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Abstract
In this paper, damage detection, localization and quantification are performed using modal strain energy change ratio (MSEcr) 
as damage indicator combined with a new optimization technique, namely slime mould algorithm (SMA) developed in 
2020. The SMA algorithm is employed to assess structural damage and monitor structural health. Two structures, including 
a laboratory beam and a bar planar truss are considered to study the effectiveness of the proposed approach. Another recent 
algorithm called marine predators algorithm (MPA) is also used for comparison purposes with SMA. The MSEcr is utilized 
in the first stage to predict the location of the damaged elements. Single and multiple damages cases are analysed based on 
different number of modes to study the sensitivity of the proposed indicator to the total number of modes considered in the 
analysis. Next, this indicator is used as an objective function in a second stage to solve the inverse problem using SMA and 
MPA for damage quantification of the elements identified in the first stage. Experimental validation is conducted using a 
3D frame structure with four stories that have damaged components. It is demonstrated that the proposed approach, using 
MSEcr and SMA, provides superior results for the considered structures. The effectiveness of this technique is tested by 
introducing a white Gaussian noise with different levels, namely 2% and 4%. The results show that the provided approach 
can predict the location and level of damage with high accuracy after introducing the noise.
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problem · Modal analysis · Damage assessment

 *	 Magd Abdel Wahab 
	 magd.abdelwahab@tdtu.edu.vn

	 Samir Tiachacht 
	 Samir.tiachacht@ummto.dz

	 Samir Khatir 
	 Khatir_samir@hotmail.fr

	 Cuong Le Thanh 
	 Cuong.lt@ou.edu.vn

	 Ravipudi Venkata Rao 
	 Ravipudirao@gmail.com

	 Seyedali Mirjalili 
	 Ali.mirjalili@gmail.com

1	 Laboratory of Mechanics, Structure and Energetics (LMSE), 
Mouloud Mammeri University of Tizi-Ouzou, B.P. N° 17 
RP, 15000 Tizi Ouzou, Algeria

2	 Soete Laboratory, Faculty of Engineering and Architecture, 
Ghent University, Technologiepark Zwijnaarde 903, 
9052 Zwijnaarde, Belgium

3	 Faculty of Civil Engineering, Ho Chi Minh City Open 
University, Ho Chi Minh City, Vietnam

4	 Department of Mechanical Engineering, Sardar Vallabhbhai 
National Institute of Technology, Surat, Gujarat, India

5	 Centre for Artificial Intelligence Research and Optimisation, 
Torrens University Australia, Fortitude Valley, Brisbane, 
QLD 4006, Australia

6	 Yonsei Frontier Lab, Yonsei University, Seoul, Korea
7	 Division of Computational Mechanics, Ton Duc Thang 

University, Ho Chi Minh City, Vietnam
8	 Faculty of Civil Engineering, Ton Duc Thang University, 

Ho Chi Minh City, Vietnam

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-021-01378-8&domain=pdf


S2206	 Engineering with Computers (2022) 38 (Suppl 3):S2205–S2228

1 3

1  Introduction

In all civil structure such as bridges, the protection of off-
shore and buildings is an important matter. Data focused on 
vibration analysis have gained considerable attention in the 
last 3 decades. A variety of approaches based on modal anal-
ysis was proposed in [1, 2] to predict the existing of damage. 
The most recent analysis of damage was focused on using 
modal curvature and damage indicators, which were based 
on healthy and unhealthy structures as mentioned in [3]. Ryt-
ter [4] suggested a comparison of various techniques based 
on four levels: (a) existing of damage, (b) position of dam-
age, (c) potential of damage and (d) remaining life. Yang and 
Liu [5] used residual force vector (RFV) to predict the dam-
aged elements. Three damages scenarios were considered to 
test the ability of this technique for a plane truss structure. 
Furthermore, different noise levels were introduced to test 
the effectiveness of these techniques. The damage localiza-
tion was impossible when the measured mode shape had a 
large measurement noise. The modified Cornwell indica-
tor (MCI) was improved by Tiachacht et al. [6] for solving 
damage identification in complex structures. The provided 
results showed that MCI was more accurate than CI in single 
and multiple damages. In the second stage, the authors used 
MCI as an objective function to estimate the potential of 
damage correctly.

Static and dynamic analyses of the damaged RC beams 
were developed by Capozucca [7] based on an experimen-
tal study. The beams were strengthened with near-surface 
mounted (NSM) carbon fibre reinforced polymer (CFRP) 
rods based on experimental analysis. Cha and Buyukozturk 
[8] performed structural health monitoring (SHM) based on 
mode shapes using modal strain energy indicator (MSEI) 
combined with hybrid multi-objective genetic algorithm 
(GA) for various three-dimensional steel structures. The 
investigated method could detect correctly the position and 
level of damaged elements. Khatir et al. [9, 10] used dif-
ferent optimization techniques for solving an inverse prob-
lem to predict the location and the potential of damaged 
elements in composite beams. The objective function was 
based on frequencies and mode shapes. Single and multiple 
damages scenarios were considered to test the accuracy of 
the proposed approaches. The obtained results showed that 
the provided approaches could detect correctly the position 
and level of damage. Nobahari et al. [11] presented an effi-
cient approach for multiple damages for simple and com-
plex structures. The approach introduced a flexibility strain 
energy-based index (FSEBI). The provided results showed 
that the proposed technique could detect correctly the posi-
tion of the damage. Pandey et al. [12] provided an approach 
for damage identification based on the change in the struc-
ture flexibility matrix. This technique can detect and locate 

