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Abstract
Reliability analysis with multiple failure modes is needed because more than one failure mode exists in many engineering 
applications. Kriging-based surrogate model is widely adopted for component reliability analysis because of its high com-
putational efficiency. Compared with Kriging-based component reliability analysis, selecting the sample points that affect 
the system performance is more difficult than that of a single failure mode in system reliability analysis. Therefore, how to 
select suitable sample points is a key problem in system reliability analysis. Meanwhile, reducing the number of calls to the 
performance functions is challenging, especially for systems with time-consuming performance functions. In this paper, 
an improved Kriging-based system reliability analysis approach is proposed based on the two strategies. In strategy 1, the 
initial sample points are determined by considering only two different cases: (a) the candidate samples are selected from the 
safe regions only for series systems; (b) the candidate samples are selected from the failure regions only for parallel systems. 
Therefore, samples having little contributions to the composite performance function are avoided. In strategy 2, the sample 
points determined in strategy 1 will be further optimized by interpolating. From comparisons with three reported methods 
in numerical examples, the efficiency and accuracy of the proposed method are illustrated.

Keywords System reliability analysis · Kriging · Series system · Parallel system · Failure probability

1 Introduction

Structural reliability analysis (SRA) aims to estimate the 
failure probability of a component or a system consider-
ing various uncertainties, such as geometric parameters and 
material properties. It plays an important role in ensuring the 
quality of the product. As a result, it has received consider-
able attention in many fields, including electric vehicles [1], 
bridges [2], robots [3], etc. In general, SRA can be divided 
into two categories: component reliability analysis and sys-
tem reliability analysis. Because multiple failure modes exist 

in real engineering applications, SRA under multiple failure 
modes is needed.

In SRA, the failure probability Pf is defined as

where F refers to the failure region when the response value 
of performance function G(x) is less than 0 (G(x) < 0), and 
f(x) is the joint probability density function of the random 
variables. Generally, Pf cannot be directly estimated by the 
integral in Eq. (1), because the form of G(x) is often com-
plex and highly nonlinear. To address this problem, many 
reliability methods are reported. The Monte Carlo Simula-
tion (MCS) with large sample size is a classical one to pro-
vide benchmark results for accuracy comparisons. However, 
the MCS is not appropriate if implicit performance func-
tions are involved, because numerous simulations such as 
finite element analysis is extremely time-consuming [4]. To 
reduce computational burden, surrogate models are adopted 
for SRA in recent years, then, the implicit performance func-
tions are replaced by surrogate models for reliability analy-
sis. These surrogate models include support vector machines 

(1)Pf = ∫F

f (x)dx,
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(SVM) [5], response surface method (RSM) [6], polyno-
mial chaos expansion (PCE) [7], artificial neural networks 
(ANN) [8, 9], hybrid models [10], extended support vec-
tor regression(X-SVR) [11], and Kriging [12–20]. Among 
them, Kriging-based SRA has received more attention as it 
has excellent characteristics: exact interpolation and a local 
index of uncertainty on the prediction [12].

Many Kriging-based methods have been reported in 
component reliability analysis (CRAS) in recent years. 
Echard [12] reported an active learning reliability method 
combining Kriging and MCS (AK-MCS), and AK-MCS 
is a competitive method in CRAS; subsequently, several 
other approaches are reported to improve the AK-MCS, 
please see Refs [13, 14, 16] for detail. However, system 
reliability analysis (SRAS) is more difficult than CRAS, 
because it involves multiple failure modes. As a result, 
existing Kriging-based CRAS methods, in general, can-
not be directly applied to SRAS efficiently. Fauriat [15] 
extended the AK-MCS method for system reliability; 
then, a useful and competitive method for system reli-
ability analysis, i.e., AK-SYS, was reported. Based on 
the AK-SYS, Yun [21] refined learning function U and 
proposed an improved adaptive Kriging model for SRAS. 
Yang [16] reported an active learning Kriging model 
with a truncated candidate region for SRAS. Xiao [22] 
reported an adaptive Kriging-based efficient reliability 
method for structural systems with multiple failure modes 
and mixed variables. Gong [23] reported an important 
sampling-based system reliability analysis of corroding 
pipelines considering multiple failure modes. Perrin [32] 
reported an active learning surrogate model for the con-
ception of systems with multiple failure modes. These 
aforementioned works are useful for SRAS. However, the 
applicability of them is generally lower than the AK-SYS 
because the latter is very easy to implement. In AK-SYS, 
the key idea is to construct a composite performance 
to select new sample points. However, some samples, 
which have very little contributions to the construction 
of composite performance function, may be selected and 
added to the design of experiments (DoE) [24] during 
the process. These useless samples may increase the 
number of calls to the performance and, thus, increase 
computation time. Because the highly applicability of 
AK-SYS, an improved system reliability analysis method 
is proposed based on AK-SYS in this paper. First, a new 
sampling-based strategy is employed to determine the 
initial candidate sample points; sample points in safe 
regions are considered for series systems, whereas in 
failure regions are for parallel systems. Then, the initial 
candidate sample points are further optimized in strat-
egy 2 by interpolating. Based on these two strategies, an 
improved Kriging-based approach for system reliability 
analysis with multiple failure modes is proposed based 

on AK-SYS; it is termed as IK-SRA. Finally, an effective 
composite performance function is constructed by the 
proposed method; it requires generally fewer function 
calls compared with AK-SYS to achieve almost the same 
accuracy level.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief review of Kriging and the system 
reliability analysis. Section 3 gives details of proposed 
method. Five numerical examples are analyzed in Sect. 4 
to show the proposed method. Finally, the conclusion is 
summarized in Sect. 5.

