
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38:4289–4305 
https://doi.org/10.1007/s00366-021-01386-8

ORIGINAL ARTICLE

A parallel interface tracking approach for evolving geometry problems

Fan Yang1 · Anirban Chandra1 · Yu Zhang1 · Saurabh Tendulkar2 · Rocco Nastasia2 · Assad A. Oberai3 · 
Mark S. Shephard1 · Onkar Sahni1

Received: 31 August 2018 / Accepted: 15 March 2021 / Published online: 23 August 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
This paper presents a parallel interface tracking approach for evolving geometry problems where both the computational 
domain and mesh are updated as dictated by the analysis. An interface-fitted conforming hybrid/mixed mesh with aniso-
tropic layered elements is used. A combination of mesh motion and mesh modification is employed to update the mesh to 
account for the interface motion. Mesh modification is triggered only when necessary. During mesh motion and modification 
the desired structure, shape and resolution of the anisotropic layered elements at the interface are maintained. All steps are 
performed on partitioned meshes on distributed-memory parallel computers. The effectiveness of the current approach is 
demonstrated on two problems with large motion or deformation in the geometry.

Keywords  Interface tracking · Evolving geometry · Combined mesh motion and modification/adaptation · Anisotropic 
layered elements · Phase change

1  Introduction

Problems with multimaterial, multiphase and fluid structure 
interactions arise in many engineering applications such as 
solid combustion, droplet evaporation, flow-driven projec-
tile, blood flow through flexible arteries, flow-induced vibra-
tion, to name a few. Figure 1 shows two such problems. In 
such problems a common and important feature is that the 
interface evolves in time. Therefore, the geometry or spa-
tial domain must be updated based on the interactions, for 
example, between an object and the surrounding fluid (i.e., 
between projectile and air) in the projectile case or between 
two phases (i.e., liquid and gas) in the droplet case.

Two types of mesh-based approaches are commonly used 
for evolving geometry problems: explicit interface tracking, 
which is also referred to as front tracking, and implicit inter-
face capturing. These approaches employ different frames to 
describe and simulate the transport equations of the material, 
namely the Lagrangian/material, the Eulerian/fixed or an 

arbitrary Lagrangian–Eulerian (ALE) [12, 24, 26] frame. 
In the case of an interface capturing approach, the interface 
is represented implicitly in the material/volumetric mesh 
that is typically fixed based on the Eulerian frame. Com-
monly used interface capturing methods include the level 
set [35, 45, 48], phase field [2, 5] and immersed bound-
ary [36] methods. On the contrary, in an interface tracking 
method the evolving interface is explicitly represented in 
the underlying discretization at all times. Interface tracking 
method can be achieved by using any of the three frames 
involving a fixed or a moving mesh. Commonly used inter-
face tracking methods include interface embedding meth-
ods [19, 49], interface reconstruction procedures based on 
volume-of-fluid and moment-of-fluid [6, 14, 44], interface 
enrichment approaches based on XFEM [8] and methods 
using interface-fitted mesh based on the Lagrangian or an 
ALE frame [10, 11, 17, 28, 37, 51].

A major advantage of implicit interface capturing is that 
topological changes in the interface are relatively easy to 
incorporate, even when they occur frequently (e.g., a large 
number of droplets interacting with each other causing topo-
logical changes). The major drawback of implicit methods 
is the ad-hoc treatment of interface conditions as well as 
constitutive laws and equations of state in the so-called 
blending region around the interface. In contrast, interface 
tracking allows for a direct treatment of the interface physics 

 *	 Onkar Sahni 
	 sahni@rpi.edu

1	 SCOREC, RPI, 110 8th Street, Troy, NY 12180, USA
2	 Simmetrix Inc., New York, USA
3	 University of Southern California, Los Angeles, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01386-8&domain=pdf


4290	 Engineering with Computers (2022) 38:4289–4305

1 3

including discontinuities and steep normal gradients. How-
ever, topological changes are more complex to manage in 
interface tracking.

We present an interface tracking approach that employs 
an ALE frame along with an interface-fitted conforming 
hybrid/mixed mesh with anisotropic layered elements. In 
such an approach the geometry of the computational domain 
must be updated at every instance as dictated by the analysis 
to properly represent the current state of the interface in 
terms of its location, shape and topology. We note that the 
current paper does not include general topological changes. 
The additional functions needed for topological changes 
in the geometry are under development. Further, the mesh 
must also be updated at every instance to remain consistent 
with the evolving geometry (including the interface). One 
way to update the mesh is to regenerate it entirely based 
on the updated geometry. Another option is to apply local 
mesh modifications. Regenerating or modifying a mesh and 
using this altered mesh in the analysis code at each time 
step is computationally expensive (i.e., mesh regeneration 
or modification and re-initialization of data structures within 
the analysis code are time consuming). In contrast to mesh 
regeneration or modification, mesh motion can be used as 
the geometry evolves, based on the motion and deformation 
of the interface, while keeping the mesh connectivity the 
same (as well as the size of the data structures related to the 
mesh in the analysis code). Thus, mesh motion is efficient 
to use.

Several mesh motion methods have been proposed in the 
previous research, such as mesh elasticity analogy [13, 34, 

47, 52], spring analogy [4, 7, 15, 53] and target-matrix para-
digm [31].

Large motion and deformation in the geometry occur in 
many problems of interest. For example, a projectile moving 
from one end of the cannon to the other or droplets shirking 
significantly in volume due to phase change. For problems 
with large motion and deformation in the geometry, mesh 
motion alone is not sufficient while mesh regeneration or 
modification alone is computationally expensive. Thus, a 
combination of mesh motion and regeneration/modification 
is required in such problems [3, 10, 16, 21, 22, 25, 28, 33, 
37, 50].

We have developed an approach that employs a combi-
nation of mesh motion and modification (instead of mesh 
regeneration) to be efficient. In our approach, mesh motion 
is based on mesh elasticity analogy and mesh modification is 
based on local cavity-based operations (e.g., see [32, 39, 43]) 
that offers specific advantages such as local solution transfer 
and parallelization. A mesh size field (e.g., see [32]), which 
describes the desired mesh resolution over the domain, is 
used to automatically trigger and drive mesh modification. 
The mesh size field is either prescribed, computed based on 
an error estimator, or a combination of the two.

