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Abstract
Via the nonlocal stress–strain gradient continuum mechanics, the microscale-dependent linear and nonlinear large deflections 
of transversely loaded composite sector microplates with different thickness variation schemes are investigated. Microplates 
are assumed to be prepared from functionally graded materials (FGMs) the characteristics of which are changed along the 
thickness direction. A quasi-3D plate theory with a sinusoidal transverse shear function in conjunction with a trigonometric 
normal function was employed for the establishment of size-dependent modelling of FGM microplates with different thick-
ness variation schemes. Then, to solve the nonlocal stress–strain gradient flexural problem, the non-uniform rational B-spline 
type of isogeometric solution methodology was applied for an accurate integration of geometric discerptions. It was found 
that the gap between load–deflection curves drawn for linear, concave and convex thickness variation patterns became greater 
by changing FGM composite microplate boundary conditions from clamped to simply supported. In addition, it was found 
that by considering only the nonlocal size effect, the plate deflection obtained by the nonlocal strain gradient quasi-3D plate 
model was greater than that extracted by the classical continuum elasticity because of the softening character of nonlocal size 
effect, while the strain gradient microstructural size dependency acted in opposite way and represented a stiffening character.

Keywords Nonlocal stress effect · Nonlinear flexural response · Normal shape function · Thickness variation · Elliptical 
plates

1 Introduction

As an emerging and modern and inhomogeneous material 
class, functionally graded materials (FGMs) meet several 
requirements of engineering applications including effec-
tive stress control leading the creation of several applica-
tion areas for these materials. Kumar et al. [1] developed 
polymer–ceramic continuous quartz fiber reinforced FGM 
composites to be applied in thermos-structural aerospace 

applications. Qin and his colleagues investigated wave prop-
agation behavior of FGM porous plates reinforced with gra-
phene platelets [2] and conducted analytical study on impact 
response of sandwich cylindrical shell with a FGM porous 
core [3]. Besides, they have carried out a series of studies on 
vibrations of FGM plates and shells with non-classic bound-
ary conditions [4–6], which benefits the application of plates 
and shells in engineering fields. On the other hand, advanced 
composite materials have widely utilized for several applica-
tions such as dynamic sensors [7], reinforced beam struc-
tures [8–12], lithium–ion battery [13], digital microscopes 
[14, 15], and dampers [16].

In the past decade, new fabrication processes have been 
proposed incorporating FGM composite concept in micro-
electro-mechanical structures and systems. In this regard, 
it of great importance to take various size dependency fea-
tures in mechanical properties of microstructures made of 
FGM composite. For example, Jung and Han [17] studied 
Sigmoid FGM composite microplate mechanical behaviors 
based on modified couple stress elasticity. Li and Pan [18] 
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predicted FGM piezoelectric microplate static bending when 
symmetric couple stress tensor was present. Simsek [19] 
developed a nonlocal strain gradient Euler–Bernoulli beam 
model for nonlinear vibration behaviors of FGM compos-
ite nanobeam structures according to a novel Hamiltonian 
method. Sahmani and Aghdam [20] applied surface elastic-
ity theory to investigate imperfection sensitivity of postbuck-
ling behaviors of pressurized FGM composite cylindrical 
nanoshells. Liu et al. [21] investigated biaxial buckling and 
nonlocal oscillations properties of double viscoelastic FGM 
composite nanoplates under in-plane edge loads. Sahmani 
and Aghdam [22–24] determined critical buckling loads 
and postbuckling equilibrium paths of hybrid FGM com-
posite cylindrical nanoshells based on nonlocal continuum 
theory. Phung-Van et al. [25] developed a generalized shear 
deformation plate theory for nonlinear transient response 
of piezoelectric FGM plates subjected to thermos-electro-
mechanical loads using isogeometric technique. Nguyen 
et al. [26] employed a refined quasi-3D plate model incor-
porating couple stress size for FM composite microplates. 
Van et al. [27] derived a suitable computational equation 
for size-dependent nonlinear transient behaviors of FGM 
composite nanoplates based on isogeometric analysis. Chu 
et al. [28] predicted flexoelectric effect on FGM piezoelec-
tric microbeam bending behaviors based on general modi-
fied strain gradient elasticity.