2  Basic theory

2.1  Kriging theory

Kriging is one of the most used estimators for interpola-
tion of spatial data [25–27]. There are several types of 
Kriging models, such as ordinary Kriging, simple Krig-
ing, universal Kriging, indicator Kriging, and co-Kriging 
[28]. The most commonly used one is ordinary Kriging, 
such as in references [12, 29–31]. In this paper, the ordi-
nary Kriging method is selected. Kriging possesses two 
main interesting characteristics: exact interpolation, and 
a local index of uncertainty on the prediction. The Krig-
ing model consists of two main parts: a linear regression 
model and a stochastic process, which is defined as fol-
lows [33]:

where f (x) = [f1(x), f2(x),… , fp(x)]
T is the vector of basic 

functions and � is the vector of the regression coefficients, 
and Z(x) is a stationary Gaussian process with zero mean. 
The covariance between any two experimental sample points 
is defined as follows:

where �2 is the process variance and R(xi, xj) is the Gaussian 
correlation function [34]. Gaussian correlation function is 
adopted in this study and is defined as follows [35]:

where n is the dimensionality number of the random vector 
x,�t is the correlation parameter, and xit, xjt are the tth com-
ponents of vectors x

i
 and xj , respectively [36]. In this study, 

the regression part of the Kriging model is constant. Then, 
the parameters � and �2 can be computed by [37]

(2)Ĝ(x) = f T(x)𝛽 + Z(x),

(3)Cov(Z(xi), Z(xj)) = �2R(xi, xj), i, j = 1, 2,… ,N,

(4)R(xi, xj) = exp

(
−
∑n

t=1
�t
|||xit − xjt

|||
2
)
,

(5)𝛽 = (FT
R
−1
F)−1FT

R
−1G,



S1815Engineering with Computers (2022) 38 (Suppl 3):S1813–S1833 

1 3

where F is a vector of f (x) and G is the vector of the 
response obtained at each random input variable. R is the 
correlation matrix, i.e.,

The correlation parameter �t can be calculated using 
the maximum likelihood estimation:

According to the Gaussian regression theory, Ĝ( x) fol-
lows a normal distribution Ĝ( x) ∼ N

(
𝜇Ĝ( x), 𝜎

2

Ĝ
( x)

)
 , with 

the following expressions:

where rT (x) = [R(x, x1), ...,R(x, xN)]
T is a vector containing 

the covariance between x and each experimental sample. 
Generally, both 𝜇Ĝ(x) and 𝜎2

Ĝ
(x) can be evaluated by MAT-

LAB toolbox DACE [34].

2.2  System reliability analysis

In this study, both parallel and series systems are con-
sidered. The failure probability of the parallel and series 
systems are defined as

and

respectively, where k is the number of failure modes, and 
gi(x) is the performance function of the corresponding ith 
failure mode.

One of the most classical ways to address system reli-
ability problems by surrogate models is to convert multi-
ple performance functions into a single composite perfor-
mance function. In general, the composite performance 
functions of parallel and series systems can be, respec-
tively, expressed with performance function as follows:

(6)�̂�2 =
1

N
(G − F𝛽)TR−1(G − F𝛽),

(7)R =

⎡
⎢⎢⎣

R(x1, x2) ⋯ R(x1, xN)

⋮ ⋱ ⋮

R(xN , x1) ⋯ R(xN , xN)

⎤
⎥⎥⎦
.

(8)�̂� = argmin
𝜃
(det R)

1

n �̂�2.

(9)𝜇Ĝ(x) = f T (x)𝛽 + rT (x)R−1(G − F𝛽),

(10)𝜎2

Ĝ
(x) = 𝜎2 − [f T (x)rT (x)]

[
0 F

T

F R

]−1[
f (x)

r(x)

]
,

(11)Pfparallel
= P

{
k⋂

i=1

gi(x) < 0

}
= P

{
k

max
i=1

gi(x) < 0

}
,

(12)Pfseries
= P

{
k⋃

i=1

gi(x) < 0

}
= P

{
k

min
i=1

gi(x) < 0

}
,

3  The proposed method based on AK‑SYS

In this study, to illustrate the effectiveness of the pro-
posed method, it is compared with the classical methods 
AK-SYS and ALK-TCR. Herein, the two methods are 
briefly reviewed. Then, the two strategies of the pro-
posed method are described in detail. Finally, the sum-
mary of the proposed method is given.

3.1  Review of AK‑SYS and ALK‑TCR 

AK-SYS is an adaptation of the classical method AK-
MCS for system reliability analysis [15]. Three differ-
ent strategies were reported in AK-SYS: Component 
approach, composite model approach and composite 
criterion approach.

The composite criterion approach is more efficient 
than others, as shown in AK-SYS [15]. The brief intro-
duction for the third one is made herein. In this approach, 
surrogate models are no longer updated simultaneously, 
whereas just one surrogate model is updated based on the 
active learning function. The active learning function is 
defined as

where ĝs is the response of performance function and 𝜎ĝs 
is the standard deviation from Kriging model; s refers to 
the target sample points and the following are the details to 
determine these sample points:

For parallel systems,

where k is the number of failure modes. Similarly, for series 
systems, it is given as follows,

where s can be described as the following matrix:

(13)

{
x ∶

p⋂
j=1

gj(x) ≤ 0

}
=

{
x ∶ gcomp(x)

def≡ max
j

gj(x) ≤ 0

}
,

(14)

{
x ∶

p⋃
j=1

gj(x) ≤ 0

}
=

{
x ∶ gcomp(x)

def≡ min
j

gj(x) ≤ 0

}
.