correctly the damaged elements and was validated using 
experimental data. Three-dimensional frame structures were 
analysed using numerical methods for damage identifica-
tion using genetic algorithm (GA) as an inverse problem in 
[13]. Natural frequencies were used as an objective function 
to compare the measured and calculated values. GA could 
predict the single damage after few iterations and more than 
80 iterations for multiple damage.

Khatir et al. [14] presented an approach based on model 
reduction for crack identification in CFRP composite beam. 
The data were extracted from experimental analysis based on 
different crack configurations, i.e. position, depth and width. 
The provided results were more accurate compared with 
FEM and analytical solution. Zenzen et al. [15] presented 
a modified damage indicator based on transmissibility and 
mode shapes for a laminated composite beam and plate. The 
provided indicator can predict the position and level of dam-
age correctly. Furthermore, machine learning using ANN 
was used for damage quantification after collecting the data 
based on damage index as input and reduction in stiffness as 
output. FRF damage indicator was proposed by Hwang and 
Kim [16] to predict the position and level of damaged beam-
like structures. The FRF was used as an objective function 
with optimization technique in [17]. The results were good 
enough to predict correctly the damaged elements. Different 
applications were provided in the literature to predict the 
existence of damage in various types of structures.

Two techniques based on the changes in the mode shapes 
and mode-shape-slope parameters were investigated by Yuen 
[18]. Yang [19] used modal residual force (MRF) criteria 
and matrix disassembly technique for structural damage 
identification. Multiverse optimizer (MVO) is used to solve 
damage identification problem by Ghannadi et al. [20]. Two 
objective functions were used to solve the inverse problem 
based on the modal assurance criterion (MAC) and modi-
fied total modal assurance criterion (MTMAC). Grey wolf 
optimizer (GWO) was used for SHM of frame structures by 
Ghannadi et al. [21]. Natural frequencies and mode shapes 
were considered as an objective function to compare the 
measured and calculated values. A fixed free beam and a 
truss tower based on experimental modal analysis were used 
to validate the proposed approach. The provided results were 
accurate for different kind of structures. Khatir et al. [9, 
22–25] used different optimization techniques for damage 
identification based on inverse problem using different kinds 
of structures such as steel and composite beams and plates, 
and complex structures. Ghannadi and Kourehli [26–29] pre-
sented different techniques for structural health monitoring 
based on inverse problem and machine learning.

This paper presents a damage detection, localiza-
tion and quantification using modal strain energy change 
ratio (MSEcr) as damage indicator combined with a new 
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optimization technique, namely slime mould algorithm 
(SMA) developed in 2020 for fast prediction. The SMA 
algorithm is employed to assess structural damage and moni-
tor structural health. Two kinds of structures, including a 
laboratory beam and a bar planar truss, are considered to 
study the effectiveness of the proposed approach. Another 
recent algorithm called marine predators algorithm (MPA) 
is also used for comparison purposes with SMA.

2 � Theoretical background

In this section, the preliminaries and essential definitions 
required for this work are given.

2.1 � Modal strain energy change ratio

The reduction of stiffness with nel number of elements and 
damage parameter �i (i = 1, 2,… , nel) is presented in the fol-
lowing equation:

 where Kd is the damaged stiffness matrix, ke
i
 is the stiffness 

matrix of the ith element and �i is a damage parameter hav-
ing a value between 0 and 1; i.e. 0 for intact and 1 is fully 
damaged structure.

The modal strain energy (MSE) for undamaged and dam-
aged structures are presented in the following formulation:

where, ith is the mode number and jth is the element number. 
The superscript T denotes the vector transpose, �i is mode 
shape, h and d denote the healthy and damaged systems, 
respectively, and Kj presents the stiffness matrix. The modal 
strain energy change ratio (MSEcr) is proposed to predict the 
exact location of the damage. (MSEcr) can be written using 
the total energy in the structure, which may be determined 
by the addition of the MSE’s of all elements as follows:

where
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; MSEcrmax
ij
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2.2 � Description of slime mould algorithm

SMA is a new algorithm introduced recently by Li et al. 
[30]. The concept of this optimisation technique is based on 
the behaviour and morphological changes of slime mould in 
nature. At the same moment, the use of weights in SMA is a 
brand new concept to model the positive and negative feed-
back provided by slime moulds through foraging, thus pro-
ducing three distinct morphotypes. In this paper, structural 
damage identification is analysed based on inverse problem 
using SMA. The following mathematical formula describes 
the advancing behaviour of the slime mould:

where ���⃗vb denotes a parameter with a range of [−a, a] , t 
denotes the current iteration, ���⃗Xb presents the individual posi-
tion with the highest odour concentration currently found, ��⃗vc 
is a parameter that decreases linearly from 1 to 0, �⃗X denotes 
the location of slime mould. Two individuals are chosen 
randomly from the swarm, i.e. ���⃗XA and ���⃗XB , and ���⃗W  is the 
weight of slime mould.