Recently, Khakalo et al. [29] modeled size-dependent 
2D triangular lattices on the basis of strain gradient model 
for the analysis of mechanical responses of auxetics and 
sandwich beams. She et al. [30] studied the oscillations and 
nonlinear bending of FGM porous microtubes based on non-
local strain gradient elasticity. Pang et al. [31] analytically 
explored viscoelastic nanoplate transverse oscillations using 
simply supported boundary conditions including high-order 
surface stress size effect. Sahmani et al. [32–35] predicted 
the nonlinear vibration and bending properties of graphene 
platelet-reinforced FGM porous third-order shear deforma-
ble microbeams based on nonlocal strain gradient continuum 
mechanics. Phung-Van et al. [36] investigated numerically 
the porosity-dependent nonlinear transient characteristics of 
FGM nanoplates with the aid of isogeometric method. Li 
et al. [37] used modified strain gradient theory of elasticity 
for the analysis of vibrations and static bending of organic 
solar cells surrounded by Winkler–Pasternak elastic founda-
tion. Thanh et al. [38] established a modified couple stress-
based Reddy plate model for the simulation of composite 
laminated microplate thermal bending behaviors. Sahmani 
and Safaei [39–41] analyzed size-dependent nonlinear 
mechanical responses of bi-directional FGM microbeams. 
Fan et al. [42–44] anticipated FGM porous microplate size-
dependent responses according to various non-classical con-
tinuum theories. Ghorbani et al. [45] combined Gurtin–Mur-
doch and nonlocal strain gradient theories of elasticity to 

derive cylindrical microshell size-dependent natural frequen-
cies. Yuan et al. [46–48] established size-dependent conical 
shell models to evaluate FGM composite conical microshell 
nonlinear mechanical properties. Ghobadi et al. [49] devel-
oped a continuous size-dependent electro-mechanical model 
for the analysis nonlinear thermos-electro-mechanical vibra-
tion behaviors of FGM flexoelectric nanoplate structures. 
Thai et al. [50] proposed a nonlocal meshfree model for the 
determination of size-dependent frequencies and deforma-
tions of FGM carbon nanotube-reinforced nanoplates. Yuan 
et al. [51] investigated shear buckling behaviors of FGM 
composite skew nanoplates under surface residual stress 
and surface elasticity. Yi et al. [52], and Li et al. [53] took 
into account the interactions among vibration modes for 
the analysis of surface elastic-based large-amplitude free 
vibrations of porous FGM composite nanoplates. Fan et al. 
[54] analyzed the couple stress effect on the dynamic sta-
bility of FGM conical microshells having magnetostrictive 
facesheets surrounded by a viscoelastic foundation. Sarafraz 
et al. [55], and Xie et al. [56] established a surface elastic 
beam model to predict the nonlinear secondary resonance 
of FGM porous nanobeams under periodic excitation. Yang 
et al. [57] employed a perturbation-based solving process 
for postbuckling analysis of hydrostatic pressurized nonlocal 
strain gradient FGM microshells.

The aim of this research was to develop nonlocal strain 
gradient quasi-3D nonlinear flexural solving process for 
FGM microplates with various thickness variation pat-
terns. Therefore, a quasi-3D plate model based on nonlo-
cal strain gradient continuum mechanics with sinusoidal 
transverse shear and trigonometric normal functions were 
employed. Then, the proposed refined quasi-3D nonlocal 
strain gradient plate model was combined with isogeo-
metric technique incorporating geometric description and 
finite element approximation for accurately solving non-
linear problems for different thickness variation patterns.

2  Nonlocal strain gradient quasi‑3D FGM 
variable thickness plate model

Here, as shown in Fig. 1, two sector and elliptical shapes 
have been taken into account for FGM composite micro-
plates with variable thickness h(x, y) . For elliptical shape, 
a and b denote long and short axes, respectively. For 
sector microplates, � and r0 represent angle and radius, 
respectively.

For estimating effective material characteristics of Pois-
son’s ratio �(z) and Young’s modulus E(z) of FGM composite 
microplates, Mori–Tanaka scheme homogenization scheme 
were considered. Therefore, effective bulk and shear moduli 
were determined according to homogenization model as:
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where k is material property gradient index and

Also, subscripts c and m denote ceramic and metal phases 
of FGM composite microplates, respectively.

To determine microplate thickness variations for sector 
and elliptical shapes, the following functions were consid-
ered for a sector microplates:

where � and h0 are thickness variation constant showing vari-
able thickness type and maximum plate thickness, respec-
tively. Therefore, concave, linear, and convex thickness vari-
ation types are related to 𝜂 > 1 , � = 1 and 𝜂 < 1 , respectively.

Figures 2 and 3 compare linear thickness variations with 
convex and concave ones, respectively, for various thickness 
variation constants.

