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Abstract
The paper shows how cost-reduction methods can be synergistically combined to enable high-fidelity hull-form optimization 
under stochastic conditions. Specifically, a multi-objective hull-form optimization is presented, where (a) physics-informed 
design-space dimensionality reduction, (b) adaptive metamodeling, (c) uncertainty quantification (UQ) methods, and (d) 
global multi-objective algorithm are efficiently and effectively combined to achieve high-fidelity simulation-based design 
optimization (SBDO) solutions. The application pertains to the multi-objective optimization for resistance and seakeeping 
(operational efficiency and effectiveness) of a destroyer-type vessel. Two hierarchical multi-objective SBDO problems are 
presented, with a level of complexity decreasing from the most general (stochastic sea state, heading, and speed) to the least 
general (deterministic regular wave, at fixed sea state, heading, and speed). Design-space dimensionality reduction is based 
on a generalized Karhunen-Loève expansion of the shape modification vector combined with low-fidelity-based physical 
variables. A multi-objective deterministic particle swarm optimization algorithm is applied to a stochastic radial-basis-
function metamodel that provides objective predictions. UQ methods include Gaussian quadrature and metamodel-based 
importance sampling. Numerical simulations are based on unsteady Reynolds-averaged Navier–Stokes and potential flow 
solvers. The paper shows and discusses the joint effort of computational-cost reduction methods in enabling high-fidelity 
SBDO, providing guidelines for future research directions in this area.

Keywords  Simulation-based design optimization · Stochastic optimization · Reliability-based robust design optimization · 
Physics-informed design-space dimensionality reduction · Adaptive metamodeling · Uncertainty quantification · Global 
multi-objective optimization · Computational fluid dynamics

1  Introduction

Industries along with small- and medium-sized enter-
prises (SMEs) are facing a fierce competition in envision-
ing new and highly innovative technologies and products. 
Their achievement, along with a reduction of design and 
production costs, represents an enabling factor to win the 
worldwide-market challenges. In the race for innovative 

engineering products, computer simulations are playing 
an increasingly important role in the design process. Com-
puter simulations need to address real-world problems, 
often requiring high-fidelity physics-based computational 
tools along with uncertainty quantification (UQ) methods 
able to address the unavoidable stochasticity of real-world 
applications. In this context, the simulation-based design 
(SBD) paradigm has demonstrated the capability of support-
ing the design decision process, not only providing large sets 
of design options but also exploring operational spaces by 
assessing design performance for large sets of operating and 
environmental conditions. The continuous development of 
high-performance computing systems has contributed mov-
ing the SBD paradigm toward automatic SBD optimization 
(SBDO) [15] and simulation-driven (SDD) [22] formula-
tions, where the design process is driven by optimization 
algorithms, possibly addressing conflicting design objectives 
and aiming at global solutions to the design problem. SBDO 
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has shown a great potential in the development of products 
whose performance is highly affected by shape parameters 
(e.g., aerial, waterborne, and ground vehicles, propellers, 
turbomachineries, channels, ducts, heat exchangers, mechan-
ical parts, building facades, etc.). In shape-design problems, 
SBDO consists of three main elements (see Fig. 1): (1) an 
analysis/simulation tool, (2) an optimization algorithm, and 
(3) a design/shape modification tool.

Despite the unquestionably significant achievements in 
this area, the computational cost associated with the solution 
of an SBDO relying on high-fidelity solvers still remains a 
limiting factor for a widespread use of high-fidelity SBDO 
in industries and SMEs especially. The main issues concur-
ring to the computational cost of high-fidelity SBDO may 
be summarized as follows: (a) running high-fidelity phys-
ics-based solvers is usually computationally expensive; (b) 
addressing the problem stochasticity needs UQ methods, 
which require multiple simulations spanning stochastic oper-
ating and environmental conditions; (c) finally, the identifi-
cation of optimal designs through the optimization process 
may require evaluating the performance for a large number 
of designs, especially for high-dimensional design spaces 
and global multi-objective problems. Recent methods, such 
as design-space dimensionality reduction techniques, adap-
tive metamodels, efficient UQ and global optimization meth-
ods, have been surfacing to alleviate the computational cost 
of SBDO providing the foundation for the affordability of 
high-fidelity SBDO.

The identification of global design optima is certainly a 
challenging task, especially when one deals with computa-
tionally expensive, high-dimensionality, and global multi-
objective design problems. In industrial applications, design 
objectives and constraints are often provided by black-box 
simulation tools, which usually do not provide function 
derivatives. Additionally, iterative processes within simu-
lation tools and solution residuals may affect the function 
smoothness with the unavoidable addition of noise. For this 
reason derivative-free optimization algorithms [29], such 
as evolutionary algorithms (EAs) [9] and metaheuristic 
approaches [66], are often the preferred option. In this con-
text, several derivative-free methods have been proposed to 

solve multi-objective problems, such as for instance non-
dominated sorting-III [11], dragonfly [37], salp swarm [38], 
and multi-objective particle swarm optimization (PSO) [7] 
algorithms. Most methods ensure global exploration and 
solution diversity by the use of random components. These 
require running the optimization multiple times, if one 
wants to achieve statistically significant results. This may 
not be affordable if computationally expensive simulations 
are used within SBDO. For this reason, recent research has 
focused on deterministic metaheuristic approaches, such as 
the multi-objective deterministic particle swarm optimiza-
tion (MODPSO) method [41] and its memetic variants [42].

An additional and great challenge associated with solv-
ing real-world design optimization problems stems from 
the unavoidable uncertainty associated with operating and 
environmental conditions [48]. Design objectives and con-
straints are rarely (if not never) deterministic and their sto-
chasticity must be taken into account in the SBDO process 
[61]. A case in point is given by ships and their subsystems, 
which are required to operate under a variety of operating/
sea conditions, such as speed, payload, sea state, and wave 
heading, all highly stochastic [15]. As a consequence, design 
objectives and constraints, such as resistance, seakeeping, 
and maneuverability performance are highly affected by this 
stochasticity and the design optimization problem must care-
fully consider their statistics. The accurate quantification of 
statistical indicators usually requires many function evalua-
tions and therefore efficient UQ methods are essential to the 
affordability and success of SBDO. The development and 
application of UQ methods for vehicle problems (including 
ships) were the subject of the NATO Science and Technol-
ogy Organization, Applied Vehicle Technology group AVT-
191 “Application of Sensitivity Analysis and Uncertainty 
Quantification to Military Vehicle Design” [57], where 
the computational UQ of a high-speed catamaran was per-
formed for calm water [16], regular [23], and irregular [13] 
waves. An experimental UQ was presented in [18] for vali-
dation purposes of the same model in regular and irregular 
waves. The efficiency of UQ methods is generally problem 
dependent and should be carefully assessed. For this rea-
son, the efficient integration of UQ methods within stochas-
tic design optimization procedures for air and sea vehicles 
was addressed in the NATO AVT-252 group on “Stochastic 
Design Optimization for Naval and Aero Military Vehicles” 
[54], where several UQ methods (including quadrature for-
mulas and metamodel-based methods) were compared on an 
airfoil benchmark problem [46].

Metamodels (or surrogate models) have been developed 
with the aim of reducing the computational cost of the 
optimization process and have been successfully applied 
in several engineering fields [62], including aerodynam-
ics [25] and ship hydrodynamics [31]. A metamodel emu-
lates the expensive response of some black-box function by Fig. 1   Basic SBDO scheme
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constructing a computationally inexpensive (to evaluate) 
surrogate. In metamodel-based optimization, two alterna-
tive approaches are usually followed, namely static or adap-
tive/sequential metamodeling [26]. The static approach to 
metamodeling is the most simple. An a priori design of 
experiments (DoE) provides the training set used to gener-
ate an approximate model of the original objectives and con-
straints. Efforts are then made to find the optimum/optima of 
the (static) metamodel, assuming that the optimal solutions 
of both the metamodel and the original problem are similar 
to each other [20]. In the adaptive/sequential approach, the 
search for optimal solutions is iterated over sequential meta-
models [12], where new solutions are added to the training 
set as the optimization progresses. The purpose of perform-
ing an adaptive DoE is to add training points where it is 
most useful, making the training process as efficient as pos-
sible. Examples of adaptive metamodels based on Kriging 
and stochastic radial basis function (SRBF) can be found in 
[69] and [63], respectively. In global optimization problems, 
the most effective approach to balance exploration (ensur-
ing global model accuracy) and exploitation (ensuring good 
optimization convergence) capabilities is problem dependent 
and remains an open issue [26, 56].