(15)US(x
(i)) =

||ĝS(x(i))||
𝜎ĝS(x(i))

,

(16)sj,i = arg

{
k

max
j=1

gj(xi)

}
, i = 1, 2, ...,N,

(17)sj,i = arg

{
k

min
j=1

gj(xi)

}
, i = 1, 2,… ,N,
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Then, the best added sample point can be determined 
by

The processes of AK-SYS can be described as follows 
[15]:

a. Generating N samples based on MCS, and selecting 
N0 samples by Latin Hypercube Sampling (LHS), 
xi, i = 1,… ,N0 . Then, the initial DoE is generated 
by (xi, ĝj,i(xi));

b. Constructing the initial Kriging models of each fail-
ure modes, respectively. These constructed Kriging 
models are denoted as Mj, j = 1, 2,… , k, and k is the 
number of failure modes;

c. Determining the composite failure mode of each sam-
ple by Eqs. (16) or (17) to obtain Mj,i;

d. Estimating the learning function values of all samples 
by Eq. (15);

(18)s =

⎡
⎢⎢⎢⎢⎢⎣

s1,1 ⋯ s1,i1 ⋯ s1,N
s2,1 ⋯ s2,i2 ⋯ s2,N
⋯ ⋯ sj,ij ⋯ ⋯

sk−1,1 ⋯ sk−1,ik−1 ⋯ sk−1,N
sk,1 ⋯ sk,ik ⋯ sk,N

⎤
⎥⎥⎥⎥⎥⎦
k×N

.

(19)xj,i ← arg

{
min
j,i

Uj,i

}
.

e. Determining the minimum value Umin and the best 
candidate sample xj,i;

f. Judging the convergence criterion. If satisfied, pro-
ceed to (h), else to (g);

g. Updating the DoE and corresponding surrogate 
model Mj . And go to (c);

h. Estimating system probability failure Pfsystem
.

However, AK-SYS fails to rightly identify the insignif-
icant component if the values of component performance 
functions exist large numerical difference. Therefore, 
Yang [16] reported a system reliability analysis method 
through active learning Kriging model with truncated 
candidate region, it is termed as ALK-TCR. The basic 
idea of ALK-TCR is to pay little attention to the insig-
nificant components in the design space.

In ALK-TCR, a truncated candidate region was pro-
posed to identify the unimportant components, such as 
the arc O1C, O1B, O2E, and O2D, and making the sam-
pling near the important component, such as arc AO1O2F, 
as shown in the Fig. 1.

The adaptive truncating region is defined as [16]

Fig. 1  A series system with three components [16]

Fig. 2  A series system with three failure modes

Fig. 3  The limit state of a composite performance function in a series 
system

Fig. 4  A parallel system with three failure modes
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(20)T̃k =

{
k−1⋃
i=1

T̃ i
k

}
∪

{
p⋃

i=k+1

T̃ i
k

}
,

where T̃ i
k
=
{
x
|||uig(x) ≤ −𝛿𝜎i

g
(x)

}
 is for a series system. For 

a parallel system, T̃ i
k
=
{
x
|||uig(x) ≥ 𝛿𝜎i

g
(x)

}
.

3.2  The proposed method

In this section, two strategies are introduced in detail. 
In strategy 1, based on the U learning function, a sam-
pling strategy is proposed for series and parallel systems, 
respectively. To avoid selecting samples that have little 
contributions to the construction of composite perfor-
mance function, Strategy 2 is used to further optimize 
the initial candidate samples.

3.2.1  Strategy 1: determining the initial candidate sample 
points.

A series system with three failure modes is shown in 
Fig. 2. The composite performance function gcomp can be 
obtained through Eq. (14). Therefore, the arc A1O1O2B3 
is on the limit state of the composite performance func-
tion. As shown in Fig. 3, the failure and safe regions are 
divided by the arc A1O1O2B3. To yield accurate failure 
probability, it is important to have accurate composite 
performance function. In other words, the surrogate mod-
els should be accurate compared with arc A1O1O2B3. Fur-
thermore, surrogate models in other regions such as: arc 
O1A2, O1B1, O2A3, and O2B2 are not required accurately 

Fig. 5  The limit state of a composite performance function in a paral-
lel system

Fig. 6  The distance from the initial candidate sample point to the 
sample points on the other side of limit state function

Fig. 7  The process of the proposed method for a series system



S1818 Engineering with Computers (2022) 38 (Suppl 3):S1813–S1833

1 3

because the samples in these regions are always less than 
0.

Similarly, a parallel system with three failure modes is 
shown in Fig. 4. The composite performance function can 
be obtained through Eq. (13). It is easy to know that the 
arc A3O2B1 divides space into failure and safe regions, 
as shown in Fig. 5. To yield accurate failure probability, 
it is important to have accurate composite performance 
function. In other words, the surrogate models should be 
accurate compared with arc A3O2B1. Furthermore, sur-
rogate models in other regions such as: arc A1O2, A2B2, 
and B3O2 are not required accurately because the samples 
in these regions are always greater than 0.

For a series system, the composite performance func-
tion can be described as

where k is the number of failure modes. For a series system, 
the values of all performance functions are greater than 0 
in the safe regions; whereas in the failure regions, at least 
one is less than 0. To reduce the computational burden, the 
surrogate model of each component in the failure region is 
not required to accurately constructed because most of them 
have almost no contributions to the failure probability. Thus, 
the safe regions are considered for selecting samples for 
series systems. Then, an improved learning function based 
on AK-SYS is proposed as follows:

(21)gcomp =

⎧⎪⎨⎪⎩

< 0,
k

∪
i=1

gi < 0

> 0,
k

∩
i=1

gi > 0

,

For a parallel system, the composite performance 
function can be given by

For a parallel system, the values of all performance 
functions are less than 0 in the failure regions; whereas 
in the safe regions, at least one is greater than 0. As 
aforementioned discussions, the failure regions are con-
sidered for selecting samples for parallel system. Simi-
larly, an improved learning function based on AK-SYS 
is proposed for parallel systems as follows:

3.2.2  Strategy 2: optimizing the initial candidate samples

Based on strategy 1, an initial candidate sample point 
is identified. However, it may not be the best candidate 
sample point because its U function value is not the 

(22)

minUS(x
(i)) =

|ĝS(x(i))|
𝜎
ĝS (x

(i) )

,

s.t.
{
x||g1(xi) ∩⋯ gk−1(xi) ∩ gk(xi) > 0

}
, i = 1, 2,… ,N.

