13), it can be also observed that there is no 

need to estimate P{F|Xi} anymore, but fXi

(
xi|F

)
 instead. 

fXi

(
xi|F

)
 can be simultaneously approached by the failure 

samples used for estimating P{F} . That is to say, the sample 
information obtained for estimating the failure probability 
by the sampling-based method can be repeatedly used for 
estimating fXi

(
xi|F

)
 . If the MCS is used to estimate the 

failure probability with an N-size sample set, then the total 
number of evaluating the performance function is also N 
for estimating the FP-GS. The computational cost has been 
greatly reduced comparing with the double-loop MCS. The 
MCS estimations for �i based on Bayes’ formula are shown 
as follows.

(1) Estimate failure probability by the MCS.
  Generate an N-size sample set xk(k = 1, 2, ...,N)

(xk = {xk1, .xk2, ..., xkn} ) according to the joint PDF 

(13)

�i =
V[E(IF(�)

||Xi)]

V(IF(�))

=
∫ +∞

−∞
[P{F} − P{F|Xi}]

2fXi

(
xi
)
dxi

P{F} − P2{F}
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P{F}fXi
(xi|F)

fXi(xi)
]2fXi

(
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dxi

P{F} − P2{F}

=
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−∞
[fXi

(xi) − fXi
(xi|F)]2dxi

1 − P{F}
.

f
X(x) , then estimate the failure probability P{F} by the 

sample mean shown in Eq. (10).
(2) Employ the failure samples repeatedly for estimating 

fXi
(xi|F).

  Assume NF failure samples are found in the N-size 
sample set xk(k = 1, 2, ...,N) in the last step. Record 
the NF failure samples as xF

l
(l = 1, 2, ...,NF) , then these 

failure samples can be repeatedly used to obtain the 
estimation f̂Xi

(xi|F) by the KDE method[33, 37], which 
is represented as Eq. (14):

where � is the bandwidth parameter, which determines 
the smoothness of the kernel probability density func-
tion, �l is the local bandwidth factor, n is the dimension 
of the inputs. � and �l are determined by the following 
equations:

where Md is the number of the samples with different 
values, and 0 ≤ � ≤ 1 is the sensitive factor.

  K(⋅) is the kernel probability density function, the 
Gaussian type is adopted in this paper and represented 
as Eq. (17)

where � is the covariance matrix of 
{
xF
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MF∑
l=1

�
xF
li
− x

F
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��
xF
li
− x

F

i

�T

.

(3) Estimate the FP-GS.
  Substitute P̂{F} in step (1) and f̂Xi

(xi|F) in step (2) 
into Eq. (13), then the estimation 𝜉i(i = 1, 2,⋯ , n ) of �i 
can be obtained by Eq. (18)

By the Bayes’ formula transformation shown in 
Eq. (13), the MCS can be directly employed for estimat-
ing �i . Although the computational cost of estimating �i 

(14)f̂Xi
(xi|F) = 1

MF

MF∑
l=1

1(
𝜔𝜆l

)n K
(
x − xF
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𝜔𝜆l

)
,
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−

1
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d
,
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MF∏
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fXi

�
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��
1
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�

,

(17)K(⋅) =
1√

(2�)n���
exp

�
−
1

2
xT�−1x

�
,

(18)𝜉i =
P̂{F} ∫ +∞

−∞
[fXi

(xi) − f̂Xi
(xi|F)]2dxi

1 − P̂{F}
.
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according to Eq. (13) by the MCS is greatly less than that 
by the double-loop MCS shown in Sect. 3.1, its efficiency 
is still desired to be improved because the number of sam-
ples N  for obtaining the convergent estimation of P{F} is 
very large in case of the rare failure event and the implicit 
performance function case. From the literature review, 
it is well known that the sampling methods cannot pro-
vide a satisfying efficiency for the rare failure event and 
the implicit performance function case. Thus exploring a 
new way such as combining AK model with the sampling 
method is feasible to address the inefficiency resulting 
from the sampling methods. The next section probes this 
feasible way by nesting the AK model into IS method to 
estimate the FP-GS.

