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Abstract
High accurate wind speed forecasting plays an important role in ensuring the sustainability of wind power utilization. 
Although deep neural networks (DNNs) have been recently applied to wind time-series datasets, their maximum perfor-
mance largely leans on their designed architecture. By the current state-of-the-art DNNs, their architectures are mainly 
configured in manual way, which is a time-consuming task. Thus, it is difficult and frustrating for regular users who do not 
have comprehensive experience in DNNs to design their optimal architectures to forecast problems of interest. This paper 
proposes a novel framework to optimize the hyperparameters and architecture of DNNs used for wind speed forecasting. 
Thus, we introduce a novel enhanced version of the grasshopper optimization algorithm called EGOA to optimize the deep 
long short-term memory (LSTM) neural network architecture, which optimally evolves four of its key hyperparameters. For 
designing the enhanced version of GOA, the chaotic theory and levy flight strategies are applied to make an efficient bal-
ance between the exploitation and exploration phases of the GOA. Moreover, the mutual information (MI) feature selection 
algorithm is utilized to select more correlated and effective historical wind speed time series features. The proposed model’s 
performance is comprehensively evaluated on two datasets gathered from the wind stations located in the United States (US) 
for two forecasting horizons of the next 30-min and 1-h ahead. The experimental results reveal that the proposed model 
achieves the best forecasting performance compared to seven prominent classical and state-of-the-art forecasting algorithms.

Keywords  Wind speed forecasting · Deep neuroevolution · Long short-term memory · Enhanced grasshopper optimization 
algorithm

1  Introduction

In recent years, with the significant development of huge 
energy demand and dwindling supplies for renewable energy 
resources, wind energy has proliferated and gained a great 

deal of attention as one of the most environmentally and 
economically sustainable green energy resources [1]. How-
ever, due to wind speed’s natural stochastic characteristic, 
designing an accurate wind energy model in electrical power 
systems can be considered problematic. Moreover, the wind 
speed’s inconsistency can significantly impact the safety and 
stability of the micro-grid scheduling and wind turbines con-
trol that will further affect the load demand and balance of 
supply for the wind farm and energy quality [2]. Thus, in 
energy conversion and management, the optimal and accu-
rate wind speed prediction models’ design can bring a stable 
bias for the generation and transmission of wind energy and 
diminish the operating costs of the power system.

Over the last few decades, various forecasting tech-
niques have been developed to predict the wind speed time 
series. Typically, such methods can be categorised within 
three subgroups, including physical strategies, statistical 
methods, and artificial intelligence algorithms [3]. Physical 
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strategies are the explicit approaches that use meteorologi-
cal information such as density, temperature, roughness, and 
atmospheric pressure obstacles [4]. A common technique 
for numeric weather prediction (NWP) uses mathematical 
models based on the physical data to forecast wind speed. 
Nonetheless, this numerical method is not adequate for prac-
tical usage as it is not a straightforward process to collect 
such physical data, particularly for short-term wind speed 
forecasting.

The statistical methods are the second group used by 
researchers to forecast wind speed time series. The modeling 
of different natural phenomena were studied using several 
data analysis techniques, such as statistical and mathematical 
modeling containing time series analysis, regression mod-
eling, optimization and numerical analysis [5–9]. For wind 
speed forecasting, the most well-known statistical methods 
are auto-regressive models (AR), auto-regressive moving 
average models (ARMA), and auto-regressive integrated 
moving average models (ARIMA). Lydia et al. [10] adopted 
the linear and nonlinear AR models to forecast wind speed 
from 10-min up to 1-h for a wind energy center in India. 
Their developed method uses the Gauss–Newton algorithm 
for parameter tuning of the ARs. They also measured the 
accuracy of their proposed model using three performance 
metrics. In another work, Ailliot et al. [11] proposed novel 
techniques called non-homogeneous Markov-Switching 
auto-regressive (MS-AR) models to measure wind speed 
forecasting for an island in France. Different weather types 
have been analyzed by their method. Torres et al. [12] used 
the ARMA to forecast the hourly average wind speed from 
1-h up to 10-h time horizons ahead. The data for this work 
have been gathered from a period of 9 years of five locations 
with different topographic characteristics in Navarre (Spain). 
They have shown that the ARMA models have a better fore-
casting performance than the persistence model. Yunus et al. 
[13] developed an ARIMA model that can cost-effectively 
capture the probability distribution and time correlation for 
wind speed data. Their work’s simulation results show that 
their technique outperforms most of the persistence models 
to forecast short-term time horizons. As stated in [14], due 
to the inappropriate pre-assumed linear form, many statisti-
cal methods can not cope well against nonlinear wind speed 
characteristics.

With the rapid growth of feature selection, and machine 
learning approaches [15–22], numerous artificial intelligence 
(AI) strategies have been applied for several real-world 
problems [23–30] and have successfully been designed to 
address the non-stationary and randomization nature of wind 
speed time series. Generally, the existing AI-based wind 
speed forecasting methods can be classified into two cat-
egories, including traditional machine learning algorithms 
and deep learning methods [31]. Support vector machine 
(SVM) algorithm is one of the prominent categories of the 

traditional machine learning algorithms which has a strong 
generalization potential [32–34]. In recent work, Kong et al. 
[35] optimized the parameters of a specific type of SVM 
algorithms called reduced support vector machine (RSVM) 
using particle swarm optimization (PSO) algorithm for wind 
speed prediction. In another work, Yu et al. [36] integrated 
an SVM algorithm with recurrent neural network methods 
to forecast wind speed with success.

Artificial neural network (ANN) algorithms including 
backpropagation (BP), Elman neural network (ENN) [37], 
extreme learning machine (ELM) [38, 39], and radial basis 
function (RBF) [40] are the most commonly used traditional 
machine learning algorithms in many areas including the 
forecasting of wind speed time series. Cadenas and Rivera 
[41] utilized several BP models to forecast the short-term 
wind speed of Oaxaca city in Mexico. They showed the 
structure used for BP has acceptable accuracy for the energy 
supplier in Oaxaca. In [42], Guo et al. presented a hybrid 
algorithm based on the BP algorithm and seasonal expo-
nential adjustment (SEA), in which the proposed algorithm 
was utilized to forecast the daily wind speed 1 year ahead 
for an area in China from 2001 to 2006. For ENNs, Wang 
et al. [43] proposed a novel algorithm optimizing these neu-
ral networks’ weights and thresholds using a multi-objective 
whale optimization algorithm for wind speed forecasting. In 
another work, a multi-objective satin bower-bird optimizer 
algorithm was employed by [44] to optimize and enhance the 
forecasting performance of the ENNs based on two real wind 
farms of China. Salcedo et al. [45] developed a combined 
wind speed forecasting model using coral reefs optimization 
algorithm based on a feature selection problem for train-
ing ELM [46, 47] networks. In [48], RBF neural networks 
were trained and optimized by a two-step novel mechanism, 
including the K-means clustering algorithm and non-dom-
inated sorting genetic algorithm-II (NSGA-II) to maximize 
the coverage probability of the constructed prediction inter-
vals for a wind speed dataset.