The parameter p is described as follows:

where DF denotes the best fitness obtained in all iterations.
The parameter ���⃗vb is written as follows:

where ���⃗W  is described in the following formulation:

where ‘ condition ’ signifies that S(i) ranks first half of the 
population, r means the random value between [0, 1] , In the 
current iterative process, bF indicates the optimum fitness 
achieved, wF signifies the worst fitness value previously 
achieved in the iterative process, Smell Index evaluates the 

(5)�������������⃗X(t + 1) =

{
�������⃗Xb(t) +

���⃗vb ⋅
(
���⃗W ⋅ ��������⃗XA(t) −

��������⃗XB(t)
)
, r < p

��⃗vc ⋅ ������⃗X(t) r ≥ p
,

(6)
p = tanh |S(i) − DF|,

(i ∈ 1, 2,… , n), S(i) is the fitness of X⃗,

(7)���⃗vb = [−a, a],

(8)a = arctanh

(
−

(
t
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)
+ 1

)
,

(9)
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(10)Smell Index = sort(S),
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sequence of fitness values listed. Figure 1 demonstrates the 
process of possible locations in 2D and 3D.

Updating the location of slime mould can be explained 
by the following mathematical formulas:

The value of ���⃗vb oscillates randomly between [−a, a] when 
the iterations rise, it reaches zero steadily. For more details, 
the following pseudo-code describes the methodology of 
SAM.

(11)���⃗X∗ =

⎧
⎪⎪⎨⎪⎪⎩

rand ⋅ (UB − LB) + LB rand < z

�������⃗Xb(t) +
���⃗vb ⋅

�
W ⋅ ��������⃗XA(t) −

��������⃗XB(t)
�

r < p

��⃗vc ⋅ ������⃗X(t) r ≥ p

LB andUB are lower and upper boundaries

.

2.3 � Description of marine predators algorithm

This section describes MPA [31], which is a population-
based approach similar to most metaheuristics algorithms. 
During these algorithms, the initial solution is spread with 
the first analysis uniformly over the problem space, i.e.:

where Xmin and Xmax significate the lower and upper bound, 
respectively, for variables, and rand denotes a random vec-
tor [0, 1].

Top predators in nature are more proficient in finding 
food, based on the survival of the fittest principle. The fit-
test solution is, therefore, nominated to create a matrix called 

(12)X0 = Xmin + rand
(
Xmax − Xmin

)
,

Fig. 1   Possible locations in 2D 
and 3D [30]
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Elite as a top predator. Depending on the information on 
prey locations, arrays of this matrix supervise the search and 
finding of the prey.

where XI is the top predator vector and n denotes the num-
ber of search agents, while d is the number of dimensions. 
Prey is another matrix of the same dimension as Elite, and 
the predators change their positions based on it as follows:

where Xi,j denotes the jth dimension of ith prey.

(13)Elite =

⎡
⎢⎢⎢⎢⎣

XI
1,1

XI
1,2

⋯ XI
1,d

XI
2,1

XI
2,2

⋯ XI
2,d

⋮ ⋮ ⋱ ⋮

XI
n,1

XI
n,2

⋯ XI
n,d

⎤
⎥⎥⎥⎥⎦ n×d

,

(14)Prey =

⎡
⎢⎢⎢⎢⎢⎣

X1,1 X1,2 ⋯ X1,d

X2,1 X2,2 ⋯ X2,d

X3,1 X3,2 ⋯ X3,d

⋮ ⋮ ⋱ ⋮

Xn,1 Xn,2 ⋯ Xn,d

⎤
⎥⎥⎥⎥⎥⎦ n×d

,

Fig. 2   Flowchart describe the 
three phases of MPA [31]

Fig. 3   The three MPA optimization phases [31]
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The process of MPA consists of three major optimiza-
tion stages, taking into account various velocity ratios and 
simultaneously mimicking the entire life of a predator and 
prey such as:

1.	 With a high velocity ratio or when the prey runs faster 
than the predator.

2.	 Unit velocity ratio or when both predator and prey travel 
at approximately the same rate.

3.	 When the predator runs faster than the prey, at a low 
velocity ratio.

These phases are described based on the rules regulating 
the movement of predators and prey while mimicking the 
movement of predators and prey in nature. These three steps 
are demonstrated in the flowchart shown in Fig. 2.

The three stages of optimization are displayed graphi-
cally in Fig. 3. First, in phase 1 of optimization, in Brown-
ian motion, prey moves. When these preys are distributed 
equally in the search domain in the first iterations and the 
gap around predator and prey is significantly higher, Brown-
ian motion will enable preys to explore their neighbourhood 
separately, due to the good exploration of the domain.