(23)gcomp =

⎧
⎪⎨⎪⎩

< 0,
k

∩
i=1

gi < 0

> 0,
k

∪
i=1

gi > 0

.

(24)

minUS(x
(i)) =

|ĝS(x(i))|
𝜎
ĝS (x

(i) )

,

s.t.
{
x||g1(xi) ∩⋯ gk−1(xi) ∩ gk(xi) < 0

}
, i = 1, 2,… ,N.

Fig. 8  The process of the proposed method for a parallel system
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global minimum according to Eq. (15). Therefore, the 
candidate sample points determined by strategy 1 need 
to be further optimized.

Herein, strategy 2 is proposed to further optimize the can-
didate sample points by interpolation. In strategy 2, one of 
the sample points is determined by strategy 1, and is called 
Xs1 as shown in Fig. 6. The other sample is determined by 
the shortest distance between Xs1 and the samples that are 
residing in the counterpart regions of the limit state function; 
this sample point is denoted as Xs2, as shown in Fig. 6. For 
each performance function, at least one sample point is in 

the failure region. The sample point Xs2 can be determined 
by the following:

(25)

arg
Xi

{
min(D(Xi))

}

D(Xi) =

√√√√ d∑
k=1

(Xk
i
− Xk

s1
)2

s.t.
{

g(Xi) ⋅ g(Xs1) < 0

∃g1(xi) < 0,∃g2(xi) < 0,… ,∃gk(xi) < 0
, i = 1, 2,… ,N,

Fig. 9  Flowchart of the proposed method
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where d is the dimension of the variables, and Xi is the sam-
ple point that has the opposite response sign to the sample 
point Xs1; D is the distance between sample points Xi and 
Xs1. Then, Nt sample points are interpolated between these 
two sample points Xs1, Xs2. Finally, the next best sample 
point is determined by the learning function U. Mathemati-
cally, the strategy can be expressed as follows

where Xq is the random interpolated sample point between 
sample points Xs1 and Xs2, and the number of interpolations 
is Nt. Then, the next best sample point can be determined 
by the minimum U value from these Nt + 2 samples. In this 
study, Nt is set as 100.

The processes of abovementioned two strategies for 
series systems with three failure modes are shown in 
Fig. 7. First, the safe region is selected according to Eq. 
(21), as shown in the Part 1 of Fig. 7. Then, the ini-
tial best sample point Xs1 and the corresponding per-
formance function are determined according to Eq. (22) 
in the selected safe region, as shown in the Part 2 of 
Fig. 7. Finally, optimizing the initial best sample point by 
interpolation between sample points Xs1 and Xs2, where 
Xs2 is determined according to Eq. (25), is shown in the 
Part 3 of Fig. 7. Similarly, the processes of the proposed 
method for a parallel system are shown in Fig. 8.

3.3  Summary of the proposed method

The flowchart of the proposed method is shown in Fig. 9, 
and the main steps are structured as follows:

Step 1: Generating N samples based on the distribu-
tions of variables; Defining the initial DoE as the train-
ing points, the same number of initial training sam-
ples is used for the proposed method, AK-SYS and 
ALK-TCR. Latin hypercube sampling (LHS) method 
is adopted to generate these samples, and the lower 
bound and the upper bound of LHS are determined by 
{minN

i=1
xi, maxN

i=1
xi} , respectively;

Step 2: Constructing the Kriging model of each failure 
mode and predicting the responses and variances of 
these N samples using the constructed Kriging models;
Step 3: Determining the initial best sample point 
through Eq. (15);
Step 4: Determining the sampling regions. The failure 
regions are selected for parallel systems through Eq. 
(23), and the safe region for series systems through Eq. 
(21);

(26)
min
Xq

U(Xq), q = 1, 2,… ,Nt,Nt + 1,Nt + 2

s.t.Xq = Xs1(1 − t) + Xs2t, 0 ≤ t ≤ 1,

Step 5: Judging the regions where the initial best sam-
ple points are located. If the sample points meet the 
requirements according to Eqs. (22) or (24), proceed 
to step 6; otherwise, remove this sample point and go 
back to step 3.
Step 6: Optimizing the initial sample points. First, 
determining the sample point Xs2 according to Eq. (25). 
Then, Nt samples will be interpolated between these 
two sample points Xs1 and Xs2, and determining the next 
best sample point from the Nt + 2 samples by Eq. (26);
Step 7: Judging the convergence. If U ≤ 2, proceed to 
step 8; otherwise, predicting the response of the current 
best sample point and go back to step 2;
Step 8: Computing the failure probability.

Fig. 10  The composite performance function of the numerical exam-
ple 1

Fig. 11  The percentage improvement in efficiency in example 1
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4  Validation and comparison 
with numerical examples

In this section, five numerical examples are studied, 
including two parallel systems and three series systems. 
Examples 1 and 2 are used to illustrate the efficiency 
and high accuracy of the proposed method; example 3 is 
used to illustrate the robustness of the proposed method 
for a parallel system with disconnected failure regions; 
example 4 is used to illustrate the effectiveness of the 
proposed method for moderate dimensions. The last 
example is used to illustrate the applicability of the pro-
posed method to engineering problems with implicit per-
formance functions. The reliability results estimated by 
MCS is regarded as the benchmark, and the results esti-
mated by AK-SYS, ALK-TCR and the proposed method 
are compared.

4.1  Example 1 A parallel system with three failure 
modes

A parallel system with three failure modes, g1, g2 and g3 
is used [15, 16]. The performance functions are defined 
as follows

where x1 and x2 follow the standard normal distribu-
tion,X ∼ N(0, 1) , and � is a parameter that affects the value 
of g3. In this paper, to illustrate the robustness of the pro-
posed method, the parameter � with two values � = 1 and 
� = 1000 is, respectively, considered.