The deep neural network algorithms have gained substan-
tial attention as another successful artificial intelligence cat-
egory [49–51]. Chen et al. [52] developed a novel nonlinear-
hybrid ensemble of deep LSTM models for forecasting wind 
speed time series. Their hybrid method has been evaluated 
through two case studies of data from a Chinese wind farm. 
Liu et al. in [53] proposed a new model for the wind speed 
multi-step forecasting by deep LSTM networks combined by 
empirical wavelet transform and ELM [54, 55] algorithms. 
In another work, Pei et al. [56] proposed a hybrid algorithm 
including new cell update LSTM combined with empiri-
cal wavelet transform for wind speed forecasting simulated 
on four different datasets. Besides, Khodayar et al. [57] 
presented a rough deep learning architecture combined by 
stacked denoising autoencoder (SDAE) and stacked autoen-
coder (SAE) to forecast wind speed for ultra-short-term 
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and short-term horizons. Several of these studies and other 
applications of deep learning have shown that deep learning 
approaches have more accurate performance than traditional 
machine learning methods [58, 59]. In general, deep learn-
ing has demonstrated tremendous promise as an advanced 
and efficient machine learning paradigm for the wind speed 
forecasting field.

In the research work presented in [60], the authors intro-
duced a hybrid method called VMD-DE-ESN, combining 
variational mode decomposition [61], differential evolution, 
and echo state for wind speed forecasting. This proposed 
algorithm showed efficient performance on four stations col-
lected from a wind farm in northwestern Spain. In [62], a 
new deep learning approach of the gated recurrent unit has 
been effectively designed to be coupled with the wavelet 
soft threshold denoising to predict the wind speed series. 
By adjusting the GRU parameters using a cross-validated 
grid-search strategy, this deep learning-based hybrid model 
achieved high adaptability through several case studies. In 
[63], the authors presented a novel model of day-to-day wind 
speed forecasting focused on deep CNNs by exploiting the 
Taguchi’s orthogonal array. The experimental findings sig-
nify that the proposed efficient design-based CNN outper-
forms other existing benchmark models.

Among the deep learning approaches [64, 65], LSTM 
neural network generally has effective and strong perfor-
mance due to its outstanding ability to cope with long-term 
time series problems [66, 67]. As a groundbreaking deriva-
tive of RNNs (recurrent neural networks), LSTMs can pro-
foundly learn the temporal and long-term dependencies from 
time-series data and effectively solve the gradient problem 
compared to traditional RNNs [68]. Thus, these excel-
lent characteristics of LSTM motivated us to consider the 
deep learning strategy in this work based on LSTM neural 
network.

Nonetheless, the empirical knowledge for selecting the 
values of hyperparameters in the LSTM neural network is 
unknown, and these hyperparameters will affect the fore-
casting potential of LSTM. Therefore, we introduce a novel 
deep neuroevolution method based on an enhanced version 
of grasshopper optimisation algorithm (GOA) to optimize 
these hyperparameters to increase the wind speed forecast-
ing functionality. GOA is a recent promising optimization 
algorithm inspired by the swarming behavior of grasshop-
pers. This algorithm has already been utilized to plenty of 
stochastic and continuous optimization problems, proving 
its dominance over the most common meta-heuristics such 
as differential evolution [69], whale optimizer [70], particle 
swarm optimization [71], and genetic algorithm [72]. Saxena 
et al. [73] has introduced an improved version of GOA based 
on ten forms of chaotic maps in which the performance of 
these variants is successfully examined on several unimodal 
and multimodal benchmark functions. In work by Xu et al. 

[74], two techniques, namely orthogonal learning and cha-
otic exploitation, are implemented in the traditional GOA 
to explore a much more reliable trade-off between both the 
phases of exploration and exploitation. The analytical find-
ings demonstrate that the modified version can alleviate the 
shortcomings of GOA and provide more high-quality solu-
tions. An annealing behaved GOA with boosted exploratory 
and exploitative patterns was proposed by Yu et al. [75] for 
solving global optimization. For a comprehensive review 
on GOA, please refer to work presented by Abualigah and 
Diabat [76]. As mentioned in the previous works discussed 
above, there are some weaknesses in the standard model of 
GOA. It can easily collapse into the local optimum and dem-
onstrate a slow convergence rate when faced with several 
challenging problems.

To further improve the performance quality of GOA, we 
add two powerful evolutionary operators into the basic GOA 
for the first time. These operators are based on chaos theory 
[77] and levy-flight technique, aiming to enhance meta-heu-
ristic evolutionary algorithms’ performance for optimization 
problems. We name this improved version of basic GOA as 
enhanced GOA (EGOA).

As discussed by Jalali et al. [26], it is of great importance 
how to select the appropriate hyperparameters for DNN 
algorithms since their performance depends on the values 
of such hyperparameters. Due to the decentralized and rela-
tional feature representations, deep neural networks can 
learn nonlinear structures that are deeper and more dynamic 
than traditional machine learning models such as BP, ENN, 
ELM, and RBF neural networks, and SVM [78] algorithms. 
On the other hand, deep LSTM as a prominent deep neu-
ral network was successfully deployed to solving different 
time series real-world problems [53, 79]. The architecture 
of LSTM neural networks was mostly designed manually, 
which is a cost-effective and time-consuming procedure 
[80]. Nonetheless, in the field of wind speed forecasting, 
there remain little works to utilize the optimal design archi-
tecture for LSTM algorithms. In most of the studies that 
utilized deep learning technologies for wind speed forecast-
ing, the authors designed the architecture of the utilized deep 
learning manually, which is a time-consuming procedure 
[81, 82]. Therefore, this paper aims to predict the wind speed 
with the highest accuracy using a novel optimization algo-
rithm that automatically and efficiently designs the LSTM 
architecture.

In summary, the principal contributors of this paper are 
as follows: 

1.	 We introduce an LSTM-based deep neuroevolution time 
series forecasting algorithm for exploring the implicit 
knowledge from wind speed time series. Moreover, the 
mutual information (MI) algorithm is implemented to 
determine the procedure of input variable selection. The 
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obtained features by MI aid in selecting the most fitting 
size of the LSTM input window.

2.	 While the references such as [67, 83, 84] selects the deep 
LSTM hyperparameters by the trial-and-error procedure, 
which is a time-consuming procedure, to efficiently 
optimize the hyperparameters of the deep LSTM neu-
ral network in each layer, an efficient enhanced version 
of GOA evolutionary algorithm is conducted which we 
name it as EGOA. This modification enhances the GOA 
performance centered on chaotic theory and levy-flight 
strategies to obtain a faster convergence speed and make 
a more efficient balance between exploitation and explo-
ration phases in the search space.

3.	 To the best of our knowledge, this work is the first study 
to utilize an enhanced version of the GOA evolutionary 
algorithm to optimize the hyperparameters of LSTM 
neural networks for wind speed forecasting.