In summary, the novelty of the current approach is that 
it updates both the geometry and mesh, where the mesh is 
updated automatically such that it remains consistent with 
the evolving geometry and maintains the structure and 
resolution of the highly anisotropic layered elements. This 
paper is organized as follows. Section 2 describes the overall 
simulation workflow and components. Section 3 discusses 
the details of the geometry and mesh updates. Results and 
discussion are presented in Sect. 4. Section 5 provides clos-
ing remarks.

Fig. 1   Two examples of the evolving geometry problem with a fluid–
structure interaction and b multiphase interaction (two instances of 
time are shown in each example)

Fig. 2   Simulation components for interface tracking



4291Engineering with Computers (2022) 38:4289–4305	

1 3

2 � Overall simulation workflow

The parallel interface tracking approach developed in this 
work is based on three primary simulation components or 
libraries. These components are shown in Fig. 2 and include 
a pre-processor, a solver, and a model and mesh adaptor. 
These three components are coupled/linked using a “driver” 
code. Further, all the components operate in parallel to target 
practical problems of interest.

The pre-processor converts input data (including mesh-
related data) into a solver-suitable format and uses data 
streams to pass it to the solver. In addition to physics com-
putation, the solver includes sub-components for mesh 
motion, error estimation and mesh modification trigger (to 
indicate that the mesh topology must be modified). These 
three additional sub-components operate efficiently within 
the solver because of the direct access to the necessary data 
needed for them, especially in a parallel distributed-memory 
environment. The third component of model and mesh adap-
tor updates the geometric model, applies mesh modification 
and performs dynamic mesh partitioning to maintain parallel 
load balance. The solver uses data streams to pass the neces-
sary information to the adaptor. These data streams include: 
(1) the current interface location and mesh coordinates to 
update the shape information in the geometry and mesh, and 
(2) the mesh size and solution fields to drive mesh modifica-
tion and perform solution transfer.

Several of the sub-components have been developed in 
earlier works not involving interface tracking. For example, 
in-memory based coupling [46] is used between all com-
ponents (instead of a file-based coupling), which is crucial 
to be performant on parallel computers. The pre-processor 
and solver use data streams for in-memory coupling as men-
tioned above, while the adaptor uses well-defined functional 
interfaces (or application programming interfaces, APIs), 
see [46] for details. The solver employs an ALE finite ele-
ment formulation [54] for the physics computation, while the 
error estimation is performed using an explicit variational 
multiscale (VMS)-based error estimator [23].

In this paper, we focus our attention on new develop-
ments made related to parallel interface tracking. Details 
of the geometry and mesh updates are discussed in the next 
section, while the trigger for mesh modification along with 
the parallel programming model and mesh partition are dis-
cussed in this section.

2.1 � Trigger for mesh modification

Geometry updates in the current problems of interest only 
involve shape changes and thus, can be performed at the nec-
essary frequency (e.g., at every time step). However, mesh 
updates also include modification or connectivity changes 

that are time consuming. Thus, it is desirable to apply mesh 
modification at a lower frequency, i.e., not at every time step, 
and a mechanism is needed that can trigger mesh modifica-
tion only when necessary.

Two criteria are used to trigger mesh modification. If 
either criterion is met then mesh modification is executed. 
Both criteria rely on the mesh size field. In this study, the 
mesh size field is determined at each time step, which is 
relatively inexpensive. It is either prescribed based on the 
current state of the geometry (i.e., it evolves in time with 
the geometry), computed based on an error estimator, or a 
combination of the two.

The first criterion is based on mesh resolution and a mesh 
modification is triggered when the current mesh resolution 
is not satisfactory with respect to the mesh size field at the 
given time step. This idea has been developed before and 
commonly used in an adaptive transient simulation (e.g., see 
[38]), and we follow the same in this work.

The second criterion targets mesh quality and requires 
element shape quality to be above a threshold. Several ele-
ment shape quality measures are available in the literature. 
Note that it is necessary to use a signed quality measure such 
that any inverted/invalid element is detected by a negative 
value. In this work, we use a normalized mean ratio in the 
transformed/metric space defined by the given mesh size 
field (e.g., see [32]). It can attain a maximum value of 1 
for an element with the “best” shape (e.g., a regular tet-
rahedron). We note that any other suitable measure of the 
element shape quality can be used. Mesh modification is 
triggered when the shape quality measure for any element in 
the mesh is below the threshold value. The current procedure 
is summarized in Algorithm 1, where �M denotes the shape 
quality measure in the metric space while the subscripts e 
and 0 are used to denote an element value and the threshold 
value, respectively. For the current choice of element shape 
quality measure, 0.3 is used as the threshold value.



4292	 Engineering with Computers (2022) 38:4289–4305

1 3

2.2 � Parallel programming model and mesh 
partition

The current parallel programming model builds upon earlier 
work by extending it to include interface tracking. It relies 
on each simulation component using the same parallel mesh 
partition (e.g., see [27]) and thus, ensures that all simulation 
steps are efficiently performed in parallel. In this model, the 
mesh is partitioned into the desired number of parts and 
message passing interface (MPI) [20] is used such that each 
part is associated with a MPI rank or process. Hybrid paral-
lel programming including data parallelism will be consid-
ered in the future.

The underlying parallel mesh database provides APIs 
to query the necessary information related to the inter-part 
boundaries, specifically each mesh entity on the inter-part 
boundaries (including mesh vertices, edges and faces in 
3D) has multiple copies since it is duplicated on all resid-
ing parts. These copies are stored as remote copies in each 
residing part (e.g., see [27]). These APIs are directly used 
by the model and mesh adaptor to operate in parallel as dis-
cussed in the next section. Similarly, these APIs are used in 
the pre-processor to build parallel communication structures 
used by the solver.