(27)

⎧
⎪⎨⎪⎩

g1(x) = 8x2
2
− 8x2

1
+
�
x
2
1
+ x

2
2

�2
g2(x) = 2x2

1
− 2x2

1
−
�
x
2
1
+ x

2
2

�2
g3(x) = �

�
8x2

2
− 8x2

1
−
�
x
2
1
+ x

2
2

�2� ,

Table 1  Result of example 1, 
� = 1

� = 1 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 1 ×  105 12 + 27.6 (1.70) 12 + 26.9 (2.31) 12 + 24.0(1.65)
Ncalls of g2 1 ×  105 12 + 26.0 (1.62) 12 + 25.7 (1.66) 12 + 23.5(1.64)
Ncalls of g3 1 ×  105 12 + 6.6 (1.28) 12 + 6.0 (1.59) 12 + 1.6(0.99)
Total 3 ×  105 96.2 94.6 85.1
Pf (Cov) 0.1920 (0.65%) 0.1921 0.1933 0.1922
� – 0.05% 0.68% 0.10%

Fig. 12  The boxes of three 
methods AK-SYS, ALK-TCR 
and the proposed method in 
case 1 of example 1
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To illustrate the effectiveness of the proposed method, 
three different methods, i.e., MCS, AK-SYS, and ALK-
TCR, are compared. For the fair comparisons, the same 
number of samples, i.e., 12 sample points, generated by 
LHS is used and added to the initial DoE for AK-SYS, 
ALK-TCR and the proposed method. The number of sam-
ples used for MCS is 1×105, and the candidate samples 
size is set as N = 1 × 104 in AK-SYS, ALK-TCR and the 
proposed method. The result of MCS with NMCS = 1 × 105 
samples is a benchmark for comparisons. � is the abso-
lute value of the relative error, and 𝜀 =

|||P̂f − Pf
|||∕Pf . Cov 

stands for the coefficients of variation.

The results obtained from different methods are listed 
in Table 1. To reduce the uncertainty of results, all com-
pared methods are performed 20 times independently, 
and the average results are reported. The box diagram is 
used to show the distribution of results, as shown in 
Fig. 12. Also, standard deviations are given to illustrate 
the robustness of the method. Ncalls is the number of calls 
to the performance function. Based on Table 1, the Ncalls 
of proposed method IK-SRA is 85.1, and is less than both 
AK-SYS and ALK-TCR with 96.2 and 94.6, respectively. 
Therefore, the proposed method is more efficient than 
both in this example. Note that g3 = 0 does not contribute 
to the composite performance function, as shown in 

Fig. 13  The process of sampling in AK-SYS for � = 1 in example 1 Fig. 14  The process of sampling in ALK-TCR for � = 1 in example 1

Fig. 15  The process of sampling in IK-SRA for � = 1 in example 1
Fig. 16  The convergence processes of different methods for � = 1 in 
example 1
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Fig. 10. Therefore, evaluation on g3 = 0 is useless for 
reliability analysis. Meanwhile, from Table 1, it shows 
that the failure probability estimated by the proposed 
method is more accurate than ALK-TCR, however, the 
relative error of AK-SYS is 0.05%, which is more accu-
rate than that of the proposed method. The proposed 
method improves the efficiency of reliability analysis by 
reducing the number of calls to performance functions, 
as shown in Fig. 11, the percentage improvements in effi-
ciency ( p =

|||
1

Ncalls(IK-SRA)
−

1

Ncalls(AK-SYS/ALK-TCR)

|||∕
1

Ncalls(AK-SYS/ALK-TCR)
 ) 

are 13% and 11.2% compared with AK-SYS and ALK-
TCR, respectively (Fig. 12).

Figure 13 shows the limit state function of each failure 
modes, the selected samples added to DoE, the selected 
samples by each Kriging model in the whole update pro-
cess, and the constructed Kriging models of each failure 

mode by AK-SYS. Figure 14 shows that by ALK-TCR, 
and Fig. 15 shows that by IK-SRA. The converging pro-
cesses of different methods are shown in Fig. 16, which 
shows that the proposed method converges quickly and 
achieves accurate results.

For � = 1000 , reliability results computed by MCS, 
AK-SYS, and ALT-TCR are listed in Table 2. Figure 17 
shows the distributions of results estimated by each 
method in 20 runs. It shows that the proposed method 
IK-SRA is more effective than AK-SYS and ALK-TCR 
because its Ncalls is 84.2, whereas AK-SYS and ALK-
TCR are 105.8 and 93.7 in this case, g3 = 0 does not con-
tribute to the composite performance function, as shown 
in Fig. 10. Table 2 shows that Ncalls on g3 = 0 is almost 
zero in the proposed method, which improves compu-
tational efficiency in reliability analysis. The proposed 
method improves the efficiency of reliability analysis by 

Table 2  Result of example 1, 
� = 1000

� = 1000 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 1 ×  105 12 + 27.1 (2.22) 12 + 26.6 (2.87) 12 + 25.0 (2.28)
Ncalls of g2 1 ×  105 12 + 25.5 (1.82) 12 + 25.1 (1.45) 12 + 23.0 (2.27)
Ncalls of g3 1 ×  105 12 + 17.2 (1.79) 12 + 6.0 (1.34) 12 + 0.2 (0.37)
Total 3 ×  105 105.8 93.7 84.2
Pf (Cov) 0.1920 (0.65%) 0.1919 0.1925 0.1912
� – 0.05% 0.26% 0.42%

Fig. 17  The boxes obtained by 
three methods AK-SYS, ALK-
TCR and the proposed method 
in case 2 of example 1
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reducing the number of calls to performance functions, 
as shown in Fig. 11, the percentage improvements in effi-
ciency are 25.7% and 11.3% compared with AK-SYS and 
ALK-TCR, respectively.