4.	 Our proposed deep hybrid optimization algorithm shows 
an excellent forecasting performance compared to seven 
competitive classical and state-of-the-art methodologies 
for wind speed forecasting.

Two prediction intervals successfully show the proposed 
model’s supremacy: utmost short-term wind speed forecast-
ing for 30-min ahead and short-term wind speed forecasting 
for 1-h ahead. The datasets used for our experiments are col-
lected from two wind sites near Las Vegas and Denver in the 
USA. We compare our novel algorithm with several standard 
and hybrid state-of-the-art time series forecasting algorithms 
including back propagation (BP) [41], convolutional neural 
network (CNN) [85], long short-term memory (LSTM) [80], 
Xgboost [86], empirical mode decomposition and genetic 
algorithm-BP neural network (EMD-GABP) [87], differen-
tial evolution-LSTM (DE-LSTM) [88] and ensemble empiri-
cal mode decomposition–GA–particle swarm Optimization 
Wavelet Neural Network (EGP-WNN) [89] algorithms. The 
experimental results show that the proposed model is signifi-
cantly superior to other compared standard models.

The remainder of this study is arranged as follows: Sect. 2 
presents the related basic formulation for the proposed 
method. The experimental procedures for two US collected 
datasets of two different time-step horizons and discussions 
of the obtained experimental results are given in Sect. 3. 
Eventually, all major findings and future works are sum-
marized and presented in Sect. 4.

2 � Proposed method

This section describes how to develop our enhanced GOA 
evolutionary algorithm to optimize the structure of the 
LSTM neural networks by providing details.

2.1 � Structure of basic GOA

Saremi et al. [72] recently proposed the swarm-based GOA 
based on imitating the behavior of grasshopper groups in the 
environment to realize optimal or sub-optimal solutions to 
the complex multimodal or composite hybrid problems. After 
initialization, the updating rule follows three laws: social 
interaction, gravity force, and wind advection. The current 
position of ith agent is referred to Xi and described by

where Si denotes the variable for social interaction, Gi rep-
resents the gravity force and Ai denotes to the wind advec-
tion. Social interaction is the most influential component, 
based on its impact on the motion patterns, which can be 
determined as follows:

where dij represents the distance between the agent i to the 
jth agent, and d̂ij denotes to a unit vector between ith and jth 
agent. The function s determines the social forces, which 
can be evolved based on the f and l parameters. The dis-
tance between agents should be allocated between the [1,4] 
interval. The gravity force of an agent can be expressed as 
follows:

where g is the constant of gravity and êg is the vector of 
unity towards the center of the earth. Grasshopper wind 
advection can be computed as following:

where u denotes to a constant drift and êw is a vector of unity 
in wind direction. Finally, Eq. (1) can then be generalized 
as follows:

(1)Xi = Si + Gi + Ai,

(2)
Si =

N∑

j = 1

j ≠ i

s
(
dij
)
d̂ij

(3)dij =
|||xj − xi

|||

(4)d̂ij =
(
xj − xi

)
∕dij

(5)s(r) =fe−r∕l − e−r,

(6)Gi = −gêg,

(7)Ai = uêw,

(8)
Xi =

N∑

j = 1

j ≠ i

s
(|||xj − xi

|||
)xj − xi

dij
− gêg + uêw
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where the number of agents are denoted by N. The consider-
able influence of gravity force on the grasshopper is too slow 
and weak to be simply ignored and implicitly assumes that 
the direction of wind (A component) is always in the best 
solution T̂d . The logical model between the agents is also 
demonstrated in Fig. 1.

After all, the mathematical formula is developed as 
follows:

where ubd is the dth dimension of upper boundary, lbd is the 
dth dimension of lower boundary, T̂d is the dth dimension 
value in the best solution so far obtained, and the parameter 
c is continuously updated to minimize exploration phase and 
help increasing exploitation phase according to the number 
of iterations through the following equation:

where the maximum value is represented by cmax , the mini-
mum value is denoted by cmin , l corresponds to the current 
iteration, and L denotes the maximum iteration number.

2.2 � Chaotic‑population initialization

Boosting the balance of the swarm-based methods such as 
GOA is an essential part of the optimization process. For 

(9)Xd
i
= c

⎛
⎜⎜⎜⎜⎜⎝

N�

j = 1

j ≠ i

c
ubd − lbd

2
s
����x

d
j
− xd

i

���
�xj − xi

dij

⎞
⎟⎟⎟⎟⎟⎠

+ T̂d,

(10)c = cmax − l
cmax − cmin

L
,

example, advanced variants of several other evolutionary 
and swarm intelligence methods such as boosted moth-flame 
optimizer (LGCMFO) [90], chaotic, random spare ant col-
ony optimization [91], biogeography-based whale optimizer 
[92], double adaptive moth-flame optimizer [93], orthogo-
nal learning grey wolf optimizer [94], Gaussian bare-bones 
fruit fly optimizer [95] have found their applications in both 
basic and advanced versions in many areas based on sta-
bilizing the balance of the exploration and exploitation of 
the core processes. In this regard, the quality of the initial 
population can significantly impact the convergence speed, 
and solution accuracy with evolutionary algorithms that 
continuously desire optimization via population iteration 
[96, 97]. The basic GOA typically initializes the population 
randomly, making it hard to guarantee population diversity, 
leading to weak search results and performance. There-
fore, it is essential to enhance the diversity of the initial 
population. Generally speaking, chaos is a pseudo-random 
movement formed by a stochastic deterministic mechanism 
that is initially sensitive to a value and then generates many 
pseudo-random patterns [98, 99]. It has the attributes of non-
linearity, randomness, and consistency. These characteristics 
can easily eliminate the algorithm from the local optimal 
solution when solving function optimization problems to 
preserve population diversity and increase the global search 
efficiency [100, 101]. Among various chaotic maps having 
different function optimization abilities, the tent map has 
shown its greater performance than the other maps [102]. 
Therefore, we used tent map agent population initialization, 
which can be formulated as

Fig. 1   Primitive patterns 
between the agents in an update 
of GOA

The target 

location

3D time-varying 

Comfort zone

Trajectory of agents 

before the current 
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Repulsion force 
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Assume D represents the search space dimension and 
N denotes to the population size, the tent map sequence 
xij(i = 1, 2,… ,N; j = 1, 2,… ,D) is generated by Eq. (11). 
Based on Eq. (12), the initialized population P0 =

{
Xij

}
 is 

mapped into the search space as follows:

where the maximum and minimum of the jth dimension are 
represented by Xmaxj and Xminj , respectively.

2.3 � Levy flight

Levy-flight (LF) was initially proposed in 1937 by Paul 
Levy, a French mathematician. In terms of levy statistics, 
many artificial and natural phenomena have been defined 
[103]. The LF is a well-respected subclass of non-Gaussian 
stochastic walks to distribute their step-length values con-
cerning a stable Levy distribution. The levy distribution is 
accomplished as follows:

where � provides a significant levy index for stability adjust-
ment. The levy random number is determined using the 
given equation:

where � and v represent the standard normal distributions, Γ 
denotes to a standard Gamma function, the value of � param-
eter is equal to 1.5, and � is computed as follows:

For achieving a potential trade-off between the capability of 
evolutionary algorithms to exploration and exploitation, LF 
approach is employed to update the position of each agent, 
which is calculated as follows:

where Xlevy

i
 represents the new position of the ith agent Xi , 

r denotes to a random vector in [0,1] interval, and ⊕ is the 
dot product (entry-wise multiplications).

