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Abstract
In the present study, damage initiation and growth in a polycrystalline aggregate are investigated. In this regard, an anisotropic 
continuum damage mechanics coupled with rate-dependent crystal plasticity theory is employed. Using a thermodynami-
cally consistent procedure, a finite deformation formulation is derived. For this purpose, the damage tensor is incorporated 
in the crystal plasticity formulation for a cubic single crystal. The damage evolution is considered to be dependent on the 
history of damage, equivalent plastic strain, stress triaxiality, and Lode parameters. This material model is implemented in 
the commercial finite-element code Abaqus/Standard by developing a user material subroutine (UMAT). Using the avail-
able experimental tests of 316L single crystal in the literature, the crystal plasticity hardening and damage parameters are 
calibrated considering the stress–strain curve before and after necking, respectively. The damage sites in a single-phase 
polycrystalline aggregate are also considered using a polycrystalline model consisting of grains with random sizes and 
orientations. The results show that the damage arises at the grain boundaries and triple junctions. Moreover, growth of the 
damage mostly occurs in the grains with higher Schmid factor compared to the neighboring grains. The presented model 
manifests capacity for determination of damage initiation sites and damage evolution in polycrystalline models.

Keywords  Continuum damage mechanics · Crystal plasticity · Slip deformation · Polycrystals · Grain boundary · 316L 
steel

1  Introduction

Crystal structures play an important role on the localized 
plastic flow in metals [1]. Variations in grain orientation and 
morphology within single-phase metals are among the key 
causes of strain inhomogeneity in sheet metals even under 
macroscopically uniform boundary conditions. Inhomoge-
neous microscopic strain field is the onset of macroscopic 
localized plastic flow. Free surface roughening and non-
uniform deformation of grains at the microscopic level are 
among the commonly observed indications of such strain 
inhomogeneity [2]. Moreover, it is observed that the defor-
mation not only varies amongst grains in a polycrystal, but 
also deformation within a grain is not uniform. Based on 
the grain orientation and surrounding conditions, the grain 
itself may divided to several regions which rotate differently 

after deformation [3]. The absence of heterogeneous micro-
structure considerations in macroscopic phenomenological 
models of plasticity makes them incapable of predicting the 
localized deformation. These theories, with the assump-
tion that materials are homogenous, generally consider an 
artificial imperfection in the geometry for analysis of the 
plastic instability [4–9], such as the groove considered in 
Marciniak–Kuczynski procedure for sheet metal forming 
limits analysis [6, 10, 11].

Crystal plasticity formulation of a single crystal incor-
porates slips in each slip system of the crystal to map the 
plastic deformation of the material [12–14]. For analyz-
ing polycrystalline metals, there are some homogenization 
methods such as Sachs, Taylor [15], and self-consistent [16] 
methods. In these methods, each material point considered 
to contain many grains with the overall texture characteristic 
of the crystalline aggregate. The characteristics of all mate-
rial points are determined using averaging techniques. These 
averaging approaches, consequently, lead to a homogene-
ous model, similar to the conventional plasticity theories, 
which are also incapable of demonstrating heterogeneous 
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strain field in the polycrystalline metals. It should be men-
tioned that such homogenization methods were successfully 
applied in determination of texture evolution [14, 17], shear 
band formation [18, 19], and forming limits diagrams [20] of 
sheets in textured metals. In these applications, an artificial 
imperfection is applied to the model to localize the deforma-
tion. It is evident that the effects of grain boundary and grain 
morphology on micro-scale strain distributions cannot be 
mapped in these methods.

With the aid of the crystal plasticity finite-element 
method, it is possible to follow the details of strain field in 
grain scale, and hence, the heterogeneous deformation in the 
polycrystalline aggregates [21–23]. Considering individual 
grain structure in models, similar to real microstructures, 
localized flow is likely to arise without the aid of the artifi-
cial imperfection. To overcome computational aspects, crys-
tal plasticity finite-element method was sometimes imple-
mented in 2D plane-strain or plane-stress simulation models 
[2, 18, 23, 24]. However, it has been shown by Simha et al. 
[25] that the state of stress in necking is three-dimensional, 
and two-dimensional analyses cannot satisfactorily model 
the localized plastic flow. Three-dimensional crystal plastic-
ity finite-element simulations, on the other hand, are limited 
to a few number of grains. In this regard, several studies 
investigated effects of different finite-element modeling 
parameters on the micro- and macro-scale fields. Analy-
ses demonstrated that the localized strains mostly occurred 
in areas close to grain boundaries [26–32]. Effects of sec-
ond-phase material and inclusion also have been reported 
[33–35]. These simulations suffered from prediction of the 
locations where microvoids nucleate without considering 
damage effects in the analyses.

Extensive experimental investigations of heterogene-
ous strain and misorientation fields have been conducted 
on crystalline aggregates [1, 3, 33, 36–43]. Although the 
experimental methods are limited to the surface defor-
mation measurements, they provide valuable insight 
into the strain field in grain scale. Chandrasekaran and 
Nygards [37] examined the misorientation and out-of-
plane deformation of a single-phase ultra-low carbon steel 
with the aid of Electron Backscatter Diffraction (EBSD) 
and Atomic Force Microscopy (AFM) techniques. They 
showed that in the vicinity of grain boundaries, both rota-
tion and deformation are increased. Using high-resolution 
Digital Image Correlation (DIC) measurement, Stinville 
et al. [38] gave a more-detailed understanding of the sub-
grain straining process where the localized plastic strain 
was directly correlated with physical slip bands in rela-
tively small applied macroscopic strain. They showed 
that without using high-resolution DIC measurement, the 
resulted strain fields would be more diffused and sharp 

localization of plastic strain along the slip traces cannot 
be captured. In another study, Lim et al. [44] showed that 
the slip lines observed in the early stages of the loading in 
the high-resolution DIC measurement were not captured 
by the employed crystal plasticity model for tantalum oli-
gocrystal. Moreover, the crystal plasticity simulation was 
incapable in handling grain boundary effects.