3 � Damage detection using MSEcr

In this section, two structures are considered, namely a sim-
ply supported laboratory beam and 31 bar planar truss, to 
investigate the effectiveness and the accuracy of the damage 
indicator MSEcr.

Fig. 4   a Experimental beam and 
b configurations and boundary 
conditions [32]

(a)
Hammer  

Accelerometer

1480 mm

1 3 5 7 9 11 13 15 17 19

b = 50 mm

h = 5 mm
(b)

Cross-section area :
= × ℎ

Table 1   Comparison between numerical and experimental natural frequencies of healthy and damaged beams

Error is presented as an absolute value

Mode Experiment 
[32] (Hz)-
healthy

FEM 
(Hz)-
healthy

Error (%) Natural frequency (Hz)

Damaged-case 1 Error (%) Damaged-case 2 Error (%) Damaged-case 3 Error (%)

1 5.10 5.08 0.22 5.07 0.61 5.02 1.4 5 1.7
2 20.01 20.35 1.71 20.18 0.85 20.17 0.80 20.02 0.07

Table 2   Reduction in stiffness 
for each damage case

Case 1 Case 2 Case 3

Element no Damage rate (%) Element no Damage rate (%) Element no Damage rate (%)

5 15 4 10 3 20
– – 10 15 7 10
– – 17 10 8 5
– – – – 11 10
– – – – 18 15
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Fig. 5   Damage detection—a 
simply supported beam—case 1 ( a )
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Fig. 6   Damage detection—a 
simply supported beam—case 2
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Fig. 7   Damage detection—a 
simply supported beam—case 3 ( a )
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Fig. 8   A FEM for a 31-bar 
planar truss
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Table 3   Percentage of stiffness 
reduction of simply supported 
beam elements

Case 4 Case 5 Case 6

Element no Damage rate (%) Element no Damage rate (%) Element no Damage rate (%)

4 10 13 15 4 10
5 15 15 10 5 15
– – 16 15 13 15
– – – – 15 10
– – – – 16 15

Table 4   Natural frequencies of a 31-bar planar truss

Please note that error is presented as absolute value

Mode FEM [33] FEM (Hz) Error (%) Natural frequency (Hz)

Damaged-case 4 Error (%) Damaged-case 5 Error (%) Damaged-case 6 Error (%)

1 36.09 36.168 0.22 35.986 0.29 35.850 0.66 35.671 1.16
2 75.63 75.544 0.11 73.184 3.23 75.338 0.39 73.014 3.46
3 132.95 132.841 0.08 132.087 0.65 132.185 0.58 131.442 1.13
4 220.95 221.762 0.37 218.435 1.14 219.820 0.51 216.504 2.01

Fig. 9   Damage detection—a 
31-bar planar truss—case 4
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3.1 � A laboratory beam

First, a simply supported steel beam with rectangular cross-
section discretised in 20 elements is used with the mechani-
cal properties of E = 200 GPa and � = 7850 kg∕m3 and 
geometrical properties (L × b × h) = 1480 × 50 × 5 mm3 
as shown in Fig. 4 [32]. The frequencies are presented in 
Table 1 for healthy and damaged beams. 

Three cases are analysed to test the accuracy of the pre-
sented indicator based on multiple and single damages as 
listed in Table 2.

Three cases are considered based on multiple damages to 
study the effectiveness of MSEcr using different numbers of 
modes, e.g. 4, 8, 16 and all of them. The results are provided 
for each case in Figs. 5, 6 and 7.

Based on the presented results, MSEcr can predict cor-
rectly the location of damaged elements using different num-
bers of modes. The objective to study the effect of number 

of modes is to predict location of damaged elements and the 
speed of convergence, when SMA and MPA are used for 
damage quantification in Sect. 4.

3.2 � A 31‑bar planar truss

A simply supported plane truss structure has 31 alumin-
ium alloy bars with 9.12 m total length, 1.52 m height and 
0.0025 m2 cross-sectional area. A finite element (FE) model 
of the truss structure was built in MATLAB software. One 
element is used to simulate each bar of the truss structure 
and the total number of nodes are 14 as shown in Fig. 8. The 
mechanical properties are: Young modulus’s E = 70 GPa 
and density � = 2770 kg/m3. Three scenarios are introduced 
to the 31-bar planar truss based on single and multiple dam-
ages as illustrated in Table 3. The presented structure is 
simply supported at nodes 1 and 14. The first five natural 

Fig. 10   Damage detection—a 
31-bar planar truss—case 5

Fig. 11   Damage detection—a 
31-bar planar truss—case 6
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frequencies are listed in Table 4 for the healthy beam and 
damaged for cases 4–6.  

Three damage cases are investigated for the 31-bar planer 
truss based on single and multiple damages to analyse the 
performance of MSEcr in 2D structure using different num-
bers of modes 4, 8, 16 and all of them. The results are shown 
for each case in Figs. 9, 10 and 11.