(11)xi+1 =

{
2 × xi, 0 ≤ xi ≤ 1∕2;

2 ×
(
1 − xi

)
, 1∕2 ≤ xi ≤ 1.

(12)Xij = xij ×
(
Xmaxj − Xminj

)
+ Xminj,

(13)Levy (�) ∼ u = t−1−� ,

(14)Levy (�) ∼
� × �

|v|1∕� ,

(15)� =

⎡⎢⎢⎢⎣

Γ(1 + �) × sin(� × �∕2)

Γ
��

1+�

2

�
× � × 2

�−1

2

�
⎤⎥⎥⎥⎦

1∕�

.

(16)X
levy

i
= Xi + r⊕ levy(𝛽),

2.4 � Enhanced GOA

This section outlines the proposed enhanced GOA (EGOA) 
in detail. In EGOA, first, we adopt the chaos theory to boost 
the quality of the initial population position as described in 
detail in Sect. 2.2. Then we utilize the Levy flight strategy 
into the GOA to address the original GOA’s drawback to 
make a more appropriate balance between exploration and 
exploitation phases. Section 2.3 defined the fundamental 
principles of the levy flight strategies in detail. As it is well-
known regarding evolutionary algorithms, search agents’ 
diversity is crucially important since diversity enables the 
population to search functionality towards the global opti-
mum. The levy flight component was utilized in GOA to 
improve GOA population diversity. To this end, once the 
position of ith search agent Xi is updated, the levy flight 
component is incorporated to deploy a new candidate solu-
tion. The modified mathematical equation for the enhanced 
GOA is defined as follows:

where X∗
i
 represents the current agent position after the 

new update, and rand(d) is a random d-dimensional vector 
into the interval of [0,1]. Since levy flight is a randomized 
procedure where the jump’s size typically follows the levy 
probability distribution function, the new candidate solu-
tion obtained via the levy flight algorithm has a significant 
chance of jumping from the local optimum and achieving a 
superior solution. Search agents with more excellent fitness 
are preserved in the population to guarantee the reliability 
of the population. Therefore, the levy flight mechanism can 
cause competitive agents to move faster towards the global 
optimum. As a result, since incorporating the chaotic theory 
and levy flight strategies help to enhance the capabilities of 
GOA, we name this novel proposed method as enhanced 
GOA (EGOA).

2.5 � LSTM

LSTM neural network is a deep learning algorithm with 
time-varying inputs and targets. It also has an excellent 
performance in time-series data processing thanks to its 
outstanding ability to solve long-term dependency prob-
lems. The cornerstone of the LSTM neural network is the 
memory cell, which can preserve the temporal state. The 
input gate can add or remove the information to the cell 
state with the memory cell, forget gate, and the output gate. 
Figure 2 describes a sample unit of a LSTM network. The 

(17)X
levy

i
=X∗

i
+ rand(d)⊕ levy(𝛽)

(18)Xt+1
i

=

{
X

levy

i
fitness

(
X

levy

i

)
> fitness

(
X∗

i

)
X∗

i
otherwise ,



S1793Engineering with Computers (2022) 38 (Suppl 3):S1787–S1811	

1 3

key stages of this neural network are explained as follows 
in three stages: 

1.	 The input gate monitors the input activation when the 
input gate is activated, and the new input information is 
received to the memory cell.

2.	 The forget gate forgets the unimportant contents. Thus, 
the past cell status is forgotten in the pipeline when the 
forget gate is enabled.

3.	 The output gate regulates the output activation. Thus, the 
current cell output is propagated to the final state when 
the output gate is enabled.

The three gates are sigmoid units that adjust each item in the 
interval of [0, 1]. The standard sigmoid logistics function is 
specified as follows:

The ith entry gate regulates the input information that passes 
into the memory cell, resulting in the following:

Forget gate ft regulates forgetting cell information, in which

Output gate ot regulates the output information that flows 
from the cell, deriving from the following equation:

(19)�(x) =
1

1 + e−x
.

(20)it = �
(
wxixt + whiht−1 + bi

)
.

(21)ft = �
(
wxf xt + whf h + bf

)
.

For the time t, a tanh function quantifies the input charac-
teristics by inputting xt and the previous hidden state ht−1 
as follows:

Here, the memory cell is updated through regulated input 
features and the partial forgetting of previous memory cell, 
which provides

The hidden output status ht is eventually determined by the 
output gate ot and the memory ct , where

Therefore, the LSTM output yt is determined as follows:

In Eqs. (20)–(26), the wxi , wxf  , wxo , and wxc are the proper 
input weights. whi , whf  , who , and whc matrices represent the 
recurrent weight matrices, and why denotes to the matrix of 
hidden output weight. The corresponding bias vectors are 
represented by bi , bf  , bo , bc , and by.

2.6 � Proposed EGOA‑LSTM Method

This section presents the proposed wind speed forecasting 
method called EGOA-LSTM. This method aims to utilize 
the improved GOA algorithm to optimize the LSTM neural 
network’s hyperparameters, leading to improving the wind 
speed forecasting model’s accuracy. Before applying EGOA, 
two issues should be considered, including representation 
of solutions and calculation of fitness function. It should be 
noted that four different hyperparameters, including batch 
size, learning rate, maximum epoch, and neural units, are 
considered in the proposed method to be optimized by the 
EGOA algorithm. Therefore, each solution in EGOA can be 
represented as a vector with four dimensions, each of which 
corresponds to one of the four hyperparameters. Learning 
rate is a hyperparameter with continuous values, which 
EGOA can obtain its optimal value. In contrast, batch size, 
maximum epoch, and neural units are other hyperparameters 
with discrete values. As EGOA explores solution space in 
continuous mode, we need to convert these hyperparameters’ 
optimal values to their corresponding discrete values. To 
this end, each real value can be converted to an integer value 
using the following equation:

(22)ot = �
(
wx0xt + whoht−1 + bo

)
.

(23)gt = tanh
(
wxcxt + whcht−1 + bc

)
.

(24)ct = ft ∗ ct−1 + it ∗ gt.

(25)ht = ot ∗ tanh
(
ct
)
.

(26)yt = �
(
whyht + by

)
.

*

*

*
xt
ht-1ot

xt
ht-1it

xt ht-1

gt

xt
ht-1 ft

ct-1 ct

ht

Fig. 2   Structure of the deep LSTM neural network block
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where bj is the total number of the item of type j, xij is the 
real number corresponds to the jth dimension of the solution 
Xi , yij is the converted integer value, lb and ub are respec-
tively the lower and upper bounds of the search space.