The quasi-3D modelling of a microplate was stated as fol-
lows by taking into account normal strains using a transverse 
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normal shape function �(z) and dividing transverse displace-
ment component into shear bending and variables:

where ws(x, y) and wb(x, y) are shear and bending displace-
ment variables according to hybrid quasi-3D-based higher 
order shear deformation plate model. By assuming normal 
shape and transverse shear functions as sinusoidal trigono-
metric ones, it was found that

(4a)Ux(x, y, z) = u(x, y) − zwb,x(x, y) + � (z)ws,x(x, y),

(4b)Uy(x, y, z) = v(x, y) − zwb,y(x, y) + � (z)ws,y(x, y),

(4c)Uz(x, y, z) = wb(x, y) + �(z)ws(x, y),

Fig. 1  Schematic representation of a FGM sector microplate with 
variable thickness under uniform distributed load
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Fig. 2  Illustration of convex and linear variations of the plate thick-
ness for sector microplates corresponding to different thickness vari-
ation constants
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Considering von-Karman nonlinear kinematics includ-
ing large deflections and moderate rotations, the associated 
hybrid quasi-3D-based strain components were stated as:

(5a)� (z) = sin(�z∕h) − z,

(5b)�(z) = 1 + (5∕12�)cos(�z∕h).
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)2
2
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Consequently, stress–strain constitutive relationships 
were written as:

By employing nonlocal strain gradient continuum elastic-
ity, total stress tensor was stated as [58]:

where classical and higher order stresses, respectively, were 
described:
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Fig. 3  Illustration of concave and linear variations of the plate thick-
ness for sector microplates corresponding to different thickness vari-
ation constants
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and �2

(
x
′

, x, e2
)
 two kernel functions had to equilibrate the 

conditions introduced by Eringen [59] as:

Therefore, generalized constitutive equation based on 
nonlocal strain gradient elasticity was stated as:

Assuming e1 = e2 = e , it was found that

Therefore, strain energy variations for quasi-3D nonlocal 
strain gradient FGM microplates with various shapes and 
thicknesses were written as:

In addition, the induced virtual work by external distrib-
uted load q was stated as:
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Virtual work principle was employed along with the sub-
stitution of Eqs. (6) and (7) into Eq. (13) resulting in

where

where stress-based stiffness parameters was defined as:
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3  Isogeometric finite element framework

Isogeometric technique is a new solution method for con-
necting finite element and computer aided design approaches 

to determine geometrical description and an efficient numer-
ical approximation [60–68]. The considered cubic elements 
for a sector microplate is depicted in Fig. 4.

Considering rational functions of B-splines, displace-
ment field in a plate-type domain satisfying  C−1-requirement 
essential for the developed quasi-3D plate model was 
approximated as:
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cretized form as:

where �(�) is global stiffness matrix containing two non-
linear and linear parts as:

(20)

�
b
= �L

b
+�NL

b
=

m×n∑
i=1

�
i

Lb
� +

m×n∑
i=1

1

2
�

i

NLb
�,�

s
=

m×n∑
i=1

�
i

s
�,

�
i

Lb
=
�
�

i

b1
�

i

b2
�

i

b3
�

i

b4

�T

,�
i

NLb
=
�
�

i

b5
0 0 0

�T

�
i

G
,� =

⎧
⎪⎨⎪⎩

ui

vi

wi
b

wi
s

⎫
⎪⎬⎪⎭
,

�
i

b1
=

⎡⎢⎢⎢⎢⎣

�
i,x(x, y) 0 0 0

0 �
i,y(x, y) 0 0

�
i,y(x, y) �

i,x(x, y) 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
,�

i

b2
= −

⎡⎢⎢⎢⎢⎣

0 0 �
i,xx(x, y) 0

0 0 �
i,yy(x, y) 0

0 0 2�
i,xy(x, y) 0

0 0 0 0

⎤⎥⎥⎥⎥⎦
,

(21)�
i

b3
=

⎡⎢⎢⎢⎣

0 0 0 �i,xx(x, y)

0 0 0 �i,yy(x, y)

0 0 0 2�i,xy(x, y)

0 0 0 0

⎤⎥⎥⎥⎦
,�

i

b4
=

⎡⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 �i(x, y)

⎤⎥⎥⎥⎦
,

�
i

b5
=

⎡⎢⎢⎣

wb,x + ws,x 0

0 wb,y + ws,y

wb,y + ws,y wb,x + ws,x

⎤⎥⎥⎦
,�

i

G
=

�
0 0 �i,x(x, y) �i,x(x, y)

0 0 �i,y(x, y) �i,y(x, y)

�
.

