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Abstract
Accurate prediction of ground vibration caused by blasting has always been a significant issue in the mining industry. Ground 
vibration caused by blasting is a harmful phenomenon to nearby buildings and should be prevented. In this regard, a new 
intelligent method for predicting peak particle velocity (PPV) induced by blasting had been developed. Accordingly, 150 
sets of data composed of thirteen uncontrollable and controllable indicators are selected as input dependent variables, and 
the measured PPV is used as the output target for characterizing blast-induced ground vibration. Also, in order to enhance 
its predictive accuracy, the gray wolf optimization (GWO), whale optimization algorithm (WOA) and Bayesian optimization 
algorithm (BO) are applied to fine-tune the hyper-parameters of the extreme gradient boosting (XGBoost) model. Accord-
ing to the root mean squared error (RMSE), determination coefficient (R2), the variance accounted for (VAF), and mean 
absolute error (MAE), the hybrid models GWO-XGBoost, WOA-XGBoost, and BO-XGBoost were verified. Additionally, 
XGBoost, CatBoost (CatB), Random Forest, and gradient boosting regression (GBR) were also considered and used to 
compare the multiple hybrid-XGBoost models that have been developed. The values of RMSE, R2, VAF, and MAE obtained 
from WOA-XGBoost, GWO-XGBoost, and BO-XGBoost models were equal to (3.0538, 0.9757, 97.68, 2.5032), (3.0954, 
0.9751, 97.62, 2.5189), and (3.2409, 0.9727, 97.65, 2.5867), respectively. Findings reveal that compared with other machine 
learning models, the proposed WOA-XGBoost became the most reliable model. These three optimized hybrid models are 
superior to the GBR model, CatB model, Random Forest model, and the XGBoost model, confirming the ability of the meta-
heuristic algorithm to enhance the performance of the PPV model, which can be helpful for mine planners and engineers using 
advanced supervised machine learning with metaheuristic algorithms for predicting ground vibration caused by explosions.
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1  Introduction

The increased advancement of surface mines and higher 
demand for coal and other minerals has led to the usage 
of a massive quantity of explosives. Till today, Drilling 

and blasting combination is still an economically feasible 
method to fragment and displace the hard rock in geo-engi-
neering. However, the energy used for the actual crushing 
and displacement of the rock mass accounts for only a small 
part (20–30%) of the explosive energy, and the rest of the 
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energy is wasted away and has many harmful adverse effects, 
such as ground vibration, air-blast, fly rocks, noise, back 
break, over break, etc. [14, 15, 21]. The adverse effects of 
blasting are inevitable and cannot be completely eliminated, 
but these adverse effects can definitely be minimized to an 
allowable level to avoid damage to the dwellings and other 
infrastructures. Research of blast vibration is very crucial 
compared to the other unwanted ill effects due to involve-
ment of public residing in the close vicinity of mining sites, 
regulating and ground vibration standards setting agencies 
together with mine planners and owners [6, 24, 28, 50, 51]. 
In addition, the field of ground vibration has become an 
important parameter for the smooth development of mining 
projects, as the focus shifts to sustainable eco-friendly and 
geo-environmental activities.

To avoid socio-economic problems caused by ground 
vibrations and carry out cost-effective blasting operations, 
pre-operation planning becomes a requisite part [44]. For 
small-scale mining projects, economic reasons may limit 
continuous monitoring of ground vibration during mining 
operations. Further planning with the help of predictor equa-
tions by measuring vibration data prior to an actual opera-
tion may help mine management and owners. Therefore, the 
vibration level should be predicted before operation.

Different researchers have proposed many vibration pre-
dictors for PPV prediction. All the predictors estimate the 
PPV based on mainly two parameters (distance between 
blast face to monitoring point and maximum charge used per 
delay [21, 22, 25]). However, few predictors considered the 
attenuation/damping factor too. For the same excavation site, 
each delay has different values of safe PPV vis-à-vis charge 
which is given by different predictors. Different predictors 
may have different predicted results. As we all know, PPV 
is affected by various geotechnical, geological, explosive 
geometry, and explosive parameters, and these parameters 
have not been included in any available predictor variables. 
It is not proficient to predict any other significant parameters 
such as air overpressure, air overpressure, dust, frequency, 
noise and fly rocks. For geotechnical and mining construc-
tion projects, safe, smooth and environmentally friendly rock 
excavation are equally important and vital. Many empirical 
criteria are also proved that PPV plays a decisive role in safe 
and stable mining. It is necessary to develop a code that can 
contain the maximum number of influencing indicators to 
predict PPV with high precision.