In the proposed EGOA-LSTM method, first of all, the ini-
tial population with n solutions is randomly initialized using 
Eq. (8). Each solution is denoted by a four-dimensional vec-
tor Xij, i = 1,… , n and j = 1,… , 4 where each dimension j 
corresponds to one of the four LSTM hyperparameters. After 
the initialization of the initial population, new solutions can 
be obtained by repeatedly updating the solutions’ current 
positions using Eq. (9). Moreover, the levy flight strategy 
is applied to the updated positions to balance exploration 
and exploitation using Eqs. (17) and (18). The procedure 
repeats until the termination criterion is reached, and then 
the best-obtained solution is considered as the final result. 
This obtained solution can be used as the optimal values 
of the LSTM hyperparameters. To evaluate the usefulness 
of each solution, we need to define a fitness function. To 
this end, the input time series data is divided into two sets, 
including training and test. The training set is used to opti-
mize the LSTM hyperparameters using EGOA, while the 
test set is used to evaluate the final obtained wind speed 
forecasting model’s performance. Suppose that y⃗ is a vector 
to denote the historical wind speed time series data for M 
time steps expressed as follows:

where y(t) denotes the actual wind speed value for the time 
step t. The purpose of the proposed wind speed forecasting 
model is to predict the wind speed values of the next N time 
steps using LSTM neural network which these predicted val-
ues can be represented as follows:

(27)yij =

⌊
bj ×

xij − lb

ub − lb
+ 0.5

⌋
, j = 1,… , n,

(28)y⃗ = (y(0), y(1),… y(M−1)),

where y⃗(t) denotes the predicted wind speed value for the 
time step t. It should be noted that each solution in EGOA 
is used to configure an LSTM model based on the hyperpa-
rameters’ obtained values. Therefore, the configured LSTM 
model’s performance on forecasting wind speed values can 
be considered as the fitness function. To this end, the input 
vectors of the LSTM model are represented using Eq. (28) 
based on the training data. The LSTM model is then utilized 
to predict the wind speed values of the next N time steps, 
which are represented using Eq. (29). To calculate the fitness 
value of each solution in EGOA, the mean square error can 
be used as follows:

where yi is the actual wind speed value and ŷi is the pre-
dicted wind speed value obtained by the LSTM neural net-
work. Obviously, a solution with a lower MSE value has a 
higher fitness value and vice versa. Therefore, the proposed 
method aims to obtain a solution with the lowest MSE value 
(i.e., highest fitness value) containing the optimal values of 
LSTM hyperparameters. This leads to obtaining an LSTM 
model with maximum performance forecasting wind speed 
values in the test set. After determining the optimal values of 
LSTM hyperparameters using EGOA, the configured LSTM 
model is used to predict wind speed values in the test set. 
Algorithm 1 represents the overall steps of the proposed 
EGOA-LSTM method. In Fig. 3, the deep proposed model’s 
whole procedure is illustrated. Also, the flowchart of the 
proposed wind speed forecasting model is depicted in Fig. 4.

(29)⃗̂y =
(
ŷ(M), ŷ(M+1),… , ŷ(M+N−1)

)
,

(30)MSE =
1

n

n∑
i=1

(yi − ŷi)
2,

Fig. 3   The schema of deep 
EGOA-LSTM model for wind 
speed forecasting

...
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Algorithm 1 Pseudo-code of the proposed wind speed forecasting method (EGOA-
LSTM)
1: Input: pop size (population size), cmax, cmin and L (maximum number of iterations).
2: Output: Predicted wind speed values.
3: Begin algorithm:
4: Split dataset into training set Tr and test set Te;
5: Initialize the agent population Xi (i=1,2,. . . , pop size) based on chaotic theory;
6: for (each search agent Xi) do
7: Set an LSTM model based on the values of hyperparameters obtained by the solution Xi ;
8: Calculate the fitness of solution Xi using Eq. (30) as the MSE of LSTM model obtained based on

the training set Tr;
9: end for
10: Set B= the best search agent based on the calculated fitness values;
11: Set l=1;
12: while (l < L) do
13: Update c according to Eq. (10);
14: for each search agent Xi do
15: Normalize the distance between agents in [1,4] interval;
16: Update the current position of Xi based on Eq. (9);
17: Apply the levy flight strategy by using Eqs. (15) and (16);
18: Check the Xi values to be in the boundaries and bring them back if they go outside;
19: Set an LSTM model based on the values of hyperparameters obtained by the solution Xi;
20: Calculate the fitness of solution Xi using Eq. (30) as the MSE of LSTM model obtained based

on the training set Tr;
21: if the fitness of solution Xi is better than the fitness of B then
22: Set B=Xi;
23: end if
24: end for
25: Set l=l+1;
26: end while
27: Set an LSTM model based on the hyperparameters obtained by the best solution B;
28: Predict the wind speed values in the test set Te using the best obtained LSTM model;
29: Return the predicted wind speed values as the output;
30: End algorithm

Fig. 4   Flowchart of the pro-
posed EGOA-LSTM model for 
wind speed forecasting
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3 � Experimental results

3.1 � Data

In contrast to several studies such as [53, 56, 82] which used 
a small amount of wind speed data (usually less than one-
thousand samples) for showing the efficiency of their pro-
posed deep learning algorithms, the 30-min interval between 
consecutive historical samples of two wind stations in the 
US for the whole year 2012 has been used in this study. 
Western Wind Dataset [104] created by the National Renew-
able Energy Laboratory (NREL) and 3TIER, the wind speed 
time series estimated for two wind sites in Las Vegas and 

Denver are used to examine the efficiency of the proposed 
EGOA-LSTM algorithm. The location of these two wind 
sites are shown in Figs. 5 and 6. In total, there are 17520 
wind speed values measured in intervals of 30 min for each 
of two wind stations. Thus, sufficient data are available to 
train and test our proposed deep learning method. Similar 
to [80], 70% of each dataset is considered for training sets 
while 10% is used for validation sets and the rest is dedicated 
to testing sets. At the beginning of the experiments, raw 
datasets were pre-processed into the interval of [0,1] using 
Eq. (31) to improve the forecasting efficiency. The final goal 
is to predict the next forecasting horizons for the next 30 min 
(one-step) and 1-h (two-step) ahead.

Fig. 5   Location of wind speed 
site for Las Vegas case study

Fig. 6   Location of wind speed 
site for Denver case study
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3.2 � Evaluation metrics

Four loss functions are employed to assess the prediction 
performance of the proposed model as the criterion related 
to the wind speed values including root mean squared error 
(RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE) and R squared ( R2 ). The lower the 
loss function value, the higher the model accuracy for wind 
speed forecasting. The formulas of the performance evalua-
tion metrics are as follows:

where y′
i
 represents the predicted wind speed value of cor-

responding yi and n indicates the number of data points in 
the test set.

(31)z =
z − zmin

zmax − zmin

.