(22)

�
�
�

b

�
= �

�
�L

b

�
+ �

�
�NL

b

�

=

m×n�
i=1

�
�

i

Lb
+ �

i

NLb

�⎧⎪⎨⎪⎩

�ui

�vi

�wi

b

�wi

s

⎫⎪⎬⎪⎭
, �
�
�

s

�

=

m×n�
i=1

�
i

s

⎧⎪⎨⎪⎩

�ui

�vi

�wi

b

�wi

s

⎫⎪⎬⎪⎭
.

(23)�(�)� = �,

Fig. 4  Representation of cubic elements for a sector microplate
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In addition, the load vector associated with uniform distrib-
uted load ∐ was stated as:

Then, an iterative procedure based on Newton–Raphson 
technique was applied to derive the solution of Eq. (23).

4  Numerical results and discussion

Following the application of the developed solution method, 
the dimensionless nonlocal strain gradient nonlinear and 
linear load–deflection behaviors of FGM microplates with 
a sector shape with variable thicknesses were drawn. It was 
assumed that FGM microplate bottom and top surfaces were 
fully metal and fully ceramic, respectively. Material proper-
ties were: Em = 70GPa , � = 0.35 for metal constituent and 
Ec = 210GPa , � = 0.24 for ceramic constituent [69]. In addi-
tion, dimensionless maximum deflection was considered as 
Wmax = wmax∕h and dimensionless load was described as 
−

P= ∐r2
0
∕Emh

2 . Furthermore, the geometric parameters of 
sector microplates with h0 initial thickness were considered 
as h0 = 25�mand 2r0 = 50h0.

Firstly, the proposed solving methodology was validated. 
To do so, neglecting couple stress size dependency terms, 
the nonlinear load–deflection curves drawn for geometrically 
nonlinear flexural behaviors of square composite plates were 
compared with those reported by Singh et al. [70], as shown 
in Fig. 5. A great agreement was witnessed which confirmed 
the reliability of the developed numerical solution process.

Figure 6 demonstrates dimensionless nonlocal strain gradi-
ent linear and nonlinear load–deflection responses correspond-
ing to the flexural behavior of FGM sector microplates, with 
linear thickness variations ( � = 1 ). To compare, the findings of 
classical quasi-3D continuum elasticity were also adopted. It 
was shown that increase of nonlocal parameter to plate thick-
ness ratio enhanced nonlocality importance. However, decrease 
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Fig. 5  Comparison study on the load–deflection plots obtained for the 
nonlinear bending of a composite square plate under inform distrib-
uted load
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of the abovementioned ratio resulted in the tendency of both 
nonlinear and linear flexural behaviors of sector microplates to 
their classical counterparts. Similar findings were obtained for 
strain gradient size effect. Also, it was witnessed that consider-
ing nonlocal size effect resulted in higher extracted deflections 
obtained from nonlocal strain gradient quasi-3D plate model 
than those derived from classical continuum elasticity because 
of the softening property of nonlocal size effect, while strain 
gradient microstructural size dependency acted in opposite way 
and represented a stiffening property.

Tables 1 and 2 summarize the dimensionless distrib-
uted loads for specific values of maximum deflection in the 

presence of nonlocality and absence of strain gradient small 
scale effect for simply supported and clamped boundary con-
ditions, respectively. The same findings are given in Tables 3 
and 4 for strain gradient size effect and ignoring nonlocal-
ity, respectively. It was witnessed that by moving to deeper 
parts of load–deflection response, which takes into account 
higher maximum deflections, the significance of nonlocality 
softener character and strain gradient size dependency stiffer 
character somehow decreased. This finding was repeated for 
all thickness variation patterns and for both clamped and 
simply supported boundary conditions. However, it was 
found that changing material gradient index value changed 

Table 1  Dimensionless classical and nonlocal strain gradient distributed loads associated with the nonlinear bending response of FGM sector 
microplates with simply supported boundary conditions corresponding to different nonlocal parameters and thickness variation constants

k e (�m) � = 0.3 � = 0.6 � = 1 � = 1.3 � = 1.6

� = �∕3

0.5 w∕h = 0.4

0 0.0671 0.0688 0.0713 0.0732 0.0759
60 0.0651 (− 2.90%) 0.0667 (− 2.89%) 0.0693 (− 2.88%) 0.0711 (− 2.87%) 0.0738 (− 2.86%)

120 0.0593 (− 11.56%) 0.0608 (− 11.54%) 0.0631 (− 11.52%) 0.0649 (− 11.50%) 0.0672 (− 11.48%)
w∕h = 0.8

0 0.3290 0.3347 0.3434 0.3498 0.3587
60 0.3203 (− 2.63%) 0.3260 (− 2.62%) 0.3344 (− 2.61%) 0.3407 (− 2.60%) 0.3494 (− 2.59%)

