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Abstract
To increase the efficiency and accuracy in slope stability analysis, a reliability analysis method based on machine learning 
and the advanced first-order second-moment (AFOSM) method was proposed, and the partial derivative of the machine-
learning algorithm was derived. First, a multi-kernel was introduced to establish the multi-kernel relevance vector machine 
(MKRVM). Then, the kernel parameters of the MKRVM were optimized by the harmony search (HS) method to use the 
high-precision MKRVM method instead of the traditional methods for determining the factor of safety. It was necessary 
to obtain the partial derivative of the performance function, which was explicitly expressed by the trained MKRVM in this 
paper. Finally, the AFOSM was adopted to calculate the reliability index of the slope, as the AFOSM was more reliable 
because the design point was located at the failure surface. With two samples, from a single-layer slope and a multilayer 
slope, the calculation results show that the MKRVM–AFOSM is easy to use, highly computationally efficient, and reliable.

Keywords Slope reliability analysis · Multi-kernel relevance vector machine · Advanced first-order second-moment · 
Harmony search

1 Introduction

In the simulation process, there are a large number of uncer-
tain factors in material properties, loads, laboratory test, 
simulation model and other respects. All of these uncer-
tain factors have a significant impact on the safety of slope 
engineering, so it is difficult to reliably assess the perfor-
mance of a slope only with a factor of safety. To calculate 
the possibility of slope failure, based on probability theory 
and mathematical statistics, reliability analyses are adopted 

to reasonably reflect the actual safety of the slope [1], of 
which many of the uncertainties are transformed into ran-
dom variables.

According to geotechnical models and properties of 
calculation methods, the slope reliability analysis can be 
divided into traditional methods and intelligent algorithms. 
The traditional methods of slope reliability analysis include 
the mean-value first-order second-moment (MVFOSM) 
method [2, 3], advanced first-order second-moment 
(AFOSM) method [4], second-order reliability methods [5, 
6], response surface methods [7], Monte Carlo simulations 
(MCSs) [8, 9], and other categories [10]. Generally, the main 
shortcomings of the traditional methods are derivative of the 
function and a large number of calculations. Therefore, in 
recent decades, the use of a combination of new intelligent 
algorithms and traditional methods is helping to improve 
the efficiency and accuracy of slope reliability analysis. 
The artificial neural network method has been applied to 
slope reliability analysis by many scholars [11–13], but it 
has some limitations, such as a large number of training 
samples, unstable results, local minima, and overfitting prob-
lems, as well as the inability for its performance function to 
be explicitly expressed.
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As a key and the most rapidly developing algorithm of 
intelligent algorithms, machine learning is also widely used 
in slope reliability analysis. Some scholars have attempted 
to improve the support vector machine (SVM) method and 
to explore its applications [14–19]. Tan [20] studied reli-
ability probability using the SVM and radial basis func-
tion neural network methods with an MCS. To obtain the 
reliability index of a slope, He [21] considered the SVM 
result as a response surface, and the SVM method exhib-
ited good results compared with those of the first-order sec-
ond-moment (FOSM), second-order reliability, and MCS 
methods. Kang [22] studied slope stability as a system reli-
ability problem using Gauss process regression and Latin 
hypercube sampling. In addition, Zhao [23, 24] employed 
the SVM to explicitly express the performance function and 
derive its partial derivative, and a slope reliability analysis 
was then carried out with the MVFOSM, providing a new 
approach for slope reliability analysis. Recently, the RVM 
is introduced to fitting and prediction problems in various 
fields, which sparse model structure, relatively low compu-
tational complexity, and fewer parameters compared with the 
SVM [9, 25]. Subsequently, the relevance vector machine 
(RVM) was constructed as a modification of the traditional 
method to analyze the slope reliability with the MVFOSM 
method [25]. The abovementioned research proved that the 
factor of safety estimated by the RVM is feasible, which 
offers some important insights into slope reliability analysis. 
However, there is still an obvious error in the calculation 
result of the RVM-MVFOSM, because the center point of 
the MVFOSM significantly deviates from the original limit 
state surface. The main reason is the mean point is assumed 
as the center point for the MVFOSM, which deviates from 
the limit state surface. In general, the AFOSM is more reli-
able than the MVFOSM, but the partial derivative of the per-
formance function or the finite-difference method is required 
in the calculation process of the AFOSM. The application of 
machine learning has provided the possibility for deriving 
the partial derivative of AFOSM, so the combination of the 
machine learning and the AFOSM deserves to be studied in 
the slope reliability analysis.