High-dimensional SBDO problems may be reduced 
in dimensionality using on-line and off-line design-space 
dimensionality reduction (DR) methods. On-line methods 
require the evaluation of the objective function or its gradi-
ent and are mostly based on principal component analysis 
(PCA) or proper orthogonal decomposition (POD) [47]. 
A PCA/POD-type approach is used in the active subspace 
method [33, 59] to discover and exploit low dimensional 
monotonic trends in the objective function, based on the 
evaluation of its gradient. Generally, these methods do not 
provide the assessment of the design space and associated 
shape parametrization before optimization is performed or 
objective function and/or gradient are evaluated. Further-
more they may be not convenient if gradients are not directly 
provided (i.e., in the case of black-box simulation tools), and 
their extension to global optimization is not straightforward. 
Off-line or upfront methods have been developed focusing 
on the assessment of design-space variability and the sub-
sequent DR before the optimization is performed. A method 
based on the Karhunen-Loève expansion (KLE, equivalent 
to POD) has been formulated in [14] for the assessment of 
the shape modification variability and the definition of a 
reduced-dimensionality global model of the shape modifi-
cation vector in hull form optimization. No objective func-
tion evaluation nor gradient is required by the method. The 
KLE is applied to the continuous shape modification vector, 
requiring the solution of a Fredholm integral equation of 
the second kind. Once the equation is discretized, the prob-
lem reduces to the PCA of discrete geometrical data. Off-
line methods improve the shape optimization efficiency by 

reparametrization and DR, providing the assessment of the 
design space and the shape parametrization before optimiza-
tion and/or performance analysis are carried out. The assess-
ment is based on the geometric variability associated to the 
design space, making the method computationally very effi-
cient and attractive (no simulations are required). Neverthe-
less, significant physical phenomena induced by small shape 
modifications (such as flow separations, regime transitions, 
etc.) may be overlooked as no physical information is pro-
cessed by the method. An extension of the off-line method 
to a physics-informed formulation was introduced in [17]. 
This extension improves the effectiveness of the DR, bring-
ing physics-based information into the variability breakdown 
analysis. In order to balance the DR effectiveness with the 
computational cost of the overall operation, physics-based 
information is provided by low-fidelity computations [51].

Despite the unquestionable recent developments of 
computational-cost reduction methodologies, examples 
of hull-form optimization via high-fidelity simulations 
(such as Reynolds-averaged Navier–Stokes computations, 
RANS) are still limited and focus mostly on determinis-
tic single objective problem in calm water. For instance, 
Campana et al. [4] discussed two approaches to single-
objective SBDO of the DTMB 5415 model in calm water, 
including Bezier surfaces and a CAD-based methods for 
the shape modification, coupled with genetic algorithm 
and approximation-model management. Chen et al. [5] 
presented the total resistance minimization of the Delft 
catamaran (DC) in calm water by morphing of KLE eigen-
vectors (coming from a geometry-based dimensionality 
reduction procedure), deterministic  PSO, and several 
metamodels (namely SRBF, ordinary Kriging, least-square 
support vector machine, and polyharmonic spline). Tez-
dogan et al. [58] presented the total resistance optimi-
zation of a fishing boat via arbitrary shape deformation 
(ASD) and a hybrid non linear programming via a quad-
ratic Lagrangian (NLPQL) algorithm. Zhang et al. [68] 
discussed the total resistance optimization of the DTMB 
5415 and Wigley III models via ASD, an improved PSO, 
and Elman neural networks. Coppedè et al. [8] presented 
the single-objective optimization of the KRISO contain-
ership for total-resistance reduction via a morphing tech-
nique based on the free-form deformation (FFD) method, 
a genetic algorithm, and a Gaussian process response sur-
face. Examples of multi-objective optimization are pro-
vided for instance by Yang and Huang [65], who presented 
of the total resistance optimization of the Series 60 (S60) 
hull at two speeds, using a multi-objective artificial bee 
colony algorithm with RBF approaches to both shape mod-
ification and metamodeling. Miao et al. [35] proposed a 
multi-objective total resistance optimization at two speeds 
for a S60 catamaran via FFD, NSGA-II, and Kriging. An 
example of optimization in waves can be found in [67], 
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where the DTMB 5415 and the Wigley III models were 
optimized for resistance reduction in regular head waves, 
via ASD and hybrid NLPQL. Finally, an example of multi-
objective optimization for resistance and operability sub-
ject to stochastic operations and environment, but limited 
to head waves, was presented in [15], where the DC is 
optimized via morphing of (geometry-based) KLE eigen-
vectors, MODPSO, and SRBF.

The objective of the present work is to show and dis-
cuss how a synergetic use of computational-cost reduction 
methods can enable for the solution of complex multi-
objective SBDO problems, based on high-fidelity simu-
lations. Specifically, (a) physics-informed design-space 
DR, (b) adaptive metamodel, (c) UQ methods, and (d) 
global multi-objective optimization algorithm, are com-
bined for the solution of a hull-form optimization problem 
subject to stochastic operating and environmental condi-
tions, extending earlier work [15] to variable heading and 
a more realistic scenario.

The application pertains to the multi-objective optimi-
zation of a destroyer-type vessel for resistance reduction 
and operational effectiveness (operability) improvement. 
Stochastic sea state and operations in the North Atlantic 
Ocean scenario are addressed. The parent hull is a naval 
destroyer design, namely the DTMB 5415 model, exten-
sively used as an international benchmark for computa-
tional and experimental fluid-dynamic studies [30], as well 
as for shape optimization problems [21]. Two hierarchi-
cal multi-objective SBDO problems are presented, with a 
level of complexity decreasing from the most general (sto-
chastic sea state, heading, and speed) to the least general 
(deterministic regular wave, at fixed sea state, heading, and 
speed). The design space is defined by three design vari-
ables, provided by the physics-informed DR method [51], 
based on the generalized KLE of geometric modification, 
pressure distribution, wave elevation, and wave resistance 
coefficient. Physics information is provided by (low-fidel-
ity and computationally inexpensive) potential flow solv-
ers. The optimization procedure is driven by MODPSO 
[41] on a SRBF [63] metamodel trained by unsteady 
RANS and linearized strip theory potential flow solv-
ers, for resistance and seakeeping response, respectively. 
Finally, UQ methods are applied, and include Gaussian 
quadrature and metamodel-based importance sampling.

The paper is organized as follows. The general deter-
ministic and stochastic design optimization problems 
are formulated in Sect. 2, while the computational-cost 
reduction methods are presented in Sect. 3. Details on the 
current hull-form optimization problem, simulations, and 
SBDO settings are provided in Sect. 4. Numerical results 
and discussion are shown Sects. 5 and 6. Finally, conclud-
ing remarks and future work are addressed in Sect. 7.

2 � Stochastic design optimization problem

Consider a deterministic design optimization (DDO) prob-
lem as

where � ∈ ℝ
N is the design variables vector (with N num-

ber of design variables) bound by �l and �u , � ∈ Y is the 
design parameters vector collecting those quantities that are 
independent of the designer choice (e.g., operating and envi-
ronmental conditions), fk with k = 1,… ,Nf  are the Nf  objec-
tive functions, gn with n = 1,… ,Ng are the Ng functional 
constraints, whereas hi ( i = 1,… , I ) and qj ( j = 1,… , J ) are 
the inequality and equality design constraints, respectively.

Several sources of uncertainty may affect the problem 
in Eq. (1): 

1.	 � is affected by a stochastic error/uncertainty (e.g., toler-
ance of the design variables);

2.	 � is an intrinsic stochastic random process (e.g., the 
operating and environmental conditions are defined by 
probability densities);

3.	 the evaluation of objectives fk and constraints gn is 
affected by errors stemming from modeling and/or com-
puting.

Here, the focus is on the second source of uncertainty, 
where the probability density function p associated with � 
has to be evaluated and/or given somehow. The effects of 
input uncertainties are considered evaluating the expected 
value ( � ) of the original objective function

and addressing the constraints as probabilistic inequalities 
( ℙ ) such as

The stochastic counterpart of the DDO problem in Eq. (1) 
can be then formulated as a reliability-based robust design 
optimization (RBRDO) problem as follows

(1)

minimize fk(�, �)

subject to gn(�, �) ≤ 0

and to hi(�) ≤ 0

and to qj(�) = 0

and to �l ≤ � ≤ �u,

(2)�
[
f (�, �)

]
= ∫

Y

f (�, �)p(�)d�,

(3)ℙ
[
g(�, �)

]
= �

Y

Ng⋂
n=1

[
gn(�, �) ≤ 0

]
p(�)d�.
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where P0 is a prescribed minimum reliability associated with 
the functional constraints. It may be noted that, if necessary, 
the expected value may be replaced either by the standard 
deviation or by a weighted sum of expected value and stand-
ard deviation.