Due to the excessive number of influencing parameters 
and the complex relationship between them, the empiri-
cal method may not be fully applicable to such problems. 
Currently, various soft computing tools, such as artificial 
neural network (ANN), maximum likelihood classification 
(MLC), genetic algorithm (GA), technique for order pref-
erence similarity to ideal solutions (TOSIS), random for-
est (RF), support vector machine (SVM), extreme gradient 

boosting (XGBoost), gray wolf optimization (GWO), whale 
optimization algorithm (WOA) etc. are frequently applied in 
different complex engineering applications [2–4, 6, 10, 17, 
24–27, 37, 49, 52, 53, 65–67].

Therefore, there is always a need for a simple technique to 
predict ground vibrations caused by explosions with higher 
accuracy through some indirect but relevant and reliable 
methods. Monjezi et al. [38] applied the ANN, empirical, 
and multiple regression models to predict blast vibrations in 
Siahbisheh pumped storage dam, Iran. They used 182 blast-
ing data sets to study PPV, and in comparison with other 
proposed models, the ANN results provided better results 
in PPV prediction. Iphar et al. [19]  and Jahed Armaghani 
et al. [2] applied the adaptive neuro-fuzzy inference system 
(ANFIS) to estimate the PPV induced by blasting. Fisne 
et al. [11] proposed a fuzzy inference system (FIS) model 
to evaluate and predict the PPV values obtained from the 
Akdaglar quarry, Turkey. Ghasemi et al. [13] used different 
fuzzy models to indirectly determine PPV using six different 
controllable input parameters. They found that using a fuzzy 
model can better predict PPV.

Mohamed [36] proposed both the ANN and FIS models 
to estimate PPV and found stronger performance capac-
ity of FIS model in estimating the PPV. Hasanipanah et al. 
[18] used the SVM model to study PPV of Bakhtiari Dam, 
Iran. Recently, Zhang et al. [61–64] compared the predic-
tive ability of five machine learning predictors which were 
selected, including chi-squared automatic interaction detec-
tion (CHAID), classification and regression trees (CART), 
ANN, RF and SVM for PPV analysis. They report that the 
performance of RF is significantly better than any other 
regression model. Yu et al. [57] utilized the RF model with 
Harris hawks optimization (HHO) algorithm and Monte 
Carlo simulation method to predict the blast-induced ground 
vibration with 137 datasets from the China open-pit mine 
and obtained a high prediction performance. Yu et al. [58] 
also proposed a new multikernel relevance vector machine 
model which uses the HPSOGWO algorithm to predict and 
control blast-induced ground vibration. Their results show 
that the proposed hybrid model is more suitable for estimat-
ing ground vibrations caused by explosions than empirical 
equations. More recently, Yu et al. [59] proposed hybrid 
extreme learning machines (ELMs) with the Harris hawks 
optimization (HHO) and grasshopper optimization algo-
rithm (GOA) for forecasting PPV with 166 datasets collected 
from Malaysian quarries blasting. According to their report, 
the GOA-ELM model can obtain more accurate ground 
vibration values than the HHO-ELM model. Zhou et al. 
[73] developed a combination of two prediction algorithms 
and probability algorithms. Based on the gene expression 
program and Monte Carlo simulation to predict the PPV 
value to reduce the PPV risk caused by blasting, they found 
that the model can solve the ground vibration caused by 
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blasting with the lowest level of error and risk. In general, 
these applications show that soft computing technology has 
advantages in solving a series of complex parameters that 
will affect the process and results, and when the process and 
results are not fully understood and historical or experimen-
tal data are available.

Therefore, this paper tries to predict ground vibration 
induced by blasting by considering blast design, rock and 
explosive parameters with the help of extreme gradient boost 
(XGBoost), gray wolf optimization (GWO), whale optimi-
zation algorithm (WOA) and Bayesian optimization (BO) 
algorithm. These applications demonstrate that XGBoost, 
GWO, WOA and BO have advantages in solving the fol-
lowing problems: many complex parameters will affect the 
process and results, and the understanding of the process 
and results is not enough, and where there are historical 
or experimental data. The prediction of ground vibrations 
caused by explosions is also of this type.

2 � Materials and methods

2.1 � Extreme gradient boosting (XGBoost)

Extreme gradient boosting (XGBoost) is an algorithm based 
on a gradient boosting tree [8]), which can play a powerful 
role in gradient enhancement. XGBoost based on the theory 
of classification and regression tree can be a very effective 
method of regression and classification problems [9, 29, 39, 
45, 55,  61, 62, 66, 67, 69, 70]. And XGBoost can symbolize 
a soft computing library which combines the new algorithm 
with GBDT methods.

After optimization, the objective function of XGBoost 
consists of two different parts, which represent the deviation 
of the model and the regular term to prevent over-fitting [7]. 
D =

{(
xi, yi

)}
 represents a data set which contains n samples 

and m features, in which the predictive variable is an addi-
tive model which is made up of k basic models. The results 
of sample prediction are as follows:

where ŷi represents the prediction label, xi represents one of 
the samples, and the predicted score is fk

(
xi
)
 or the given 

sample, � symbolizes the set of regression tree which is 
a tree structure parameters of s, f (x) and w represents the 
weight of leaves and the number of leaves.