4  Nesting AK model into IS for efficiently 
estimating the FP‑GS

4.1  The direct IS method for �̂
i
 based on the Bayes’ 

formula transformation of �
i

When the direct IS method is used to estimate the failure 
probability P{F} , the IS PDF h

X
(x) should be constructed 

first, and then the failure probability can be estimated by 
the following equation:

Generating an M-size IS PDF sample pool denoted by 
x
h
k
(k = 1, 2, ...,M)(xh

k
= {xh

k1
, xh

k2
, ..., xh

kn
} ) according to the 

IS PDF h
X
(x) , then the failure probability can be estimated 

by the sample mean shown in Eq. (20).

Comparing the failure probability estimated by the 
MCS shown in Eq. (10) and that by the IS shown in Eq. 
(20), it is well known that the variance of Eq.  (20) is 
smaller than that of Eq. (10) [6]. Assuming that there are 
MF IS failure samples denoted by xhF

l
(l = 1, 2, ...,MF) in 

the M-size IS PDF sample pool, the estimation ĥXi
(xi|F) of 

the conditional IS PDF hXi
(xi|F) on the failure domain can 

be approximated by the kernel density estimation (KDE) 
and the MF IS failure samples for all n-dimensional inputs 
simultaneously. But it should be noted that ĥXi

(xi|F) , the 
conditional IS PDF estimation on the failure domain, can-
not replace f̂Xi

(xi|F) , the conditional PDF on the failure 
domain, to estimate the FP-GS shown in Eq. (13). For-
tunately, Metropolis–Hastings [35, 38, 39] algorithm 

(19)P{F} = ∫ IF(x)
f
X
(x)

h
X
(x)

h
X
(x)dx = Eh

[
IF(x)

f
X
(x)

h
X
(x)

]
.

(20)P̂{F} ==
1

M

M∑
k=1

IF(x
h
k
)
f
X
(xh

k
)

h
X
(xh

k
)
.

makes it possible to transform the MF failure samples 
x
hF
l
(l = 1, 2, ...,MF) following the conditional IS PDF 

hXi
(xi|F) on F into MF failure samples xF

l
(l = 1, 2, ...,MF) 

following the conditional PDF fXi
(xi|F) on F  . Set the 

first sample as xF(1)
l

=x
hF(1)

l
 , and xF

l
(l = 2, ...,MF) can be 

obtained by executing the following two steps:

(1) Compute the ratio

(2) The next sample xF(l+1)
l

 is selected from two candidates, 
as shown in Eq. (22)

where u is a random number following the uniform dis-
tribution in the interval [0, 1].

Although the IS can combine the Bayes’ formula 
transformation to estimate the FP-GS, the performance 
function should be evaluated at M  IS PDF samples 
x
h
k
(k = 1, 2, ...,M) , this computational cost is still too large 

to be used in the engineering application. Thus, in the next 
subsection an efficient method by nesting the AK model 
into IS method is constructed for estimating the FP-GS, 
in which the failure samples are recognized by the AK 
model.

4.2  AK nested IS method for the FP‑GS

In the AK nested IS method (AK-IS), the sample pool is 
composed of M IS PDF samples xh

k
(k = 1, 2, ...,M) , the AK 

model is updated by a stepwise way in the IS sample pool. 
After the AK model is converged, the failure samples in 
the sample pool with M IS PDF samples can be accurately 
recognized by the convergent AK model, then the FP-GS 
can be estimated by the AK nested IS method, and the preci-
sion of the FP-GS estimated by the AK-IS method is almost 
same as that by the direct IS method. The detailed steps of 
the AK nested IS method for the FP-GS are shown as fol-
lows, and the flowchart for the proposed AK-IS method is 
given in Fig. 1.

(1) Search the MPP by the AFOSM method, and construct 
the IS PDF h

X
(x).

(2) Generate the sample pool Sh by sampling M 
IS PDF samples denoted by xh

k
(k = 1, 2, ...,M)

(21)r
(
x
F(l)

l
, x

F(l+1)

l

)
=

f
�

(
x
hF(l+1)

l

)
h
�

(
x
F(l)

l

)

f
�

(
x
F(l)

l

)
h
�

(
x
hF(l+1)

l

) .

(22)x
F(l+1)

l
=

{
x
hF(l+1)

l
, min (1, r) > u

x
F(l)

l
, min (1, r) ≤ u

,
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(xh
k
= {xh

k1
, xh

k2
, ..., xh

kn
} ) according to the h

X
(x) , then 

S
h = {xh

1
, xh

2
, ..., xh

M
}.

(3) (3). Nest AK model into IS method to accurately rec-
ognize the failure samples in Sh.