(32)RMSE =

√√√√(
1

n

) n∑
i=1

(y�
i
− yi)

2

(33)MAE =
(
1

n

) n∑
i=1

|y�
i
− yi|

(34)MAPE =
(
1

n

) n∑
i=1

|||||
y�
i
− yi

yi

|||||

(35)R2 = 1 −

∑n

i=1
(y�

i
− yi)

2

∑n

i=1
(y�

i
− ỹi)

2
,

3.3 � Input feature selection

Input feature selection [105–107] is a fundamental, and yet 
crucial consideration in determining the optimal structure 
of data-driven models. In the literature, several studies such 
as [108] have operated auto-correlation function (ACF) to 
achieve the cross-correlation of wind speed time series at 
various time instances. As ACF can only calculate linear 
dependency of variables with themselves, and the wind 
speed information is highly nonlinear in nature, mutual 
information (MI) is an effective strategy to estimate the 
data’s nonlinear and linear correlations. Assume X and Y are 
considered as two random variables. The entropy of X rep-
resented by H(X) is a metric of its uncertainty, and the joint 
entropy of X and Y are donated by H(X, Y). The conditional 
entropy calculated by H(Y|X) = H(X, Y) − H(X) indicates 
the uncertainty of Y due to the observation of the variable 
X. The MI is a nonlinear equation between two random vari-
ables to calculate the amount of information acquired about 
a variable if the other variable is observed. MI is determined 
by I(X, Y) = H(Y) − H(Y|X) which reduces the uncertainty 
of variable Y due to the observation of variable X, and vice 
versa.

Suppose v(t) as the value of wind speed at time t, the 
MI between v(t − l + 1) and v(t + 1) is calculated consider-
ing l as the time lag. Following the selection of the most 
relevant inputs for our deep EGOA-LSTM algorithm, 
the wind speed values equivalent to time-lags with MI 
more than x = 0.4 are considered for input sets to high-
light the correlation in two wind datasets for 30-min and 
1-h ahead forecasting horizons. In Fig. 7, MI for the lag 
l = 1 to l = 200 of the Las Vegas dataset for 30-min ahead 
interval is illustrated. As it is indicated from this fig-
ure, the correlation among the wind speed observations 
is increased by the time-lag. As a result, time-lags from 
l = 1 to l = 29 are incorporated. Assume the current time 
is t and we are going to predict the wind speed values for 
a future time horizon. Then, our input set is a 29+28 = 57 
dimensional vector v(t − 28),Δv(t − 27), v(t − 26),… , v(t) 
with the sequential difference Δv(t) = v(t) − v(t − 1) of the 
wind speed data.

Fig. 7   Mutual information of various time-lags for Las Vegas dataset

Table 1   The hyperparameters of 
the deep LSTM network during 
the evolution

Hyperparameter Range

M
e

[1–500]
N
u

[1–60]
B
s

[1–200]
L
r

[0.0001–0.1]
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3.4 � Parameter settings

In this section, we describe the default configurations for 
performing our proposed EGOA-LSTM algorithm. Regard-
ing the initialized parameters for EGOA, we set the number 
of population = 30, the maximum number of iterations = 
20, and the number of runs = 20 for each dataset. Two main 
parameters for GOA are Cmax and Cmin , which their values 
are set to 1 and 0.00004, respectively. These values are 
selected based on the recommended literature [72]. There 
are four key hyperparameters for training the deep LSTM 
neural network, including maximum epoch ( Me ), neural 
units in the hidden layer ( Nu ), batch size ( Bs ), and learning 
rate ( Lr ), which are fed to EGOA. The range of these hyper-
parameters is shown in Table 1. Previous works [109–111] 
have used a more limited range of hyperparameters. How-
ever, in this study, we have chosen a wider range of hyper-
parameters to train LSTM. Moreover, the number of layers 
that have been used for designing the LSTM architecture is 
denoted to three. To further assess our proposed approach’s 
predictive ability, the proposed deep neuroevolution model 
is compared with the recently proposed deep learning mod-
els. The single and hybrid algorithms presented herein 
are used as compared models to highlight the efficiency 

of the EGOA-LSTM. These models are backpropagation 
(BP) [41], convolutional neural network (CNN) [85], long 
short-term memory (LSTM) [80], Xgboost [86], empiri-
cal mode decomposition and genetic algorithm-BP neural 
network (EMD-GABP) [87], differential evolution–LSTM 
(DE-LSTM) [88] and ensemble empirical mode decomposi-
tion–GA–particle swarm Optimization Wavelet Neural Net-
work (EGP-WNN) [89] algorithms. The configuration for 
these compared single and hybrid approaches are based on 
their recommended literature. The proposed EGOA-LSTM 
model is implemented in the Python programming language 
[112] version 3.7, TensorFlow 1.15, CUDA 10.1, cuDNN 
8.0.5 and executed on an NVIDIA GTX 1080 Ti GPU, RAM 
of 32 GB, and Intel Core i7 machine with 3.7 GHz 12 cores 
CPU.

3.5 � Analysis of the results and discussion

In this section, we report the results of experiments for two 
case studies with two forecasting horizons. We then discuss 
these results in detail.

3.5.1 � Las Vegas case study

In this case study, the wind speed data recorded for every 30 
min was utilized as the dataset. We consider this wind speed 
dataset for forecasting of utmost short-term 30 min (one-step 
ahead) ahead and short-term 1 h (two-step ahead) ahead.

Tables 2 and 3 report the forecasting performance of the 
different prediction algorithms for the 30-min ahead and 
1-h ahead wind speed data, respectively. Moreover, Fig. 8 
demonstrates the actual and predicted values of different 
forecasting algorithms for the next 30-min ahead of the Las 
Vegas dataset. The blue and red colors seen in these fig-
ures represent the actual and predicted data values of the 
algorithms used in this paper, respectively. The convergence 
curve for two different horizons of the Las Vegas dataset is 
also demonstrated in Fig. 9. Also, the violin plots of four 
hyperparameters involved in optimizing LSTMs using our 
novel deep neuroevolution method are illustrated in Figs. 10 
and 11.