The objective function of XGBoost includes the traditional 
loss function and model complexity. It can be used to evaluate 

(1)ŷi =

K∑
k=1

fk
(
xi
)
, fk ∈ 𝜑,

(2)� =
{
f (x) = ws(x)

}(
s ∶ Rm

→ T ,ws ∈ RT
)
,

the operational efficiency of the algorithm. In Formula (3), 
the first term represents the traditional loss function, while the 
second term represents the complexity of the model.

In both of these formulas, i stands for the number of sam-
ples in the dataset, and m stands for the total amount of data 
imported into the kth tree. And � and � are used to adjust the 
complexity of the tree. Regularization term can smooth the 
final learning weight and avoid over-fitting.

2.2 � Gray wolf optimization (GWO)

GWO [34] algorithm is based on the gray wolves’s rank and 
hunting mechanism in nature. It can be used to solve and opti-
mize problems. To solve the optimization problem, there are 
four processes: gray wolves in nature rank, track, surround 
and kill their prey.

First, a random initial population was generated in the deci-
sion space. And then, according to the hierarchy from top to 
bottom in nature, the gray Wolf population was separated into 
four groups, which were α, β, δ, ω respectively. In Fig. 1, α, 
β, δ represents the three optimal solutions in each generation, 
which adjust the whole optimization process of GWO. ω repre-
sents the led gray wolf and accepts the leadership of the other 
three gray wolves.

When gray wolves are hunting, they always surround their 
prey, as shown in the following numerical model.

where t stands for the number of iterations [74], Xp(t) pre-
sents position vector of the prey, X(t) is position vector of 

(3)Obj =

m∑
i=1

l
(
yi, ŷ

(t−1)

i
+ fi

(
xi
))

+ Ω
(
fk
)
,

(4)Ω
(
fk
)
= �T + 1∕2�w2.

(5)Q(t + 1) = Qp(t) − (2� ⋅ �
�
− �)(2�2 ⋅ Qp(t) − Q(t))

(6)� = 2 − 2 ⋅ it/MAX - IT

Fig. 1   Leadership hierarchy of gray wolves in nature
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the current gray wolf, X(t + 1) represents the position of gray 
wolf in the next iteration. � can be calculated by Eq. (6) and 
it’s value decreases linearly from 2 to 0. Where it stands for 
the current number of iterations, and MAX_IT represents 
the maximum number of iterations. ρ1 and ρ2 are both the 
random numbers in [0, 1].

During each iteration, the best three gray wolves are 
always kept in the current population by GWO, and assumes 
that they have strong ability to track prey [32]. And then 
simulated the hunting process of gray wolf. And updating 
the equations in GWO to update the position of other wolves.

2.3 � Whale optimization algorithm

A population-based algorithm WOA was created based on 
the predatory behavior of humpback whales [34]. The hump-
back whale hunting method which is named bubble net feed-
ing is divided into three steps: first surround the prey, then 
use a bubble net to attack the prey, and finally find the prey. 
And humpback whales use both contractive containment 
mechanisms and spirals to change position during bubble 
net attacks [16].

When surrounding the prey, humpback whales can use 
certain ability to judge the position of the prey and surround 
the prey by echo. The position update formula is as follows:

where k presents the current iteration, Qk represents the posi-
tion vector at k - th iteration, and the best solution obtained 
so far is indicated by Qk

best
= (Qk

best1
,Qk

best2
,⋯Qk

bestD
) , D is 

vector dimension. ρ1 and ρ2 are random number in [0, 1]. 
The maximum value of a is 2 and the minimum value is 0. 
It can be measured by the following function:

According to the previous description, humpback whales 
use a contractive enveloping mechanism and a spiral to 
update their position when using bubble nets to capture 
prey. With the decrease of the median value of a in Eq. (8), 
the prey is surrounded. The new position (Qk+1) is between 
the current position (Qk) and the best position ( Qk

best
 ). That 

is, humpback whales travel around in contractions to locate 
their prey. The following is a digital model of the spiral 
updated position:

(7)Qk+1 = Qk
best

− (2a ⋅ �1 − a) ⋅
|||2�2 ⋅ Q

k
best

− Qk|||,

(8)a = 2 − 2k∕kmax.

Fig. 2   Strategy and bubble-net 
search mechanism of the WOA 
[33]: a bubble-net feeding 
behavior of humpback whales; 
b shrinking encircling mecha-
nism and c spiral updating 
position
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The shape of the logarithmic spiral is regulated by b and 
a random number l is obtained in the interval [− 1, 1] [16, 
75]. To achieve a better effect of bubble net attack, Mirjalili 
et al. [33, 35, 75] proposed that the probability of updating 
the existing position of humpback whales by contraction 
encircle mechanism or spiral position updating is 50%.