 (3.1) Construct the initial AK model gK(x).
   Randomly select M1(M1 ≪ M  ) samples 

x
hT
j
(j = 1, 2, ...,M1) from Sh and evaluate g(xhT

j
) . 

Then the training set Th = {(xhT
1
, g(xhT

1
)), (xhT

2
,

g(xhT
2
)), ..., (xhT

M
1

, g(xhT
M

1

))} is established to con-
struct the initial AK model gK(x) by the Matlab 
toolbox.

 (3.2) Judge the convergence of gK(x).
   The convergence of the AK model is judged by 

the minimum value of the U learning function, 
which is shown in Eq. (23)

where �gK
(xh

k
) and �gK (x

h
k
) are the prediction 

mean and the standard deviation of the AK 
model gK(x) respectively.

   It is known that min
x
h
k
∈Sh

(U(xh
k
)) ≥ 2 corresponds 

the probability of misjudging the sign of g(x) by 
gK(x) is less than Φ(−2) ≈ 2.27% [24]. This 
threshold value to stop updating the AK model 
is widely accepted in the existing literature. 
Thus, stop updating the AK model gK(x) and 
execute step (4) when min

x
h
k
∈Sh

(U(xh
k
)) ≥ 2 . Other-

wise, turn to step (3.3).
 (3.3) Update the AK model gK(x).
   Search a new training point xhT

new
 in Sh to refine 

gK(x) by the U learning function. The sample xh
k
 

with the smallest U(xh
k
) in Sh is desired to be cali-

(23)U(xh
k
) =

|||||
�gK

(xh
k
)

�gK (x
h
k
)

|||||xh
k
∈Sh

,

Fig. 1  The flowchart of the AK- 
IS method for estimating the 
FP-GS index
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brated, which is selected by the following equa-
tion:

   Evaluate g(xhT
new

) and add new training point 
(xhT

new
, g(xhT

new
)) into the last training set Th , i.e., 

T
h={Th ∪ (xhT

new
, g(xhT

new
))} . Refine the AK model 

and execute step (3.2).

(4) Estimate the failure probability.
  Assume that MF failure samples xhF

l
(l = 1, 2, ...,MF) 

in Sh are recognized by the convergent gK(x) , then the 
failure probability can be estimated by the following 
equation simplified from Eq. (20).

(5) Transform the failure samples by M–H algorithm and 
estimate f̂Xi

(xi|F) by the KDE method.
  Use the Metropolis–Hastings algorithm to trans-

form MF failure samples xhF
l
(l = 1, 2, ...,MF) follow-

ing hXi
(xi|F) to MF failure samples xF

l
(l = 1, 2, ...,MF) 

following fXi
(xi|F) , the details of which can be seen in 

Sect. 4.1. The process of KDE method for approaching 
the estimation f̂Xi

(xi|F) is described in Sect. 3.2.
(6) After P̂(F) and f̂Xi

(xi|F) are respectively estimated by 
the above steps, the FP-GS of all inputs can be obtained 
by substituting P̂{F} and f̂Xi

(xi|F) into Eq. (13).

5  Test examples

Since the random variables subjected to any other distri-
butions can be transformed into those normally distributed 
[40], the test examples mainly focus on the normal random 
inputs.

The variation coefficient of �i (denoted as COV
(
�i
)
 ) and 

the variation coefficient of P{F} (denoted as COV
(
P̂{F}

)
 ) 

(24)x
hT
new

= arg min
x
h
k
∈Sh

(U(xh
k
)).

(25)P̂(F) =
1

M

MF∑
l=1

f
X
(xhF

l
)

h
X
(xhF

l
)
.

are used to evaluate the accuracy of the results. The accuracy 
of estimating �i is important for evaluating the importance 
of the inputs. The larger the sensitivity index (SI) value of 
the input is, the more effective the input has on the failure 
probability. By controlling the variation coefficient of �i less 
than 5%, the accuracy of the FP-GS for every input can be 
guaranteed.

In the engineering application, one evaluation of the 
performance function is usually time-consuming due to the 
finite element analysis of the structure is required. In this 
work, the number of evaluating the performance function 
( Npf  ) for obtaining the convergent FP-GS is used to repre-
sent the efficiency of the method.

5.1  Numerical example

5.1.1  Example 1

Consider the following numerical performance function:

where x1 and x2 follow normal distribution N(6, 1) and 
N(0, 1) , respectively.