Here, instead of defining an a priori value for P0 , the 
design reliability ℙ is used as a second objective function 
and the RBRDO is recast in the multi-objective problem

Once the multi-objective problem is solved and the associ-
ated set of non-dominated solutions is identified, the choice 
is left to the decision maker of the proper trade-off between 
the minimization of the objective expected value and the 
maximization of the design reliability.

(4)

minimize 𝔼
[
fk(�, �)

]
subject to ℙ

[
g(�, �)

] ≥ P0
and to hi(�) ≤ 0

and to qj(�) = 0

and to �l ≤ � ≤ �u,

(5)

minimize
{
𝔼
[
fk(�, �)

]
,−ℙ

[
g(�, �)

]}�

and to hi(�) ≤ 0

and to qj(�) = 0

and to �l ≤ � ≤ �u.

3 � Computational‑cost reduction methods

The simple SBDO scheme presented in Fig. 1 is extended 
to include computational-cost reduction methods, as shown 
in Fig. 2. Namely, the extended scheme includes: a design-
space dimensionality reduction procedure before the opti-
mization loop, UQ methods, and an adaptive metamodel to 
alleviate both UQ and global optimization procedures. More 
in details, the computational-cost reduction methods used 
in the present work (and presented in the following sub-
sections) are: (a) a physics-informed design-space dimen-
sionality reduction by a generalized KLE, (b) an adaptive 
metamodel based on SRBF, (c) Gaussian quadrature and 
metamodel-based importance sampling as UQ methods, and 
finally (d) a global multi-objective optimization algorithm 
based on a deterministic variant of PSO.

3.1 � Physic‑informed design‑space dimensionality 
reduction

Consider a geometric domain G (which identifies the initial 
or parent shape) and a set of coordinates � ∈ G ⊂ ℝ

n with 
n = 1, 2, 3 . Assume that � ∈ U ⊂ ℝ

M is the design-variable 
vector, which defines a continuous shape modification vector 
�(�, �) ∈ ℝ

m with m = 1, 2, 3 (with m not necessarily equal to 

Fig. 2   SBDO scheme using computational-cost reduction methods
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n), which maps each point to its modified counterpart. Given 
the shape modification vector, a geometry � ∈ G can be trans-
formed to a deformed geometry �� ∈ G

� (see Fig. 3) by com-
puting updated point locations

for each � ∈ G.
Consider the shape modification vector � ∈ ℝ

m1 , 
m1 = 1,… , 3 , along with a distributed physical parameter 
vector � ∈ ℝ

m2 , m2 = 1,… ,∞ (representing, e.g., velocity, 
pressure distribution, wave elevation, etc.), and a lumped (or 
global) physical parameter vector � ∈ ℝ

m3 , m3 = 1,… ,∞ 
(representing, e.g., ship resistance, motion RMS, etc.).

For the sake of simplicity, consider one set of coordi-
nates � ∈ ℝ

n , and assume G , P , and Q as the domain of � , 
� , and � , respectively, as schematized in Fig. 4. Note that 
Q has a null measure and corresponds to an arbitrary point 
�� where the lumped physical parameter vector is virtually 
defined. Also note that, in general, D ≡ G ∪ P ∪Q is not 
simply connected.

Consider a combined geometry and physics-based vector 
� ∈ ℝ

m with m = max{m1,m2,m3} , where the physics can 
be multi-disciplinary,

as belonging to a disjoint Hilbert space L2
�
(D) , defined by 

the generalized inner product

(6)��(�, �) = �(�) + �(�, �)

(7)�(�, �) =

⎧⎪⎨⎪⎩

�(�, �) if � ∈ G

�(�, �) if � ∈ P

�(�, �) if � ∈ Q

with associated norm ‖�‖ = (�, �)
1

2

� , where �(�) ∈ ℝ is an 
arbitrary weight function.

Consider � as a random variable, with associated probabil-
ity density function p(�) . This corresponds to formulating 
the optimization problem as a problem affected by epistemic 
uncertainty, in the sense that before solving the problem, the 
optimal solution is yet unknown. Once p(�) is defined, con-
sidering all possible realizations of � , the associated mean 
vector is

(8)

(�, �)� = ∫
D

�(�)�(�) ⋅ �(�)d�

= ∫
G

�(�)�(�) ⋅ �(�)d�

+ ∫
P

�(�)�(�) ⋅ �(�)d�

+ �(��)�(��) ⋅ �(��)

(9)⟨�⟩ = ∫
U

�(�, �)p(�)d�

Fig. 3   Geometry modification concept

Fig. 4   Domains for shape modification vector, distributed physical 
parameter vector, and lumped (or global) physical parameter vector in 
a disjoint Hilbert space



S2251Engineering with Computers (2022) 38 (Suppl 3):S2245–S2269	

1 3

and the associated variance (combined geometry and physics 
based variability) equals

where �̂ = � − ⟨�⟩ represent the combined geometry and 
physics based modification vector, and ⟨⋅⟩ denotes the 
ensemble average over �.

The aim of the KLE is to find an optimal basis of ortho-
normal functions for the linear representation of �̂:

where, � k is defined as

and

are the basis-function components, used hereafter as new 
(reduced) design variables.

The optimality condition associated to the KLE refers to 
the geometric and physics-based variance retained by the 
basis functions through Eq. (11). Combining Eqs. (10)–(13) 
yields

The basis retaining the maximum variance is formed by 
those � , solutions of the variational problem

which yields [14]

where L is the selfadjoint integral operator whose eigen-
solutions define the optimal basis functions for the linear 
representation of Eq. (11). Therefore, its eigenfunctions (KL 

(10)𝜎2 =
�‖�̂‖2� = ∫

U
∫
D

𝜌(�)�̂(�, �) ⋅ �̂(�, �)p(�)d�d�,

(11)�̂(�, �) ≈

N∑
k=1

xk(�)� k(�)

(12)� k(�) =

⎧⎪⎨⎪⎩

�k(�) if � ∈ G

� k(�) if � ∈ P

�k(�) if � ∈ Q

(13)xk(�) = (�̂,� k)𝜌 = ∫
D

𝜌(�)�̂(�, �) ⋅ � k(�)d�

(14)

𝜎2 =

∞∑
k=1

∞∑
j=1

⟨
xkxj

⟩
(� k,� j)𝜌

=

∞∑
j=1

⟨
x2
j

⟩
=

∞∑
j=1

⟨
(�̂,� j)

2
𝜌

⟩
.

(15)
maximize
�∈L2

𝜌
(D)

J(�) =
⟨
(�̂,� j)

2
𝜌

⟩

subject to (� ,�)2
𝜌
= 1

(16)
L�(�) = ∫

D

𝜌(��)
⟨
�̂(�, �)⊗ �̂(��, �)

⟩
�(��)d��

= 𝜆�(�),

modes) {� k}
∞
k=1

 are orthogonal and form a complete basis 
for L2

�
(D) . Additionally, it may be proven that

where the eigenvalues �k (KL values) represent the vari-
ance retained by the associated basis function � k , through 
its component xk in Eq. (11):

Finally, the solutions {� k}
∞
k=1

 of Eq. (16) are used to build 
a reduced-dimensionality design space. Defining l, with 
0 < l ≤ 1 , as the desired confidence level of the DR, N in 
Eq. (11) is selected such as

with �k ≥ �k+1 . After the design-space DR is assessed and 
performed, the geometric components {�k}

N
k=1

 of the eigen-
vectors � k in Eq. (12) are used for the new representation of 
the shape modification vector. Details with examples about 
physics-informed DR numerical implementation are given 
in [50].

It may be noted that the overall methodology is independ-
ent of the specific shape modification method, as this is seen 
as a black box in the dimensionality-reduction process.

3.2 � Adaptive metamodel (SRBF)

Consider an objective function f (�) . Let the true function 
value be known in a number NT of training points �j with 
associated objective function values f

(
�j
)
 . The metamodel 

prediction f̃ (�) is computed as the expected value of an 
RBF prediction sample (i.e., SRBF [63]) obtained consid-
ering a stochastic tuning parameter in the RBF kernel, e.g., 
� ∼ unif[1, 3]:

with

where wj are unknown coefficients, ‖ ⋅ ‖ is the Euclidean 
norm. The coefficients wj can be determined enforcing 
exact interpolation at the training points g

(
�j, �

)
= f

(
�j
)
 by 

solving

(17)�2 =

∞∑
k=1

�k,

(18)�k =
⟨
x2
k

⟩
.

(19)
N∑
k=1

�k ≥ l

∞∑
k=1

�k = l�2

(20)f̃ (�) = �
[
g(�, �)

]
�
,

(21)g(�, �) =

NT∑
j=1

wj||� − �j||� ,

(22)�� = � ,
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where � is the Gram matrix defined as �ij = ||�i − �j||� , 
� = {wj} , and � = {f

(
�j
)
}.