Based on Figs. 9, 10 and 11, it can be seen that MSEcr 
predicts correctly the exact location of damaged elements 
using different number of modes. Prediction with less num-
ber of modes is analysed to estimate the position of damaged 
elements. In addition, the quantification will be predicted 
using SMA and MPA in the next section.

Fig. 12   Flowchart for MPA and 
SMA using MSEcr
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Case 1.

Case 2.

Case 3.

Fig. 13   A simply supported beam: convergence of fitness function of all cases—SMA (right) and MPA (left)

Fig. 14   A convergence study of simply supported laboratory beam—case 1
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4 � Damage quantification

Based on the previous section, the damaged elements are 
predicted correctly using MSEcr . However, the damage 
quantification will be presented in this section for all sce-
narios in both considered structures. Both SMA and MPA 
are used to solve damage quantification based on one param-
eter after detecting the location using the damage indicator, 
MSEcr . Fifty generations and 100 populations are selected 
to solve the optimization process problem for both algo-
rithms. Figure 12 describes the inverse problem using MPA 
and SMA using MSEcr as an objective function.

4.1 � Objective function

MSEcr is used as an objective function for damage quantifi-
cation to make a comparison between measured and calcu-
lated values as follows:

 where MSEcrMeasured
j

 presents the measured damage index 
and MSEcrCalculated

j
 presents the damage index of damaged 

elements calculated during the process of the optimisation 
using SMA and MPA.

4.2 � A laboratory beam

The convergence of objective function (fitness) for each sce-
nario is presented in Fig. 13, and the convergence of dam-
aged element using SMA and MPA is presented in Figs. 14, 
15 and 16. The presented results are based on the used num-
ber of modes. The fitness values for different iterations and 
different numbers of modes using SMA and MPA are sum-
marized in Table 5 for the laboratory beam.    

(15)Ob =

N∑
j=1

|||MSEcrMeasured
j

−MSEcrCalculated
j

|||,

Fig. 15   A convergence study of simply supported laboratory beam—case 2
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The first damage case is predicted after few iterations 
using both algorithms for different numbers of modes. 
For Case 2, the results can be predicted after 25 iterations 
for SMA and 35 for MPA, and for the last case using five 

damaged elements SMA can predict the results after 20 
iterations and MPA after 35. Table 6 presents the details of 
computational time taken for analysing the simply supported 
laboratory beam for different numbers of modes.

Fig. 16   A convergence study of simply supported laboratory beam—case 3
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4.3 � A 31‑bar planar truss

The convergence of the objective function (fitness) for each 
scenario of the 31-bar planar Truss is plotted in Fig. 17, 
whereas the convergence of damaged elements is presented 
in Figs. 18, 19 and 20 using different numbers of mode.

The fitness values for different iterations and different 
numbers of modes are summarized in Table 7 for the 31-bar 
planar truss.

Based on the convergence of damaged elements, case 
4 can be predicted after 10 iterations using SMA and 20 
using MPA for different numbers of modes. For Case 
5, the best convergence is achieved after 14 iterations 
for SMA compared with 25 iterations for MPA, and for 
case 6, SMA can predict the results correctly after 17 
iterations compared with 35 iterations for MPA. Table 8 

Table 5   Fitness values for different iterations and different numbers of modes for the simply supported laboratory beam using SMA and MPA

Case Number of 
mode

Optimization 
method

Iteration

1 10 20 30 40 50

 1 4 MPA 0.35 0.0015 0.000258 0.0000176 0.0000176 0.000000406
SMA 0.067 0.0259 0.000333 0.000192 0.0000418 0.0000185

8 MPA 0.26 0.00142 0.000725 0.0000469 0.000000306 0.000000306
SMA 0.0875 0.0153 0.000907 0.000177 0.0000221 0.0000039

16 MPA 0.0528 0.00699 0.000581 0.0000242 0.00000456 0.000000661
SMA 0.346 0.00673 0.000256 0.0000163 0.0000163 0.0000124

All MPA 0.00161 0.00000835 0.00000835 0.00000504 0.00000108 0.000000169
SMA 0.167 0.00365 0.000354 0.000057 0.0000501 0.00000232

 2 4 MPA 15.4 1.1 0.617 0.113 0.00932 0.0000636
SMA 8.88 1.51 0.228 0.0132 0.0132 0.00355

8 MPA 9.32 0.743 0.124 0.114 0.0049 0.0000438
SMA 11.6 1.91 0.204 0.0641 0.0291 0.00444

16 MPA 2.96 1.8 0.441 0.103 0.00292 0.000119
SMA 12.2 1.6 0.218 0.0385 0.0128 0.00203

All MPA 6.47 1.03 0.295 0.102 0.00486 0.0000532
SMA 11.5 0.383 0.185 0.0647 0.019 0.00403