Figure 18 shows the limit state function of each failure 
modes, the selected samples added to DoE, the selected 
samples by each Kriging model in the whole update 
process, the constructed Kriging models of each failure 
mode by AK-SYS. Figure 19 shows that by ALK-TCR. 
Figure 20 shows that by IK-SRA. The converging pro-
cesses of different methods are shown in Fig. 21, which 
shows that the proposed method has the fast convergence 
speed and high accuracy level.

4.2  Example 2 A series system with three failure 
modes

A series system with three failure modes is studied in 
example 2 [16]. The three failure models are defined as

in which variable x obeys uniform distribution: x1 ∈ [−4, 4] 
and x2 ∈ [−20, 2] . Figure 22 shows the schematic of these 

(28)

⎧⎪⎨⎪⎩

g1(x) = sin(2.45x1) − (x2
1
+ 3.9)(x2 + 2)∕20

g2(x) = 100 sin(2.5x1) − 5(x2
1
+ 4)(x2 + 0.5)

g3(x) = 1000 sin(2.55x1) − 5(10x2
1
+ 41)(x2 − 1)

,

Fig. 18  The process of sampling in AK-SYS for � = 1000 in example 
1

Fig. 19  The process of sampling in ALK-TCR for � = 1000 in exam-
ple 1

Fig. 20  The process of sampling in IK-SRA for � = 1000 in example 
1

Fig. 21  The convergence processes of different methods for � = 1000 
in example 1
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three failure modes. The Fig. 22 shows that the failure prob-
ability is dependent on the first failure mode g1.

For a fair comparison, 12 sample points are selected 
by LHS method and added to the initial DoE for all 
compared methods. The number of samples used for 
MCS is 1×105, and the candidate samples size is set as 
N = 1 × 104 for AK-SYS, ALK-TCR and the proposed 
method. The results obtained from different methods are 
listed in Table 3. Figure 23 shows the distributions of 

results estimated by each method with 20 runs. Based 
on Table 3, the Ncalls of proposed method IK-SRA is 
only 72.1, and is less than both AK-SYS and ALK-TCR 
with109.9 and 92.8, respectively. Therefore, the proposed 
method is more efficient than both in this example. Note 
that g2 = 0 and g3 = 0 do not contribute to the composite 
performance function, as shown in Fig. 22. Therefore, 
evaluation on g2 = 0 and g3 = 0 is useless for reliability 
analysis. Meanwhile, from Table 3, it shows that ALK-
TCR is slightly more accurate than the proposed method. 
The proposed method improves the efficiency of reli-
ability analysis by reducing the number of calls to per-
formance functions, and the percentage improvements in 
efficiency are 52.4% and 28.7% compared with AK-SYS 
and ALK-TCR, respectively.

Figure 24 shows the limit state function of each failure 
modes, the selected samples added to DoE, the selected 
samples by each Kriging model in the whole update pro-
cess, and the constructed Kriging models of each failure 
mode by AK-SYS. Figure 25 shows that by ALK-TCR, 
and Fig. 26 shows that by IK-SRA. The converging pro-
cesses of different methods are shown in Fig. 27.

4.3  Example 3 A parallel system with disconnected 
regions

This example is a parallel system with disconnected failure 
regions [16], and its failure probability is defined as

Fig. 22  A series system in example 2

Fig. 23  The boxes results 
obtained by three methods 
AK-SYS, ALK-TCR and the 
proposed method in example 2



S1826 Engineering with Computers (2022) 38 (Suppl 3):S1813–S1833

1 3

Table 3  Result of example 2 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 1 ×  105 12 + 36.2 (3.60) 12 + 34.6 (2.14) 12 + 34.8 (3.89)
Ncalls of g2 1 ×  105 12 + 35.0 (4.41) 12 + 13.6 (3.65) 12 + 1.0 (1.19)
Ncalls of g3 1 ×  105 12 + 2.7 (3.75) 12 + 8.6 (2.86) 12 + 0.3 (0.64)
Total 3 ×  105 109.9 92.8 72.1
Pf (Cov) 0.1839 (0.67%) 0.1832 0.1837 0.1846
� – 0.38% 0.11% 0.38%

Fig. 24  The process of sampling in AK-SYS in example 2

Fig. 25  The process of sampling in ALK-TCR in example 2

Fig. 26  The process of sampling in IK-SRA in example 2

Fig. 27  The convergence processes of different methods in example 2
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where the performance function of each failure mode is 
defined as

where variables x1 and x2 follow a normal distribution, 
X ∼ N(0, 0.32) . For a fair comparison, 12 sample points are 
selected by LHS method and added to the initial DoE. The 
number of samples used for MCS is 1×105, and the candi-
date samples size is set as N = 1 × 104 for AK-SYS, ALK-
TCR and the proposed method in this case.

The results obtained from different methods are listed in 
Table 4. Figure 29 shows the distributions of results esti-
mated by each method in 20 runs. Based on Table 4, the 
Ncalls of proposed method IK-SRA is only 58.4, and is less 
than both AK-SYS and ALK-TCR with 100.1 and 72.2. 
Therefore, the proposed method is more efficient than both 

(29)Pf = P
{
g1(x) < 0 ∩ g2(x) < 0 ∩ g3(x) < 0

}
,

(30)
⎧⎪⎨⎪⎩

g1(x) = (4 − 2.1x2
1
+ x4

1
∕3)x2

1
+ x1x2 + (−4 + 4x2

2
)x2

2
+ 0.8

g2(x) = 100(4 − 2.1x2
1
+ x4

1
∕3)x2

1
+ 100x1x2 + 100(−4 + 4x2

2
)x2

2
+ 60

g3(x) = 500(4 − 2.1x2
1
+ x4

1
∕3)x2

1
+ 500x1x2 + 500(−4 + 4x2

2
)x2

2
+ 250

,

in this example. Note that g2 = 0 and g3 = 0 do not contribute 
to the composite performance function, as shown in Fig. 28. 
Therefore, evaluation on g2 = 0 and g3 = 0 is useless for reli-
ability analysis. Meanwhile, from Table 4, it also shows that 
AK-SYS and ALK-TCR can obtain slightly more accurate 
result than that of the proposed method. However, the pro-
posed method is more effective than both, and the percentage 
improvements in efficiency are 71.4% and 23.6% compared 
with AK-SYS and ALK-TCR, respectively (Fig. 29).