This ensemble of RBF provides function prediction and 
associated uncertainty, evaluated using a Monte Carlo sam-
pling over � [63]. The metamodel can be built with a rela-
tively small-size initial DoE and then dynamically updated 
by adding samples only where it is most informative, to 
improve its accuracy.

3.3 � Uncertainty quantification methods

The quantitative characterization and reduction of uncer-
tainties of the computational output is here provided by 
Gaussian quadrature and metamodel-based importance 
sampling.

3.3.1 � Gaussian quadrature

An n-point Gaussian quadrature rule is constructed to 
yield an exact result for polynomials of degree 2n − 1 (or 
lower) by a suitable choice of the points xi and weights wi 
for i = 1,… , n . The expected value of f(x) is stated as [15]

Equation (23) can be easily extended to multidimensional 
integral.

3.3.2 � Metamodel‑based importance sampling

Importance sampling is a method for estimating expec-
tation [60]. Let f (�) be a known function of a random 
variable vector � distributed according to p(�) . If it is not 
possible or convinient to draw samples from p(�) . Let q(�) 
be another distribution from which samples �i ( i = 1,… , n ) 
are drawn, then

with

Equation (24) is applied to the metamodel predictions.

3.4 � Multi‑objective optimization 
algorithm (MODPSO)

The PSO algorithm [27] belongs to the class of 
metaheuristic algorithms for single-objective derivative-
free global optimization. It is based on the social-behavior 

(23)�[f (x)] = ∫
b

a

f (x)dx ≈

n∑
i=1

wif (xi),

(24)�[f (�)] ≈

∑n

i=1
w(�i)f (�i)∑n

i=1
w(�i)

,

(25)w(�) ∶=
p(�)

q(�)
.

metaphor of a flock of birds or a swarm of bees searching 
for food. The original PSO formulation makes use of ran-
dom coefficients, to enhance the swarm dynamics and vari-
ability. This approach might be too expensive in SBDO for 
real industrial applications, since statistically convergent 
results can be obtained only through extensive numeri-
cal campaigns. Therefore a deterministic PSO has been 
introduced in [44] and a discussion for its effective and 
efficient use in SBDO, with comparison to the original 
(stochastic) PSO has been presented in [52]. The exten-
sion of deterministic PSO to a multi-objective formulation 
(MODPSO) has been proposed in [45] as follows

where �i
j
 and �i

j
 are the velocity and the position of the j-th 

particle at the i-th iteration, � is the constriction factor, �1 
and �2 are the cognitive (or personal) and social (or global) 
learning rates, and �j and �j are the cognitive and social 
(personal and global) attractors. Specifically, �j is the per-
sonal minimizer of an aggregated objective function defined 
as

where �i
p,j

 are the points of the personal non-dominated solu-
tion set Si

j
 at the i-th iteration, whereas �j is the closest point 

to the j-th particle of the global non-dominated solution set 
S
i defined as

A discussion on MODPSO formulations and parameters 
setup for an effective and efficient use in SBDO has been 
presented in [41].

4 � Hull‑form optimization problem

The DTMB 5415 is selected as test case for the current 
application. The geometry of the DTMB 5415 is shown in 
Fig. 5. Its main particulars are summarized in Table 1. Since 
no rudder is considered here, the length between perpen-
diculars Lpp is calculated from the fore perpendicular to the 
transom bottom edge.

The optimization pertains to the improvement of total 
resistance and ship operability (or operational effectiveness) 
in real ocean environment. The flow conditions are repre-
sentative of realistic operations in the North Atlantic Ocean, 

(26)

⎧
⎪⎨⎪⎩

�i+1
j

= �
�
�i
j
+ �1

�
�j − �i

j

�
+ �2

�
�j − �i

j

��

�i+1
j

= �i
j
+ �i+1

j
,

(27)�j = argmin
�p,j

M∑
m=1

fm(�p,j), with �i
p,j

∈ S
i
j
,

(28)�j = argmin
�j

‖�i
j
− �‖, with � ∈ S

i.
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considering variable speed, sea state, and heading. The fluid 
conditions for the numerical simulation are: � = 998.5 kg/m3 , 
� = 1.09E − 06 m2/s , and g = 9.8033m/s2.

4.1 � Problem statement

Two hierarchical SBDO problems are presented from the most 
general, problem 1 (RBRDO), to the least general, problem 2 
(DDO). Problem 1 and 2 details are presented in the following 
subsections.

4.1.1 � Problem 1 (RBRDO)

The following multi-objecitve RBRDO is solved:

(29)

minimize {�[R̄T(�, �)],−Ω(�)}
�

subject to Lpp(�) = Lpp0 ,

∇(�) = ∇0,

and to |ΔB(�)| ≤ 0.05B0,

|ΔT(�)| ≤ 0.05T0,

V(�) ≥ V0,

�l ≤ � ≤ �u,

with � = {U,H1∕3, Tp, �}
� , where U is the ship speed, H1∕3 

and Tp are the significant wave height and the peak period, 
respectively, and � is the ship heading (relative to the wave). 
The objectives in Eq. (29) are the expected value of the 
(model-scale) mean total resistance ( �[R̄T] ) in head waves 
( � = 0 ) at variable speed, significant wave height, and peak 
period and the (full-scale) ship operability ( � ) consider-
ing North Atlantic Ocean conditions with variable speed, 
wave height, peak period, and heading. Finally, inequality 
and equality geometrical constraints include fixed length 
between perpendiculars ( Lpp ) and displacement ( ∇ ), along 
with a ±5 % maximum variation of beam (B) and draft (T), 
respectively, and reserved volume V for the sonar in the 
dome corresponding to 4.9 m diameter and 1.7 m length 
(cylinder). Subscript ‘0’ indicates original-geometry values. 
Equality and inequality constraints for the geometry modifi-
cations are based on [21].

The objectives are described by Eqs. (30) and (31), 
respectively

Table 1   DTMB 5415 main 
particulars and fluid conditions

⋆Above the water line
†backward bow
‡above the keel

Description Symbol Unit Full scale Model scale

Displacement ∇ tonnes 8437 0.549
Length between perpendiculars Lpp m 142.0 5.720
Beam B m 18.90 0.760
Draft T m 6.160 0.248
Longitudinal center of gravity LCG m 71.60 2.884
Vertical center of gravity VCG m 1.390⋆ 0.056⋆

Bridge longitudinal location Bx m 44.00† 1.772†

Bridge vertical location Bz m 24.75‡ 0.997‡

Flight deck longitudinal location Dx m 132.0† 5.317†

Flight deck vertical location Dz m 13.00‡ 0.524‡

Roll radius of gyration Kxx – 0.40B
Pitch radius of gyration Kyy – 0.25Lpp

Yaw radius of gyration Kzz – 0.25Lpp

Fig. 5   A geosim replica of the DTMB 5415 (CNR-INSEAN model 2340)
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where p is the joint probability density function of the sto-
chastic operational and environmental parameters; SSAn 
are the single significant amplitudes, addressing subsystem 
seakeeping performance as per NATO STANAG 4154 [28]. 
These include criteria for mobility, anti-submarine warfare, 
surface warfare, anti-air warfare, imposing constraints for: 
roll motion, pitch motion, vertical acceleration at bridge, 
vertical velocity at flight deck, and wetnesses/slams/emer-
gences per hour. Here, a limited set of four constraints 
( Ng = 4 ) is considered, addressing roll and pitch motions, 
vertical velocity at the flying deck, and vertical acceleration 

(30)�[R̄T(�, �)] = ∫
Y

R̄T(�, �)p(�)d�,

(31)𝛺(�) = �
Y

Ng⋂
n=1

[
SSAn(�, �) ≤ SSA⋆

n

]
p(�)d�,

at the bridge, with maximum allowable values summarized 
in Table 2.

Stochastic optimization parameters are: speed from 18 to 30 
kn ( 0.25 ≤ Fr ≤ 0.41 ) following the transit speed–time distri-
bution (see Fig. 6), defined using the kernel density estimation 
(KDE) of 2013 data from Anderson et al. [1], approximated as

sea state from 4 to 6 following the probability of occurrence 
for North Atlantic Ocean [2] (see Fig. 6 and Table 3); head-
ing from 0 ◦ to 180◦ following a uniform distribution [28] 
(see Fig. 6).