When the coefficient vector |A| > 1 , the research on the 
hunting prey of humpback whales is carried out according 
to the following digital model:

where Qk
rand

 represents a position vector of whale individual 
which is randomly selected from the current population.

Through research, relevant scholars found that parameter 
A is of great significance for coordinating global exploration 
and local development, and it is limited to a . According to 
these research contents, a regulates the global detection and 
local development capability of WOA algorithm to a large 
extent (Fig. 2).

2.4 � Bayesian optimization (BO) algorithm

The goal function f (x) is assumed to be a known mathemati-
cal form and a convex function which can be evaluated eas-
ily by many optimizations. For hyper-parameter tuning, the 
goal function is an expensive non-convex function in compu-
tation which is undiscovered. So, it is hard to use optimiza-
tion methods as a critical role. Moreover, the BO method has 
great power when the objective function is unknown and the 
calculation is greatly complex. The prior knowledge is used 
to dispose of the posterior distribution of the undiscovered 

(9)Qk+� = Qk
best

+
|||Q

k
best

− Qk||| ⋅ e
bl
⋅ cos(2�l).

(10)Qk+1 = Qk
rand

− A ⋅

|||C ⋅ Qk
rand

− Qk|||,

goal function by BO. And then, the next sampled hyperpa-
rameter combination will be selected with the help of the 
distribution.

Generally speaking, it is desirable to select hyperpa-
rameters to get the best performance. So, hyperparameter 
selection equals to a problem which is to get the optimal 
solution, that is, a performance function f (x) with the best 
hyperparameter value as the independent variable. In many 
challenging optimization benchmark functions, it has been 
demonstrated that BO is better than other global optimiza-
tion algorithms [20]. To use the BO technique, there is a 
need for us to find an efficient method to model the objec-
tive function’s distribution. For the case where x contains 
continuous hyper-parameters, the number of x that will 
be modeled for f (x) will be infinite. (i.e., to construct a 
distribution for the objective function). In order to solve 
this problem, a multidimensional Gaussian distribution is 
generated by the Gaussian process [42, 43, 54]. And it is a 
high-dimensional normal distribution which can be flexible 
to model any objective function sufficiently. In other words, 
there is a function assumed by BO, which to be optimized 
is f ∶ X → ℝ , where X ⊂ ℝ

n, n ∈ N  . Then, according to 
the acquisition function ( �t ), in each iteration (t = 1, 2, ∙∙∙, 
T), f

(
xt
)
, xt ∈ X is obtained. And then, a noisy observation 

yt = f
(
xt
)
+ � is obtained, in which � follows the zero-mean 

Gaussian distribution � ∼ N
(
0, �2

)
 , and � represents the 

noise variance. Then, the next iteration is performed after 
adding the new observation 

(
xt, yt

)
 to the observation data. 

To make good use of the information from the previous 
sampling point, BO learns the objective function. And BO 
finds the parameters which can enhance the result to the 
global optimum. The most likely point given by the poste-
rior distribution is tested by the algorithm.

Table 1   Input parameters and their range

Type of parameter Name Range Mean Std

Blast design Hole Dia (Hdi) in mm 100–311 191 58.2
Hole depth (Hde) in m 4.8–43 13.2 11.1
Burden (B) in m 2–10.5 4.93 2.10
Spacing (S) in m 2.5–12.5 5.41 2.67
Maximum charge per delay (Q) in kg 25–6000 1113 1661
Charge Length (CL) in m 1–37.5 8.41 10.4

Distance Distance of monitoring point from blasting face (D) in m 35–5800 463 703
Geotechnical Blastability index (BI) (compressive strength/tensile strength) 6.2–12.9 8.72 1.46

Young’s modulus (E) in GPa 3.88–9.67 6.7 1.4
Poisson’s ratio (PR) 0.18–0.35 0.26 0.05
P-wave velocity (Pv) in m/s 1853–4200 2898 630

Explosive Velocity of detonation of explosive (VOD) in km/s 3.38–5.23 4.35 0.55
Density of Exp (DOE) in t/m3 1.05–1.30 1.20 0.069
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3 � Materials

3.1 � Blasting site and established database

The research was conducted at Jayant opencast mine of 
Northern Coalfields Limited (NCL). It is a subsidiary com-
pany of Coal India Limited which is located at Singrauli, 
Distt. Sidhi (M.P.), India. The area of NCL lies geographi-
cally between latitudes of 24o 0′ to 24o 12′ and longitudes 
82o 30′ to 82o 45′. It belongs to Gondwana super group. The 
dip of the strata is gentle and varying from 20 to 50.