Table 1 lists the SI values estimated by the analytical 
method, the state-of-the-art such as the MCS, the single-loop 
MCS [16], the single-loop IS [16], the Subset Simulation [21] 
and the proposed method. In the premise that COV

(
P̂{F}

)
 and 

COV
(
�Xi

)
 are less than 5%, �Xi

 estimated by the state-of-the-
art requires millions of the performance function evaluation, 
which is much more than the proposed method. The proposed 
method is proved to be more efficient for estimating the FP-GS 
than the compared methods in this example.

5.1.2  Example 2

A simplified riveting model with headless rivet [41] is 
employed for analysis in this work. When the maximum 
squeeze stress exceeds the ultimate squeeze strength during 
the riveting process, the failure of the rivet will happen. The 

g(x) = x1 − 2x2,

Table 1  The SI values for example 4.1

Note: 12+32 represents 12 model runs for searching for the MPP, and 32 for constructing the AK model

�
X
i

Analytical results MCS Single-loop MCS Single-loop IS Subset Simulation Proposed method

�x1 0.0132 0.0135 0.0136 0.0138 0.0136 0.0133
COV

(
�x1

)
0.0074 0.044 0.0072 0.0147 0.0300

�x2 0.3132 0.3113 0.3137 0.3147 0.3142 0.3137
COV

(
�x2

)
0.0202 0.0044 0.0025 0.0149 0.0331

P̂{F} 0.0036 0.0036 0.0036 0.0036 0.0036 0.0036

COV
(
P̂{F}

) 0.0166 0.0052 0.0165 0.0047 0.0017
Npf 2 × 1011 4 × 107 12 + 4 × 106 2 × 106 12 + 32
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maximum squeeze stress for a certain riveting process can be 
estimated as

where the strain hardening exponent of the material is 
nSHE = 0.15 , the ultimate squeeze strength is �sq = 585 MPa, 
the height of the driven rivet head is H = 2.2 mm. Thus, the 
following performance function can be obtained

The inputs all follow the normal distributions and the 
distribution parameters of the inputs are given in Table 2.

Table 3 lists the SI values for the headless rivet. Among 
the random inputs, the uncertainty of the strength coef-
ficient K  cannot be reduced in the practical engineering 
problems although the SI value of K  is the largest. The 
inputs h , d , D0 and t  can be considered to reduce the fail-
ure probability of the rivet. From Table 3, it is shown that 
h is most influential on the failure probability comparing 
with d , D0 and t  , which indicates that h should be given 
priority to reduce the failure probability.

To further observe the effect of the uncertainty of the 
random inputs on the failure probability, the curves of the 
failure probability vs variation coefficient of the inputs are 
plotted in Fig. 2. Figure 2 shows h, the most influential 
input, would reduce the failure probability most when the 
variation coefficient of h is reduced. Assuming that the 
failure probability to be reduced by 5% is required, it is 
much more efficient to reduce the variation coefficient of 
h from 0.01 to 0.009, compared with reducing that of d or 
D0 from 0.01 to 0.001. The SI value of t  is so small that 
the reduction on its variation coefficient is low efficient 
and even impracticable for reducing the failure probability. 
Reducing the uncertainty of h can be realized by improv-
ing the processing technology and reducing the variance 
of h.

The proposed method devotes to efficiently estimate the 
FP-GS. Table 3 shows the SI values and the failure prob-
ability estimated by the single-loop IS, the Subset Simu-
lation and the proposed method. Since the MCS method 
is so time-consuming that its results of the FP-GS are 
not provided. Although the single-loop IS and the Subset 

(26)�max = K

(
ln

d2h − D2
0
t

2Hd2

)nSHE

,

(27)g(x) = �sq − �max.

Simulation methods can reduce the computational burden 
to some degree, the computational cost is still huge, which 
respectively require 40 + 7 × 107 and 3 × 106 evaluations 
of the performance function. For the proposed method, 
only 40 + 36 performance function evaluations are needed. 
Therefore, for the rare failure event shown in this exam-
ple, the numbers of evaluating the performance function 
required by the state-of-the-art are far more than that 
required by the proposed method at the given accuracy 
level. The proposed method highly improves the efficiency 
of estimating the FP-GS.