Void nucleation sites have been the subject of interest 
for a wide experimental investigations in the grain scale. It 
is believed that in a high-purity, single-phase metal, void 
nucleation is associated with grain boundaries, triple junc-
tions, twin interactions, or deformation-induced dislocation 
boundaries [41, 45–47]. Although the current models for 
single-crystal plasticity are used acceptably to capture local-
ized deformation at grain boundaries, they have to be devel-
oped, so that they can be used in predicting deformation-
induced dislocation boundaries [40]. Furthermore, most of 
the studies on predicting the sites of void nucleation rely 
on the strain and misorientation fields predicted by crys-
tal plasticity, and damage theories are rarely applied in the 
analysis in conjunction with crystal plasticity finite-element 
method [48, 49].

Damage behavior of crystalline metals has been 
assessed on the basis of the crystal plasticity formula-
tion incorporating scalar [48, 50–52] and anisotropic [49, 
53, 54] damage models. Kim and Yoon [50] used a sca-
lar damage model to investigate necking behavior of alu-
minum alloy in tensile loading using different evolution 
relations for the damage parameter. In the simulations, 
they focused on the macroscopic response of polycrystal-
line model with regular octahedron grain shape; each of 
them was discretized by different element sizes. Without 
imposing artificial imperfection in the models, the analy-
ses reasonably predicted the post-necking softening and 
sudden drop in load-carrying capacity due to incorporat-
ing damage effects [55]. However, in their analysis due to 
using a scalar model, the damage evolutions in different 
directions are not considered. Moreover, the microscopic 
behavior of strain and damage at grain level have not been 
considered. In this paper, the focus is on the microme-
chanical distribution of anisotropic damage at grain-scale 
level. Zhao et al. [49] proposed a coupled model of crystal 
plasticity and anisotropic continuum damage mechanics to 
numerically investigate creep in Cr-based steel. In their 
model, a damage tensor is considered in the formulation 
of the crystal plasticity, and the damage evolution formu-
lation is presented which is dependent on the history of 
damage and the state of stress.

In this paper, a rate-dependent coupled model of 
crystal plasticity and anisotropic continuum damage 
mechanics is developed. This model is extracted using 
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thermodynamically consistent finite deformation theory. 
The damage evolution is considered to be dependent on the 
damage history, equivalent plastic strain, stress triaxiality, 
and Lode parameter. Using this formulation, the potential 
damage sites in a single-phase polycrystalline model are 
predicted. This formulation is implemented numerically in 
general-purpose finite-element analysis software Abaqus 
6.14 using user material subroutine UMAT. Experimental 
tensile test of single crystal of stainless steel 316L [56] 
is utilized to identify model parameters. This model is 
employed to investigate damage initiation and growth in 
polycrystalline aggregate with random texture. The effect 
of grain boundaries and individual grain orientation is 
considered.

2 � Constitutive model

2.1 � Continuum damage mechanics

The underlying principle of continuum damage mechanics is 
embedded in the assumption of material degradation through 
strength and stiffness reduction due to existence of voids 
and micro-cracks. This results in the reduction of effective 
load-carrying surface areas inside the material. The effective 
Cauchy stress in damaged material for one-dimensional case 
� can be expressed as:

in which � is Cauchy stress in the same imaginary undam-
aged body [6]. The scalar variable D is called damage variable 
and defined as the proportion of defected area Ad to the total 
area A0:

The damage variable evolves from D = 0 for intact area to 
D = 1 for total rapture. In practice, rupture happens when the 
damage variable reaches a critical value much less than its 
theoretical value D = Dc < 1 . The effective stress tensor in a 
general three-dimensional body may be expressed as [7, 8]:

The fourth-order tensor � = �(D) is called the damage 
effect tensor. The second-order tensor D is the damage tensor. 
In the following, the kinematic and thermodynamics formula-
tion of the rate-dependent crystal plasticity coupled with the 
anisotropic continuum damage mechanics for finite deforma-
tions is presented.

(1)� =
�

1 −D
,

(2)D =
Ad

A0

.

(3)� = ��.

2.2 � Kinematics of finite deformation crystal 
plasticity

In the finite deformation plasticity, the deformation gradient � 
is decomposed as follows [57]:

in which �e is the part of deformation which includes stretch 
and rotation and is cited as the elastic part, and �p is the 
part of deformation due to slide of slip planes in crystalline 
materials and is called the plastic part. A schematic repre-
sentation of this multiplicative decomposition of the defor-
mation gradient is depicted in Fig. 1. The velocity gradient 
� is expressed as:

In this equation, �e = �̇e�e−1 is the velocity gradient for the 
elastic part of deformation, and �p

0
= �̇p�p−1 is the velocity 

gradient for the plastic part of deformation which, for a single 
crystal, is given by [58]:

where ��
0
 and ��

0
 are slip direction and slip normal of the slip 

system � in the reference configuration, respectively. N is the 
total number of slip systems in the single crystal, 𝛾̇𝛼 is the 
rate of shear strain in the slip system � , and �𝛼

0
= �𝛼

0
⊗�𝛼

0
 

is the Schmid tensor in the reference configuration. Thus, 
Eq. (5) can be rewritten as:

(4)� = �e�p,

(5)
� = �̇�−1 = �̇e�

e−1
+ �e�̇p�

p−1
�e−1 = �e + �e�

p

0
�e−1.