 3 4 MPA 41.2 6.49 2.35 0.953 0.0525 0.00115
SMA 76.5 7.67 1.26 0.29 0.0824 0.0169

8 MPA 34.4 8.21 3.2 2.02 0.0473 0.00169
SMA 64.4 6.07 2.15 0.555 0.0794 0.0244

16 MPA 48.5 8.81 2.28 1.37 0.0337 0.000627
SMA 45.3 6.95 1.88 1.85 0.786 0.0521

All MPA 28 4.5 1.89 0.761 0.0135 0.000381
SMA 40.2 2.55 0.692 0.0997 0.0659 0.0108

Table 6   CPU time (s) for the 
simply supported laboratory 
beam

Number of 
modes

CPU time (s)

Case 1 Case 2 Case 3

MPA SMA MPA SMA MPA SMA

4 81.850142 41.151385 79.681453 42.876808 80.583801 42.497276
8 97.353196 49.820114 98.729919 50.016257 97.189691 48.983169
16 129.049458 66.315400 131.588686 65.055388 131.876821 65.233786
All 227.553167 113.670628 227.972770 112.880179 222.430493 116.339493
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presents details of computational time taken for ana-
lysing the 31 bar planar truss for different numbers of 
modes.

The provided results show that SMA has good conver-
gence compared with MPA for different scenarios and struc-
tures. Moreover, SMA requires less CPU time compared 
with MPA.

5 � Experimental validation

In this section, experimental tests of a four-story steel frame 
are used for validation of the proposed method, as illustrated 
in Fig. 21. This frame was examined in New York at Colum-
bia University. The same measurements were analysed for 

damage detection using different techniques in [21, 34]. A 
hydraulic shake table was used to excite the frame structure 
as illustrated in the bottom of Fig. 18. Piezoelectric acceler-
ometers were used to measure the structural responses. The 
positions of the sensors are shown in Fig. 21. For the geo-
metrical properties, the inter-story height is 533 mm, column 
cross-sectional dimensions are 50.8 × 9.5 mm2 and dimen-
sions of floor plate are 610 × 457 × 12.7 mm3. The structural 
elements are attached to bolts, enabling members to be eas-
ily replaced and modified. The cross-section of one column 
between the second and third floors was reduced and can 
be expressed by 66% level of damage as shown in Fig. 21.

The natural frequencies are listed in Table 9 for the 
healthy and damaged steel frames. The natural frequencies 

Case 4.

Case 5.

Case 6.

Fig. 17   A 31-bar planar truss: convergence of fitness function for all cases—SMA (right) and MPA (left)
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Fig. 18   A convergence study of 31-bar planar Truss—case 4

Fig. 19   A convergence study of 31-bar planar Truss—case 5
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Fig. 20   A convergence study of 31-bar planar Truss—case 6
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obtained from FEM and the measured ones are compared 
and minimized using the following equation:

(16)OF =
r∑

i=1

(�c
i
−�m

i )
2

(�m
i )

2 i = 1,… , r ,

where r presents the number of modes used in Eq. (16) to 
formulate the objective function. In this example, four modes 
are considered to solve the optimization problem. �m

i
 and �c

i
 

are the measured (experimental) and calculated (FE model) 
natural frequencies, respectively. The number of iterations 

Table 7   Fitness values for 
different iterations and different 
numbers of modes for the 
31-bar planar truss using SMA 
and MPA

Case Number of 
modes

Optimization 
method

Iteration

1 10 20 30 40 50

 4 4 MPA 1.48 0.579 0.18 0.117 0.0514 0.0167
SMA 5.22 1.37 0.127 0.117 0.038 0.0142

8 MPA 3.77 0.519 0.185 0.0396 0.0396 0.000694
SMA 1.57 1.57 0.447 0.067 0.0147 0.00572

16 MPA 1.41 0.346 0.0246 0.0246 0.0072 0.0072
SMA 3.92 0.9 0.375 0.0515 0.0334 0.0106

All MPA 2.12 0.36 0.0829 0.0423 0.0207 0.00967
SMA 1.89 0.642 0.0933 0.0367 0.0367 0.0112

 5 4 MPA 16.5 8.77 1.69 0.744 0.52 0.454
SMA 27.6 4.97 1.3 0.487 0.2 0.0848

8 MPA 27 9.39 5.69 0.474 0.474 0.11
SMA 22.2 5.45 0.919 0.66 0.216 0.126

16 MPA 15.3 3.52 2.16 1.59 0.411 0.277
SMA 28.6 3.94 0.762 0.54 0.136 0.0921

All MPA 5.82 1.98 1.02 0.474 0.176 0.0872
SMA 8.04 1.48 0.669 0.294 0.1 0.0695

 6 4 MPA 29.4 10.4 8.59 7.55 2.74 1.46
SMA 50.4 8.55 5.73 2.52 0.813 0.439

8 MPA 45.7 19 11.6 5.41 4.01 1.78
SMA 47.5 11.2 6.36 3.13 0.719 0.492

16 MPA 27.2 12.1 4.33 2.51 1.55 1.41
SMA 66.6 9.67 4.13 1.25 0.638 0.454

All MPA 14.1 5.37 4.63 2.38 1.71 0.899
SMA 22.9 7.05 3.17 0.663 0.334 0.272

Table 8   CPU time (s) for a 
31-bar planar Truss

Number of 
modes

CPU time (s)