To increase the efficiency and accuracy of reliability anal-
ysis, combining with the RVM, the AFOSM is adopted by 
deriving the partial derivative of the RVM in slope reliability 
analysis. On one hand, the multi-kernel function is intro-
duced to establish multi-kernel relevance vector machine 
(MKRVM) to calculate the factor of safety, of which multi-
kernel parameters are optimized by the harmony search 
(HS). On the other hand, the AFOSM was adapted to 
replace the MVFOSM to improve the calculation reliable. 
Otherwise, the partial derivative of multi-kernel function is 
derived for the first time in this paper, which plays a vital 
role in the application of the AFOSM in the reliability analy-
sis. Therefore, the MKRVM–AFOSM is established, which 

can make use of the advantages of the MKRVM and the 
AFOSM to calculate slope reliability. Finally, the stabilities 
of a single-layer slope and a multilayer slope are calculated 
to verify the calculation results of MKRVM–AFOSM.

2  Basic principles

2.1  Principle of MKRVM algorithm

The RVM, introduced by Tipping [26], is a probabilistic 
learning model based on a Bayesian framework. Compared 
with the SVM, the advantages of the RVM are its sparse 
model structure, relatively low computational complexity, 
and fewer parameters [27]. In addition, the RVM, with a 
kernel function that does not need to meet Mercer’s con-
dition, can provide variance. By considering the Gauss-
ian prior probability controlled by the hyperparameters, 
the RVM performs machine learning under the Bayesian 
framework. In addition, the RVM can not only output a 
mean value, namely, a quantitative prediction, but also 
export its variance. Compared with RVMs, the MKRVM 
composites have the advantages of including different 
types of kernel functions, so it has higher accuracy.

Given a training dataset 
{
xn, tn

}N

n=1
 , N is the total num-

ber of samples, and xn tn are the input data and the output 
target value of n for the sample, respectively. The output 
tn can be written as follows:

where y is the intermediate variable. w = (�0,�1,…�N)
T 

is the parameter vector, �0 and �n(n = 1, 2,… ,N) are the 
base quantity and the weight, respectively. �n is the error 
and obeys a Gaussian distribution, of which the mean value 
and variance are 0 and �2 , respectively. K(x, xn) is a kernel 
function. If tn is independently distributed, the likelihood of 
the complete dataset can be expressed as follows:

where t = (t1, t2,… , tx)
T is the output target vector and � is 

a basis function matrix: � = [�(x1),�(x2),…�(xN)] , and 
�(xn) = [1,K(xn, x1),K(xn, x2),… ,K(xn, xN)]

T .

In the process of using the maximum likelihood func-
tion to estimate w, to prevent overfitting, �n is assumed to 
obey the Gaussian distribution G whose mean value is 0 
and whose variance is �−1

n
:

(1)tn = y(xn;�) + �n =

N∑
n=1

�nK(x, xn) + �0 + �n,

(2)p(t
���w, �

2) = (2π�2)−N∕2 exp

⎛⎜⎜⎜⎝
−

���t −�Tw
���
2

2�2

⎞⎟⎟⎟⎠
,
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in which � , which is related to only w, is a hyperparameter 
that controls the value of w.

It is assumed that � and �2 obey the gamma prior prob-
ability, so the posterior distribution of w can be given 
according to the defining prior distribution and likelihood 
distribution:

where M is the number of relevance vector machines, 
� = (�−2�T� + A)−1 and � = �−2��Tt are the posterior 
covariance matrix and mean, respectively, with diagonal 
A = diag(�0, �1,… , �N).