In the pre-processor, owner relationship is established 
among remote copies of any given mesh entity at inter-
part boundary such that one copy is assigned as the owner 
and in-charge of communication between all the copies. In 
the solver, owner relationship is used to device a two-pass 
communication strategy to perform physics computation in 
parallel (see [40, 41] for details). Sub-components of mesh 
motion and error estimation follow the same form of par-
allel computation. This is the primary reason why these 
sub-components currently reside in the solver component. 
However, our workflow is flexible enough to accommodate 
instances when these sub-components are defined outside 
of the solver.

Parallel interface tracking is supported by imposing two 
constraints on the parallel mesh partition. These constraints 
ensure that the overall parallelization strategy and commu-
nication structures used in each component remain the same 
with and without interface tracking. The first constraint is 
applied to support parallel discontinuous interpolation/solu-
tion for physically discontinuous fields at the interface such 
as density and the normal component of velocity. The sec-
ond constraint is applied to support parallel mesh updates 
of highly anisotropic layered elements around the inter-
face. Each constraint is imposed by forming sets of related 
elements around the interface and enforcing the elements 
within any related set to be assigned to the same part dur-
ing mesh partitioning. We note that due to the locality of 
any constrained element set, the parallel load balance is not 
altered for practical problems of interest.

In the case of a discontinuous interpolation at the inter-
face, the degrees-of-freedom on each side of the interface 
are different. Any mesh face on the interface is duplicated 
into two images and each image is used by the corresponding 
mesh region (i.e., on each side of the interface). Note that 
lower dimensional mesh entities, i.e., vertices and edges, 
can have more than two images for cases involving interac-
tions between more than two materials at a physical loca-
tion. Further note that the geometric compatibility between 
all images of each mesh entity on the interface is ensured 
during mesh motion and modification, as discussed in the 
next section. The diffusive term in the current finite element 
formulation couples the degrees-of-freedom of the two mesh 
regions sharing a mesh face on the interface (see [54] for 
details). Thus, a macro element is formed based on the two 
mesh regions/elements around the interface, as shown in 
Fig. 3. Each macro element containing two mesh elements 
is defined as an element set that is constrained to be on the 
same part during parallel mesh partitioning. This ensures 
that the parallel interactions between degrees-of-freedom 
remain the same to a parallel case with no interface and thus, 
the two-pass communication strategy mentioned above is 
applicable in physics computation involving parallel inter-
face tracking.

Element sets are also defined for the highly anisotropic 
layered elements around the interface to ensure their desired 
structure, shape and resolution are maintained during mesh 
motion and modification. In this case, as shown in Fig. 3, an 
element set is defined based on a layered stack which con-
tains all the elements through the layered height/thickness. 
Layered stacks on each side of the interface are considered 
separately. Note that the parallelization details of the model 
and mesh adaptor are discussed in the next section.

In summary, two types of element sets are defined around 
the interface. One based on macro elements and the other 
based on layered stacks. An overlap can occur between 

Fig. 3   A 2D schematic showing a portion of the distributed mesh on 
three parts, P

0
 , P

1
 and P

2
 , that consist of discontinuous interpolation 

and layered elements at the interface (an artificial gap is introduced at 
the interface and inter-part boundaries for clarity)



4293Engineering with Computers (2022) 38:4289–4305	

1 3

different element sets. In such a situation, a superset contain-
ing all the relevant element sets is constructed and enforced 
to be on the same part during mesh partitioning. Note that 
the maximum possible overlap can be forced or limited to 
be local in nature such that the parallel load balance is not 
altered for practical problems of interest. For example, the 
maximum possible overlap can be forced to the most com-
mon situation which includes a macro element and two 
layered stacks from each side of the interface. This can be 
attained by a meshing process that ensures any mesh region 
around the interface only has one mesh face on the interface. 

It is also important to note that the current (two) types of ele-
ment sets provide flexibility to target a wide variety of prob-
lems. For example, some problems may not require macro 
elements (e.g., free surface problems) in which case element 
sets based on macro elements will not be present, or may not 
require layered elements (e.g., due to lack of anisotropy) in 
which case element sets based on layered stacks will not 
be present, while in a parallel setting some problems may 
not involve macro elements on some part of the interface 
and may not require layered elements on some part of the 
interface.

3 � Geometry and mesh updates

3.1 � Geometry updates

The computational domain is defined using a boundary rep-
resentation-based geometric model. Such a domain defini-
tion includes a set of topological entities, each having shape 
information associated with them. Interface motion can 
result in shape and/or topological changes in the geometry. 
As mentioned above, we currently focus on problems where 
the geometry undergoes shape changes while the topology 
remains fixed. There are two classes of shape changes. One 
class where a rigid body motion is involved. The second 
class includes arbitrary deformations.

For problems involving a rigid body motion, a para-
metric representation is employed for the geometry (i.e., 
based on a CAD system), while in cases involving arbitrary 
deformations a parametric description is not suitable and 
therefore, a discrete representation is used (e.g., based on a 
triangulation).

In the case of a parametric geometry, the update is applied 
to the relevant objects or region entities in the geometry, e.g., 
when a projectile slides through the cannon. Parallelization 

Fig. 4   Mesh motion for a translating and rotating projectile in a can-
non (half of the mesh is shown with a cut through the center plane 
and translucent cannon walls)

Fig. 5   Schematic of a growth curve Fig. 6   A partitioned growth curve



4294	 Engineering with Computers (2022) 38:4289–4305

1 3

is straightforward in this case and is achieved by storing 
the entire geometry in each MPI rank/process and updating 
the shape of the geometry in each process. We note that a 
parallel partition may be required for a parametric geometric 
model with millions of geometric entities and will be con-
sidered in the future.

For problems involving arbitrary deformations, we cur-
rently use the evolving interface mesh to define and update 
the discrete geometric representation. Parallelization is 
achieved based on the partitioning of the interface mesh. 
It is also important to note that the relation of the mesh 
entities to the geometric model entities is maintained. By 
doing this it is possible to employ methods that enrich the 
shape information for the discrete geometry beyond that 
defined by linear/straight-sided mesh facets. For example, 
methods like subdivision surfaces can potentially be used 
to account for the local curvature [50]. Shape enrichment 

is particularly useful in case of a discrete geometry when 
applying mesh modification at the interface.