Case 4 Case 5 Case 6

MPA SMA MPA SMA MPA SMA

4 119.482111 39.942704 96.161247 43.050094 132.219715 40.192145
8 118.837240 51.901754 120.973400 50.918544 123.969192 49.981278
16 179.229423 70.729241 167.421117 72.039025 178.735362 68.531608
All 207.426206 91.037447 215.329233 89.610000 233.021325 89.399593
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and population sizes are 50 and 100, respectively. The FE 
stiffness matrices for the initial model and improved model 
using SMA are presented in Eqs. 17 and 18, respectively:

The rigidity matrix, which was optimized using SMA, has 
been adopted for subsequent calculations of damage detec-
tion and quantification. The steel frame’s diagonal mass 
matrix is described as follows:

The evolutionary FE updating mechanism for the experi-
mental steel frame is shown in Fig. 22. Table 9 summarized 
the natural frequencies of an initial and improved model 
using SMA for both healthy and damaged structures.

To get the natural frequencies and mode shapes in the 
damaged state, modal analysis is also carried out. In Fig. 23, 
healthy and damaged mode shapes are shown.

From Fig. 24, it can be seen that MSEcr damage indica-
tor can estimate the location of damaged story exactly using 
different numbers of modes. In addition, SMA algorithm is 
used as an inverse problem to estimate the severity of dam-
age. The results are plotted in Fig. 25. The number of itera-
tion and population size are 50 and 100, respectively. The 
fitness values for different iterations and different numbers 
of modes are summarized in Table 10.

CPU time using different numbers of modes are presented 
in Table 11. Based on the provided results less number of 
modes can predict exactly the location of the damaged ele-
ment using damage indicator. Moreover, less CPU time is 
required to predict the potential of a damaged element using 
SMA algorithm.

(17)

Kinitial = 105 ×

⎡⎢⎢⎢⎣

3.4000 −1.7000 0 0

−1.7000 3.4000 −1.7000 0

0 −1.7000 3.4000 −1.7000

0 0 −1.7000 1.7000

⎤⎥⎥⎥⎦
(N∕m),

(18)

KSMA = 105 ×

⎡⎢⎢⎢⎣

5.1471 −3.8735 0 0

−3.8735 6.1124 −2.2389 0

0 −2.2389 4.0503 −1.8114

0 0 −1.8114 1.8114

⎤⎥⎥⎥⎦
(N∕m).

(19)M =

⎡⎢⎢⎢⎣

37 0 0 0

0 37 0 0

0 0 37 0

0 0 0 37

⎤⎥⎥⎥⎦
(kg).Fig. 21   The four-story shear-type steel frame [35]

Table 9   Natural frequencies (Hz) of the healthy and damaged steel 
frame

Mode Initial Experi-
mental 
healthy

Updated 
FEM-
SMA

Experi-
mental 
damaged

FEM damaged

1 3.747 3.902 3.902 3.856 3.856
2 10.788 10.98 10.98 10.808 10.808
3 16.528 18.645 18.645 18.327 18.327
4 20.275 26.243 26.243 25.442 25.442

Fig. 22   Evolutionary process using SMA to calibrate FEM based on 
the experimental steel frame measurements
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6 � Noise effect

To study the stability of the proposed approach, we intro-
duced white Gaussian noise with 2% and 4% in case 2 for 
a simply supported beam (using 8 modes) and case 4 for a 
31-bar planar truss (using 8 modes) using SM algorithm.

Fig. 23   Mode shapes of the 
healthy and damaged steel 
frame

Fig. 24   Damage identification based on an experimental data of the 
steel frame using MSEcr

(a)

(b)

Fig. 25   Damage detection using the experimental data of the four-
story shear-type steel frame—a convergence of fitness function and b 
Damage Index, respectively
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where � is the noise level, � is a random number in the inter-
val [−1, 1] , and �

i
 is a ith mode shape.

6.1 � A simply supported beam

Noise with 2% and 4% is considered to study the ability of 
MSEcr and SMA for case 2 using 8 modes. The provided 
results are presented in Fig. 26, and Figs. 27 and 28 present 
the fitness and damage index using SMA including noise 
with 2% and 4%. Tables 12 and 13 summarize the fitness 
and damage rate for different iterations.    

The results showed that SMA can predict the exact loca-
tion and damage level even for noise 4%.