120 0.2949 (− 10.47%) 0.2998 (− 10.45%) 0.3076 (− 10.43%) 0.3134 (− 10.41%) 0.3212 (− 10.39%)
2 w∕h = 0.4

0 0.0629 0.0645 0.0669 0.0687 0.0712
60 0.0610 (− 2.90%) 0.0626 (− 2.89%) 0.0650 (− 2.88%) 0.0666 (− 2.87%) 0.0692 (− 2.86%)

120 0.0556 (− 11.56%) 0.0570 (− 11.54%) 0.0592 (− 11.52%) 0.0609 (− 11.50%) 0.0630 (− 11.48%)
w∕h = 0.8

0 0.3085 0.3139 0.3220 0.3281 0.3364
60 0.3004 (− 2.63%) 0.3057 (− 2.62%) 0.3136 (− 2.61%) 0.3195 (− 2.60%) 0.3276 (− 2.59%)

120 0.2763 (− 10.47%) 0.2811 (− 10.45%) 0.2884 (− 10.43%) 0.2939 (− 10.41%) 0.3013 (− 10.39%)
� = �∕2

0.5 w∕h = 0.4

0 0.0493 0.0506 0.0532 0.0549 0.0569
60 0.0485 (− 1.62%) 0.0497 (− 1.61%) 0.0523 (− 1.60%) 0.0541 (− 1.59%) 0.0559 (− 1.58%)

120 0.0460 (− 6.44%) 0.0473 (− 6.42%) 0.0498 (− 6.41%) 0.0513 (− 6.40%) 0.0532 (− 6.38%)
w∕h = 0.8

0 0.2428 0.2470 0.2560 0.2619 0.2684
60 0.2393 (− 1.46%) 0.2434 (− 1.46%) 0.2523 (− 1.45%) 0.2581 (− 1.44%) 0.2645 (− 1.43%)

120 0.2286 (− 5.83%) 0.2326 (− 5.81%) 0.2411 (− 5.80%) 0.2467 (− 5.79%) 0.2529 (− 5.77%)
2 w∕h = 0.4

0 0.0462 0.0474 0.0499 0.0515 0.0534
60 0.0455 (− 1.62%) 0.0466 (− 1.61%) 0.0491 (− 1.60%) 0.0507 (− 1.59%) 0.0525 (− 1.58%)

120 0.0434 (− 6.44%) 0.0443 (− 6.42%) 0.0467 (− 6.41%) 0.0482 (− 6.40%) 0.0501 (− 6.38%)
w∕h = 0.8

0 0.2277 0.2316 0.2401 0.2456 0.2518
60 0.2244 (− 1.46%) 0.2283 (− 1.46%) 0.2366 (− 1.45%) 0.2420 (− 1.44%) 0.2480 (− 1.43%)

120 0.2143 (− 5.83%) 0.2182 (− 5.81%) 0.2261 (− 5.80%) 0.2313 (− 5.79%) 0.2372 (− 5.77%)
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FGM sector microplate flexural stiffness, but the emphasis 
of both small scale effect kinds remained unchanged. This 
prediction was similar for both initial and deeper parts of 
flexural responses. Also, it was concluded that for all mate-
rial gradient index values and thickness variation patterns, 
strain gradient size effect stiffer character was more promi-
nent than nonlocality softener character acting in a specific 
value of maximum deflection.   

Material gradient index effects on linear and nonlinear 
flexural responses of FGM sector microplates are presented 
in Fig. 7. Analyses were conducted for both classical and 
nonlocal strain gradient quasi-3D models. It was found that 

increase of material gradient index value, which resulted 
in moving from fully ceramic sector microplate to fully 
metal one, increased maximum deflection for a given uni-
form transverse load because of lower volume fractions of 
ceramic constituent. Also, it was found that in both nonlin-
ear and linear flexural responses, increase of transverse load 
value enhanced the significance of material gradient index.