Table 2  The distribution parameters of inputs in the headless rivet 
model

X
i

d h K D
0

t

Mean 5 20 547.2 5.1 5
COV

(
Xi

)
0.01 0.01 0.01 0.01 0.01

Table 3  The SI values for the headless rivet model

�
X
i

Single-loop IS Subset simulation Proposed method

�d 9.5742 × 10−6 9.8304 × 10−6 9.1947 × 10−6

COV
(
�d
)

0.0127 0.0214 0.0020
�h 4.2357 × 10−5 4.3013 × 10−5 4.1923 × 10−5

COV
(
�h
)

0.0047 0.0214 0.0020
�K 0.5564 0.5522 0.5524
COV

(
�K
)

0.0465 0.0483 0.0304
�D0

9.7720 × 10−6 9.8319 × 10−6 9.8594 × 10−6

COV
(
�D0

)
0.0184 0.0316 0.0147

�t 2.3370 × 10−6 2.4845 × 10−6 2.6755 × 10−6

COV
(
�t
)

0.0371 0.0384 0.0221

P̂{F} 8.0127 × 10−5 8.0494 × 10−5 8.1855 × 10−5

COV
(
P̂{F}

) 0.0353 0.0462 0.0246
Npf 40 + 7 × 107 3 × 106 40 + 36

Fig. 2  P̂{F} vs COV
(
X
i

)
 headless rivet
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5.2  Engineering examples

Two engineering models are presented in this subsection for 
demonstrating the high efficiency and the practical applica-
bility of the proposed method.

5.2.1  The stiffener rib on the leading edge of a civil aircraft

Figure 3 shows a stiffener rib [42] on the leading edge of a 
civil aircraft, the simplified structure with the detailed size 
parameters is shown in Fig. 4. There are six circular holes 
in the stiffener rib, the maximum of which is used to fix 
the engine for controlling the movement of the slat. The 
hole at the top is for the pipelines and the cables to pass 
through. The rest four holes are used to support the slideway 
of the slat. The stiffener rib is made of aluminum alloy 7050-
T7451, with Poisson’s ratio v = 0.3 . Force analysis in the 
stiffener rib shown in Fig. 5 includes the concentrated loads 
F1 , F2 , F3 , F4 , F5 and F6 acting on the web and the aero-
dynamic loads P1 and P2 on the edges. The random inputs 
including the thickness of the web d , the elastic modulus 
of the aluminum alloy E , the aerodynamic loads P1,P2 , and 
the concentrated loads F1 , F2 , F3 , F4 , F5 , F6 are normally 
distributed random variables, the distribution parameters are 
shown in Table 4.

The detailed steps of the finite element analysis of the 
stiffener rib based on the mean value of random variables 
are as follows, the process of the finite element analysis is 
shown in Fig. 6.

1. Establish the finite element model of the stiffener rib by 
the finite element analysis software ANSYS;

2. Mesh the finite element model and applying constraints, 
aerodynamic loads and concentrated loads on the model;

3. Obtain the displacement of the model.

Fig. 3  The stiffener rib on the leading edge of a civil aircraft

Fig. 4  The schematic diagram of simplified stiffener rib

10140N

19185N

35239N

23758N

5949N
16245N

Fig. 5  Force analysis of stiffener rib
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The performance function is constructed with the maxi-
mum longitudinal displacement of the structure not exceed-
ing 0.065 mm. The SI values for the stiffener rib are listed 
in Table 5.

In this example, the uncertainties of the working environ-
ment inputs including F1 ~ F6 , P1 and P2 of the stiffener rib 
cannot be reduced. Thus, the FP-GS results of these random 
inputs can only be used to observe the effects on the failure 
probability, but they cannot be changed to meet the required 

Table 4  The distribution parameters of inputs in the stiffener rib

X
i

E(GPa) d(mm) P
1(Pa) P

2(Pa) F
1(N)

Mean 100 5 5000 5000 35239
COV

(
Xi

)
0.05 0.05 0.05 0.05 0.05

X
i

F
2(N) F

3(N) F
4(N) F

5(N) F
6(N)

Mean 23,758 5949 16,245 10,140 19,185
COV

(
Xi

)
0.05 0.05 0.05 0.05 0.05

Fig. 6  The process of the finite element analysis
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failure probability. From Table 5, the aerodynamic loads P1 
and P2 have much more effect on the failure probability com-
pared with the concentrated loads F1 ~ F6.