The marginal distribution, which is controlled by hyper-
parameters � and �2 , can be obtained through the integral of 
w in the likelihood function of training samples:

where � = �2E +�A−1�T and E is an identity matrix.
To solve � , the partial derivative of expression (5) is 

calculated by an iterative method, and � → ∞ occurs more 
often in this process. The corresponding �n is equal to zero, 
and the corresponding basis vector will be deleted. Hence, 
a sparse RVM is constructed. To calculate the hyperparam-
eters and the noise variance, the rapid sequence of sparse 
Bayesian learning is adapted to calculate the covariance 
matrix 

∑

 [28, 29].
After obtaining the values of the hyperparameters � and 

�2 , the mean y∗ and variance �2∗ can be evaluated to describe 
the uncertainty prediction if an arbitrary input value x∗ is 
given. �MP is the optimal value of the hyperparameter � , and 
the mean and the variance are defined as follows:

For the RVM, it is determined by the kernel function type 
that the sample-mapping mode is from low-dimensional 
space to high-dimensional space. Meanwhile, the value of 
the kernel parameter has a great influence on the calculation 
results of the RVM. At present, the following kernel func-
tions are commonly used: (1) a local kernel function that has 
a strong local interpolation ability, such as the Gauss kernel 
function shown in Eq. (8) and (2) a global kernel function 

(3)p(w|� ) =
N∏
n=0

G
(
�n

|||0, �
−1
n

)
,

(4)

p(w
|||t, �, �

2) =
p(t||w, �2)p(w|�)

p(t||�, �2)

= (2π)−M∕2|�|−1∕2 exp
(
−
1

2
(w − �)T�−1(w − �)

)
,

(5)p
(
t
|||�, �

2
)
= (2π)−N∕2|�|−1∕2 exp

(
−tT�−1t

2

)
,

(6)y∗ = �T�(x∗),

(7)�2∗ = �2
MP

+ �(x∗)
T
��(x∗).

that has a strong generalization ability, such as the polyno-
mial kernel function shown in Eq. (9) [30]. Considering the 
slope stability analysis characteristics, the calculation model 
needs a very strong local interpolation ability because the 
factor of safety will greatly change due to the small changes 
in one variable. At the same time, the range of each variable 
is large, so the calculation model should also have a gener-
alization ability to some extent. Therefore, the multi-kernel 
function shown in Eq. (10) is introduced to establish the 
MKRVM, which has the advantages of the abovementioned 
kernel functions:

where d, the bandwidth parameter, is the Gauss kernel 
parameter. � , r and q are the polynomial kernel parameters, 
and m is the ratio parameter of the multi-kernel function. 
Compared with the single kernel function, the RVM with 
multi-kernel function does not significantly increase the 
computational workload, so the computational efficiency 
of the MKRVM is stable. The multi-kernel function can 
maintain a good balance between local interpolation and 
generalization, and there is no explicit stipulation about the 
five kernel parameters d, � , r, q, and m.

2.2  Principle of HS algorithm

All kernel parameters have a significant influence on the 
MKRVM, so the HS algorithm is used to find the global 
optimization of the five kernel parameters. The HS is a heu-
ristic algorithm with a global random searching ability [31]. 
The process of generating a harmony, for which musicians 
repeatedly adjust various musical instrument tones, is simu-
lated to show that optimization problems can be solved by 
the HS. The flow chart of the HS is shown in Fig. 1:

The implementation steps of the HS are shown in Fig. 1.

1. The main parameters of the HS are initialized: the num-
ber of variables L, the maximum number of iterations 
Tmax, the harmony memory size HMS, the rate of a new 
tone from harmony memory HMCR, the readjustment 
rate of the tone PAR, and the readjustment bandwidth 
of the tone bw.

2. The harmony memory HM is initialized. The ini-
tialization harmonies are randomly generated and 
then saved. The HM is used to store the best fit-
ness f (Zi) (i = 1, 2,… , HMS) of the harmonies, 

(8)K(x, xn) = exp
(
−||x − xn

||2∕d2
)
,

(9)K(x, xn) = (�(x ⋅ xn) + r)q,

(10)
K(x, xn) = m × exp

(
−||x − xn

||2∕d2
)
+ (1 − m) × (�(x ⋅ xn) + r)q,
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where the number of harmonies is always equal to 
the HMS. Zi =

(
zi
1
, zi

2
,… , zi

k

)
 is the harmony, and 

zi
nk
(nk = 1, 2,… ,k) is the tone, and k is the number of 

input variables. The HM is expressed as follows:

3. When each new tone is constructed, a new harmony 
can be combined. Each tone zi

nk
 of the new harmony 

Zi is generated through the following process: (1) the 
probability that the new tone is from the HM is HMCR. 
Otherwise, the probability is (1 − HMCR). (2) If the new 
tone is from the HM, then the probability that the tone 
will be readjusted is equal to PAR.