Figure 8 shows nonlocal strain gradient linear and flexural 
characteristics for FGM composite sector microplates with 
various thickness variation patterns. It was found that the 
gaps between load–deflection curves for concave, convex, 
and linear thickness variation patterns were increased by 

Table 2  Dimensionless classical and nonlocal strain gradient distributed loads associated with the nonlinear bending response of FGM sector 
microplates with clamped boundary conditions corresponding to different nonlocal parameters and thickness variation constants

k e (�m) � = 0.3 � = 0.6 � = 1 � = 1.3 � = 1.6

� = �∕3

0.5 w∕h = 0.4

0 0.0958 0.0981 0.0989 0.1002 0.1034
60 0.0931 (− 2.83%) 0.0953 (− 2.82%) 0.0961 (− 2.81%) 0.0973 (− 2.80%) 0.1006 (− 2.79%)

120 0.0850 (− 11.27%) 0.0870 (− 11.25%) 0.0878 (− 11.23%) 0.0889 (− 11.21%) 0.0919 (− 11.19%)
w∕h = 0.8

0 0.5127 0.5210 0.5242 0.5286 0.5410
60 0.4994 (− 2.58%) 0.5077 (− 2.57%) 0.5108 (− 2.56%) 0.5150 (− 2.55%) 0.5271 (− 2.54%)

120 0.4601 (− 10.29%) 0.4675 (− 10.27%) 0.4705 (− 10.25%) 0.4745 (− 10.23%) 0.4855 (− 10.21%)
2 w∕h = 0.4

0 0.0899 0.0920 0.0928 0.0939 0.0970
60 0.0873 (− 2.83%) 0.0894 (− 2.82%) 0.0902 (− 2.81%) 0.0912 (− 2.80%) 0.0944 (− 2.79%)

120 0.0797 (− 11.27%) 0.0815 (− 11.25%) 0.0824 (− 11.23%) 0.0834 (− 11.21%) 0.0862 (− 11.19%)
w∕h = 0.8

0 0.4808 0.4886 0.4916 0.4957 0.5073
60 0.4684 (− 2.58%) 0.4761 (− 2.57%) 0.4790 (− 2.56%) 0.4830 (− 2.55%) 0.4944 (− 2.54%)

120 0.4315 (− 10.29%) 0.4385 (− 10.27%) 0.4412 (− 10.25%) 0.4450 (− 10.23%) 0.4553 (− 10.21%)
� = �∕2

0.5 w∕h = 0.4

0 0.0710 0.0726 0.0737 0.0748 0.0778
60 0.0698 (− 1.58%) 0.0715 (− 1.57%) 0.0726 (− 1.56%) 0.0736 (− 1.55%) 0.0767 (− 1.54%)

120 0.0664 (− 6.27%) 0.0679 (− 6.25%) 0.0691 (− 6.24%) 0.0702 (− 6.23%) 0.0730 (− 6.21%)
w∕h = 0.8

0 0.3805 0.3867 0.3908 0.3943 0.4059
60 0.3751 (− 1.43%) 0.3812 (− 1.42%) 0.3852 (− 1.42%) 0.3888 (− 1.42%) 0.4001 (− 1.41%)

120 0.3588 (− 5.72%) 0.3647 (− 5.70%) 0.3685 (− 5.69%) 0.3717 (− 5.68%) 0.3827 (− 5.66%)
2 w∕h = 0.4

0 0.0666 0.0681 0.0692 0.0700 0.0730
60 0.0656 (− 1.58%) 0.0671 (− 1.57%) 0.0682 (− 1.56%) 0.0690 (− 1.55%) 0.0718 (− 1.54%)

120 0.0623 (− 6.27%) 0.0639 (− 6.25%) 0.0648 (− 6.24%) 0.0656 (− 6.23%) 0.0684 (− 6.21%)
w∕h = 0.8

0 0.3569 0.3627 0.3665 0.3698 0.3807
60 0.3518 (− 1.43%) 0.3574 (− 1.42%) 0.3613 (− 1.42%) 0.3646 (− 1.42%) 0.3752 (− 1.41%)

120 0.3365 (− 5.72%) 0.3419 (− 5.70%) 0.3455 (− 5.69%) 0.3487 (− 5.68%) 0.3590 (− 5.66%)
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altering the boundary conditions of FGM composite sector 
microplates from clamped to simply supported. In addition, 
it was found that at higher transverse loads, the effect of 
thickness variation pattern was enhanced.

Figure 9 shows the influences of geometrical parameters 
on nonlocal strain gradient linear and nonlinear flexural 
behaviors of FGM sector microplates. It was deduced that 
decrease of � in sector microplates increased their bending 
stiffness resulting in lower deflections for specific applied 
transverse loads. In addition, it was found that taking into 
account this variation in the geometrical parameter of sector 

microplates, the difference between nonlinear and linear 
flexural analyses was increased representing the increase of 
associated geometrical nonlinearity.