(6)�
p

0
=

N∑

𝛼=1

𝛾̇𝛼�𝛼
0
⊗�𝛼

0
=

N∑

𝛼=1

𝛾̇𝛼�𝛼
0
,

Fig. 1   Multiplicative decomposition of deformation gradient
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where �p =
∑N

𝛼=1
𝛾̇𝛼�𝛼 . The Schmid tensor in the current 

configuration is defined as �𝛼 = �𝛼 ⊗�𝛼 . Relation between 
slip direction and slip normal in the current configuration 
with their associated reference vectors is:

The velocity gradient can be decomposed into the sym-
metric � and skew-symmetric � parts:

which are related to �e and �p as follows:

where:

2.3 � Energy balance and second law 
of thermodynamics

Ignoring thermal energy and assuming uniform temperature 
throughout the body, the internal and external powers must 
be equivalent [57]:

The Pt is occupied by a part of the body at the current 
configuration. The vector � is the body force per unit cur-
rent volume and includes inertia forces. The traction on the 
part surface per unit area is shown by �(�). It is assumed that 
elastic and plastic responses are separable, and the internal 
power is rewritten as the summation of two separate elastic 
and plastic power:

(7)� = �e +

N∑

𝛼=1

𝛾̇𝛼�𝛼 = �e + �p,

(8)�� = �e��
0
,�� = �e−T��

0
.

(9)� = � +�,

(10)� =
1

2

(
�e + �eT

)
+

N∑

𝛼=1

𝛾̇𝛼
1

2

(
�𝛼 + �𝛼T

)
= �e + �p� =

1

2

(
�e − �eT

)
+

N∑

𝛼=1

𝛾̇𝛼
1

2

(
�𝛼 − �𝛼T

)
= �e +�p,

(11)

�e
= sym �e,�p

=

N∑

𝛼=1

𝛾̇𝛼sym�𝛼

�e
= skw �e,�p

=

N∑

𝛼=1

𝛾̇𝛼skw�𝛼 .

(12)

Wint

(
Pt

)
= ∫

Pt

� ∶ grad �dv = ∫
Pt

� ∶ �dv

Wext

(
Pt

)
= ∫�Pt

�(�).�da + ∫
Pt

�.�dv.

(13)

Wint

(
Pt

)
= ∫

Pt

� ∶ �dv

= ∫
Pt

(
�e ∶ �e +

∑N

𝛼=1
𝜋𝛼𝛾̇𝛼

)
dv,

in which �e is the elastic stress tensor work-conjugate to 
elastic velocity gradient �e , and �� is the so-called plastic 
force work-conjugate to plastic shear strain rate 𝛾̇𝛼 in each 
slip system �.

Using the frame indifference principle, it is concluded 
that:

The tensor �e∗ is the elastic stress tensor in new frame 
and � is the frame rotation tensor. Thus, the elastic stress 
tensor is symmetric and frame-indifferent. Plastic forces �� 
are scalar quantities and they are frame-invariant. Moreover, 
the principle of power balance dictates the following:

It is concluded from the above equation that �e is the 
same as Cauchy stress tensor �e = � . Furthermore, the plas-
tic forces are obtained to be equal to resolved shear stress �� 
in the direction of associated slip system:

Now, the elastic stress power can be rewritten as:

where �e
RR

 is the elastic second Piola–Kirchhoff stress 
tensor:

and �̇e is the rate of the elastic Green strain tensor 
�e =

1

2
(�eT�e − �):

Second law of thermodynamics for mechanical system 
in single crystals in view of isothermal deformation with 
uniform temperature distribution is expressed locally in the 
following:

(14)�e = �eT , �e∗ = �T�e�.

(15)�(�) = �e�.

(16)�� = �� = � ∶ �� .

(17)

�e ∶ �e = � ∶ �e

= � ∶ �e

= � ∶ �e−T �̇
e
�e−1

= �e−1��e−T ∶ �̇e

= J−1�
e

RR
∶ �̇e

(18)�e
RR

= J�e−1��e−T ,

(19)�̇e = �eT�e�e.

(20)J−1𝜓̇ − J−1�
e

RR
∶ �̇e −

N∑

𝛼=1

𝜏𝛼𝛾̇𝛼 ≤ 0.
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Here, � is the Helmholtz free energy per unit volume of 
structural space.

2.4 � Constitutive relations

With determination of dependence of the Helmholtz free 
energy in Eq. (20) on the internal variables, it is possible 
to combine the large deformation plasticity of single crys-
tals with continuum damage mechanics. Assuming iso-
thermal deformation, free energy in a crystalline material 
without considering damage is considered to be dependent 
on the Green strain tensor �e . Moreover, the reference con-
figuration is assumed to be natural in which the Helmholtz 
free energy has a local minimum. The consequence of this 
assumption is that the reference configuration is stress-
free. In the continuum damage mechanics, based on the 
equivalency hypothesis of the strain energy, free energy 
also depends on the damage tensor D in addition to Green 
strain tensor �e:

Substituting Eq. (21) into Eq. (20), and applying the 
time derivatives:

For every admissible process, the following equation 
must satisfy:

To derive the constitutive equations without violating 
the second law of the thermodynamics, the damage evolu-
tion takes the following form:

The potential function FD is a function of damage driv-
ing force � and it is a convex function of � . The following 
form is adopted from [59]:

in which � is a fourth-order positive-definite tensor which 
assures that the following law will be always satisfied:

(21)� = �̂(�e,D).