Fig. 7   Mesh updates based on 
a combination of mesh motion 
and modification (including 
layered elements) for a 9-grain 
case; a cut through the mesh 
is shown along with a zoomed 
view on the right column

Fig. 8   Center plane of the 6-droplet case at the beginning



4295Engineering with Computers (2022) 38:4289–4305	

1 3

3.2 � Mesh updates

The mesh must be updated to remain consistent with the 
geometric model at every instance. In this study, the mesh 
is updated by mesh motion, or by mesh modification when 
indicated by the trigger. Mesh modification is based on 
local cavity-based operations including non-manifold 
cases and layered elements [32, 39, 42, 50]. For paral-
lel mesh modification based on local cavity-based opera-
tions see [1, 43]. For interface tracking, we employ the 
same parallel mesh modification procedures including 
at the interface. This is made possible with the two con-
straints applied on parallel mesh partition, as discussed 
in Sect. 2.2. In this paper, we focus our attention on mesh 
motion.

Mesh motion is divided into four steps each covering a 
specific set of geometric and mesh entities: moving geo-
metric entities, static geometric entities, layered elements, 
and tetrahedral elements. These steps are coupled with 
the mesh modification trigger to maintain mesh quality 
and validity, where the updated mesh is checked after 
applying all the four steps and is accepted/used only if it 
is deemed acceptable by the trigger. Otherwise the mesh 
state is reverted to the prior state (i.e., before applying 
mesh motion) and a mesh modification is triggered. Fur-
ther, parallelization in each step is achieved by moving 
together all the copies of each mesh entity at the inter-part 
boundaries, which ensures geometric compatibility at the 
inter-part boundaries. Each mesh motion step is discussed 
below.

3.2.1 � Moving geometric entities

In the present study, a certain set of geometric entities 
are attributed to undergo a motion; specifically a set of 
geometric faces, edges and vertices are allowed to move. 
The motion for these moving geometric entities is com-
puted as part of the physics computation, e.g., as part of a 
rigid body motion or of an arbitrarily deforming interface. 
Motion of each mesh entity residing on these geometric 
entities is set to be the same as that of the geometric entity. 
This motion is used as the input to drive the other three 
steps in mesh motion. We recall that for an interface sup-
porting discontinuous interpolation, all images of each 
mesh entity on the interface move together ensuring geo-
metric compatibility at the interface.

3.2.2 � Static geometric entities

Mesh motion for each mesh entity residing on the static 
geometric entities, i.e., geometric faces, edges and verti-
ces that are fixed, is computed such that the mesh entity 
is constrained to remain on the geometric entity. This is 
achieved in two steps. In the first step, we use the linear 

Fig. 9   Mesh cut (top row), and solution fields (bottom row), around one of the 6 droplets at three instances of time, t = t
0
 , t

1
 and t

2
 , where time 

t = t
0
 is near the beginning while at times t = t

1
 and t

2
 mesh modification is triggered

Fig. 10   Setup of the projectile case



4296	 Engineering with Computers (2022) 38:4289–4305

1 3

mesh elasticity analogy (including Jacobian-based stiffen-
ing [47]) to displace mesh entities without any constraints; 
given the input on mesh motion from the moving geometric 
entities discussed above. In the second step, updated loca-
tions from the first step (which can be off from the curved 
geometric entities) are projected back onto the geometric 
entities by employing a local search procedure based on 
gradient descent. The projected locations are used to move 

the mesh entities residing on the static geometric entities. 
Essentially, during mesh motion the mesh on the static geo-
metric entities is constrained to move/slide on the geom-
etry. This feature provides a great deal of flexibility in mesh 
motion and enables the use of mesh motion alone (without 
any mesh modification) for long durations. We note that in 
many problems of interest, absence of this feature may result 
in mesh modification at every time step. Figure 4 shows a 

Fig. 11   Mesh at six different instances of time (cut view)



4297Engineering with Computers (2022) 38:4289–4305	

1 3

translating and rotating projectile in a cannon. The projectile 
translates axially from the back/closed end to the open end 
by a distance approximately equal to its length. It rotates 
in the counter clockwise sense by 34.5◦ as shown by the 4 
differently colored quadrants of the projectile. For this dem-
onstration, a uniform tetrahedral mesh is used and the total 
motion is applied in about 250 steps; remarkably only mesh 
motion is used. The mesh on the projectile surface moves 
with it while the mesh on the cannon walls is constrained 
to slide on it and the interior tetrahedral volume mesh is 
free to move in all three directions as part of the fourth step 
discussed below.

3.2.3 � Layered elements

Many problems of interest exhibit relatively strong gradi-
ents in certain directions as compared with other directions, 
such as a shear layer near the wall in a viscous flow or high 
temperature variations in the normal direction at a burning 
interface. In such cases, highly anisotropic layered elements 
are desired near the appropriate boundaries/interfaces.

Pre-defined meshes with layered elements near the 
walls have been utilized in previous studies ([18, 29, 30]). 
However, a procedure is needed that tightly controls the 

anisotropic layered elements around evolving geometry enti-
ties. The current approach maintains the desired structure, 
shape and resolution of the anisotropic layered elements 

Fig. 12   Parallel mesh partition at six different instances of time (cut view)

Fig. 13   Minimum mesh quality over time (the dashed line indicates 
the threshold value that is used to trigger mesh modification and solid 
dots are used to indicate the instances when mesh modification is 
applied)



4298	 Engineering with Computers (2022) 38:4289–4305

1 3

during mesh motion. As noted earlier, mesh modification 
for layered elements is based on earlier works [39, 42, 43]. 
Mesh motion based on the linear mesh elasticity approach 
is not robust in maintaining or explicitly controlling the 

structure, shape and resolution of the anisotropic layered 
elements. Therefore, we have developed an explicit reposi-
tioning method for the layered elements that employs con-
nectivity of the growth curves. Note that mesh motion for 
the rest of the interior mesh containing tetrahedral elements 
is discussed below, while transition elements between lay-
ered and tetrahedral elements move accordingly from each 
side. This does not require any additional consideration for 
a linear/straight-sided mesh.