6.2 � A 31‑bar planar truss

To test the effectiveness of MSEcr and SMA, noise with 
2% and 4% are considered for case 4 using 16 modes. The 
provided results are presented in Fig. 29, and Figs. 30 
and 31 present the fitness and Damage Index using SMA 

(20)�Noise
i

= (1 + � �)�
i
,Table 10   Fitness values for different iterations and different numbers 

of modes

Iteration Number of modes

2 3 4

SMA SMA SMA

1 1.42E−03 4.86E−04 1.32E−03
10 1.71E−04 6.24E−05 6.24E−05
20 1.22E−04 4.96E−05 6.24E−05
30 1.50E−05 4.82E−06 4.55E−06
40 5.55E−06 7.35E−07 1.79E−08
50 2.62E−07 1.98E−08 9.75E−09

Table 11   CPU time for damage 
detection in the experimental 
four stories shear-type steel 
frame

Number of 
modes

CPU time (s)
SMA

2 4.67
3 4.68
4 5.5

Fig. 26   Damage Index using 
MSEcr —a simply supported 
beam—case 2 without and with 
2%, 4% noise

Fig. 27   A simply supported 
beam: convergence of fitness 
function of case 2—SMA
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including noise 2% and 4%. Tables 14 and 15 summarize 
the fitness and damage level for different iterations.    

The results for complex 2D structure showed that SMA 
can predict the exact location and damage level even for 
noise 4%.

7 � Conclusion

This study presents an approach for structural damage 
detection, localization and quantification focused on modal 
strain energy change ratio (MSEcr) combined with SMA and 
MPA. Two structures were considered to test the accuracy 
of the proposed approach, i.e. a simply supported labora-
tory beam discretized in 20 elements and a bar planar truss 
modelled with 31 elements. In the first stage, MSEcr was 
used to predict the location of the damaged elements. Fur-
thermore, MSEcr was used as an objective function in the 
second stage using SMA and MPA for damage quantifica-
tion for the damaged elements predicted in the first stage. 
Single and multiple damages are investigated based on a 
different number of modes to study the accuracy of MSEcr. 

Fig. 28   Damage Index—a simply supported beam—case 2 without 
and with 2%, 4% noise

Table 12   Fitness values for different iterations—a simply supported 
beam using 8 modes and SMA

Iteration Without noise With 2% noise With 4% noise

1 11.5621002 0.2567113 0.21517738
10 1.91068512 0.0491728 0.04912169
20 0.2035183 0.03349931 0.02035524
30 0.06412339 0.03242559 0.0195086
40 0.0291202 0.02274178 0.0195086
50 0.00444248 0.02226342 0.0195086

Table 13   Damage Index values 
for different iterations—a 
simply supported beam using 8 
modes and SMA

Iteration 1 10 20 30 40 50

Element 4 without Noise 8.62 9.81 10.07 10.00 9.99 10.00
with 2% Noise 4.85 9.33 10.16 10.78 10.78 10.88
with 4% Noise 13.16 9.71 10.44 10.44 10.44 10.44

Element 10 without Noise 16.61 15.76 15.00 15.01 15.00 15.00
with 2% Noise 7.64 16.28 15.06 15.03 15.95 15.96
with 4% Noise 7.92 16.34 15.69 15.69 15.69 15.69

Element 17 without Noise 4.48 9.77 9.94 10.03 9.99 10.00
with 2% Noise 16.57 11.58 11.58 11.58 11.01 11.09
with 4% Noise 14.82 8.47 10.57 10.57 10.57 10.57

Fig. 29   Damage Index—a 
31-bar planar truss—case 4 
without and with 2%, 4% noise
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The experimental results demonstrated that SMA has good 
convergence performance compared with MPA for differ-
ent scenarios and structures. Moreover, SMA requires less 
CPU time compared with MPA. Furthermore, experimental 
validation was carried out using the data of a four-story steel 
frame, taken from literature. This confirms the validity and 
accuracy of the proposed methodology.

Fig. 30   A 31-bar planar truss: 
convergence of fitness function 
of case 4—SMA

Fig. 31   Damage Index—a 
31-bar planar truss—case 4 
without and with 2%, 4% noise

Table 14   Fitness values for different iterations—a 31-bar planar 
Truss using 16 modes and SMA

Iteration Without noise With 2% noise With 4% noise

1 28.6353051 0.13865182 0.27523558
10 0.76159285 0.02153109 0.03007838
20 0.13612041 0.01944276 0.02662174
30 0.08783045 0.01645665 0.00872342
40 0.02416637 0.01441887 0.00872342
50 0.00404462 0.00307027 0.00872342

Table 15   Damage Index values 
for different iterations—a 
31-bar planar truss using 16 
modes and SMA

Iteration 1 (%) 10 (%) 20 (%) 30 (%) 40 (%) 50 (%)

Element 13 Without noise 26.10 15.21 14.98 15.03 15.01 15.00
With 2% noise 19.72 13.66 13.60 13.60 16.00 15.47
With 4% noise 17.55 16.91 14.89 14.95 14.95 14.95

Element 15 Without noise 6.97 9.61 9.97 10.03 9.99 10.00
With 2% noise 7.47 9.61 9.61 9.70 9.62 10.22
With 4% noise 17.06 9.56 10.36 10.36 10.36 10.36

Element 16 Without noise 24.70 15.02 15.07 14.96 15.00 15.00
With 2% noise 12.23 13.74 13.91 14.76 14.85 15.48
With 4% noise 30.06 15.24 15.24 15.33 15.33 15.33
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