From Table 2 and Fig. 8, it is noteworthy that the pro-
posed EGOA-LSTM carries out better than the compared 
forecasting techniques with the minimum value of RMSE 
as 0.033647, MAE as 0.019135, MAPE as 24.42821 and the 
maximum value of R2 as 0.956096 in terms of next 30-min 
wind speed prediction. On the other hand, the best algo-
rithm among compared predictive models is EGP-WNN 
with RMSE as 0.037143, MAE as 0.025895, MAPE as 
51.28683 and R2 as 0.946497 whereas Xgboost is the worst 
one with RMSE as 0.158511, MAE as 0.147968, MAPE as 
418.574722 and R2 as 0.467719. It appears from Fig. 8 that 
the EGOA-LSTM demonstrates better curve fitting of the 

Table 2   Error estimated results of the predictions of the 30-min 
ahead wind speed time series for Las Vegas dataset. The bold values 
represent the best performance evaluation metric

Algorithm RMSE MAE R
2 MAPE

XGBOOST 0.158511 0.147968 0.467719 418.5747
BP 0.050608 0.033037 0.900678 58.43221
CNN 0.047746 0.031668 0.911593 55.59189
LSTM 0.046534 0.032627 0.916025 65.59595
DE-LSTM 0.045165 0.030470 0.920891 51.78664
EMD-GABP 0.043582 0.028625 0.926339 47.20511
EGP-WNN 0.037143 0.025895 0.946497 51.28683
EGOA-LSTM 0.033647 0.019135 0.956096 24.42821

Table 3   Error estimated results of the predictions of the 1-h ahead 
wind speed time series for Las Vegas dataset. The bold values repre-
sent the best performance evaluation metric

Algorithm RMSE MAE R
2 MAPE

XGBOOST 0.176611 0.164245 0.206522 472.6453
BP 0.106510 0.076001 0.561186 161.1773
CNN 0.102338 0.073158 0.594892 153.8014
LSTM 0.095044 0.068763 0.650583 127.7113
DE-LSTM 0.092181 0.065956 0.671315 125.8747
EMD-GABP 0.088070 0.062095 0.699977 113.9565
EGP-WNN 0.065221 0.041562 0.835458 81.66707
EGOA-LSTM 0.064619 0.038741 0.838482 66.02486
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actual wind speed time series compared to other forecasting 
models.

Table 3 shows that the EGOA-LSTM achieves better per-
formance than the compared forecasting algorithms in terms 
of next 1-h ahead wind speed forecasting, including the 

minimum value of RMSE as 0.064619, MAE as 0.038741, 
MAPE as 66.02486, and the maximum value of R2 as 
0.838482. Among the compared models, EGP-WNN is the 
leading algorithm with minimum values in terms of RMSE, 
MAE, MAPE, and maximum value for R2 . The convergence 
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Fig. 8   The wind speed forecasting results of 30-min ahead obtained by different algorithms on Las Vegas case study
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profile of the proposed EGOA-LSTM algorithm for the 
Las Vegas dataset using two different forecasting horizons 
is shown in Fig. 9. As we can see in this figure, the pre-
diction error for 1-h ahead of forecasting is much higher 
than 30-min ahead of forecasting. Moreover, our proposed 
method converges properly to the end of the maximum itera-
tion number for both forecasting horizons.

The violin plots using four different hyperparameters 
evolved into EGOA-LSTM algorithm for 30-min and 1-h 
ahead wind speed forecasting are illustrated in Figs. 10 and 
11. In an overview of these two figures, we reveal that the 
EGOA-LSTM assigns values to deep LSTM hyperparam-
eters that do not have high computational volumes (usually 
less than the maximum value of the interval). For instance, 
by looking into the batch size values for both 30-min and 
1-h intervals of the Las Vegas dataset, we understand that 
most of the assigned values are around and less than the 
median (the line shown in the figure). Such an interpretation 
applies to the other three hyperparameters and indicates the 
high capability of the proposed evolutionary search algo-
rithm in initializing hyperparameters of the LSTM neural 
network.

To evaluate the proposed algorithm’s performance sta-
tistically, we demonstrate the boxplots of RMSE rates in 
Figs. 12 and 13 for the proposed EGOA-LSTM versus the 
other benchmarks in tackling Las Vegas dataset for two fore-
casting horizons. As seen from these two figures, in two 
forecasting horizons, the dominance of the proposed deep 
EGOA-LSTM is evident.

3.5.2 � Denver case study

This section investigates the forecasting of the next 30-min 
and 1-h ahead for wind speed time series of Denver collected 
dataset. Tables 4 and 5 display the performance results of 
forecasting compared algorithms. The visualization for dif-
ferent forecasting algorithms based on the test set’s actual 
and predicted points is shown in Fig. 14.

Table 4 demonstrates that the proposed EGOA-LSTM 
model dominates other compared forecasting methods 
with the minimum value of RMSE as 0.042213, MAE as 
0.028105, MAPE as 40.930122 and maximum value of R2 as 
0.916746 for utmost short-term 30-min wind speed forecast-
ing. Among compared prediction algorithms, the best fore-
casting performance is denoted to EGP-WNN with RMSE 
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Fig. 9   The convergence profile of EGOA-LSTM algorithm for two forecasting horizons of Las Vegas case study
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as 0.045463, MAE as 0.030756, MAPE as 43.49489, and 
R2 as 0.896977. From Fig. 14, we notice that our novel deep 
neuroevolution method’s actual and predicted points are met 
properly. We also observe such dominance of our proposed 
method in Table 5 for 1-h ahead wind speed forecasting with 
the maximum value of R2 as 0.746495, minimum values 
of RMSE as 0.071538, MAE as 0.049332 and MAPE as 
73.45831 while the performance of the best predictive algo-
rithm among compared models indices to EGP-WNN with 
RMSE as 0.073322, MAE as 0.052651, MAPE as 85.09159 
and R2 as 0.74649. As it can be seen in Fig. 14, the wind 
speed predicted by the EGOA-LSTM model demonstrates 
more similarities with the actual data points and conducts 
fewer errors in the Denver case study.

Figure 15 shows the convergence curve for the EGOA-
LSTM algorithm using 30-min and 1-h ahead horizons 
for the Denver case study. Like the Las Vegas case study, 
EGOA-LSTM is easily converged to the maximum iteration 
number (20), and it generates fewer error values for 30-min 
ahead prediction compared with 1-h ahead horizon. Besides, 
four utilized LSTM hyperparameters involved in optimi-
zation procedures with EGOA obtain low computational 

volumes of hyperparameters, as shown in Figs. 16 and 17. 
For example, the proposed algorithm for the initializing of 
learning rate hyperparameter in both cases mostly chooses 
values that are closer to the beginning of the interval or the 
median, indicating that the algorithm is effective in initial-
izing the LSTM hyperparameters. Moreover, the boxplots 
of two forecasting horizons of the Denver case study are 
illustrated in Figs. 18 and 19. We notice from these two 
figures that the novel EGOA-LSTM performs better than 
all single and hybrid benchmarks. Finally, we present the 
best architectures obtained by the proposed algorithm for 
both databases in the 1-step (30-min) and 2-step (1-h) ahead 
time periods in Table 6. As an example, we can see that for 
the prediction of the next 30-min ahead of the Denver case 
study, the algorithm selects the maximum epoch = 50, the 
number of units = 23, batch size = 50, and learning rate = 
0.0001, which results in the RMSE equal to 0.033562.

We focus on discussing and comparing the proposed 
EGOA-LSTM model with other conventional forecasting 
algorithms in a nutshell. We can notice from the experimen-
tal findings for utmost short-term wind speed forecasting and 
short-term wind speed forecasting for both case studies that 

Batch size Learning rate Maximum epoch Neural units

0

5

10

15

20

25

0

100

200

300

0.000

0.005

0.010

0

50

100

150

Fig. 10   Violin diagram of the values obtained from the four hyperparameters used in the EGOA-LSTM algorithm for the Las Vegas case study 
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EGOA-LSTM performs superior in error prediction indica-
tors (RMSE, MAE, MAPE and R2 ) among comparative fore-
casting algorithms, including CNN, LSTM, BP, Xgboost, 
EMD-GABP, DE-LSTM, and EGP-WNN. Moreover, the 

proposed EGOA-LSTM model meets most of the actual and 
predicted points of both case studies.