(22)
(

𝜕�𝜓

𝜕�e
− �e

RR

)
∶ �̇e +

𝜕�𝜓

𝜕D
∶ Ḋ −

N∑

𝛼=1

J𝜏𝛼𝛾̇𝛼 ≤ 0.

(23)�e
RR

=
��̂

��e
.

� = −
��̂

�D

(24)Ḋ = 𝜆̇D
𝜕FD

𝜕�
.

(25)FD =
1

2
� ∶ �� − constant,

The tensor � takes the form of [60]:

where � is a material constant that represents the ratio of 
increments of second and third principal values of damage 
tensor to the first principal value in a uniaxial tensile loading 
[61]. The value of � is related to the effective elastic modulus 
and Poisson ratio of isotropic elastic material [62], and is 
calculated based on experimental measurements of these 
variables for a damaged material. Its theoretical values lays 
between 0 ≤ � ≤ 1; with � = 1 corresponding to isotropic 
damage evolution [63]. The reported values for � are very 
divers, but it mostly takes a value less than 0.6. This value 
is chosen to be � = 0.2 in the following calculations. The 
fourth-order tensor �s = 1

2
(𝛿

ik
𝛿jl + 𝛿il𝛿jk)�i ⊗ �j ⊗ �k ⊗ �l is 

symmetric unit tensor, and � is a unit tensor of second order. 
The variable 𝜆̇D is a positive variable known as damage mul-
tiplier which will be discussed further for rate-dependent 
models in Sect. 3. Substituting Eq. (25) into Eq. (24) gives:

Here, the tensor �D is normal to damage surface:

in which Yeq is defined as:

It is assumed that the Helmholtz free energy takes the 
following form:

in which [60]:

The fourth-order tensor ℂ is the elastic tensor which is 
assumed to be constant isotropic tensor:

and components of the inverse of the damage effect tensor 
�

−1 are taken to have the following relation [63, 64]:

(26)� ∶ Ḋ ≥ 0.

(27)� = (1 − 𝜁)�s + 𝜁�⊗ �,

(28)Ḋ = 𝜆̇D
𝜕FD

𝜕�
= 𝜆̇D

��

2Yeq
= 𝜆̇D�D.

(29)�D =
��

2Yeq
,

(30)Yeq =
(
1

2
� ∶ ��

) 1

2

.

(31)� = �̂(�e,D) =
1

2
�e ∶ ℂ�e,

(32)ℂ
−1
(D) = 𝕄

T (D) ∶ ℂ
−1 ∶ 𝕄(D).

(33)ℂ = 2𝜇𝕀s + 𝜆�⊗ �,

(34)M−1
ijkl

=
1

2
(Φ

ik
Φjl + ΦilΦjk),
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where the tensor � = Φij�i ⊗ �j is a positive-definite tensor 
defined as:

and � ∶ �
−1 = �

s and MT
ijkl

= Mklij . The power 1
2
 in Eq. (35) 

is defined using spectral decomposition of tensor (� −D) 
[57, 59].

The damage driving force can be obtained:

in which:

From Eq. (23), it could be concluded [57]:

The only remaining constitutive part is the plastic part. 
In the rate-dependent crystal plasticity formulation uti-
lized here, rate of the shear strain is expressed in terms of 
resolved shear stress in each slip system � as:

The constant 𝛾̇0 is the reference flow rate and m is the 
rate-sensitivity parameter. The function g� is the current 
strength of the slip system � which evolves during slip of 
the slip systems in accordance with:

where h�� is the hardening factor incorporating self and 
latent hardening of slip systems:

The function h�� is the self-hardening function, and the 
parameter q is an interaction constant between latent slip 
systems. Asaro [12] proposed hyper-secant function for 
self-hardening h�� which is a function of total shear strain 
in the slip system:

where h0 , the initial hardening modulus, �0 , the yield stress 
which equals the initial value of current strength, �s , the 

(35)� = (� −D)
1

2 ,

(36)

� = −
��̂

�D
= −

1

2
�e ∶

�ℂ

�D
�e = −�e ∶ sym

(
�𝕄−1

�D
∶ ℂ ∶ 𝕄

−T

)
�e,

(37)

�ℂ

�D
= 2sym

(
�𝕄−1

�D
∶ ℂ ∶ 𝕄

−T

)
= 2sym

(
�𝕄−1

�D
∶ 𝕄 ∶ ℂ

)
.

(38)�e
RR

=
��̂

��e
= ℂ�e.

(39)𝛾̇𝛼 = 𝛾̇0

(
𝜏𝛼

g𝛼

) 1

m

sgn(𝜏𝛼).

(40)ġ𝛼 =

N∑

𝛽=1

h𝛼𝛽
|||𝛾̇

𝛽|||,

(41)h�� =
[
q + (1 − q)���

]
h�� .

(42)h�� = h��(�) = h0sech
2
||||

h0�

�s − �0

||||
,

break-through stress where large plastic flow initiates, are 
hardening parameters used to calibrate the single-crystal 
stress–strain curve.