(11)

HM =

⎡⎢⎢⎢⎣

Z1 ∣ f (Z1)

Z2 ∣ f (Z2)

⋮ ∣ ⋮

ZHMS ∣ f (ZHMS)

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

z1
1

z1
2

⋯ z1
k

∣ f (Z1)

z2
1

z2
2

⋯ z2
k

∣ f (Z2)

⋮ ⋮ ⋱ ⋮ ∣ ⋮

zHMS
1

zHMS
2

⋯ zHMS
k

∣ f (ZHMS)

⎤⎥⎥⎥⎦
.

4. The HM is updated. If the fitness of the new harmony 
is better than the worst harmony in the HM, the new 
harmony will replace the worst harmony in the HM.

5. The iteration time is checked to determine whether the 
maximum number of iterations is reached. If not, steps 
(3) and (4) are repeated until the iteration time Tmax is 
reached.

2.3  Principle of AFOSM

Compared with the center point of the MVFOSM, the design 
point of the AFOSM is closer to the limit state surface of the 
structures, so its calculation accuracy is clearly improved. 
The performance function of the slope can be expressed as 
[23] follows:

where Z is the value of the performance function 
and g

(
X1,X2,… ,Xk

)
 is the performance function. 

Xi(i = 1, 2,… , k) are random variables affecting the slope 
stability, and k is the number of input variables. f is the fac-
tor of safety.

Z > 0 and Z < 0 indicate that the slope is in a state of 
stability and instability, respectively. Z = 0 indicates that 
the slope is on the boundary between stable and unstable. 
Setting X∗ =

(
X∗
1
,X∗

2
,… ,X∗

k

)
 as a point on the limit state 

surface, the Taylor expansion can be performed on the point 
and reduced to a one-degree term, and the linear function ZL 
is as follows [10]:

If the variables are assumed to be noncorrelated and obey 
a normal distribution (�Xi

, �2
Xi
) , the reliability index � in the 

slope reliability analysis with AFOSM is defined according 
to the mean value �zL

 and the standard deviation �ZL of ZL:

The sensitivity vector �X =
{
�Xi

,(i = 1, 2,… , k)
}
 , called 

the sensitivity coefficient [10], can be calculated as follows:

(12)Z = g
(
X1,X2,… ,Xk

)
= f

(
X1,X2,… ,Xk

)
− 1,

(13)g(X∗) = 0,

(14)ZL = g(X∗) +

k∑
i=1

�g(X∗)

�Xi

(
Xi − X∗

i

)
.

(15)

� =
�zL

�ZL

=

[
g(X∗) +

k∑
i=1

�g(X∗)

�Xi

(�Xi
− X∗

i
)

]/√√√√ k∑
i=1

[
�g(X∗)

�Xi

]2
�2
Xi
.

Parameters of HS and 
HM are initialzed

Create a new harmony

Generate random number rand1

rand1<HMCR

 A new tone from 
HM outside

Are all tones generated?

Is fitness of new harmony better?

Iterative condition?

Stop

New harmony intead of the worst harmony

 A new tone from HM

The tone may be adjusted

Yes No

No

Yes

No
Yes

Yes

No

Fig. 1  The flow chart of the HS
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Then, the new design points p∗ =
{
p∗
i
,(i = 1, 2,… , k)

}
 

can be acquired by the following equation:

Since the direct solution is very difficult to determine, the 
iterative method is usually adopted in Eq. (13). Then, using 
Eqs. (13), (15), (16) and (17), the reliability index � and the 
new design points p∗ can be obtained. The main steps of the 
AFOSM can be described as follows: first, the initial design 
point is generally assumed to be the mean point. Then, �X , � , 
and the new design point are calculated by the above equa-
tions. If the termination condition is satisfied, the reliability 
analysis is finished. If not, the process will be repeated again.