We first define a growth curve (see Fig. 5). It is a collec-
tion or stack of mesh edges defined along the local normal 
direction to the boundary/interface. At an interface, growth 
curves on each side are treated differently. The mesh vertex 
on the boundary/interface from which a growth curve origi-
nates is called the base vertex. The direction of a growth 
curve is called the growth direction.

Currently, a growth curve is geometrically graded and 
defined by four parameters: the first layer thickness t(1)

l
 , growth 

ratio rl , total number of layers nl and growth direction or local 
unit normal vector n . The first three parameters ( t(1)

l
 , rl , nl ) 

are either prescribed or computed adaptively [9]. The fourth 
parameter n is calculated based on the current shape of the 
evolving boundary/interface. For a given mesh vertex on the 

Fig. 14   Normalized projectile velocity with time

Fig. 15   Mach number at four different instances of time (cut view), for clarity only ambient air region is shown



4299Engineering with Computers (2022) 38:4289–4305	

1 3

boundary/interface, the local unit normal vector n is computed 
by a weighted average of the unit normal vector of mesh faces 
on the boundary/interface around this mesh vertex. In case 
of a distributed/partitioned mesh, the two-pass communica-
tion strategy (see Sect. 2.2) is used to computed the local unit 
normal vector along the growth direction.

First, the thickness of the ith layer in a growth curve is 
computed as:

Subsequently, the position of each vertex on a growth curve 
is given by:

where x is the coordinate of a vertex. The superscript (i) 
indicates it is the ith vertex on a growth curve, where i = 0 
implies the base vertex on the evolving boundary/interface.

This procedure requires the connectivity of a growth curve, 
where all the mesh vertices on each growth curve are main-
tained in a list. In case of a distributed/partitioned mesh, a 
growth curve is allowed to be at the inter-part boundary. How-
ever, the entire growth curve (or layered stack) is constrained 
to be together on any residing part(s) as discussed in Sect. 2.2 
(i.e., the list of vertices on a growth curve is complete on any 
given part). Figure 6 shows a partitioned growth curve for 

(1)t
(i)

l
= ri−1

l
t
(1)

l
= rlt

(i−1)

l
i = 2, 3,… , nl.

(2)x
(i) = x

(i−1) + t
(i)

l
n = x

(i−1) + ri−1
l

t
(1)

l
n,

mesh motion of layered elements in a distributed/partitioned 
mesh. This allows the explicit repositioning for each growth 
curve to be applied independently on each part assuming that 
the position of the base vertex and the four growth-curve 
parameters, including local unit normal vector, are available 
on each part. The position of the top most vertex in case of 
a partitioned growth curve is also ensured to be consistent 
among all residing parts by using the two-pass communication 
strategy (see Sect. 2.2).

3.2.4 � Tetrahedral elements

After applying the three mesh motion steps described above, 
all that is remaining is the mesh motion for the interior mesh 
containing tetrahedral elements. It is performed using the 
linear mesh elasticity approach including Jacobian-based 
stiffening [47]. The input to this fourth step is provided by 
the mesh motion or displacement computed in the above 
three steps.

3.3 � Summary of geometry and mesh updates

We summarize this section with a demonstration of the 
entire geometry and mesh update process. A 9-grain case is 
used where the grains translate and shrink in a closed cham-
ber. We note that the interface motion is prescribed in this 
demonstration. In Fig. 7, three meshes, including anisotropic 

Fig. 16   Numerical Schlieren at four different instances of time (cut view), for clarity only ambient air region is shown



4300	 Engineering with Computers (2022) 38:4289–4305

1 3

layered elements at the interface, are shown at two instances 
of time ( t = t0 and t1 ). Each mesh consists of about 1 million 
elements. Mesh motion is applied on the initial mesh at time 
t = t0 to obtain a mesh at time t = t1 , see Fig. 7b. In the mesh 
after motion, two aspects are important to note: (1) the struc-
ture, shape and resolution of the layered mesh is maintained, 
and (2) the elements become too distorted in between the 
grains (see the zoomed view on the right column in Fig. 7b). 
We note that the mesh motion is exaggerated in this case to 
clearly show the distorted elements. Further, a mesh modi-
fication is applied at time t = t1 to obtain a mesh with the 
desired quality, see Fig. 7c.

4 � Numerical results and discussion

Two problems that demonstrate the utility of the current 
interface tracking approach are considered. The first one 
involves 6 droplets undergoing phase change with arbitrary 
deformation. The second one includes a rigid projectile 
moving/translating down the barrel.

4.1 � Droplets with phase change

In this section, we present a problem involving 6 droplets 
undergoing phase change from denser liquid to lighter gas 
inside a chamber. In this problem, predicting the expo-
nential rise of pressure and temperature in the chamber is 
typically of interest and thus, fully 3D transient simula-
tions of phase change process is performed (see [54] for 
more details). Figure 8 shows the center plane of the prob-
lem with 6 droplets in an adiabatic cylindrical chamber 
with no-slip walls. At the beginning, each droplet is a 2 
mm long circular cylinder with hemispherical end caps of 
0.5 mm radius. The phase change rate is governed by the 
Vieille’s law:

where p+ is the pressure of the surrounding gas, while 
the exponent is set to be n = 0.7 and the pre-factor to be 
a = 7.9e − 5 m∕(sPan) . The initial pressure of the closed 
chamber is set to be 1 atm. As the droplets undergo phase 
change from denser phase to lighter phase, the pressure 

(3)up = a(p+)n,

Fig. 17   Comparison of mesh 
near the exit (cut view) with 
prescribed (upper) and error-
based (lower) mesh size fields at 
time t = 4.5 ms



4301Engineering with Computers (2022) 38:4289–4305	

1 3

increases and speeds up the phase change rate in return. 
Discontinuous interpolations are utilized at the interface to 
model the phase change. Further, layered elements are used 
on both sides of the interface.