Expected mean total resistance in irregular head waves: 
The time-average total resistance in irregular wave is evaluated 
by regular wave analysis as

where RCW is the calm-water total resistance and R̄AW is the 
added resistance, predicted from the non-dimensional added 
resistance response function ( CAW ) by

(32)p(U) = 2(−0.0063715U + 0.192915);

(33)R̄T = RCW + R̄AW,

(34)R̄AW = 2∫
+∞

0

CAWS𝜁 (𝜔e)d𝜔e,

(35)CAW =
R̄RW − RCW

𝜁2
0

,

Table 2   Subsystem seakeeping performance criteria [28]

Criterion Unit Symbol SSA⋆

Roll motion ◦ SSA1 8.0
Pitch motion ◦ SSA2 3.0
Vertical acceleration at bridge g SSA3 0.4
Vertical velocity at flight deck m/s SSA4 1.98
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Fig. 6   Stochastic parameters distribution, from left to right: speed U, sea state S, and heading �

Table 3   Annual sea state 
occurrence in the open North 
Atlantic Ocean [2]

S p̂(S) (%) p(S) (%) H1∕3 [m] p(H1∕3) (%) H̄  [m] Tp  [s] �a  [rad/s]

≤1 0.00 – 0.05 - 0.03 – –
2 7.20 – 0.30 – 0.19 7.5 0.96
3 22.4 – 0.88 – 0.55 7.5 0.96
4 28.7 45.6 1.88 36.5 1.18 8.8 0.81
5 15.5 24.6 3.25 16.4 2.04 9.7 0.74
6 18.7 29.7 5.00 14.9 3.13 12.4 0.58
7 6.10 – 7.50 – 4.70 15.0 0.48
8 1.20 – 11.5 – 7.21 16.4 0.44
> 8 < 0.05 – > 14 – > 8.77 20.0 0.36
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where �0 is the wave amplitude, �e is the wave encounter 
frequency, and S� (�e) is the encounter wave spectrum evalu-
ated from the wave spectrum S� (�) as

with g the gravity acceleration. Here, the Bretschneider 
spectrum is considered, defined by

where �p = 2�∕Tp is the peak angular frequency. Figure 7 
shows the Bretschneider spectra for sea state 4, 5, and 6 for 
the North Atlantic Ocean (see Table 3).

For the present problem, the mean total resistance 
expected value is evaluated in head waves only. Defining 
�̂ = {U,H1∕3, Tp} and combining Eqs. (33) and (34), Eq. 
(30) can be recast as

with

where H = H̄ is the average height of the Rayleigh distribu-
tion evaluated as

Operability: The operability (ship-motion  related) con-
straints are related to the SSA of roll ( ̂𝜉4 ) and pitch ( ̂𝜉5 ) 
motions, vertical velocity at the flying deck ( vD ), and vertical 

(36)S� (�e, �) = S� (�,H1∕3, Tp)
g

g + 2�U cos �
,

(37)S� (�) =
5

16

�4
p

�5
H2

1∕3
e
−5�4

p
∕4�4

,

(38)

�[R̄T(�, �̂)] = ∫
U

RCW(�,U)p(U)dU

+ 2 ∬
U,H1∕3

C(�,U,H1∕3)p(U,H1∕3)dH1∕3dU,

(39)C(�,U,H1∕3) = ∫
𝜔e

CAW(�,U,H,𝜔e)S𝜁 (𝜔e, �̂)d𝜔e

(40)H̄ =

√
𝜋

8
H1∕3.

acceleration at the bridge ( aB ). The SSA of the generic �
-motion is defined as

where m� is the spectral moment of the generic motion � . In 
a probabilistic form the spectral moment m� reads

with

where m� is the area under the encounter wave spectrum

and �� is the standard deviation (STD) or root mean suqre 
(RMS, if the signal has zero mean) of the �-motion, evalu-
ated as

Combining Eqs. (41), (42), and (43) with Eq. (31), the latter 
can be recast as

where

with

4.1.2 � Problem 2 (DDO)

Problem 2 represents the deterministic counterpart of prob-
lem 1. The following multi-objective deterministic problem 
is solved:

(41)SSA(�) = 2
√
m� ,

(42)m� = �[q(�e)] = ∫
+∞

0

q(�e)p(�e)d�e,

(43)q(�e) = m�

�2
�
(�e)

�2
0

and p(�e) =
S� (�e)

m�

,

(44)m� = ∫
+∞

−∞

S� (�e)d�e,

(45)𝜎𝜒 =

√
1

T2 − T1 ∫
T2

T1

[
𝜒(t) − 𝜒̄

]2
dt.

(46)�(�) = ∭
U,H1/3,�

B(�, �)p(U,H1/3, �)d�dH1/3dU,

(47)B(�, �) =

Ng⋂
n=1

[
SSAn(�, �) ≤ max(SSAn)

]
,

(48)

SSAn(�, �) = 2

(
∫

+∞

0

�2
n
(�,U,H, �,�e)

�2
0

S� (�e, �)d�e

) 1

2

.
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where R̄T is the mean value of the (model-scale) total resist-
ance in regular head waves at constant speed and wave 
height, whereas SMF is a seakeeping merit factor based on 
(full-scale) pitch motion, vertical velocity at flight deck, and 
vertical acceleration at bridge in head waves and roll motion 
in quartering ( � = 150◦ ) waves.

Deterministic optimization parameters are: speed equals 
to 22 kn ( Fr = 0.30 ), regular head ( � = 0◦ ) and quarter-
ing ( � = 150◦ ) waves, with H̄ = 2.04m and �a = 0.74rad/s , 
representative of sea state 5. �a is the true average fre-
quency [36] evaluated as

Mean total resistance in regular head waves: The time-aver-
age total resistance in regular wave is evaluated by

with Te the wave encounter period.
Seakeeping merit factor: The SMF is evaluated by

where wn are motion-constraint weights and �n,0 are motion-
constraint values for the parent hull. Herein, an equal weight 
of wn = 0.25 is set for n = 1,… ,Ng.

4.2 � Design‑space definition

Shape modifications are based on a recursive combination 
of M = 27 global modification functions [19] over a hyper-
rectangle embedding the demi-hull:

with i = 1,… ,M . Specifically,

where

(49)

minimize {R̄T(�), SMF(�)}�

subject to Lpp(�) = Lpp0 ,

∇(�) = ∇0,

and to |𝛥B(�)| ≤ 0.05B0,

|𝛥T(�)| ≤ 0.05T0,

V(�) ≥ V0,

�l ≤ � ≤ �u,

(50)�a =
2�

T1
, with T1 = 0.772

(
5

3

) 1

4

Tp.

(51)R̄T(�) =
1

Te ∫
Te

0

RT(�, t)dt

(52)SMF(�) =

Ng∑
n=1

wn

�n(�)

�n,0

(53)
�i(�) ∶ V = [0, L�1 ] × [0, L�2] × [0, L�3 ] ∈ ℝ

3
⟶ ℝ

3,

(54)�(�, �) = �M ,

The shape modification functions are defined as

where {aij}3j=1 ∈ ℝ define the order of the function along j-th 
axis; {rij}3j=1 ∈ ℝ are the corresponding spatial phases; 
{L�j}

3
j=1

 are the hyper-rectangle edge lengths; �q(i) is a unit 
vector. Modifications are applied along �1 , �2 , or �3 , with 
q(i) = 1, 2, or 3, respectively. The parameter values used here 
are taken from [51].

Design space used to solve the optimization problems 
is defined by the physics-informed DR method [53]. The 
design variability vector � of the DR method collects: a 
(zero-mean) shape modification vector � based on Eqs. 55, 
56; a distributed physical parameter vector � that includes 
pressure distribution on the hull p and wave elevation � ; 
and a lumped physical parameter vector � that includes 
the wave resistance coefficient in calm water Cw , and the 
RMS of vertical acceleration at the bridge az and pitch 
angle 𝜉5 in waves. Physical parameters vectors are provide 
by low-fidelity solvers (WARP and SMP), described in the 
following subsection. The design-space DR is performed 
considering multiple speeds (Fr = 0.25, 0.33, and 0.41), 
for both calm water and seakeeping performance. The lat-
ter are evaluated in head waves at sea state 5 using the 
Bretschneider spectrum.

The modified geometry is finally built from the reduced-
dimensionality space as

with

where {�k(�)}
N
k=1

 are the geometric component eigenvectors 
of Eq. (12), and −

√
3�k ≤ xk ≤ √

3�k  are the new design 
variables and their bounds.

4.3 � Hydrodynamic solvers

Characteristics and setups of the flow solvers used for the 
preliminary design-space DR and the optimization prob-
lems are described in the following.