In this process, all the limit-equilibrium methods or the 
finite-element method can be used to compute the factor 
of safety f [23]. The Bishop method [32], one of the limit-
equilibrium methods, is chosen to calculate the factor of 
safety in this paper. Therefore, it is convenient to compare 
with other reliability calculation methods. In the past, it is 
difficult to derive the derivative of the performance function 
directly for the AFOSM, so the finite-difference method is 
implemented as an approximate method for reliability analy-
sis. All the sampling points of the finite-difference method 
are selected in the range of �Xi

± b�Xi
 , where b is the step 

control factor. The step scheme is determined according to 
Rajashekhar [33], b = 3 in the initial iteration, and then b = 1 
in the following iterations. The finite-difference method is 
also adopted in the AFOSM without the MKRVM.

3  Establishment of MKRVM–AFOSM

3.1  Initialization of the HS by Latin hypercube 
sampling

To optimize the kernel parameters of the MKRVM, the vari-
ation range of kernel parameters are provided for the HS, 
and all the kernel parameters samples are generated in this 
variation range. The search result significantly depends on 
the quantity and quality of the samples. Therefore, Latin 
hypercube sampling is adopted in the initialization process 
of the HS to quickly generate representative samples. Com-
pared with the random sampling method, uniform design 
method and orthogonal design method, the Latin hypercube 

(16)�Xi
= −

�g(X∗)

�Xi

�Xi

/√√√√ k∑
i=1

[
�g(X∗)

�Xi

]2
�2
Xi
.

(17)p∗
i
= �Xi

+ ��Xi
�Xi

.

sampling method can better reflect the probability distribu-
tion of variables with fewer samples. As a multidimensional 
and stratified sampling method, Latin hypercube sampling 
divides the distribution interval of each variable into several 
subintervals according to the probability. Then, the sam-
ples of each variable, which are extracted as subintervals 
by the inverse transformation, are randomly combined to 
the samples of Latin hypercube sampling. As a result, all 
the samples of the HS are created, and the initialization HS 
is completed.

3.2  Derivation of the partial derivative 
of the MKRVM

After training the MKRVM, the Bishop method can be 
replaced by the MKRVM to evaluate the performance func-
tion. Therefore, the performance function value Z can be 
rewritten as follows:

To apply the AFOSM in the reliability analysis, the par-
tial derivative of multi-kernel function must be derived for 
the first time in this paper. The partial derivative of the 
MKRVM is derived as follows:

(18)

Z =

M∑
n=1

wn

[
m × exp

(
−||x − xn

||2∕d2
)
+ (1 − m) × (�(x ⋅ xn) + r)q

]
.

Determine  distribution forms 
of each variable

Calculate F using traditional method

HM initialized 

Multi-kernel parameters optimized by HS

Is MKRVM 
trained great?

Assume initialization design point

Reliability index 

Solve reliability index

Compute new design point

Iterative condition?

Yes

No

MKRVM

AFOSM

No

Yes

Fig. 2  The MKRVM–AFOSM flow chart
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3.3  Steps of the MKRVM–AFOSM

The above equation is then transformed into the AFOSM to 
solve the reliability index. Hence, the MKRVM–AFOSM 
flow chart is shown in Fig. 2:

The main calculation steps of the MKRVM–AFOSM 
can be described as follows:

Step 1: The distribution forms of each variable are 
determined, and Xi (i = 1, 2,… , k) is constructed as the 
input of the samples. Then, a traditional method, such as 
the Bishop method, is used to calculate the factor of safety 
as the output of these samples. The samples are divided 
into a training dataset and a testing dataset.

Step 2: The HS is initialized by the Latin hypercube 
sampling, and then, the HS is used to optimize the kernel 
parameters of the MKRVM. The training dataset and testing 
dataset are used to train and estimate the MKRVM, respec-
tively. In the optimizing process, the mean absolute error 
(MAE) of the factor of safety is calculated by the following 
equation as the fitness fMAE:

(19)�Z

�xi
=

M∑
n=1

wn

[
−2m ×

(x − xn

d2

)
exp

(
−
||x − xn

||2
d2

)
+ q�xn(1 − m) × (�(x ⋅ xn) + r)q−1

]
.

where tn and y∗
n
 are the factor of safety calculated by the 

Bishop and the MKRVM of sample n, respectively.
Step 3: To simplify the complexity and accelerate the cal-

culation speed, the samples are directly into training and test 
samples to show the fitting and protection effect. According 
to the minimum MAE of the testing dataset, it is determined 
whether the training target is achieved. If not, the kernel 
parameters are changed, and step 2 is repeated. When the 
target is achieved, the MKRVM training is completed.