Figure 9 shows meshes and solution fields around one of 
the droplets at three instances of time ( t = t0 , t1 and t2 ). A 
cut through the mesh is shown, where the change in drop-
let size/volume is clear between the first and last instances. 
Solution fields of velocity magnitude and temperature are 
shown, where at each instance the former is shown in the left 
half of the droplet and the latter in the right half. Time t = t0 
is near the beginning while t = t1 and t2 are instances when 
mesh modification is triggered. Thus, there are two mesh and 
solution states at times t = t1 and t2 ; one after mesh motion 
(only) and the other after mesh modification. In this case, the 
mesh size field is prescribed to be finer near the interface and 
is based on the current state of the geometry (i.e., it evolves 
in time with the geometry). Note that the structure, shape 
and resolution of the anisotropic layered elements are main-
tained during mesh motion and modification. The overall 
mesh quality is maintained to be above the threshold value 
of 0.3 based on the trigger for mesh modification discussed 

in Sect. 2.1. Further, the solution fields are well resolved, 
especially at the interface including discontinuity in the nor-
mal component of the velocity and steep normal gradient of 
the velocity and temperature fields.

4.2 � Projectile with rigid motion

A finned projectile inside a pressurized cannon is con-
sidered next. In this case, the projectile velocity and flow 
field at the exit of the cannon are of interest (e.g., to 
design a muzzle brake). Figure 10 shows the problem 
setup for this case, where high pressure and tempera-
ture is set at the left/closed end of the cannon. The high 
pressure pushes the projectile towards the open end. The 
projectile is considered to be a rigid object which is 711 
mm long and has 8 fins. It translates axially along the 
tube. The inner length of the cannon is 2000 mm, while 
its inner diameter and thickness are 120 mm and 10 mm, 
respectively. The outer boundary (not shown) is set as 
outflow and placed at a sufficiently long distance away 
from the cannon. On all the walls, no-slip and zero heat 
flux conditions are set, where no-slip condition due to 

Fig. 18   Comparison of mesh 
near the exit (cut view) with 
prescribed (upper) and error-
based (lower) mesh size fields at 
time t = 5.5 ms



4302	 Engineering with Computers (2022) 38:4289–4305

1 3

the projectile is given precedence at the contact between 
projectile and inner side of the cannon. Since we are pri-
marily interested in the projectile motion and gaseous 
flow, material inside the projectile and cannon walls are 
not included in the current simulation.

A stabilized finite element method for pressure-primitive 
variables is used along with a discontinuity capturing opera-
tor (see [54] for more details). The projectile starts at 20 mm 
from the left inner side of the cannon and moves about a dis-
tance of 1270 mm in a duration of 6 ms such that it reaches 
near the exit of the cannon. Two mesh size fields are used in 
this case. One that is prescribed to be finer near the projec-
tile and is based on the current state of the geometry (i.e., it 
evolves in time with the geometry). The other is computed 
adaptively using a VMS-based error estimator.

We first focus our attention on the geometry-based pre-
scribed mesh size field. Evolution of the geometry and mesh 
is shown in Fig. 11 at six different instances of time as the 

projectile moves from the closed end to the open end of the 
cannon. A cut through the mesh is shown. A zoomed view 
near the projectile nose is shown for all six instances at the 
top while a zoomed view near a fin is shown at the bottom. 
The mesh refinement around the projectile is maintained 
as dictated by the geometry-based prescribed mesh size 
field. Similarly, a finer mesh is maintained near the tip of 
the fins. Figure 12 shows the parallel mesh partition at the 
same instances. Here different colors indicate different parts. 
Throughout the simulation, the partitioned mesh consists of 
about 13.5 million elements in total on 256 parts.

Figure 13 shows the minimum mesh quality over time. It 
is clear that the threshold value is satisfied throughout the 
simulation. Note that the rate of mesh modification becomes 
relatively higher towards the end of the simulation, which is 
expected as the projectile reaches the exit of the cannon and 
a topological change in the geometry is imminent.

Fig. 19   Comparison of Mach 
number near the exit (cut view) 
with prescribed (upper) and 
error-based (lower) mesh size 
fields at time t = 4.5 ms



4303Engineering with Computers (2022) 38:4289–4305	

1 3

Figure 14 shows the normalized projectile velocity over 
time. The maximum projectile velocity is roughly 330 m/s, 
which is reached near the exit of the cannon.

Figures 15 and 16 show the Mach number and numerical 
Schlieren at four different instances of time. The precursor 
wave in front of projectile is clearly formed at time t = 2.5 
ms and it propagates out of the cannon by time t = 3.5 ms. 
In the later two instances of t = 4.5 ms and 5.5 ms, the bar-
rel shock is clearly formed and at the last instance a com-
plex shock structure is observed near the exit of the cannon. 
These features are common for a case with a fast moving 
projectile in a cannon.

Next we focus our attention on the simulation employing 
the error-based mesh size field. In the initial instances, the 
error-based adapted mesh is similar to the mesh based on 
the prescribed mesh size field, where some additional refine-
ments are observed near the exit of the cannon as the precur-
sor wave propagates out of the cannon (e.g., at time t = 3.5 

ms). However, with the formation of the barrel shock by time 
t = 4.5 ms and a complex shock structure by time t = 5.5 
ms, the error-based adapted mesh focuses the resolution in 
the shock regions. The total number of elements reaches a 
maximum of about 8.5 million in the error-based adapted 
mesh, while the total number of elements is about 13.5 mil-
lion elements for the mesh based on the prescribed mesh size 
field. Figures 17 and 18 show a cut view of the mesh zoomed 
near the exit of the cannon at two instances of t = 4.5 ms and 
5.5 ms. Meshes based on both types of the mesh size field 
are presented to clearly show the utility of the error-based 
mesh adaptation. Figures 19 and 20 show a zoomed view 
of the Mach number near the exit of the cannon at the same 
two instances. As expected, the complex shock structure is 
resolved crisply on the error-based adapted mesh and thus, 
leads to a higher accuracy.