There are two input random variables, the uncertainties 
of which can be changed, including the thickness d of the 
web and the elastic modulus E . The FP-GS results of this 

example listed in Table 5 also show that d is more important 
than E . Then it should reduce the uncertainty of d prior to E 
for decreasing the failure probability effectively. The curves 
of the failure probability vs the variation coefficients of these 
two inputs are illustrated in Fig. 7. In Fig. 7, when the vari-
ation coefficient of d varies from 0.05 to 0.02, the failure 
probability can be reduced by almost 90%. The SI value of 
E is so small that the reduction on its variation coefficient 
almost has no effect on the failure probability. Reducing the 
variability of the important variable d can be realized by 
decreasing the variance by changing the technology of pro-
cessing the stiffener web.

In this engineering case, the performance function to be 
evaluated cannot be explicitly formulated by a mathemati-
cal expression, i.e., the performance function of this case is 
implicit. The performance function value is estimated by the 
finite element analysis (ANSYS is adopted in this work). In 
general, the time cost of calling the finite element software 
is large (in this example, it costs about 3 s for one call of the 
performance function). Table 5 lists the failure probability 
as well as �Xi

 estimated by the Subset Simulation and the 
proposed method. The computational cost for estimating 
�Xi

 y the MCS, the single-loop MCS and the single-loop 
IS methods are large and unaffordable, thus the results by 
these three methods are not listed in Table 5. The proposed 
method provides a feasible and efficient way to estimate the 
FP-GS for the engineering application with the implicit per-
formance function compared to the Subset Simulation, as 
shown in Table 5.

5.2.2  The turbine blade structure

The turbine blade of the aeroengine bears several cyclic 
loads during the working time. Failure may occur due to the 
fatigue-creep damage, which is caused by the centrifugal 
load, the aerodynamic load, the temperature load and so on. 
With the fatigue-creep damage, the life of the turbine blade 
can be evaluated by the structural response of the checking 

Table 5  The SI values for the stiffener rib

�
X
i

Subset simulation Proposed method

�E 0.0001 0.0005
COV

(
�E
)

0.0013 0.0025
�d 0.3646 0.3654
COV

(
�d
)

0.0153 0.0128
�P1

0.0374 0.0387
COV

(
�P1

)
0.0106 0.0181

�P2
0.0381 0.0342

COV
(
�P2

)
0.0104 0.0409

�F1
6.5143 × 10−5 2.8735 × 10−5

COV
(
�F1

)
0.0072 0.0437

�F2
4.3265 × 10−5 7.1432 × 10−5

COV
(
�F2

)
0.0019 0.0056

�F3
7.4604 × 10−5 4.7196 × 10−5

COV
(
�F3

)
0.0036 0.0028

�F4
9.8717 × 10−5 5.1822 × 10−5

COV
(
�F4

)
0.0027 0.0104

�F5
1.7306 × 10−4 6.0281 × 10−4

COV
(
�F5

)
0.0257 0.0267

�F6
1.3129 × 10−4 5.4894 × 10−4

COV
(
�F6

)
0.0082 0.0215

P̂{F} 0.0457 0.0449

COV
(
P̂{F}

) 0.0111 0.0125
Npf 2 × 105 36 + 70

COV(Xi)
0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

P{
F}

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
d

Fig. 7  P̂{F} vs COV
(
X
i

)
 in the stiffener rib

Fig. 8  The geometry and mesh model of the turbine blade
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points, which can be acquired by the finite element analysis. 
A simplified turbine blade is considered in this example, 
the geometry and the mesh model of which are respec-
tively shown in Fig. 8a and b. Perform FEA by the ANAYS 

software, in which the loads applied on the turbine blade and 
the boundary conditions are illustrated in Fig. 9.

The turbine blade is working on three conditions: max 
working condition, idling working condition and cruising 
working condition. The inputs affecting the fatigue-creep life 
of the turbine blade are listed as follows, and the distribution 
parameters of the inputs are listed in Table 6.

(1) The geometry parameters of the film hole, i.e., the 
radius of the film hole r , the horizontal coordinate of 
the film hole center L , the vertical coordinate of the 
film hole center at the bottom M;

(2) The temperature loads applied on the tip of the turbine 
blade Tmax

1
 , T idl

1
 and Tcru

1
,the temperature loads applied 

on the bottom of the tenon Tmax
2

 , T idl
2

 and Tcru
2

 , the rota-
tional speeds �max , �idl and �cru , where the superscripts 
represent the working conditions;

(3) The auxiliary input variable for the fatigue life uL and 
the auxiliary input variable for the creep life uC.