(55)�i(�, �) = ui�i(�), with

{
� = � + �i−1
�1 = 0

(56)�i(�) ∶=

3∏
j=1

sin

(
aij��j

L�j

+ rij

)
�q(i),

(57)��(�, �) = �(�) + �̂(�, �)

(58)�̂(�, �) =

N∑
k=1

xk(�)�k(�),
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4.3.1 � Unsteady Reynolds‑averaged Navier–Stokes (URANS) 
solver

The URANS code CFDShip-Iowa [24] is used as high-fidel-
ity solver for the evaluation of the ship resistance in regular 
waves. CFDShip-Iowa V4.5 is an incompressible RANS/
DES code, developed at the University of Iowa (IIHR-
Hydroscience and Engineering) over the past 30 years, spe-
cifically designed for ship hydrodynamics. The equations 
are solved in an inertial coordinate system, either fixed to a 
ship or other frame moving at constant speed or in the earth 
system. The free-surface is modeled with a single-phase cap-
turing approach, meaning that only the water flow is solved, 
enforcing kinematic and dynamic free-surface boundary 
conditions on the interfaces. Arbitrary free-surface topolo-
gies can be predicted, with the limitation that pressurized 
closed air/water packets (bubbles) cannot be simulated. It 
uses structured multiblock grids, and has overset capabili-
ties. Capabilities include 6DoF motions, several turbulence 
models, moving control surfaces, multi-objects, advanced 
controllers, propulsion models, incoming waves and winds, 
bubbly flow, and fluid–structure interaction [39]. 

In the present study, the URANS equations are solved in 
the ship coordinate system. The turbulence is computed by 
the isotropic Menter’s blended k − �∕k − � (BKW) model 
with shear stress transport (SST). A second-order upwind 
scheme is used to discretize the convective terms of momen-
tum equations. Pressure implicit with splitting of operators 
(PISO) loop for pressure/velocity coupling is used. For a 
high-performance parallel computing, an MPI-based domain 
decomposition approach is used, where each decomposed 
block is mapped to one processor. The code SUGGAR runs 
as a separate process from the flow solver to compute inter-
polation coefficients for the overset grid, which enables 
CFDShip-Iowa to take care of 6DoF with a motion control-
ler at every time step. Simulations are performed for the 

right demi-hull for both calm-water and head waves, taking 
advantage of symmetry about the xz-plane (see Fig. 8).

Figure 8 shows the boundary conditions for calm water/
regular wave URANS simulations. The computational 
domain is composed by a background and a boundary 
layer volume grid. The background is defined within 0.5Lpp 
upstream, 2Lpp downstream, 2Lpp sideways, 1.7Lpp and 0.3Lpp 
below and above the waterline, respectively. One volume 
grid triplet (G1, G2, and G3) is used for calm-water and 
regular head waves grid verification, with a refinement ratio 
equal to 

√
2 , as summarized in Table 4. The boundary layer 

volume grid is designed to have 0.3 ≤ y+ ≤ 0.5 in the range 
0.25 ≤ Fr ≤ 0.41 , avoiding the use of wall functions, since 
y+ is in the viscous sub-layer. The computational domain and 
G1 grids are shown in Fig. 9.

The verification and validation of the URANS simula-
tions for the original model scale hull in calm water are 
shown in Fig. 10 (left side) versus the experimental fluid 
dynamic (EFD) data collected at CNR-INM [40], showing 
a good agreement. Error bars indicate the grid convergence 
index uncertainty ( UGCI ), evaluated using the factor of safety 
method [64]. Total resistance coefficient, sinkage, trim, and 
total resistance are found monotonic convergent.

The verification of the URANS simulations for the origi-
nal model-scale hull in regular head wave, under the DDO 
problem conditions, is shown in Fig. 10 (right side). The 
results are found monotonic convergent for the total resist-
ance mean value and the deck vertical velocity standard 
deviation, whereas the pitch and the bridge vertical accel-
eration are oscillatory convergent. 

4.3.2 � Potential flow solvers

The WAve Resistance Program (WARP) is a linear potential 
flow code developed at CNR-INM. Herein, WARP is used 
for the evaluation of the calm-water performance for the off-
line assessment and dimensionality reduction of the original 

Fig. 8   Summary of boundary conditions for calm water/regular head wave simulations by CFDShip-Iowa
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design space (see top-left block in Fig. 2). Wave resistance 
computations are based on the Dawson (double-model) lin-
earization [10]. The wave resistance is evaluated with the 
pressure integral over the body surface, whereas the fric-
tional resistance is estimated using a flat-plate approxima-
tion, based on the local Reynolds number [49]. The steady 
2DoF (sinkage and trim) equilibrium is achieved by iteration 
of the flow solver and the rigid-body equation of motion. 
Details of equations, numerical implementations, and valida-
tion of the numerical solver are given in [3].

Calm-water potential flow simulations are performed for 
the right demi hull (composed by 90 × 25 grid nodes), tak-
ing advantage of symmetry about the xz-plane. The compu-
tational domain for the free-surface is defined within 1Lpp 
upstream, 3Lpp downstream, and 1.5Lpp sideways, for a total 
of 75 × 20 grid nodes. The computational domain and grids 
(totally 3.9k nodes) are shown in Fig. 11.

Seakeeping performance are evaluated by the Standard 
Ship Motion program (SMP), developed at the David Taylor 
Naval Ship Research and Development Center [34]. SMP 
provides a potential flow solution based on linearized strip 
theory. The 6DoF response of the ship is given, advancing at 
constant forward speed with arbitrary heading in both regu-
lar waves and irregular seas, as well as the longitudinal, lat-
eral, and vertical responses at specified locations of the ship.

Fig. 9   Computational volume grid used for URANS equations solu-
tion (CFDShip-Iowa)
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grid in regular wave at deterministic conditions
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Linearized strip theory potential flow simulations are per-
formed for the right demi hull, taking advantage of symme-
try about the xz-plane. The computational strips are shown 
in Fig. 12, each one is discretized with uniformly distributed 
nodes along the strip curvilinear coordinate. One grid (strips 
and nodes) triplet (G1, G2, and G3) is used for the seakeep-
ing verification, with a refinement ratio equal to 

√
2 , as sum-

marized in Table 5.
The solver validation versus the EFD data collected at the 

IIHR [32] is depicted in Fig. 13, showing a reasonable agree-
ment. Moreover, Fig. 14 compares heave and pitch response 
amplitude operator obtained by SMP and CFDShip-Iowa for 

the deterministic regular head wave. Linearized strip theory 
and URANS are almost coincident. This justifies the use 
of SMP for the evaluation of the seakeeping performance 
into the optimization procedure, presented in the following 
subsections.

4.4 � Stochastic radial‑basis function setup

SRBF metamodel prediction is given as the expectation of 
100 RBF metamodels with a power law kernel and stochastic 
kernel parameter � ∼ unif[1, 3].

A full-factorial combination of NT = 3N training points is 
used as initial DoE for the design-variable space. The DoE is 
then updated adding selected Pareto solutions of the multi-
objective optimization problems until convergence.

4.5 � Uncertainty quantification setup

UQ method setups for the solution of problems 1 and 2 are 
described in the following subsections.

4.5.1 � Gaussian quadrature for resistance expectation

Gauss–Legendre quadrature with n = 2 for each stochastic 
variable (weights wi = 1 and Gauss points x1,2 = ±1∕

√
3 , in 

normalized coordinates) is used to approximate Eq. (38) as

with

The corresponding Gauss points selected for the URANS 
simulations are summarized in Table 6.

(59)

�
[
R̄T(�, �̂)

]
≈

Uu − Ul

2

n∑
i=1

RCW(�,Ui)p(Ui)

+

(
Uu − Ul

)(
Hu

1∕3
− Hl

1∕3

)

4

⋅

n∑
i=1

n∑
j=1

R̄AW

(
�,Ui,H1∕3,j

)
p
(
Ui,H1∕3,j

)

(60)

R̄AW

(
�,Ui,H1∕3,j

)

≈
(
𝜔u
e,ij

− 𝜔l
e,ij

) n∑
k=1

CAW(�,Ui, H̄j,𝜔e,ijk)S𝜁 ,ijk.

Table 4   Volume grids used for URANS simulations verification and 
validation

⋆Refinement ratio

Grid r⋆  ratio Background Boundary layer Total (M)

G1
√
2 300 × 100 × 150 243 × 71 × 115 6.5

G2 212 × 71 × 106 172 × 50 × 81 2.3
G3 150 × 50 × 75 122 × 36 × 58 0.8

Fig. 11   Computational grids used by the potential flow code for the 
physics-informed DR method

Fig. 12   Computational strip used for linear strip theory and physics-
informed DR analysis

Table 5   Strips used for seakeeping verification and validation and 
physics-informed DR simulations

Grid Refinement ratio Strips Nodes Total

G1
√
2 31 10 310

G2 22 7 154
G3 16 5 84
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4.5.2 � Metamodel‑based importance sampling 
for operability

A SRBF metamodel is also used for the prediction of the 
motions SSA ( ̃SSA ) and defined as the expected value of 
100 RBF metamodels. The motion constraints are evalu-
ated by SMP at the training point, given by the full facto-
rial combination of speeds (uniformly distributed from 18 

to 30 kn every 2 knots), significant wave heights equal to 
1.88, 3.25, and 5.00 m, and heading spanning from head 
( � = 0◦ ) to following ( � = 180◦ ) waves every 2 ◦ , for a total 
of NT = 273.