Figure 30 shows the limit state function of each failure 
modes, the selected samples added to DoE, the selected 
samples by each Kriging model in the whole update 
process, the constructed Kriging models of each failure 
mode by AK-SYS. Figure 31 shows that by ALK-TCR and 
Fig. 32 shows that by IK-SRA. The converging processes 
of different methods are shown in Fig. 33, which shows 
that the proposed method achieves to true value more 
quickly than others.

4.4  Example 4 A series system with 8 variables

In this case, a roof truss structure with three failure modes 
is studied. Figure 34 shows the roof truss structure, it is a 

series system with eight variables [21].
In this roof structure, the top beam and the compression 

bars are made by concrete, and all the bottom beam and the 
tension bars are made by steel. The distributed loads can 
be transformed into points loads, P = ql∕4 . In this study, 
three failure modes are considered: (1) In the first failure 
mode, the vertical displacement ΔC of node C is considered 
as follows

(31)ΔC =
ql2

2

(
ql2

2
+

ql2

2

)
,

Table 4  Result of example 3 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 1 ×  105 12 + 24.1 (3.07) 12 + 22.9 (4.76) 12 + 21.9 (2.88)
Ncalls of g2 1 ×  105 12 + 21.7 (4.81) 12 + 7.0 (1.99) 12 + 0.4 (0.59)
Ncalls of g3 1 ×  105 12 + 18.3 (3.97) 12 + 6.3 (2.49) 12 + 0.1 (0.22)
Total 3 ×  105 100.1 72.2 58.4
Pf (Cov) 0.03329 (1.70%) 0.03316 0.03303 0.03384
� – 0.39% 0.78% 1.65%

Fig. 28  A parallel system in example 3
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and the failure will occurs when ΔC exceeds 3 cm. AC 
denotes the sectional area of the concrete bars, and AS 
denotes the sectional area of the steel bars; EC denotes the 
elastic modulus of the concrete bars, and Es denotes the elas-
tic modulus of the steel bars; l denotes a dimension size; (2) 
In the second failure mode, the internal force of AD bar is 
considered, which is derived as

(32)NAD = −1.185ql,

and the failure occurs when NAD exceeds the ultimate stress 
of this bar, which is equal to fCAC, where fC denotes the 
compressive strength of the AD bar; (3) In the third failure 
mode, the internal force of EC bar is considered, which is 
derived as

and the failure occurs when NEC exceeds the ultimate stress 
of this bar, which is equal to fSAS, where fS denotes the 

(33)NEC = 0.75ql,

Fig. 29  The box results 
obtained by three methods 
AK-SYS, ALK-TCR and the 
proposed method in example 3

Fig. 30  The process of sampling in AK-SYS in example 3 Fig. 31  The process of sampling in ALK-TCR in example 3
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tensile strength of the EC bar. Therefore, the three failure 
models are defined as follows:

(34)g1 = 0.03 −
ql2

2

(
3.81

ACEC

+
1.13

ASES

)
,

(35)g2 = fCAC − 1.185ql,

(36)g3 = fSAS − 0.75ql,

where the eight input variables q, l, AS, AC, ES, EC, fS and fC 
are all assumed to be lognormal variables, and their distribu-
tion parameters are shown in Table 5.

As this roof structure is a series system, the failure 
probability is formulated as follows:

The same number of samples, i.e., 32 samples, gener-
ated by LHS are used and added to the initial DoE for AK-
SYS, ALK-TCR and the proposed method. The number of 
samples used for MCS is 7×105, and the candidate samples 
size is set as N = 2 × 105 in AK-SYS, ALK-TCR and the 
proposed method.

The results obtained from different methods are listed in 
Table 6. Figure 35 shows the distributions of results esti-
mated by each method in 20 runs. Based on Table 6, the 
Ncalls of proposed method IK-SRA is only 114.0, and is less 
than both AK-SYS and ALK-TCR with 120.4 and 125.1, 
respectively. The proposed method significantly improves 
the efficiency of reliability analysis by reducing the num-
ber of calls to performance functions, and the percentage 
improvements in efficiency are 5.6% and 9.7% compared 
with AK-SYS and ALK-TCR, respectively. Therefore, 
the proposed method is more efficient than both in this 
example. Table 6 also shows that the proposed method 
can obtain an accurate result. The converging processes 
of different methods are shown in Fig. 36, which shows 
that the proposed method converges quickly and achieves 
accurate results.

(37)Pf = Prob
[
g1 ≤ 0 ∪ g2 ≤ 0 ∪ g3 ≤ 0

]
.

Fig. 32  The process of sampling in IK-SRA in example 3

Fig. 33  The convergence processes of different methods in example 3

Fig. 34  The schematic diagram of roof truss structure
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4.5  Example 5 A planar truss structure with 7 nodes

A planar truss structure with 7 nodes [38], shown in Fig. 37, 
is selected as the engineering problem. This is a series sys-
tem with 4 random variables. Where the fixed hinge support 
is at node 1 and the sliding hinge support is at node 4. The 
vertical loads F1, F2, and F3 in the -y direction are applied 
for nodes 5, 6 and 7, respectively. Figure 38 shows the defor-
mation of the truss structure after the application of load. 
The Young’s modulus of truss structure is 2 ×  105 Mpa, i.e., 
E = 2 ×  105Mpa. A is the cross-sectional area. The geometric 
size of bars is shown in Fig. 37. The corresponding statisti-
cal properties of these random variables are given in Table 7.