5  Concluding remarks

In this research, microstructural-dependent nonlinear and 
linear flexural properties of FGM microplates with a sec-
tor shape and different thicknesses were studied. To do so, 
nonlocal strain gradient continuum mechanics was applied 

Table 3  Dimensionless classical and nonlocal strain gradient distributed loads associated with the nonlinear bending response of FGM sector 
microplates with simply supported boundary conditions corresponding to different strain gradient parameters and thickness variation constants

k l (�m) � = 0.3 � = 0.6 � = 1 � = 1.3 � = 1.6

� = �∕3

0.5 w∕h = 0.4

0 0.0671 0.0688 0.0713 0.0732 0.0759
60 0.0715 (+ 6.52%) 0.0732 (+ 6.50%) 0.0760 (+ 6.49%) 0.0780 (+ 6.48%) 0.0807 (+ 9.46%)

120 0.0847 (+ 26.01%) 0.0867 (+ 25.98%) 0.0898 (+ 25.96%) 0.0922 (+ 25.94%) 0.0954 (+ 25.91%)
w∕h = 0.8

0 0.3290 0.3347 0.3434 0.3498 0.3587
60 0.3500 (+ 6.38%) 0.3560 (+ 6.36%) 0.3652 (+ 6.35%) 0.3721 (+ 6.34%) 0.3814 (+ 6.32%)

120 0.4126 (+ 25.42%) 0.4197 (+ 25.39%) 0.4305 (+ 25.37%) 0.4385 (+ 25.35%) 0.4496 (+ 25.32%)
2 w∕h = 0.4

0 0.0629 0.0645 0.0669 0.0687 0.0712
60 0.0671 (+ 6.52%) 0.0687 (+ 6.50%) 0.0712 (+ 6.49%) 0.0732 (+ 6.48%) 0.0757 (+ 6.46%)

120 0.0794 (+ 26.01%) 0.0813 (+ 25.98%) 0.0843 (+ 25.96%) 0.0864 (+ 25.94%) 0.0895 (+ 25.91%)
w∕h = 0.8

0 0.3085 0.3139 0.3220 0.3281 0.3364
60 0.3282 (+ 6.38%) 0.3338 (+ 6.36%) 0.3425 (+ 6.35%) 0.3489 (+ 6.34%) 0.3576 (+ 6.32%)

120 0.3869 (+ 25.42%) 0.3936 (+ 25.39%) 0.4037 (+ 25.37%) 0.4112 (+ 25.35%) 0.4216 (+ 25.32%)
� = �∕2

0.5 w∕h = 0.4

0 0.0493 0.0506 0.0532 0.0549 0.0569
60 0.0512 (+ 3.63%) 0.0523 (+ 3.62%) 0.0551 (+ 3.61%) 0.0570 (+ 3.60%) 0.0589 (+ 3.59%)

120 0.0565 (+ 14.47%) 0.0578 (+ 14.45%) 0.0608 (+ 14.44%) 0.0629 (+ 14.43%) 0.0650 (+ 14.41%)
w∕h = 0.8

0 0.2428 0.2470 0.2560 0.2619 0.2684
60 0.2514 (+ 3.55%) 0.2558 (+ 3.54%) 0.2650 (+ 3.53%) 0.2712 (+ 3.52%) 0.2778 (+ 3.51%)

120 0.2771 (+ 14.14%) 0.2818 (+ 14.12%) 0.2921 (+ 14.11%) 0.2989 (+ 14.10%) 0.3063 (+ 14.08%)
2 w∕h = 0.4

0 0.0462 0.0474 0.0499 0.0515 0.0534
60 0.0479 (+ 3.63%) 0.0491 (+ 3.62%) 0.0517 (+ 3.61%) 0.0535 (+ 3.60%) 0.0553 (+ 3.59%)

120 0.0529 0.0542 0.0571 (+ 14.44%) 0.0590 (+ 14.43%) 0.0610 (+ 14.41%)
w∕h = 0.8

0 0.2277 0.2316 0.2401 0.2456 0.2518
60 0.2357 (+ 3.55%) 0.2399 (+ 3.54%) 0.2485 (+ 3.53%) 0.2543 (+ 3.52%) 0.2607 (+ 3.51%)

120 0.2599 (+ 14.14%) 0.2643 (+ 14.12%) 0.2739 (+ 14.11%) 0.2803 (+ 14.10%) 0.2872 (+ 14.08%)
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in a hybrid quasi-3D-based higher order shear deformation 
plate model along with von Karman geometrical nonlinear-
ity. Then, isogeometric finite element method was applied 
to derive nonlocal strain gradient nonlinear and linear 
load–deflection plots along with classical continuum elastic-
based counterparts.