Fig. 20   Comparison of Mach 
number near the exit (cut view) 
with prescribed (upper) and 
error-based (lower) mesh size 
fields at time t = 5.5 ms



4304	 Engineering with Computers (2022) 38:4289–4305

1 3

5 � Closing remarks

We presented a parallel interface tracking approach for 
evolving geometry problems. In our approach, the com-
putational domain is defined using a boundary representa-
tion-based geometric model that is updated as dictated by 
the analysis. An interface-fitted conforming hybrid/mixed 
mesh with anisotropic layered elements is used. The mesh 
is updated to be consistent with the updated geometry at 
every instance. Mesh is updated using a combination of 
mesh motion and mesh modification. Mesh modification is 
triggered automatically only when necessary. Further, during 
mesh motion and modification the desired structure, shape 
and resolution of the anisotropic layered elements at inter-
face are maintained. All steps are performed on partitioned 
meshes on distributed-memory parallel computers.

We demonstrated our approach on two problems with 
large motion or deformation in the geometry. The first 
problem involved 6 droplets undergoing phase change with 
arbitrary deformation. The second problem included a rigid 
projectile moving/translating down the cannon, where an 
error-based adapted mesh was shown to provide a highly 
accurate solution. In the future, we plan to consider topo-
logical changes in the geometry as well as hybrid parallel 
programming including data parallelism.

Acknowledgements  This work is supported by the U.S. Army Grants 
W911NF1410301 and W911NF16C0117.

References

	 1.	 Alauzet F, Li X, Seol ES, Shephard MS (2006) Parallel aniso-
tropic 3D mesh adaptation by mesh modification. Eng Comput 
21(3):247–258

	 2.	 Anderson DM, McFadden GB, Wheeler AA (1998) Diffuse-
interface methods in fluid mechanics. Annu Rev Fluid Mech 
30(1):139–165

	 3.	 Barral N, Alauzet F (2019) Three-dimensional CFD simulations 
with large displacement of the geometries using a connectivity-
change moving mesh approach. Eng Comput 35(2):397–422

	 4.	 Batina JT (1990) Unsteady Euler airfoil solutions using unstruc-
tured dynamic meshes. AIAA J 28(8):1381–1388

	 5.	 Boettinger WJ, Warren JA, Beckermann C, Karma A (2002) 
Phase-field simulation of solidification. Ann Rev Mater Res 
32(1):163–194

	 6.	 Breil J, Harribey T, Maire PH, Shashkov M (2013) A multi-mate-
rial ReALE method with MOF interface reconstruction. Comput 
Fluids 83:115–125

	 7.	 Burg C (2004) A robust unstructured grid movement strategy 
using three-dimensional torsional springs. In: 34th AIAA Fluid 
dynamics conference and exhibit, p 2529

	 8.	 Chessa J, Belytschko T (2003) An extended finite element method 
for two-phase fluids. J Appl Mech 70(1):10–17

	 9.	 Chitale KC, Sahni O, Shephard MS, Tendulkar S, Jansen KE 
(2014) Anisotropic adaptation for transonic flows with turbulent 
boundary layers. AIAA J 53(2):367–378

	10.	 Del Pino S (2011) Metric-based mesh adaptation for 2D Lagran-
gian compressible flows. J Comput Phys 230(5):1793–1821

	11.	 Dobrev VA, Kolev TV, Rieben RN (2012) High-order curvilinear 
finite element methods for Lagrangian hydrodynamics. SIAM J 
Sci Comput 34(5):B606–B641

	12.	 Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagran-
gian–Eulerian finite element method for transient dynamic 
fluid–structure interactions. Comput Methods Appl Mech Eng 
33(1–3):689–723

	13.	 Dwight RP (2009) Robust mesh deformation using the linear elas-
ticity equations. Comput Fluid Dyn 2006:401–406

	14.	 Dyadechko V, Shashkov M (2008) Reconstruction of multi-
material interfaces from moment data. J Comput Phys 
227(11):5361–5384

	15.	 Farhat C, Degand C, Koobus B, Lesoinne M (1998) Torsional 
springs for two-dimensional dynamic unstructured fluid meshes. 
Comput Methods Appl Mech Eng 163(1–4):231–245

	16.	 Fritts M, Boris J (1979) The Lagrangian solution of transient prob-
lems in hydrodynamics using a triangular mesh. J Comput Phys 
31(2):173–215

	17.	 Fyfe DE, Oran ES, Fritts M (1988) Surface tension and viscosity 
with Lagrangian hydrodynamics on a triangular mesh. J Comput 
Phys 76(2):349–384

	18.	 Garimella RV, Shephard MS (2000) Boundary layer mesh gen-
eration for viscous flow simulations. Int J Numer Methods Eng 
49(1–2):193–218

	19.	 Glimm J, Grove JW, Li XL, Km Shyue, Zeng Y, Zhang Q 
(1998) Three-dimensional front tracking. SIAM J Sci Comput 
19(3):703–727

	20.	 Gropp W, Gropp WD, Lusk ADFEE, Lusk E, Skjellum A (1999) 
Using MPI: portable parallel programming with the message-
passing interface, vol 1. MIT Press, Cambridge

	21.	 Guventurk C, Sahin M (2017) An arbitrary Lagrangian–Eulerian 
framework with exact mass conservation for the numerical simu-
lation of 2D rising bubble problem. Int J Numer Methods Eng 
112(13):2110–2134

	22.	 Hassan O, Sørensen K, Morgan K, Weatherill N (2007) A method 
for time accurate turbulent compressible fluid flow simulation 
with moving boundary components employing local remeshing. 
Int J Numer Methods Fluids 53(8):1243–1266

	23.	 Hauke G, Fuster D, Lizarraga F (2015) Variational multi-
scale a posteriori error estimation for systems: the Euler and 
Navier–Stokes equations. Comput Methods Appl Mech Eng 
283:1493–1524

	24.	 Hirt C, Amsden AA, Cook J (1974) An arbitrary Lagrangian–
Eulerian computing method for all flow speeds. J Comput Phys 
14(3):227–253

	25.	 Hu HH, Patankar NA, Zhu M (2001) Direct numerical simulations 
of fluid-solid systems using the arbitrary Lagrangian–Eulerian 
technique. J Comput Phys 169(2):427–462

	26.	 Hughes TJ, Liu WK, Zimmermann TK (1981) Lagrangian–Eule-
rian finite element formulation for incompressible viscous flows. 
Comput Methods Appl Mech Eng 29(3):329–349