Although the constitutive equation [Eq. (23)] is frame-
invariant and convenient to express the rate form of the 
constitutive equations [14], the UMAT subroutine in 
Abaqus software uses Cauchy stress, and it is appropri-
ate to express rate equations in terms of Cauchy stress. 
Substituting Eq. (23) into Eq. (18) and performing time 
derivative:

Recognizing that �̇e = �eT�e�e:

and using J̇ = Jtr� = Jtr� , it results in the following 
relation:

Using �e = �e +�e and Eq. (17), the following equa-
tion is obtained:

The first three terms on the LHS of Eq. (46) is corota-
tional rate of Cauchy stress based on axes that rotate at the 
lattice spin �e:

The first three term on the RHS of Eq. (46) can be com-
bined into one term as follows:

where � is a fourth-order tensor whose components in indi-
cial form are expressed as:

To have a consistent relation, the minor symmetry 
of tensor � is taken into account in the second part of 
Eq. (49). The scalars CIJMN are the components of effective 

(43)
J̇� + J�̇ =

̇
�e�e

RR
�eT = �̇e�e

RR
�eT + �e�̇e

RR
�eT + �e�e

RR
�̇eT

(44)�̇e
RR

= ℂ�̇e +
̇
ℂ�e = ℂ

(
�eT�e�e

)
+

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e

(45)

�̇ + (tr�)� = �e� + ��eT + J−1�e

[
ℂ�eT�e�e +

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e

]
�eT .

(46)

�̇ −�e� + ��e + (tr�)� =

�e� + ��e + J−1�e

[
ℂ�eT�e�e +

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e

]
�eT .

(47)
∇

�e = �̇ −�e� + ��e.

(48)�e� + ��e + J−1�e
[
ℂ
(
�eT�e�e

)]
�eT = 𝕃�e,

(49)

Lijmn = J−1Fe
iI
Fe
jJ
Fe
mM

Fe
nN
CIJMN + Tim�jn + Tjn�im

= J−1Fe
iI
Fe
jJ
Fe
mM

Fe
nN
CIJMN

+
1

2
(Tim�jn + Tjn�im + Tin�jm + Tjm�in).
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elasticity tensor ℂ , and �ij is Kronecker delta. Thus, know-
ing that tr � = tr �e , Eq. (46) can be rewritten as:

Using �e = � −�p , �e = � − �p and Eq. (48), after 
some manipulations, Eq. (50) becomes:

where:

and 
∇

�= �̇ −�� + �� is the corotational rate of Cauchy 
stress. In Eq. (51), the effect of damage is incorporated by � 
and the third term on right-hand side J−1�e

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e�eT.

3 � Damage evolution

Damage evolution in metals has been shown to be depend-
ent on the equivalent plastic strain p , equivalent plastic 
strain rate ṗ , stress triaxiality � , and Lode parameter � [65, 
66]. Since, in the present study, a rate-dependent model is 
applied for damage, the damage evolution considered to be 
in the form of:

where p is the cumulative equivalent plastic strain 
p = ∫ t

0
ṗdt , and ṗ is defined as:

Rate of damage tensor is considered to have a linear 
dependence on the equivalent plastic strain rate ṗ . In addi-
tion, the macroscopic equivalent fracture stain is heavily 
dependent on the stress triaxiality � [67] and Lode parameter 
� [68]. These two parameters are defined as:

(50)
∇

�e + (tr�e)� = 𝕃�e + J−1�e

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e�eT .

(51)
∇

�= 𝕃� − (tr�)� + J−1�e

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e�eT −

N∑

𝛼=1

𝛾̇𝛼
(
𝕃�𝛼 + �𝛼� + ��𝛼T

)
,

(52)
�� = sym�� =

1

2
(�� +��T )

�� = skw�� =
1

2

(
�� − ��T

)
,

(53)Ḋ ∝

[
p

𝜖
p

d

f (𝜂, 𝜉)

]n

�D,

(54)ṗ = |�p| = (�p ∶ �p)
1

2 .

� =
Tm

Te

� =

27

2
det

(
� − Tm�

)

T3
e

In consequence, the damage evolution assumed to be:

Following the formulation given in Ref. [65], a simi-
lar phenomenological expression for damage evolution is 
used to incorporate stress triaxiality and Lode parameter in 
Eq. (56):

To determine the parameters A and B , pure tensile and 
pure shear tests are necessary. However, due to lack of 
experimental data on austenitic stainless steel 316L single 
crystal for these parameters, the ratio of A

B
 is chosen based 

on the values given in Ref. [65]. This value is approximately 
A

B
= 0.72 for two different materials with different crystal 

structure; aluminum 2024-T351 (FCC crystal structure) and 
steel AISI 1045 (BCC crystal structure). Thus, the value of 
0.72 is chosen for this ratio in the following calculations.

The main parameter influencing damage evolution is the 
equivalent plastic strain. However, the coefficient itself is 
affected by a factor which is a function of stress triaxiality 
and Lode parameter.

4 � Numerical implementation

The proposed model in the previous sections is imple-
mented in Abaqus finite-element software via user material 
subroutine (UMAT). The code is constructed on the basis 
of Huang’s crystal plasticity UMAT [69]. Besides adding 
damage relations to Huang’s UMAT, a thermodynamically 
consistent hyperelastic relation is used for the elastic part of 
the constitutive equations [70]. The main difference made by 

(55)
Tm =

1

3
tr�

Te =

√
3

2

(
� − Tm�

)
∶
(
� − Tm�

)
.