The coalfield consists of two sub-basins, viz. Singrauli 
Main basin (1890 sq. km.) and Moher sub-basin (312 sq. 
km.). The oil field consists of 11 main mining areas, namely 
Kakri, Khdia, Amlohri, Dhudhichua, Bina, Marrack, Jayant, 
Nighahi, Gorbi, Moher and Jhingurdah [24].

The overlying rocks in this area mainly consist of argil-
laceous sandstone, coarse-grained sandstone and medium-
grained to coarse-grained sandstone. The large dragline 
(24 m3 bucket size and 96 m boom length) is used in 40 m 
benches by the mine. And there are 311 mm diameter holes 
drilled on the bench. Normal blast consists of firing 50–60 

holes; consuming 150–200 t of explosive. Each hole with a 
length of 35–40 m contains 300 kg of explosives. Moreover, 
there is about 6000 kg for the maximum charge for each 
delay. None and MS connectors are used for initiation. The 
inter-hole delay was 17–25 ms, while inter-row delay was 
2–4 times the inter-hole delay.

According to ISRM standards, there are 150 blast vibra-
tion records at different vulnerable and strategic locations 
in and around to Jayant opencast mine which is used in the 
present paper. The range of values of different input vari-
ables of the model in the paper is determined according to 
the field investigation of Jayant opencast mine of North-
ern Coalfields Limited (NCL) and the literature of many 
researchers [23, 46–48]. The blasting design, geotechnical 
engineering scope, explosion parameters, and the distance 
from the monitoring point to the working surface are used as 
input parameters, while PPV and frequency are regarded as 
the output parameters of XGBoost prediction. Table 1 gives 
the range of input parameters which is based on the field and 
laboratory investigations.

To determine different physico-mechanical properties, 
the representative rock samples which were collected from 

Fig. 3   Scatterplot matrix of 
PPV dataset with correlation
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the exposed coal seams of Singrauli coal fields were tested 
as per ISRM standards. To determine blastability index 
(compressive strength/tensile strength), Young’s modulus, 
Poisson’s ratio, and P-wave velocity, 174 rock samples were 
tested according to ISRM standards.

There were many parameters which were collected from 
the blasting site, such as burden, spacing, charge length, hole 
diameter and its depth, density of explosive, explosive per 
hole and velocity of detonation of explosive Table 1. Before 
blasting, the distance from the monitoring point to the blast-
ing surface of the blasting site was also measured.

Generally speaking, one of the key parameters for the 
prediction of PPV is rock density [1, 24]. However, there is 
little difference between rock densities in the Singrauli area 
because of similar lithology. Therefore, during XGBoost 
analysis, there was no influence to be observed on PPV. 
Accordingly, it is not used as an input parameter in this 
work, but it should be used as a significant input indicator 
when the density changes significantly.

The relativity between the input variables in the data set, 
and the relativity between the input variables and the output 
can be observed from the scatterplot matrix plot, which is pre-
sented in Fig. 3. Moreover, the bivariate continuous distribu-
tion of each input indicator by cut of PPV, and the analysis 
of outliers is displayed by boxplot which is shown in Fig. 4. 
Obviously, there is no outliers for all variables when the PPV 
is within 73.9–92.3 mm/s. In Fig. 5, there is the whole analysis 
process implemented in this study. According to this figure, the 
means of this study consists of four steps: (1) data set prepa-
ration, (2) model establishment, (3) model verification and 
evaluation, (4) result analysis.

In this research, three optimization methods are selected 
to adjust the extreme gradient boosting hyperparameters. The 
baseline model for forecasting the PPV is XGBoost, while the 
GWO, WOA and BO techniques are used to search the optimal 
hyperparameters of the XGBoost model. In this respect, these 
five parameters involved in the performance of the XGBoost 
model, namely, Learning_rate, Num_boosting_rounds, and 

Fig. 4   View bivariate continuous distribution based on cut by PPV
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Reg_lambda, are optimized by these three optimization algo-
rithms. It is worth noting that the minimum value of loss 
mean-squared error (MSE) determines the optimal XGBoost 
model. The paper compares two different types of hyperpa-
rameter optimization methods for PPV prediction. The PPV 
which is induced by blasting from the beginning to the end is 
estimated by the XGBoost-based hybrid intelligence models. 
And its analytical process is shown in Fig. 5.