The actual horizontal deflection of nodes 2, 4 and 6 can 
be expressed as Δ2 , Δ4 , Δ6 , and are calculated using the 
FEM. They should satisfy the constraint Δ2 ≤ 0.0254 mm, 

Table 5  The distribution parameters of all the variables of the roof 
truss structure

Variables Description Distribution Mean Coefficient 
of variability

q (N/m) Uniform load Lognormal 20,000 0.07
l (m) Length Lognormal 12 0.01
AS  (m2) Cross-sectional 

area
Lognormal 9.82 ×  10–4 0.06

AC  (m2) Cross-sectional 
area

Lognormal 0.04 0.12

ES (N/m2) Elastic modulus Lognormal 2 ×  1011 0.06
EC (N/m2) Elastic modulus Lognormal 3 ×  1011 0.06
fS (N/m2) Tensile strength Lognormal 3.35 ×  108 0.12
fC (N/m2) Compressive 

strength
Lognormal 1.34 ×  107 0.18

Table 6  Result of example 4 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 7 ×  105 32 + 0.1 (0.22) 32 + 0 (0) 32 + 0 (0)
Ncalls of g2 7 ×  105 32 + 21.9 (2.83) 32 + 24.0 (2.74) 32 + 16.8 (2.53)
Ncalls of g3 7 ×  105 32 + 2.4 (1.73) 32 + 5.1 (1.80) 32 + 1.2 (0.59)
Total 2.1 ×  106 120.4 125.1 114.0
Pf (Cov) 0.003331 (2.07%) 0.003337 0.003376 0.003350
� – 0.18% 1.35% 0.57%

Fig. 35  The box results 
obtained by three methods 
AK-SYS, ALK-TCR and the 
proposed method in example 4
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Δ4 ≤ 0.0935 mm, Δ6 ≤ 0.0468 mm. Therefore, the perfor-
mance functions can be established:

(38)

⎧⎪⎨⎪⎩

g1(A,F1,F2,F3) = 0.0254 − Δ2;

g2(A,F1,F2,F3) = 0.0935 − Δ4;

g3(A,F1,F2,F3) = 0.0468 − Δ6. For a fair comparison, 12 samples are selected and added 
to the initial DoE. The result of MCS with NMCS = 1 × 106 

Fig. 36  The convergence process of different methods in example 4

Fig. 37  A planar truss structure with 7 nodes (length unit: mm)

Fig. 38  The deformation of the truss after the application of load

Fig. 39  The box results 
obtained by three methods 
AK-SYS, ALK-TCR and the 
proposed method in example 5
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samples is a benchmark for comparisons. The number of 
samples used for MCS is 1×106, and the candidate sam-
ples size is set as N = 1 × 105 for AK-SYS, ALK-TCR and 
the proposed method. The results obtained from different 
methods are listed in Table 8. Figure 39 is the result for dif-
ferent method with20 runs. Based on Table 8, the function 
calls of proposed method IK-SRA is only 52.9, which is 

less than both AK-SYS and ALK-TCR with 66.5 and 83.1. 
The proposed method is more effective than others, and 
the percentage improvements in efficiency are 25.7% and 
57.1% compared with AK-SYS and ALK-TCR, respectively. 
Table 8 shows that the proposed method can obtain the accu-
rate result. The converging processes of different methods 
are shown in Fig. 40.

5  Conclusion

In this study, a new system reliability analysis method with 
two strategies is proposed. Selecting the candidate samples 
that have little contributions to the failure probability during 
the process of reliability analysis will increase the comput-
ing burden. To address this problem, the proposed method 
has two strategies. In strategy 1, a new sampling-based cri-
terion is developed to avoid selecting these useless samples; 
for series systems, the safe regions are selected; for paral-
lel systems, the failure regions are selected. In strategy 2, 
the initial best sample point will be further optimized by 
interpolating. Finally, the next best sample point is obtained 
based on the learning function.

Five numerical examples are investigated to illustrate 
the proposed method IK-SRA. The results showed that the 
Ncall of IK-SRA is generally a bit smaller than that of AK-
SYS and ALK-TCR, while maintaining high accuracy for 
both series and parallel systems. Moreover, the proposed 
method is also effective for systems with disconnected fail-
ure regions. In general, the proposed is more effective than 
both AK-SYS and ALK-TCR, whereas almost the same 
accuracy level is achieved. Furthermore, it has high appli-
cability because it is easy to implement. Therefore, the pro-
posed method is optimal when the accuracy requirements 
are met. However, the proposed method may need further 
refinement if the accuracy requirement is particularly high. 
In addition, the proposed method is difficult to use for small 
probability and high-dimensional problems; these are our 
future work.

Table 7  The distribution parameters of all the variables of the planar 
truss structure

Variables Description Distribution Mean Stand 
devia-
tion

A  (mm2) Cross-sectional area Normal 4,532 50
F1 (N) Load Normal 10,000 50
F2 (N) Load Normal 10,000 50
F3 (N) Load Normal 10,000 50

Table 8  Result of example 5 Different methods

MCS AK-SYS [15] ALK-TCR [16] IK-SRA

Ncalls of g1 1 ×  106 12 + 24.6 (2.54) 12 + 23.8 (2.17) 12 + 15.8 (1.80)
Ncalls of g2 1 ×  106 12 + 5.5 (5.07) 12 + 21.6 (6.56) 12 + 1.0 (0.94)
Ncalls of g3 1 ×  106 12 + 0.4 (0.81) 12 + 1.7 (1.90) 12 + 0.1 (0.22)
Total 3 ×  106 66.5 83.1 52.9
Pf (Cov) 0.02404 (0.64%) 0.02426 0.02472 0.02425
� – 0.92% 2.83% 0.87%

Fig. 40  The convergence process of different methods in example 5
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