(56)Ḋ = 𝜆̇D�D = ṗ

(
Yeq

p

𝜖
p

d

f (𝜂, 𝜉)

)n

�D.

(57)Ḋ = 𝜆̇D�D = ṗ

{
Yeq

A

[
3|𝜂| + A

B

(
1 − 𝜉2

)] p

𝜖
p

d

}n

�D.
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this assumption manifests itself in the calculation of elastic 
tensor relation in Eq. (48).

4.1 � Incremental relations

The numerical procedure for implementing the formulations 
given in Sect. 2 is outlined in this section. A summary of 
the plastic and damage variable evolution laws are given 
in Table 1. Some new tensors are defined in this table to 
compact the relations.

All the variables are dependent, directly or through other 
relations, on the Δ�� . The Δ�� is calculated by utilizing the 
following set of Eq’s [69, 71]:

in which Δ�� = ��(t + Δt) − ��(t) . The parameter � can vary 
from 0 to 1 , with � = 0 corresponding to forward (explicit) 
Euler time integration scheme and � = 1 corresponding to 
backward (implicit) Euler time integration scheme. It is 
shown in [71] that the stable solution is obtained for values 
of � in the range of 0.5 to 1. The rate of the plastic shear 
strain 𝛾̇𝛼

t+Δt
 can be expressed in the following form:

The increment Δg� is a direct function of the incre-
ments Δ�� as a consequence of Eq. (40). In addition, the 
increment of the shear stress Δ�� is also a function of Δ�� 
through �eΔt and ΔD relations. The elastic part of rate 
of strain:

(58)Δ𝛾𝛼 = Δt
[
(1 − 𝜃)𝛾̇𝛼

t
+ 𝜃𝛾̇𝛼

t+Δt

]
,

(59)𝛾̇𝛼
t+Δt

= 𝛾̇0

(
𝜏𝛼 + Δ𝜏𝛼

g𝛼 + Δg𝛼

) 1

m

sgn(𝜏𝛼 + Δ𝜏𝛼),

(60)�eΔt = �Δt − �pΔt = Δ� −

N∑

�=1

Δ��sym�� .

Table 1   Evolution relations of the variables in the presented model

Parameter Evolution relation

Rate of shear strain increment in slip system �
𝛾̇𝛼 = 𝛾̇0

(
𝜏𝛼

g𝛼

) 1

m

sgn(𝜏𝛼)

Rate of strength increment of slip system � ġ𝛼 =
∑N

𝛽
h𝛼𝛽

��𝛾̇𝛽 ��
Rate of shear stress increment in slip system � 𝜏̇𝛼 = [�𝛼 − (� ∶ �𝛼)�] ∶ �e + �Ḋ ∶ �𝛼  

with: �� = ��� + ��� + ���T 

𝕂Ḋ = J−1�e

(
𝜕ℂ

𝜕D
∶ Ḋ

)
�e�eT Kijkl = J−1Fe

iI
Fe
jJ
Ee
KL

𝜕CIJKL

𝜕Dkl

  

�ℂ

�D
= 2

[
sym

(
�𝕄−1

�D
∶ 𝕄 ∶ ℂ

)]

Rate of damage tensor increment
Ḋ = 𝜆̇D�D = ṗ

{
Yeq

A

[
3|𝜂| + A

B

(
1 − 𝜉2

)] p

𝜖
p

d

}n

�D

Corotational rate of Cauchy stress ∇

�= �� − (tr�)� + �Ḋ −
∑N

𝛼=1
𝛾̇𝛼�𝛼

Rate of elastic part of deformation gradient �̇e = �e�e

Rate of slip direction vector �̇𝛼 = �e�𝛼

Rate of slip normal vector �̇𝛼 = −�eT�𝛼

Fig. 2   The numerical procedure in the Written UMAT in Abaqus 
Software (*state variables include: �� , �� , g� , p , �� , �� , D , �e, DI , 
DII , DIII , Schmid factors)
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The Δ� = �Δt = DSTRAN is known and provided by 
Abaqus at time t + Δt . Moreover, ΔD is a function of Δp 
which is also dependent on Δ�� through Eqs. (54) and (11). 
Thus, all the increments specified in Eq. (57) are functions 
of Δ�� . Substituting Eq. (57) into Eq. (58), the following 
equation is obtained:

This equation is solved using Newton–Raphson proce-
dure to obtain Δ�� in time t + Δt . Having the increment of 
the plastic shear strains, it is a simple updating procedure 
to obtain all other variables at time t + Δt . These variables 
include stress tensor and other required variables which 
are saved as state variables in the UMAT. A flowchart of 
showing the UMAT algorithm is demonstrated in Fig. 2.

4.2 � Parameters’ identification

The single-crystal tensile stress–strain curve presented in 
Ref. [56] is used to calibrate the crystal plasticity and dam-
age parameters. Calibrating all these parameters based on 
solely a tensile curve is not a normal procedure. However, 
due to lack of experimental data on damage evolution of 
single crystals, some assumption has been made to evalu-
ate the parameters. Moreover, the suggested procedure of 
testing and calibrating the parameters of damage evolution 
and slip hardening of the model has been presented in the 
references given in their respective sections [65, 70]. The 
assumptions made here are now discussed. It is assumed 
that damage evolution at early stages of plastic deformation 
is small. This assumption is in accordance with the experi-
mental results in which the damage is not effective until 
reaching a strain threshold [72, 73]. Using Eq. (53), it is 

(61)

Δ𝛾𝛼 − Δt(1 − 𝜃)𝛾̇𝛼
t
− Δt𝜃𝛾̇0

(
𝜏𝛼 + Δ𝜏𝛼

g𝛼 + Δg𝛼

) 1

m

sgn(𝜏𝛼 + Δ𝜏𝛼) = 0.

possible to diminish, not entirely ignore, the effect of dam-
age on the single-crystal tensile response prior to the strain 
�
p

d
 by selecting a sufficiently large value for the parameter n . 