3.2 � Model verification and evaluation

In order to evaluate the dependability of the hybrid models 
effectively in this research, several indicators such as coeffi-
cient of determination ( R2 ), root mean-squared error (RMSE), 
the variance accounted for (VAF), and mean absolute error 
(MAE) [29–31, 56, 60, 61, 72, 74, 75] are used to represent the 
relationship between the actual PPV value and the predicted 
PPV value, namely:

(11)RMSE =

√√√√1

n

n∑
i=1

(PPVi − P̂PVi)
2,

(12)R2 = 1 −

∑
i (PPVi − P̂PVi)

2

∑
i (PPVi − PPV)2

,

In which n represents the number of samples in the 
stage of training or testing, PPVi , P̂PVi and PPV represents 
the observed PPV value, the predicted PPV value and the 
average of the observed PPV values, respectively.

4 � Results and discussion

Due to its high performance in solving problems and low 
requirements for feature engineering. This paper adopts 
an XGBoost model based on a gradient enhancement 
tree. XGBoost model can play a powerful role in gradi-
ent enhancement and has good adaptability to outliers and 
continuous variables. And it is a very effective method for 

(13)MAE =
1

n

n∑
i=1

|||PPVi − P̂PVi
|||,

(14)VAF =

⎡
⎢⎢⎢⎣
1 −

var
�
PPVi − P̂PVi

�

var
�
PPVi

�
⎤
⎥⎥⎥⎦
× 100,

(15)MSE =
1

n

n∑
i=1

(PPVi − P̂PVi)
2.

Fig. 5   The whole analysis process of three hybrid intelligence models based on XGBoost



S4153Engineering with Computers (2022) 38 (Suppl 5):S4145–S4162	

1 3

Fig. 6   Optimizing XGBoost 
model with WOA and GWO of 
different population values

(a) WAO-XGBoost

(b) GWO-XGBoost
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dealing with regression and classification problems. In order 
to study the PPV predictive models’ performance, there is 
a need to prepare the PPV database. Because of the limited 
sample data, there were two stages which made up the divi-
sion of training/test set of this database according to the 
most commonly used division ratio of 80/20%. It is also 
known as the Pareto principle [40]. There was 80% of the 
data which was randomly chosen in the PPV database to 
train all the aforementioned models, while other 20% of the 
data to test the models.

The performance indicators in Eqs.  (11–14) which 
include MAE, R2, VAF, and RMSE, were used to evalu-
ate the PPV prediction models developed. For the GWO-
XGBoost model, WOA-XGBoost model, BO-XGBoost 
model, CatB model, RandomForest model, GBR model, 
and XGBoost model, the test data was used for the invis-
ible data of the models, and 30 observations of the test 
data set were used to predict the PPV. What’s more, all 
prediction models used the same test data set.

With the method proposed in Fig. 5, the WOA-XGBoost 
model was developed. It is difficult to determine the opti-
mal relevant setting parameter values of the heuristic opti-
mization algorithms in the hyper-parameter optimization 
process of the machine learning model. Therefore, the 
use of random numbers in the effective range of specific 
parameters of heuristic algorithms may achieve better opti-
mization results. Firstly, the relevant hyperparameters of 
the XGBoost model should be initialized. And then, there 
was a need to set the WOA algorithm’s relevant param-
eters: the constant b of the logarithmic spiral shape was set 

to 1, L was set to a random number in [− 1, 1], r in [0, 1] 
was set to a random number, and the values of swarm size 
were set to 50, 100, 150, 200, 250, and 300. Additionally, a 
technique which is called fivefold cross-validation resam-
pling was used to enhance the reliability and performance 
of the optimization process.

Figure 6a shows that the different population values 
of the WOA-XGBoost model all have reached a stable 
state of fitness value at 200 iterations. Notably, the differ-
ent population values based on Table 2 performed very 
well, it is difficult to determine which population value is 
the best. Therefore, after WOA-XGBoost model training 
was completed, a comprehensive evaluation was adopted 
for the performance indices of the prediction model. 
And from Fig. 7a, the optimal populations of the WOA-
XGBoost model in this condition can be seen clearly is 
200(250) (RMSE = 3.0538, R2 = 0.9757, VAF = 97.68, and 
MAE = 2.5032).

For GWO-XGBoost, after initializing the XGBoost 
model, the GWO algorithm’s parameters were set: conver-
gence-constant (a) was decreased linearly from 2 to 0 and 
the value of the population number was set to 50, 100, 150, 
200, 250, and 300. Then other training and testing conditions 
were set to the same as WOA. Figure 6b shows change in the 
adaptation value during the iteration process. Finally, based 
on the comprehensive score in Table 3, the GWO-XGBoost 
model reached the best parameters combination and the 
best performance with populations = 200 (RMSE = 3.0954, 
R2 = 0.9751, VAF = 97.62, and MAE = 2.5189) which is 
shown in Fig. 7b.