The operability (Eq. 46) is evaluated by importance 
sampling and a uniform distribution of items using the 
SRBF prediction as
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Fig. 13   Seakeeping SMP full scale validation in head waves, in terms of heave ( ̂𝜉3 ) and pitch ( ̂𝜉5 ) motion transfer functions versus EFD data: 
(left) 20 kn, Fr = 0.28; (right) 30 kn, Fr = 0.41

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

|ξ
3/
A
|[
−
]

SMP CFDShip− Iowa

0 2 4 6 8 10
ωe Lpp/g [−]

−π

−π/2
0

π/2
π

φ
(ξ

3)
[r
ad

]

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

|ξ
5/
k
A
|[
−
]

SMP CFDShip− Iowa

0 2 4 6 8 10
ωe Lpp/g [−]

−π

−π/2
0

π/2
π

φ
(ξ

5)
[−

]

Fig. 14   Comparison of CFDShip-Iowa and SMP on motion transfer functions amplitude and phase for the original DTMB 5415 at 22kn 
( Fr = 0.30 ): (left) heave; (right) pitch



S2261Engineering with Computers (2022) 38 (Suppl 3):S2245–S2269	

1 3

with

where NU = NH1∕3
= N� = 25.

4.6 � Multi‑objective deterministic particle swarm 
optimization setup

A memory-based formulation of MODPSO is used. The 
suggested optimal parameter setup proposed in [41] is 
used: eight particles times the number of variables times 
the number of objectives; particle initialization with Ham-
mersley sequence sampling distribution on domain and 
bounds with non-null velocity [5]; set of coefficients pro-
posed in [6], i.e., � = 0.721 , c1 = c2 = 1.655 ; semi-elastic 
wall-type approach [55] for box constraints. A linear pen-
alty function is used for the designs exceeding the inequal-
ity constraints, fm(�, �) = fm(�, �) + 100

∑I

i=1
max {0, hi} . 

Equality constraints are satisfied by automatic geometry 
scaling. A limit to the number of problem evaluations is 
set equal to 9000, where one problem evaluation collects 
the evaluation of each objective function. Optimization 
is performed on the metamodel.

The current MODPSO code is available at https://​
www.​github.​com/​MAORG-​CNR-​INM/​POT.

(61)�(�) ≈
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�

(62)SSAijk(�) =

Ng⋂
n=1

[S̃SAn(�,Ui,H1∕3,j, �k) ≤ max(SSAn)],

5 � Numerical results

Preliminary design-space assessment and dimensionality 
reduction results and multi-objective hull-form optimization 
outcomesare presented in the following subsection.

5.1 � Design‑space dimensionality reduction

For the current analysis, vectors are normalized so as the 
variance associated to geometry, distributed and lumped 
physics parameters is the same (namely, it equals 1). This is 
a standard approach in machine learning and is done with 
the evident purpose of properly combining in the data matrix 
heterogeneous variables, without introducing a bias in favor 
of any of the quantities under investigation. The normaliza-
tion also allows for properly assessing small geometric vari-
ations that produce large effects on the physical variables. 
Finally, hull grid nodes below the water line have a weight 
�(�) = 1 , the others �(�) = 0.

Figure 15 shows the KLE results in terms of design vari-
ability associated with a reduced-dimensionality space of 
dimension N for S = 2250 , 4500, and 9000 samples. The 
results are found convergent versus S. The choice of the 
proper design-space dimensionality is certainly a criti-
cal factor to the success of the shape optimization proce-
dure. It may be noted that the definition of the initial shape 
parameterization can include a large number of design vari-
ables and a large variability associated to each variable. 
The design-space dimensionality reduction is then used 
to select the most convenient (or reasonable) compromise 
between design-space dimensionality and associated vari-
ability. In this regard, one may say that all choices given by 
the KLE are to some extent optimal in the Pareto sense (as 
they minimize the dimensionality while maximize the vari-
ability). Here, the following trade-off between design-space 
dimensionality and variability has been selected. Namely, 
the RBRDO (problem 1) and DDO (problem 2) are solved 

Table 6   Stochastic variables 
used as Gauss points for the 
solution of problem 1 (RBRDO)

Gauss index Speed Sea state

i j k U [kn] Fr [−] Re [−] H1∕3 [m] H̄ [m] Tp(H1∕3) [s] � [rad/s] �e [rad/s]

1 1 1 20.5 0.283 1.11E+7 2.254 1.412 8.80 0.500 0.769
1 1 2 20.5 0.283 1.11E+7 2.254 1.412 8.80 0.770 1.389
1 2 1 20.5 0.283 1.11E+7 4.996 3.131 12.4 0.390 0.611
1 2 2 20.5 0.283 1.11E+7 4.996 3.131 12.4 0.670 1.268
2 1 1 27.5 0.379 1.49E+7 2.254 1.412 8.80 0.560 0.890
2 1 2 27.5 0.379 1.49E+7 2.254 1.412 8.80 0.780 1.410
2 2 1 27.5 0.379 1.49E+7 4.996 3.131 12.4 0.405 0.632
2 2 2 27.5 0.379 1.49E+7 4.996 3.131 12.4 0.710 1.425

https://www.github.com/MAORG-CNR-INM/POT
https://www.github.com/MAORG-CNR-INM/POT
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using the first three reduced variables, which resolve about 
the 65% of the original design variability (see Fig. 15). The 
corresponding eigenvectors are shown in Fig.  16 (left), 
where the magnitude of the geometric eigenvector compo-
nent is depicted, showing the corresponding shape modifi-
cation. Furthermore, Fig. 16 (right) shows the eigenvectors 
obtained using a design-space dimensionality reduction pro-
cedure based only on geometrical information [14]. It can be 
noted how the use of physical information affects the shape 
of the eigenvector geometric component, producing sensibly 
different reduced-design spaces [17].  

5.2 � Optimization problems

Optimization results of the RBRDO problem and its deter-
ministic counterpart (DDO) are presented in the following 
subsections. Table 7 summarizes the problems statements.

A preliminary sensitivity analysis is performed for both 
RBRDO and DDO problems. Irregular wave total resist-
ance expected value and operability are shown in Fig. 17. 
Regular wave total resistance and seakeeping merit factor 
are shown in Fig. 18. RBRDO and DDO problems show 
potential improvements for both the objectives, even if the 
objectives are found conflicting. 

5.2.1 � Problem 1 (RBRDO)

Figure 19 (top) shows the non-dominated solutions set pro-
vided by the optimization algorithm in solving Eq. (29). No 
compromise solutions (capable of improving both the objec-
tive) are found, since the objective are completely conflict-
ing. Two designs optima are identified at the extrema (A and 
B) of the non-dominated solutions set and the corresponding 
hull stations are shown in Fig. 19 (bottom). Total resistance 
expected value and operability improvement verification 
(by CFDShip-Iowa and SMP simulations, respectively) are 
shown in Fig. 20: design A provides about 3% improve-
ment of the irregular wave total resistance expected value 
with about 4.8% operability worsening; design B shows 19% 
worsening of the irregular wave total resistance expected 
value and about 7.5% operability improvement.

5.2.2 � Problem 2 (DDO)

Figure 21 (top) shows the non-dominated solutions set pro-
vided by the optimization algorithm in solving Eq. (49). 
As for the RBRDO, no compromise solutions (capable 
of improving both the objective) are found. Two designs 
optima are identified at the extrema (A and B) of the 

Table 7   Problem statements summary

Problem Objectives (symbol) Flow model (solver) Ship scale Fr  [–] U  [kn] H1∕3  [m] �  [rad/s] � [ ◦]

1 Mean total URANS Model 0.25 ÷ 0.41 18.0 ÷ 30.0 1.25 ÷ 6.00 0.39 ÷ 0.78 0
(RBRDO) Resistance expected (CFDShip-Iowa)

Value (�[R̄T])

Operability Linearized strip Full 0.25 ÷ 0.41 18.0 ÷ 30.0 1.25 ÷ 6.00 0.25 ÷ 2.50 0 ÷ 180
(�) Theory (SMP)

2 Mean total URANS Model 0.30 22.0 3.25 0.74 0
(DDO) Resistance (R̄T) (CFDShip-Iowa)

Seakeeping merit Linearized strip Full 0.30 22.0 3.25 0.74 0; 150
Factor (SMF) Theory (SMP)
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non-dominated solutions set and the corresponding hull 
stations are shown in Fig. 21 (bottom). Regular-wave total 
resistance and SMF improvement verification (by CFD-
Ship-Iowa and SMP simulations, respectively) is shown in 
Fig. 22: design A provides about 5.4% improvement of the 
regular-wave total resistance with about 27% SMF worsen-
ing; design B shows about 19% worsening of the regular-
wave total resistance and 36.5% SMF improvement. 