Moreover, the increase in damage at final stages of the load-
ing subsequent to �p

d
 can be captured using this relation [74]. 

Thus, the crystal plasticity hardening parameters can be cali-
brated based on the tensile behavior before the strain value 
�
p

d
 , and damage evolution parameters are calibrated based on 

Fig. 3   Model used to calibrate single-crystal parameters according available data in [56]. Left: applied displacement boundary conditions. Right: 
meshed model

Fig. 4   Graph showing the effect of damage in the crystal plasticity 
analysis on the stress–strain curve for a single crystal [56]

Table 2   Elasticity tensor 
components of the 316L single 
crystal [76]

C1111 204.6GPa

C1122 137.6GPa

C1212 126.2GPa

Table 3   Calibrated values of 
crystal plasticity and damage 
parameters for a single-crystal 
stainless steel 316L

A n �
p

d
h0 �

0
�s

110 12 0.38 220 45 300
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the tensile behavior after the strain value �p
d
 in Eq. (52). The 

crystal plasticity parameters can be calibrated, so that the 
numerical stress–strain curve and experimental curve before 
necking coincides. The damage parameter can be chosen, 
so that the numerical curve follows the experimental one 
after necking. The model used to calibrate the parameters is 
shown in Fig. 3. This model is prepared based on data given 
in [56]. The displacement boundary conditions are applied 
to the end surfaces of the model in cylinder axis direction. 
On the diameter of the fixed end, there also applied zero 
displacement condition and the center of the face is fixed to 

prevent rigid body motion. The model is meshed with total 
number of 850 linear brick elements C3D8.

The identified values for damage evolution and slip hard-
ening parameters are presented in Table 3. These values are 
calculated by taking 𝛾̇0 = 0.001 and m = 20.0 [75]. The 
elastic properties of the 316L material are assumed to be 
anisotropic with elastic tensor components given in Table 2 
for its FCC crystal structure. The interaction constant q is 
taken to be equal to unity q = 1.4.

The resulted stress–strain curve is compared to the 
experimental one in Fig. 3. There also depicted is a curve 
which is calculated using the crystal plasticity without 
the damage effect taken into account. It is obvious that 
although the curve without damage shows a softening 
behavior, the drop of the experimental curve after neck-
ing is not captured and the results begin to deviate near to 
necking point of the experimental curve (Table 3; Fig. 4).

5 � Results and discussion

5.1 � Principal values of damage growth 
with increasing equivalent plastic strain

Figure  5 shows how principal damage values increase 
with loading. As seen, the first principal component of the 
damage tensor DI starts to grow rapidly approximately at 
�
p

d
= 0.38 . The two other principal components of the dam-

age tensor coincide with each other and the growths are 
similar in manner to the growth of DI but different in their 
rates. The growth of the second and third principal compared 
to the first principal is dependent on the value chosen for the 

Fig. 5   Variations of three principal damage components in uniaxial 
test model of 316L single crystal

Fig. 6   A polycrystalline foil model with random grain shape and orientation. a Meshed model; b assigned grain numbers
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parameter � which in this case is � = 0.86 [77]. It is appar-
ent in the figure that at large strains, the ratio of DII and DIII 
to DI is about 0.86. The critical damage value, in which the 
numerical stress–strain curve reaches the break point on the 
experimental curve, is Dc = 0.18.

5.2 � Damage distribution in a polycrystalline model

To investigate the application of the presented model in the 
prediction of damage initiation and growth in FCC poly-
crystalline aggregates, a 316L foil model with random grain 
shape and orientation is prepared. Dimensions of the model 
are 4mm × 2mm × 0.25mm . As shown in Fig. 6a, the model 
is discretized with 8-node linear brick elements C3D8 and 
uniaxial tensile loading is imposed on the model. Since, 
in the finite-element crystal plasticity analysis, the strains 
may increase up to 2.0, it is found convenient to use models 
with the initial well-shaped mesh elements. These elements 
endure more deformation without failing the analysis due 
to the excess distortion. As it is shown in Fig. 6b, the model 
contains 40 grains with different volumes from 1 (in grain 
number 10) to 750 (in grain number 28) elements per grain. 
In a recent study by the authors [70], it is demonstrated that 
increasing the average number of elements per grain results 
in softer behavior of the model. With the average number of 
elements per grain greater than 200, the differences between 
results of the similar models become less than 1%. In this 
study, the average number of elements per grain is 320 which 
is considered to have a negligible influence on the overall 
stress and strain distributions in the model.

Maximum values of grains Schmid factor are displayed 
in Fig. 7a for back view ( −z axis) of the model.