Table 2   The performance of optimizing XGBoost models with WOA

Training

RMSE Rank R2 Rank MAE Rank VAF Rank Total

50 0.001 4 1.0 6 0.0007 4 99.99 6 20
100 0.103 3 1.0 6 0.0756 2 99.99 6 17
150 0.0006 6 1.0 6 0.0005 3 99.99 6 21
200 0.0008 5 1.0 6 0.0006 5 99.99 6 22
250 0.0008 5 1.0 6 0.0006 5 99.99 6 22
300 0.0006 6 1.0 6 0.0005 6 99.99 6 24

Swarm (WOA) Testing

RMSE Rank R2 Rank MAE Rank VAF Rank Total

50 3.1541 3 0.9741 3 2.5865 3 97.52 3 12
100 3.2969 2 0.9717 2 2.7217 2 97.39 2 8
150 3.0979 4 0.975 4 2.5211 5 97.61 4 17
200 3.0538 6 0.9757 6 2.5032 6 97.68 6 24
250 3.0538 6 0.9757 6 2.5032 6 97.68 6 24
300 3.0925 5 0.9751 5 2.5275 4 97.62 5 19
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Fig. 7   Comprehensive ranking 
comparison of PPV prediction 
models

(a) WOA-XGBoost

(b) GWO-XGBoost

(c) Hybrid models
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For the establishment of BO-XGBoost, the initialization 
of the XGBoost model was performed first. Then the ini-
tial point was generated and Gaussian regression was per-
formed. It is worth noting that BO is different from WOA 
and GWO in that no specific parameters need to be set. And 
other training and testing conditions were set to be the same 
as WOA (GWO). Finally, based on Fig. 8, it can be seen that 
the BO-XGBoost reached the best parameters combination 
and the corresponding best performance (RMSE = 3.2409, 
R2 = 0.9727, VAF = 97.65, and MAE = 2.5867).

According to Tables 2 and 3, it is easy to find that all the 
WOA/GWO-XGBoost models with different population val-
ues perform very well in predicting PPV, all of which were 
above 0.97. However, it is difficult to determine which popu-
lation value is the most appropriate. Therefore, based on the 
data of training, the model was established, and the model’s 
performance of the training and testing phases was ranked 
accordingly. Figure 8 shows the related ranking results.

It can be seen that the best parameters combination of 
the WOA-XGBoost model was obtained with popula-
tions = 200(250) (Num_boosting_rounds = 194, Learn-
ing_rate = 0.5368, and Reg_lambda = 0.2246) according 
to the result. For the GWO-XGBoost, the best param-
eters combination was obtained with populations = 200 
(Num_boosting_rounds = 199, Learning_rate = 0.5374, 
and Reg_lambda = 0.2261). In addition, the best parameters 
obtained by the BO-XGBoost model were (Num_boosting_
rounds = 91, Learning_rate = 0.2725, and Reg_lambda = 1). 
Additionally, XGBoost [7], CatB [41], Random Forest [5, 
68, 71], and gradient boosting regression (GBR) [12, 69, 70] 
were taken into consideration and applied for comparison of 
the developed multiple hybrid-XGBoost model. Table 4 and 

Fig. 7c list the performance results of all prediction models 
and their comprehensive rankings.

It is easy to find from Table 4 and Fig. 7c that the WOA-
XGBoost model which was proposed before has the best 
performance in predicting PPV. The PPV prediction results 
and correlative relation were shown in Fig. 9. It is not hard 
to see that the distribution of measured/predicted points was 
close to the perfect fit line.

To get the further comparison and analysis of the devel-
oped models, multiple evaluation criteria were comprehen-
sively considered through the Taylor diagram in Fig. 10. 
Compared with a single model evaluation index, the Taylor 
diagram is more intuitive for the performance between mod-
els. Taylor diagram can display the relevant information of 
multiple models, which is an effective method widely used 
in model evaluation and inspection in recent years. From the 
results in Fig. 10, among all the generated models, the result 
of WOA-XGBoost model in predicting PPV was the best. 
Taking the optimal hybrid XGBoost model in this paper as 
an example, Fig. 11 shows the prediction results of 30 sets of 
blast-induced PPV based on the learning training set. It can 
be seen that the prediction error after learning the training 
set is relatively small.

5 � Conclusions

PPV caused by blasting is a commonly used parameter to 
evaluate ground vibration. This paper studies the XGBoost 
regression technology for high-precision optimization of 
prediction of PPV, which is of great significance to disaster 
prevention and mitigation in engineering.