	27.	 Ibanez DA, Seol ES, Smith CW, Shephard MS (2016) PUMI: 
Parallel unstructured mesh infrastructure. ACM Trans Math Softw 
42(3):17

	28.	 Ibanez DA, Love E, Voth TE, Overfelt JR, Roberts NV, Hansen 
GA (2019) Tetrahedral mesh adaptation for Lagrangian shock 
hydrodynamics. Comput Math Appl 78(2):402–416

	29.	 Ito Y, Nakahashi K (2002) Unstructured mesh generation for vis-
cous flow computations. In: IMR, pp 367–377

	30.	 Jansen KE, Shephard MS, Beall MW (2001) On anisotropic mesh 
generation and quality control in complex flow problems. In: IMR, 
Citeseer

	31.	 Knupp P (2012) Introducing the target-matrix paradigm for mesh 
optimization via node-movement. Eng Comput 28(4):419–429



4305Engineering with Computers (2022) 38:4289–4305	

1 3

	32.	 Li X, Shephard MS, Beall MW (2005) 3D anisotropic mesh adap-
tation by mesh modification. Comput Methods Appl Mech Eng 
194(48–49):4915–4950

	33.	 Loubère R, Maire PH, Shashkov M, Breil J, Galera S (2010) 
Reale: a reconnection-based arbitrary-Lagrangian–Eulerian 
method. J Comput Phys 229(12):4724–4761

	34.	 Nielsen EJ, Anderson WK (2002) Recent improvements in aero-
dynamic design optimization on unstructured meshes. AIAA J 
40(6):1155–1163

	35.	 Osher S, Fedkiw RP (2001) Level set methods: an overview and 
some recent results. J Comput Phys 169(2):463–502

	36.	 Peskin CS (2002) The immersed boundary method. Acta Numer 
11:479–517

	37.	 Quan S, Schmidt DP (2007) A moving mesh interface tracking 
method for 3D incompressible two-phase flows. J Comput Phys 
221(2):761–780

	38.	 Rodriguez JM, Sahni O, Lahey RT Jr, Jansen KE (2013) A parallel 
adaptive mesh method for the numerical simulation of multiphase 
flows. Comput Fluids 87:115–131

	39.	 Sahni O, Jansen KE, Shephard MS, Taylor CA, Beall MW (2008) 
Adaptive boundary layer meshing for viscous flow simulations. 
Eng Comput 24(3):267–285

	40.	 Sahni O, Carothers CD, Shephard MS, Jansen KE (2009) Strong 
scaling analysis of a parallel, unstructured, implicit solver and 
the influence of the operating system interference. Sci Program 
17(3):261–274

	41.	 Sahni O, Zhou M, Shephard MS, Jansen KE (2009) Scalable 
implicit finite element solver for massively parallel processing 
with demonstration to 160k cores. In: Proceedings of the confer-
ence on high performance computing networking, storage and 
analysis, IEEE, pp 1–12

	42.	 Sahni O, Luo X, Jansen K, Shephard M (2010) Curved boundary 
layer meshing for adaptive viscous flow simulations. Finite Elem 
Anal Des 46(1):132–139

	43.	 Sahni O, Ovcharenko A, Chitale KC, Jansen KE, Shephard 
MS (2017) Parallel anisotropic mesh adaptation with bound-
ary layers for automated viscous flow simulations. Eng Comput 
33(4):767–795

	44.	 Scardovelli R, Zaleski S (1999) Direct numerical simulation 
of free-surface and interfacial flow. Annu Rev Fluid Mech 
31(1):567–603

	45.	 Sethian JA, Smereka P (2003) Level set methods for fluid inter-
faces. Annu Rev Fluid Mech 35(1):341–372

	46.	 Smith CW, Granzow B, Diamond G, Ibanez D, Sahni O, Jansen 
KE, Shephard MS (2018) In-memory integration of existing soft-
ware components for parallel adaptive unstructured mesh work-
flows. Concurr Comp Pract E 30(18):e4510

	47.	 Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update 
with the solid-extension mesh moving technique. Comput Meth-
ods Appl Mech Eng 193(21–22):2019–2032

	48.	 Sussman M, Smereka P, Osher S (1994) A level set approach for 
computing solutions to incompressible two-phase flow. J Comput 
Phys 114(1):146–159

	49.	 Tryggvason G, Bunner B, Esmaeeli A, Juric D, Al-Rawahi 
N, Tauber W, Han J, Nas S, Jan YJ (2001) A front-tracking 
method for the computations of multiphase flow. J Comput Phys 
169(2):708–759

	50.	 Wan J, Kocak S, Shephard MS (2005) Automated adaptive 3D 
forming simulation processes. Eng Comput 21(1):47–75

	51.	 Welch SW (1995) Local simulation of two-phase flows includ-
ing interface tracking with mass transfer. J Comput Phys 
121(1):142–154

	52.	 Yang Z, Mavriplis DJ (2007) Mesh deformation strategy opti-
mized by the adjoint method on unstructured meshes. AIAA J 
45(12):2885–2896

	53.	 Zeng D, Ethier CR (2005) A semi-torsional spring analogy model 
for updating unstructured meshes in 3D moving domains. Finite 
Elem Anal Des 41(11):1118–1139

	54.	 Zhang Y, Chandra A, Yang F, Shams E, Sahni O, Shephard M, 
Oberai AA (2019) A locally discontinuous ALE finite element 
formulation for compressible phase change problems. J Comput 
Phys 393:438–464

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	A parallel interface tracking approach for evolving geometry problems
	Abstract
	1 Introduction
	2 Overall simulation workflow
	2.1 Trigger for mesh modification
	2.2 Parallel programming model and mesh partition

	3 Geometry and mesh updates
	3.1 Geometry updates
	3.2 Mesh updates
	3.2.1 Moving geometric entities
	3.2.2 Static geometric entities
	3.2.3 Layered elements
	3.2.4 Tetrahedral elements

	3.3 Summary of geometry and mesh updates

	4 Numerical results and discussion
	4.1 Droplets with phase change
	4.2 Projectile with rigid motion

	5 Closing remarks
	Acknowledgements 
	References