From Eq. (55), it is obvious that the damage tensor evo-
lution is dependent on the evolution of equivalent plastic 
strains as well as stress triaxiality and Lode parameter. Thus, 
it is expected that in a polycrystalline aggregate, damage 
components vary across the model as a result of the non-
uniform distribution of these parameters. The distribution 
of the equivalent plastic strain p and first principal value of 
the damage tensor DI at macroscopic engineering strain 17% 
are shown in Fig. 7b, c, respectively. At the first glance, it 
can be noticed from Fig. 7b that the regions of high magni-
tude of the equivalent plastic strains arise in the vicinity of 
grain boundaries. In addition, they are more severe at triple 
junctions. Strain distribution in this polycrystalline models 
is affected by the loading conditions of grains, their shapes, 
and relative positions in the model.

The distribution of the first principal value of the damage 
tensor DI is shown in Fig. 7c. The DI distribution is similar 
to the equivalent plastic strain distribution; in the regions 
with high amplitude of the equivalent plastic distribution, 
DI is more severe than other regions. In the single-crystal 
simulation implemented in the previous section, at the point 

of break, the amount of DI reached the amount of ~ 0.18. 
Thus, the values above 0.18 are greyed out in Fig. 7c to 
demonstrate the potential sites of failure and void nucleation. 
Beside some grain boundaries and triple junctions, there are 
other spots inside grains which DI grows considerably. For 
instance, in grain 23, a region with high values of DI can be 
observed. The grains with this condition are mostly located 
at the boundaries of the polycrystalline model. Since these 
grains experience a different surrounding conditions, dam-
age occurrence inside the grains could not be generalized.

Considering adjacent grains, the grains with larger 
Schmid factor suffer more damage in the sense that the high-
magnitude damage DI covers more volume in these grains. 
For instance, note the potential void nucleation area in the 
grains 26, 31, 24, and 25 with compared to their adjacent 
grains. Although the adjacent grains are affected by damage, 
literally, all damaged areas are concentrated in the nearby 
grains with higher Schmid factor. The local softening effect 
of damage is partly a cause for damage growth in a specific 
region. When, in a point at the grain boundaries, damage 
begins to grow, there will be an influential softening effect 
which cause the near vicinity of the softened area undergo 
more loads. This phenomenon adds on the individual grain 
orientation effects and they lead to damage growth hap-
pens mostly inside only one grain between two neighboring 
grains. In general, initially, comparative low Schmid factor 
grains, for example grains 22 and 28, which are adjacent to 
high Schmid factor grains endure lower amount of plastic 
deformation and damage.

One interesting feature of the damage distribution arises 
in the colony of grains with the same Schmid factor. Con-
sider grains 28, 29, 33, and 36 as a colony of grains with 
comparatively low Schmid factor (colored in shades of 
green). Another colony with high Schmid factor next to this 
colony is comprised four grains 33, 24, 25, and 40 (colored 
in shades of red). Regarding the amount of damage, these 
two adjacent colonies receive different effects from load-
ing. The colony with higher values of Schmid factors suffers 
more from damage which is apparent from Fig. 7c. For the 
other side, the colony remains almost intact by the damage.

The void nucleation in grains microstructure begins at 
early stages of plastic deformation and before reaching the 
macroscopic rupture strain. In the case of the model pre-
sented, it is observed that at 17% of macroscopic strain, and 
even at values less than it, multiple sites of damage at grain 
boundaries nucleate and grow. This strain is smaller than the 
macroscopic strain at which a macroscopic rupture occurs. 
As predicted by the presented model, the microscopic void 
nucleation mechanism is clearly inter-granular mechanism. 
In this mechanism, the voids nucleate at grain boundaries. 
In trans-granular failure mechanisms, on the other hand, 
there exist particles which trigger the void nucleation inside 
grains. Incorporation of second-phase particles needs more 
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Fig. 7   The back view of the polycrystalline model: a Schmid factor of each grain before loading, b equivalent plastic strain p , and c first princi-
pal value of the damage tensor DI
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complicated models which is not considered here. However, 
the coupled model can be used to investigate stress and strain 
state around the second-phase particles inside grains. As 
mentioned earlier, the voids nucleated at grain boundaries 
mostly grow alongside grain boundaries and toward inside 
higher Schmid factor grains.

6 � Conclusion

In this study, a thermodynamically consistent anisotropic 
continuum damage mechanics model coupled with the 
crystal plasticity theory was presented. The finite-element 
analysis of the model was implemented in Abaqus/Stand-
ard software using a user material subroutine (UMAT). The 
damage evolution was considered to be dependent on the 
equivalent plastic strain, stress triaxiality, and Lode param-
eter. Aside from capturing the drop in the stress–strain curve 
of 316L single crystal after necking, the incorporated dam-
age model made it possible to see the damage evolution in 
different directions. Moreover, the presented formulation 
was employed to investigate damage initiation sites in a 
three-dimensional 316L polycrystalline aggregate foil model 
with randomly sized and oriented grains. In grains with high 
Schmid factor, the damage grows rapidly into the interior of 
the grains. On the other hand, for neighboring grains with 
comparatively lower Schmid factor, the initial damage on 
the boundary virtually remains intact. In addition to damage 
growth in single grains, grains colonies with close Schmid 
factors behave in the similar manner. In other words, damage 
growth in the high Schmid factor colonies is more noticeable 
than the low Schmid factor colonies. The presented formula-
tion is able to capture the damage initiation and grow in a 
polycrystalline aggregate. One of the challenges of using this 
model was the parameters’ calibration. Damage and crystal 
plasticity parameters depend on several microscopic char-
acteristics of the crystalline material. In the absence of such 
microscopic characteristics’ measurements, the parameters 
are calibrated using macroscopic characteristics.
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