Table 3   The performance of optimizing XGBoost models with GWO

Swarm (GWO) Training

RMSE Rank R2 Rank MAE Rank VAF Rank Total

50 0.001 3 1.0 6 0.0007 4 99.99 6 19
100 0.0009 4 1.0 6 0.0007 4 99.99 6 20
150 0.0009 4 1.0 6 0.0007 4 99.99 6 20
200 0.0007 6 1.0 6 0.0005 6 99.99 6 24
250 0.0009 4 1.0 6 0.0007 4 99.99 6 20
300 0.0008 5 1.0 6 0.0006 5 99.99 6 22

Swarm (GWO) Testing

RMSE Rank R2 Rank MAE Rank VAF Rank Total

50 3.0846 5 0.9752 5 2.5199 3 97.62 4 17
100 3.1838 2 0.9736 2 2.6249 1 97.44 2 7
150 3.0958 4 0.9751 4 2.5193 4 97.52 3 15
200 3.0954 4 0.9751 4 2.5189 5 97.62 4 17
250 3.0739 6 0.9754 6 2.5244 2 97.64 5 19
300 3.1682 3 0.9739 3 2.4467 6 97.74 6 18
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(a) Parameters changes of optimizing model with 
BO in matrix diagram

(b) Parameters relationship of optimizing model with 
BO

(c) Num_boosting_rounds changes of BO optimizing (d) Learning_rate changes of BO optimizing

(e) Reg_lambda changes of BO optimizing
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The model is designed based on the blasting design, geo-
technical engineering scope, explosion parameters, the dis-
tance from the monitoring point to the working surface, and 
other variables related to blasting. Compared with traditional 
prediction methods, machine learning methods can better 
explain multiple highly non-linear variables. Therefore, in 
the past few years, some scholars have conducted related 
research on PPV estimation and prediction through machine 
learning techniques. However, improving the accuracy of 
prediction is a major problem, and it is crucial to select the 
hyperparameters of the relevant model reasonably at this 
time.

In order to select the best model hyperparameters, this 
paper develops a set of hybrid PPV prediction models, 
combining XGBoost and three optimization strategies. And 
obtained the best hyperparameters by fine-tuning XGBoost 
model hyperparameters with the three optimization algo-
rithms of WOA, GWO, and BO algorithm. After corre-
sponding judgments, it was compared with other single ML 
models to determine the technical optimization of the pro-
posed hybrid model.

The experimental results show that the XGBoost model 
using this data set combined with the WOA optimization 

algorithm performs best compared with other optimization 
models in this study, with the lowest RMSE and MAE val-
ues (RMSE = 3.0538, MAE = 2.5032), which is more suit-
able for predicting PPV caused by blasting. With the help of 
each optimization algorithm strategy, the performance of the 
XGBoost model has been significantly improved. The correla-
tion coefficients/ the variance accounted for of the correspond-
ing mixed models for PPV are 0.9757/97.68, 0.9751/97.62, 
and 0.9727/97.65, respectively. Considering the complicated 
relationship between each input variable and PPV, it is very 
satisfactory to obtain such a result.

According to the research results, these three optimization 
methods all play a role in boosting the performance of the 
model. Among them, WOA-XGBoost has the highest accuracy 
and can be applied to blast-induced PPV prediction. The limi-
tation of using the XGBoost method to predict PPV in this arti-
cle is that the training data set is relatively small, and only 150 
cases are involved in the ML modeling process. And there may 
be other feature parameters that affect the PPV value induced 
by blasting. In addition, with the addition of more training data 
samples, improvements, feature selection, and processing data 
in parallel, the performance of the hybrid model may achieve 
a greater degree of accuracy.

Table 4   The performance of PPV predictive models

Model Training

Evaluation RMSE Rank R2 Rank MAE Rank VAF Rank Total

WOA-XGBoost 0.0008 6 1.0 7 0.0006 6 99.99 7 26
GWO-XGBoost 0.0007 7 1.0 7 0.0005 7 99.99 7 28
BO-XGBoost 0.0023 5 1.0 7 0.0017 5 99.99 7 24
CatB 0.5246 3 0.9991 5 0.4085 3 99.91 5 16
GBR 1.7914 2 0.9895 4 1.3509 2 98.95 4 12
XGBoost 0.4 4 0.9995 6 0.2954 4 99.95 6 20
Random forest 4.4244 1 0.9358 3 2.5053 1 93.58 3 8

Model Testing

Evaluation RMSE Rank R2 Rank MAE Rank VAF Rank Total

WOA-XGBoost 3.0538 7 0.9757 7 2.5032 7 97.68 7 28
GWO-XGBoost 3.0954 6 0.9751 6 2.5189 6 97.62 5 23
BO-XGBoost 3.2409 5 0.9727 5 2.5867 5 97.65 6 21
CatB 5.5157 1 0.9208 1 3.9466 1 92.33 1 4
GBR 3.6375 4 0.9656 4 2.8818 4 96.86 4 16
XGBoost 3.96 3 0.9592 3 2.8917 3 96.25 3 12
Random forest 4.8576 2 0.9386 2 3.8514 2 94.26 2 8
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Fig. 9   Correlation analyses of 
the measured and predicted 
PPV values

Random Forest

(a) WOA-XGBoost (b) GWO-XGBoost
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