Step 4: With the AFOSM, the mean point is assumed to 
be the initial design point in the first iteration. In each itera-
tion, the MKRVM is used instead of the traditional method 
to calculate the factor of safety and the first-order derivative. 
As a result, a new design point can be found.

Step 5: If the difference value of each variable of the 
design point is less than the allowed error for the last two 
iterations, the iteration calculation of the AFOSM is fin-
ished, and the reliability index � is obtained. Otherwise, the 
process returns to step 4.

Otherwise, to increase efficiency, the program of the 
MKRVM–AFOSM was developed in MATLAB accord-
ing to the abovementioned steps. Meantime, Geostudio 
2007 is adopted to calculate the factor of safety, and the 
reliability analysis using the MCS method also archives by 
the Geostudio 2007. Notably, the factor of safety should be 
subtracted from one, which is the theoretical output value 
of the MKRVM. The five parameter values of the HS are 
conventional, so their values are set in Table 1. Meanwhile, 

(20)fMAE =
1

N

N∑
n=1

||tn − y∗
n
||,

Table 1  Parameters of the HS and the MKRVM

Parameter values of the HS The range of the variation in 
the multi-kernel parameters

Parameter Value Parameter Range

HMS 25 d [0.1,100]
HMCR 0.9 � [0.01,20]
PAR 0.1 r [1, 10]
bw 0.01 q [1, 3]
Tmax 10,000 m [0, 1]

Fig. 3  Single-layer slope geometry
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the ranges of the variation in the multi-kernel parameters are 
provided in Table 1.

After the abovementioned steps are completed, the slope 
reliability analysis model based on the MKRVM–AFOSM 
can be established. The MKRVM–AFOSM can make use of 
the MKRVM to estimate the factor of safety in a less time-
consuming manner than that of traditional methods. Then, 
the trained MKRVM is applied in the AFOSM to quickly 
obtain the first-order derivative of the design point.

4  Application

4.1  Example 1: single‑layer slope

To compare this approach with other algorithms, the reli-
ability analysis of a single-layer slope commonly stud-
ied in academic papers is discussed for the cross-section 
shown in Fig. 3 [25], and the slope angle of this single-layer 
slope is 18.43°. The cohesion c, internal friction coefficient 
� and density � are considered in the reliability analysis, 
and their mean values are c = 12.00 kPa , � = 16.68 o , and 
� = 19.06 kN/m3 , respectively. It is usually assumed that 
those random variables obey the noncorrelated normal dis-
tribution, and the slope reliability index is calculated when 
the coefficients of variation in all the parameters are 5%, 
10%, and 15%. From the 40 samples evaluated by the Bishop 
method with circular slip surfaces in Samui [25], the first 
28 are adopted to train the MKRVM, and the remaining 12 
are used to estimate the fitting effect of the MKRVM. The 
material parameters and the factor of safety are input and 
output of samples to train the MKRVM, respectively. Then, 
the AFOSM iteratively calculates the reliability index of the 
slope engineering.

The multi-kernel parameters optimized by the HS 
are  m = 0.9999955 ,  d = 9.3329415 ,  � = 0.4669322  , 
r = 7.0304817 , and q = 1.5597846 , and the number of rel-
evance vectors is 6. Figure 4 shows the factors of safety 
calculated by the Bishop and the MKRVM methods about 
the training and testing dataset. For the training datasets, the 
MAE of the factor of safety is 0.0071, and the mean relative 
error (MRE) is only 0.47% calculated as the Eq. (21). The 
correlation coefficient � of the training dataset is 0.9965, 
according to the Eq. (22):

where Cov and Var are the covariation and variance. The 
MAE and the MRE of the testing dataset are only 0.0292 
and 1.90%, respectively, and the correlation coefficient is 
0.9956. Thus, the MKRVM has a good predictive ability 
and can reliably estimate the factor of safety, providing an 
appropriate method for slope reliability analysis.

The slope reliability analysis results, with varying coef-
ficients of variation, are shown in Fig. 5. Among them, 
the results of the MVFOSM and the RVM-MVFOSM are 
obtained from Samui [25]. The “Geostudio/MCS” results, 
which were calculated  106 times, were achieved using the 
software Geostudio 2007. The results of the AFOSM and the 
MKRVM–AFOSM were calculated using MATLAB 2010a.