From both convergence curves for two case studies, we 
can easily understand that short-term wind speed forecast-
ing is more costly and challenging than utmost short-term 
wind speed forecasting when the prediction time hori-
zon was lengthened from 30 min to 1 h with wind speed 
time-horizon rising. Besides, to show the effectiveness of 
the proposed EGOA-LSTM from the statistical point, we 
evaluated it using the boxplots for different horizons of two 
datasets. The results indicate that the novel EGOA-LSTM 
performs superior compared to other benchmarks used in 
the experiments.

Based on the evaluation error results, EGP-WNN itself 
shows a robust performance among compared benchmarks. 
Our proposed deep neuroevolution, which optimizes the 
four key hyperparameters of LSTM networks, improves the 
generalization robustness and competency of single LSTMs. 
On the other hand, the results of optimized hyperparameters 
visualized in violin plots for two forecasting horizons of two 
datasets show that EGOA-LSTM has not chosen the com-
plex and heavy values during optimization of LSTMs. This 
behavior shows the low cost-efficiency of the EGOA-LSTM 
algorithm. According to the discussions in this section, we 
conclude that the EGOA-LSTM algorithm proposed in this 
study is efficient and promising, which can be considered 
as a reliable alternative strategy for wind speed time series 
forecasting.

XGBOOST BP CNN LSTM DE-LSTM EMD-GABP EGP-WNN EGOA-LSTM
Algorithms

0

0.05

0.1

0.15

0.2

0.25

R
M
SE

Fig. 13   RMSE box plots of all models for Las Vegas 1-h ahead forecasting

Table 4   Error estimated results of the predictions of the 30-min 
ahead wind speed time series for Denver dataset. The bold values rep-
resent the best performance evaluation metric

Algorithm RMSE MAE R
2 MAPE

XGBOOST 0.150719 0.137569 0.584349 287.0161
BP 0.072462 0.052733 0.738284 70.73292
CNN 0.067939 0.050329 0.769935 72.37543
LSTM 0.054729 0.039344 0.850702 56.17056
DE-LSTM 0.056017 0.040672 0.843593 60.11669
EMD-GABP 0.053664 0.038637 0.856455 56.57227
EGP-WNN 0.045463 0.030756 0.896977 43.49489
EGOA-LSTM 0.042213 0.028105 0.911182 40.93012

Table 5   Error estimated results of the predictions of the 1-h ahead 
wind speed time series for Denver dataset. The bold values represent 
the best performance evaluation metric

Algorithm RMSE MAE R
2 MAPE

XGBOOST 0.164598 0.148963 0.342062 294.7785
BP 0.107107 0.080082 0.431719 116.0144
CNN 0.105921 0.078654 0.444242 113.3859
LSTM 0.112653 0.084376 0.371346 108.6512
DE-LSTM 0.109007 0.082086 0.411381 119.9755
EMD-GABP 0.105245 0.078292 0.451306 111.0744
EGP-WNN 0.073322 0.052651 0.733687 85.09159
EGOA-LSTM 0.071538 0.049332 0.746495 73.45831
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Fig. 14   The wind speed forecasting results of 30-min ahead obtained by different algorithms on Denver case study
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4 � Conclusions and future directions

Wind speed forecasting is an essential problem in the con-
version, consumption, and wind energy operation, which 
has received much attention in recent years. This paper pre-
sented a novel deep neuroevolution approach for wind speed 
forecasting, using the optimization of deep learning time 
series LSTM algorithm based on an enhanced version of 
GOA (EGOA) involving chaotic theory levy-flight operators. 
Involving these two powerful evolutionary operators into the 
original GOA makes adjusting and balancing the primary 
GOA exploration and exploitation phases. In this study, 
evolved LSTM neural networks were introduced to EGOA to 
optimize the hyperparameters of LSTMs to learn and predict 
the data of wind speed time series. To confirm the feasibility 

of the proposed EGOA-LSTM, two data-collection case 
studies from two wind stations near Las Vegas and Denver 
in the USA were introduced to forecast the utmost short-
term wind speeds including 30-min short-term wind speed 
and 1 h ahead. We used the mutual information as the feature 
selection strategy to determine our proposed deep learning 
model’s optimal inputs. Compared to other prominent fore-
casting methods such as LSTM, CNN, BP, Xgboost, EMD-
GABP, DE-LSTM, and EGP-WNN, our novel EGOA-LSTM 
algorithm obtained the best prediction performance with the 
minimum values of RMSE, MAE, and MAPE and the maxi-
mum value of R2 . Furthermore, the analysis of the evolved 
hyperparameters’ impact on the forecasting performance of 
the LSTMs presented that the hyperparameters of LSTMs 
optimized by the EGOA obtained a low computational cost. 
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Fig. 15   The convergence profile of EGOA-LSTM algorithm for two forecasting horizons of Denver case study
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The proposed EGOA-LSTM algorithm achieved adequate 
wind speed forecasting performance based on the nonlinear-
learning features of LSTMs and EGOA.

In this paper, we analyzed the univariate time series pre-
diction for wind speed forecasting. For future works, the 
scholars can research for multivariate time series prediction 
of further complicated wind speed prediction based on more 
advanced deep neuroevolution models using more interde-
pendent attributes such as power system statuses and weather 
conditions. Moreover, an attempt can be made to develop 

more optimal deep learning algorithms to promote green 
energy resources forecasting. A further valuable orientation 
might be to expand the datasets’ size, which would allow the 
training process more robust against over-fitting. An analysis 
of the wind speed results for the forecasts of the next few 
hours and multi-day would be undertaken as another future 
work. We may further use the proposed deep neuroevolu-
tion strategy proposed in this work to obtain probabilistic 
forecasts to quantify the corresponding uncertainties in the 
wind speed datasets. Also, the new GOA-based model can 
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Fig. 16   Violin diagram of the values obtained from the four hyperparameters used in the EGOA-LSTM algorithm for the Denver study of the 
30-min ahead forecasting



S1807Engineering with Computers (2022) 38 (Suppl 3):S1787–S1811	

1 3

Batch size Learning rate Maximum epoch Neural units

0

20

40

60

80

−200

0

200

400

−0.005

0.000

0.005

0.010

0.015

−50

0

50

100

150

200

Fig. 17   Violin diagram of the values obtained from the four hyperparameters used in the EGOA-LSTM algorithm for the Denver case study of 
the 1-h ahead forecasting

XGBOOST BP CNN LSTM DE-LSTM EMD-GABP EGP-WNN EGOA-LSTM
Algorithms

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

R
M
SE

Fig. 18   RMSE box plots of all models for Denver 30-min ahead forecasting
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be applied to areas such as neural network-based robotic 
systems [113].
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