6 � Discussion

RBRDO and DDO results show similar trends of the opti-
mization procedure. No compromise solutions is found 
for both problems, even if a significant improvement of all 
the objectives is found at the extrema of both RBRDO and 
DDO non-dominated solutions sets. Stochastic (RBRDO) 
and deterministic (DDO) optimal designs improvements 
and cross-verification results are summarized in Table 8. 
As expected, the deterministic optima are worse than 
stochastic in the stochastic conditions and vice versa. 

Fig. 16   Magnitude of the first three (ordered from top to bottom) KLE geometric eigenvector component: (left) physics-informed eigenvector 
used as shape modification basis functions of the reduced-dimensionality design space, (right) geometry-based only eigenvector for comparison
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Nevertheless, RBRDO optima provide improvements also 
at deterministic conditions, while the same cannot be said 
for the deterministic optima. A deeper comparison at the 
deterministic conditions of the RBRDO and DDO optima 
is conducted via URANS verification. Figure 23 compares 
the hull stations of the optimal designs A and B, showing 
the differences between the stochastic and deterministic 
optimal hull. Furthermore, Table 9 provides a comparison 
of these geometries in terms of calm water and regular-
wave performance, including added resistance, and RMS 
of heave, pitch, vertical velocity at the flight deck, and 
acceleration at the bridge, and finally the relative motion 
(RM) of the ship bow to the free surface. Designs A pro-
vides the most interesting results. RBRDO A shows a 
resistance improvement in both calm water ( −4.7 %) and 
regular waves ( −4.9%), as well as a remarkable improve-
ment ( −5.9 %) of the added resistance with an associated 
reduction of the RM at the bow ( −1.5%). Motions’ RMS 
are reasonable, but the acceleration at the bridge. It may 
be noted how, as expected, designs A show a significant 
reduction of the resistance in waves, whereas designs B 
present significant reduction of the motions’ RMS. .

Original calm-water free-surface (see Fig. 24 first line) is 
compared to RBRDO (A and B in Fig. 24 second and third 
lines, respectively) and DDO (A and B in Fig. 24 fourth 
and fifth lines, respectively) optima at different speeds (Fr = 
0.283, 0.300, and 0.379 in Fig. 24 from left to right), where 
Fr = 0.3 corresponds to the deterministic speed, while Fr 
= 0.283 and 0.379 correspond to the Gaussian coordinates 
used for stochastic optimization. Designs A reduce the wave 
elevation, especially for the stern diverging Kelvin waves, 
whereas designs B are obviously worse than the original.

Heave, roll, and pitch transfer functions comparison of 
original, RBRDO, and DDO designs at the deterministic 
optimization conditions ( �=0◦ for heave and pitch and 
150◦ for roll at Fr = 0.30 ) is provided in Fig. 25. RBRDO 
and DDO designs B show reduced transfer functions than 
the original, specially for heave and roll motions, whereas 
designs A are increased; no significant differences are found 
for the pitch motion.

Finally, a comparison of the optimal design variable 
values is provided in Fig. 26. RBRDO design B and DDO 
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Table 8   Deterministic and 
stochastic design optimization 
summary

⋆Bold face indicates desired objective (resistance or seakeeping/operability)
†Italics indicate cross-verification results

Problem Objective Original Optima⋆,† ( �%)

RBRDO (A) RBRDO (B) DDO (A) DDO (B)

1 �[R̄T] [N] 62.43 − 2.77 19.0 3.44 13.3
(RBRDO) −�% − 71.90 4.82 − 7.42 3.56 − 6.31
2 R̄T [N] 67.70 − 4.92 30.8 − 5.43 19.2
(DDO) SMF [−] 1.000 69.6 − 10.5 27.3 − 36.5
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designs A and B are very close or coincident with design-
space bounds/corners, meaning that higher improvements 
could be likely found increasing the design-space bounds 
and/or adding design variables. In this last case, the cost of 
the optimization procedure would obviously increase. For 
the current optimization the computational costs are sum-
marized in Table 10.

7 � Conclusions and future work

The synergetic use of design-space dimensionality reduc-
tion, adaptive metamodel, uncertainty quantification meth-
ods, global multi-objective optimization algorithm enables 
the high-fidelity hull-form optimization of a destroyer-
type vessel in realistic and stochastic ocean conditions. A 
multi-objective reliability-based robust design optimization 
(RBRDO) problem is formulated and solved, along with its 
deterministic counterpart (DDO). The optimization pertains 
to the minimization of the mean total resistance expected 
value and the maximization of the ship operability of the 
DTMB 5415 in a fully stochastic environment (stochastic 
speed, sea state, and heading). A three-dimensional design 
space is used, defined by a physics-informed design-space 
dimensionality reduction procedure. The optimization is per-
formed using a multi-objective deterministic particle swarm 
optimization algorithm on a stochastic radial basis function 
metamodel, trained by about 270 URANS and 7,300 lin-
earized strip-theory potential-flow simulations. Gaussian 
quadrature and metamodel-based importance sampling are 
used as uncertainty quantification methods.

Design objectives are found completely conflicting. No 
compromise solution (capable to improve both the objec-
tives at the same time) is identified. Nevertheless, the SBDO 
is able to provide quite large non-dominated (Pareto) sets 
and candidate RBRDO and DDO optima are identified 
at their extrema and verified by URANS and linear strip 
theory potential flow, providing significant improvement 
for both objectives: −2.8 % mean total resistance expected 
value (design A) and + 7.4% operability (design B) for the 
RBRDO problem; −4.9 % mean total resistance (design A) 
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Fig. 23   Comparison of stochastic and deterministic optimal designs

Table 9   Comparison of RBRDO and DDO optima at deterministic conditions via URANS verification

�(⋅) Is the variation of the quantity of interest with respect to the original hull

Design �RCW% 𝛥R̄RW% 𝛥R̄AW% RMS(𝜉3)% RMS(𝜉5)% RMS(vD)% RMS(aB)% RMS(RMbow)%

RBRDO A − 4.7 − 4.9 − 5.9 5.7 0.7 4.2 74. − 1.5
RBRDO B 34. 31. 15. − 9.2 − 3.8 − 8.4 11. 2.0
DDO A 4.6 − 5.4 − 58. 8.3 − 11. − 6.0 − 30. − 5.0
DDO B 16. 19. 34. − 9.4 -8.5 − 10. − 31. 2.0
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and −10.5 % seakeeping merit factor (design B) for the DDO 
problem. Compromise solutions and/or higher improvements 
could be found relaxing the design-space bounds or adding 
design variables, clearly at the expense of the computational 
cost.

As discussed, the integration in the SBDO of com-
putational-cost reduction methods has transformed an 
almost unaffordable problem into a treatable one. Never-
theless, solving this type of high-fidelity stochastic opti-
mization problems likely remains unaffordable for most 
users in professional and industrial practice, mainly due 

to tight constraints in allocating human and technological 
resources. For this reason, future work will focus on the 
development and integration of techniques able of further 
reducing the computational cost of the whole process, such 
as: non-linear dimensionality reduction methods (e.g., 
local and kernel PCA, deep autoencoder) [51], multi-fidel-
ity metamodels [56], multi-level/multi-index collocation 
methods for the forward uncertainty quantification of the 
simulation outputs [43], and memetic (hybrid global/local) 
optimization algorithms [42].
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Fig. 24   Calm-water free-surface comparison: (from top to bottom) original, RBRDO (A), RBRDO (B), DDO (A), and DDO (B); (from left to 
right) Fr = 0.283 (stochastic), 0.300 (deterministic), and 0.379 (stochastic)
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Fig. 25   Original versus RBRDO and DDO optima (left) A and (right) B heave, roll, and pitch transfer functions at deterministic design condi-
tions (Fr=0.30; � =0 for heave and pitch, �=150◦ for roll
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Fig. 26   Optimal design variables for RBRDO and DDO problem

Table 10   Computational cost 
summary

Computation cost Original design Optimization problem

Stochastic condi-
tions

Deterministic 
conditions

RBRDO DDO

Number of URANS evaluations 10 1 260 78
Number of strip theory evaluations 273 2 7098 52
Total CPU time [h] 46.7 k 3.7 k 363 k 60.5 k
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