It was shown that by moving to deeper parts of 
load–deflection responses which took into account higher 
maximum deflections, the significance of strain gradient 
size dependency stiffer character and nonlocality softener 

character was somehow decreased. Furthermore, for all 
thickness variation patterns and material gradient index 
values, strain gradient size effect stiffer character was more 
prominent than nonlocality softener character acting in a 
specific value of maximum deflection. This anticipation 
was similar for both initial and deeper parts of flexural 
responses. Furthermore, it was found that at higher applied 
transverse loads, the importance of thickness variation pat-
tern effect was enhanced.

Table 4  Dimensionless classical and nonlocal strain gradient distributed loads associated with the nonlinear bending response of FGM sector 
microplates with clamped boundary conditions corresponding to different strain gradient parameters and thickness variation constants

k l (�m) � = 0.3 � = 0.6 � = 1 � = 1.3 � = 1.6

� = �∕3

0.5 w∕h = 0.4

0 0.0958 0.0981 0.0989 0.1002 0.1034
60 0.1021 (+ 6.49%) 0.1044 (+ 6.47%) 0.1053 (+ 6.46%) 0.1066 (+ 6.45%) 0.1100 (+ 6.43%)

120 0.1208 (+ 25.86%) 0.1235 (+ 25.83%) 0.1245 (+ 25.81%) 0.1258 (+ 25.79%) 0.1300 (+ 25.76%)
w∕h = 0.8

0 0.5127 0.5210 0.5242 0.5286 0.5410
60 0.5452 (+ 6.36%) 0.5540 (+ 6.34%) 0.5574 (+ 6.33%) 0.5621 (+ 6.32%) 0.5751 (+ 6.30%)

120 0.6424 (+ 25.33%) 0.6528 (+ 25.30%) 0.6567 (+ 25.28%) 0.6621 (+ 25.26%) 0.6776 (+ 25.23%)
2 w∕h = 0.4

0 0.0899 0.0920 0.0928 0.0939 0.0970
60 0.0958 (+ 6.49%) 0.0979 (+ 6.47%) 0.0988 (+ 6.46%) 0.0999 (+ 6.45%) 0.1032 (+ 6.43%)

120 0.1133 (+ 25.86%) 0.1158 (+ 25.83%) 0.1167 (+ 25.81%) 0.1180 (+ 25.79%) 0.1219 (+ 25.76%)
w∕h = 0.8

0 0.4808 0.4886 0.4916 0.4957 0.5073
60 0.5113 (+ 6.36%) 0.5196 (+ 6.34%) 0.5228 (+ 6.33%) 0.5271 (+ 6.32%) 0.5394 (+ 6.30%)

120 0.6025 (+ 25.33%) 0.6122 (+ 25.30%) 0.6159 (+ 25.28%) 0.6209 (+ 25.26%) 0.6354 (+ 25.23%)
� = �∕2

0.5 w∕h = 0.4

0 0.0710 0.0726 0.0737 0.0748 0.0778
60 0.0736 (+ 3.61%) 0.0753 (+ 3.60%) 0.0764 (+ 3.59%) 0.0774 (+ 3.58%) 0.0806 (+ 3.57%)

120 0.0813 (+ 14.38%) 0.0831 (+ 14.36%) 0.0843 (+ 14.35%) 0.0854 (+ 14.34%) 0.0890 (+ 14.32%)
w∕h = 0.8

0 0.3805 0.3867 0.3908 0.3943 0.4059
60 0.3939 (+ 3.54%) 0.4004 (+ 3.53%) 0.4046 (+ 3.52%) 0.4082 (+ 3.51%) 0.4202 (+ 3.50%)

120 0.4341 (+ 14.09%) 0.4411 (+ 14.07%) 0.4458 (+ 14.06%) 0.4498 (+ 14.05%) 0.4629 (+ 14.03%)
2 w∕h = 0.4

0 0.0666 0.0681 0.0692 0.0700 0.0730
60 0.0691 (+ 3.61%) 0.0706 (+ 3.60%) 0.0716 (+ 3.59%) 0.0726 (+ 3.58%) 0.0756 (+ 3.57%)

120 0.0763 (+ 14.38%) 0.0779 (+ 14.36%) 0.0791 (+ 14.35%) 0.0801 (+ 14.34%) 0.0834 (+ 14.32%)
w∕h = 0.8

0 0.3569 0.3627 0.3665 0.3698 0.3807
60 0.3695 (+ 3.54%) 0.3755 (+ 3.53%) 0.3794 (+ 3.52%) 0.3829 (+ 3.51%) 0.3941 (+ 3.50%)

120 0.4071 (+ 14.09%) 0.4137 (+ 14.07%) 0.4180 (+ 14.06%) 0.4218 (+ 14.05%) 0.4341 (+ 14.03%)
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