The stress response of the turbine blade under the maxi-
mum working condition based on the mean value of inputs 
is shown in Fig. 10, which is similar to that under the idling 
working condition and cruising working condition. The 
stress concentration point of the film hole at the bottom is 
selected as the checking point to evaluate the fatigue-creep 
life of the turbine blade. Construct the performance function 
as the fatigue-creep life of the turbine blade cannot below 
1000 cycles, the SI values for the turbine blade structure are 
listed in Table 7.

The temperature loads, the rotational speeds and the aux-
iliary input variables are related to the working environment 
so that the uncertainties of these inputs cannot be reduced. 
As is seen from Table 7, the auxiliary input variable for the 
fatigue life uC has the most effect on the failure probabil-
ity. Among the geometry input variables, the radius of the 
film hole r is the most important one. The rotational speed 
�max , �idl , �cru are more influential to the failure probability 

Fig. 9  The loads and the boundary conditions

Table 6  The distribution parameters of inputs in the turbine blade

Inputs Mean COV
(
X
i

)
Distribution

r(mm) 0.3 0.01 Normal
L(mm) 0.1 0.01 Normal
M(mm) 0.1 0.01 Normal
Tmax
1

(◦C) 1204.6 0.01 Normal
Tmax
2

(◦C) 803.2 0.01 Normal
�max(rpm) 2005.6 0.01 Normal
T idl
1
(◦C) 735.3 0.01 Normal

T idl
2
(◦C) 660.8 0.01 Normal

�idl(rpm) 1398.7 0.01 Normal
Tcru
1

(◦C) 670.9 0.01 Normal
Tcru
2

(◦C) 659.4 0.01 Normal
�cru(rpm) 1165 0.01 Normal
uL 0 1 Normal
uC 0 1 Normal

Fig. 10  The stress of the turbine blade under the maximum working condition
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compared with the temperature loads Tmax
1

 , T idl
1

 , Tcru
1

 , Tmax
2

 , 
T idl
2

 , Tcru
2

.
There are three geometry input variables, including the 

radius of the film hole r , the horizontal coordinate of the film 
hole center L , the vertical coordinate of the film hole center 
at the bottom M . The uncertainties of these geometry input 
variables can be reduced by improving the technology of 
processing. The curves of the failure probability vs the vari-
ation coefficient of r , L , M are illustrated in Fig. 11. When 
the variation coefficient of r varies from 0.01 to 0.001, the 

failure probability can be reduced by 38%, while the reduc-
tion on the variation coefficient of L and M almost has no 
effect on the failure probability, which is consistent with the 
results of FP-GS estimates.

It is observed from Table 5 that the Subset Simulation 
method for estimating �Xi

 requires 2 × 105 calls of the perfor-
mance function. Since the FEA is time-consuming for once, 
the proposed method is much more efficient and applicable 
for this implicit performance function case, with only 292 
times’ evaluations on the performance function.

6  Conclusions

The FP-GS aims at evaluating the effect of the input uncer-
tainty on the failure probability, which helps the designer to 
recognize the important random inputs. By reducing the vari-
ation coefficient of the important random inputs, the failure 
probability can be reduced at a low price. A high accuracy of 
the SI values is important so that the importance degree of the 
random inputs is correctly identified, on which the important 
random inputs can be given priority to more efficiently reduce 
the failure probability. The inputs with large SI values would 
cause a significant reduction in the failure probability when 
their variation coefficients are reduced.

Two numerical examples and two engineering examples 
are presented to validate the accuracy and efficiency of the 
proposed method. It is shown from the results of the examples 
that a great reduction on the computational cost is realized 
by the proposed method, comparing with existing methods 
such as the traditional MCS method and the Subset Simula-
tion method.

Since AFOSM for searching MPP is not suitable for multi-
MPP problems or multi-failure domain problems, the proposed 
method deals with the problems with a unique most probable 

Table 7  The SI values for the turbine blade

�
X
i

Subset simulation Proposed method

�r 0.0146 0.0148
COV

(
�r
)

6.1235 × 10−4 2.1141 × 10−4

�L 2.1534 × 10−4 1.5418 × 10−4

COV
(
�L
)

0.0098 0.0117
�M 3.5917 × 10−5 4.6629 × 10−5

COV
(
�M

)
0.0024 0.0031

�Tmax
1

4.0356 × 10−4 3.8738 × 10−4

COV
(
�Tmax

1

)
3.1259 × 10−4 7.8180 × 10−4

�Tmax
2

1.8725 × 10−4 1.0120 × 10−4

COV
(
�Tmax

2

)
0.0058 0.0026

��max 0.0025 0.0024
COV

(
��max

)
2.1657 × 10−4 4.4484 × 10−4

�T idl
1

2.3618 × 10−4 1.0162 × 10−4

COV
(
�T idl

1

)
0.0018 0.0015

�T idl
2

1.5497 × 10−4 1.2683 × 10−4

COV
(
�T idl

2

)
2.4689 × 10−4 7.1101 × 10−4

��idl 0.0020 0.0019
COV

(
��idl

)
3.1957 × 10−4 4.4033 × 10−4

�Tcru
1

3.6812 × 10−4 2.1820 × 10−4

COV
(
�Tcru

1

)
0.0023 0.0011

�Tcru
2

9.2567 × 10−5 7.4562 × 10−5

COV
(
�Tcru

2

)
0.0038 0.0027

��cru 0.0022 0.0022
COV

(
��cru

)
0.0098 0.0147

�uL 0.2458 0.2463
COV

(
�uL

)
0.0019 0.0015

�uC 3.6574 × 10−4 2.7878 × 10−4

COV
(
�uC

)
5.1643 × 10−4 9.0111 × 10−4

P̂{F} 0.0280 0.0250

COV
(
P̂{F}

) 0.0186 0.0197
Npf 2 × 105 292

COV(Xi)
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

P{
F}

0.014

0.016

0.018

0.02

0.022

0.024

0.026

r
L
M

Fig. 11  P̂{F} vs COV
(
X
i

)
 in the turbine blade structure
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failure point, which is the case of the test examples in the sub-
mitted manuscript. For multi-MPP problems or multi-failure 
domain problems, some other surrogate-based methods can 
be employed to estimate the failure-probability-based global 
sensitivity (FP-GS) without approaching MPPs. This issue can 
be discussed in future works.

Appendix A: The variation coefficient 
of the estimates

The variation coefficient of P̂{F} is estimated by the follow-
ing equation:

The variation coefficient of P̂
{
F
|||xji

}
 is estimated by the 

following equation:

It is difficult to derive the variation coefficient of 𝜉i and 
no derivation process about the variation coefficient of 𝜉i has 
been found in the existing literature. Generally, the varia-
tion coefficient of 𝜉i can be obtained by repeated calculation 
process. Assumed that 𝜉i is calculated for NC times by N1 
samples, which are randomly generated for each time. The 
variation coefficient of 𝜉i can be obtained by the following 
equation:

where 𝜉(q)
i

 is the estimated value of 𝜉i calculated for the q-th 
time, and q = 1, 2,… ,NC.

Appendix B: Determination for N, N1, N2
 and M

Taking N as example, to meet the requirement for the vari-
ation coefficients of P̂{F} , the number N is determined by 
the following process:

COV
�
P̂{F}

�
=

√
var(P{F})

E(P{F})
=

�
1 − P{F}

(N − 1)P{F}
.

COV
(
P̂
{
F
|||xji

})
=

√
var

(
P
{
F
|||xji

})

E
(
P
{
F
|||xji

}) =

√√√√√√
1 − P

{
F
|||xji

}

(
N2 − 1

)
P
{
F
|||xji

} .

COV
�
𝜉
i

�
=

�
var

�
𝜉
(q)

i

�

E

�
𝜉
(q)

i

� =

�
E

��
𝜉
(q)

i

�2
�
−E2

�
𝜉
(q)

i

�

E

�
𝜉
(q)

i

�

=

���� 1

N
C

N
C∑

q=1

�
𝜉
(q)

i

�2

−

�
1

N
C

N
C∑

q=1

𝜉
(q)

i

�2

1

N
C

N
C∑

q=1

𝜉
(q)

i

,

(1) Generate N random samples of the inputs and construct 
the sample pool �f  , N=10000 is advised at the first time 
to execute step (1);

(2) Estimate the failure probability;
(3) Calculate the variation coefficient of P̂{F} , i.e., 

COV
(
P̂{F}

)
 , if COV

(
P̂{F}

)
< 5% , turn to step (5), 

else turn to step (4);
(4) Set N=N + 5000 and turn to step (1);
(5) Record the results of P̂{F} , COV

(
P̂{F}

)
.

The processes for determining N1 , N2 and M are similar 
to that for N and no longer illustrated here.
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