The design point with different coefficients of variation 
is c = 10.36 kN/m2 , � = 12.83

◦ , and � = 24.87 kN/m3 , and 
the factor of safety is 1.042, indicating that the design point 
is very close to the limit state surface of the slope stability. 

(21)MRE =
1

N

N∑
n=1

||tn − y∗
n
||

tn
,

(22)�
�
tn, y

∗
n

�
=

Cov
�
tn, y

∗
n

�
√
Var[tn]Var[y

∗
n
]
,

Fig. 4  Performance of the training and testing datasets of the single-layer slope
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Hence, the factor of safety of design point proves the cor-
rectness of the MKRVM–AFOSM, which is feasible for the 
single-layer slope. These values more represent the math-
ematical meaning than the actual value of the slope, so there 
is a great chance that the values of the design point are inap-
propriate for the empirical about the soil properties.

In each iteration process of the AFOSM without the 
MKRVM, the finite-difference method is used as an approx-
imate method for reliability analysis. Although it is very 
time-consuming, the reliability result determined with the 
AFOSM is reliable. Meanwhile, the MCS usually provides 
unbiased estimates for the failure probability [22]. Conse-
quently, the AFOSM and MCS are considered to estimate 
the reliability of other algorithms. The following can be con-
cluded from Fig. 5:

1. The results of the MVFOSM and the RVM–MVFOSM 
are similar, but they exhibit a significant deviation 
from the AFOSM and MCS results. The main reason 
for this deviation is that the MVFOSM and the RVM–
MVFOSM both rely on the MVFOSM. The center point 
of the MVFOSM is generally not on the limit state sur-
face, and its Taylor expansion surface will significantly 
deviate from the original limit state surface. Therefore, 
there is a clear deviation of the reliability result of the 
MVFOSM.

2. The results of the Geostudio/MCS, the AFOSM and 
the MKRVM–AFOSM are close to each other, and 
the results of the Geostudio/MCS and the MKRVM–

AFOSM are especially similar. Compared with the 
AFOSM, the MAE and the MRE of the MKRVM–
AFOSM are 0.093 and 1.88%, respectively, which are 
smaller than other algorithms. About the MCS, although 
the calculation with  106 cycles is time-consuming, the 
results of Geostudio are reliable. Therefore, the reli-
ability analysis of the single-layer slope present high 
precision by the MKRVM–AFOSM, benefiting from the 
accuracy factor of safety the MKRVM and the precision 
reliability analysis by the AFOSM.

3. Through the above three experiments, the average calcu-
lation times of the MCS and the AFOSM are more than 
5 min with Geostudio 2007. The average calculation 
times of the MKRVM–AFOSM is 14.3 s with MAT-
LAB 2010a when the MKRVM has been trained, sig-
nificantly faster than the Geostudio/MCS or the AFOSM 
calculations. Therefore, for the single-layer slope, the 
MKRVM–AFOSM has the advantages of high preci-
sion and speed that can satisfy the requirements of the 
reliability analysis.

In the case that the RVM with the Gauss kernel func-
tion or the multi-kernel function, the reliability index of the 
single-layer slope is shown in Table 2. The reliability index 
of the multi-kernel function is closer to that of the AFOSM 
than that of the Gauss kernel function, and the ratio kernel 
parameter m = 0.9999955 of the multi-kernel function shows 
that the Gauss kernel function is still dominant. The calcu-
lation accuracy and efficiency of the reliability are clearly 
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Fig. 5  Slope reliability results of the single-layer slope using different methods

Table 2  The kernel parameters 
and reliability index of the 
single-layer slope by different 
kernel functions

Type of kernel function Kernel parameters value Reliability index

m d � r q � (5%) � (10%) � (15%)

Gauss kernel function – 10.253 – – – 7.5247 3.7624 2.5082
Multi-kernel function 0.9999955 9.333 0.467 7.0305 1.5598 8.2707 4.1354 2.7569
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improved by the MKRVM proposed in this paper due to the 
introduction of the polynomial kernel.

4.2  Example 2: multilayer slope

To compare this approach with other algorithms, the reli-
ability analysis of a multilayer slope commonly studied in 
academic papers is discussed for the cross-section in Fig. 6 
[23], and the slope angle of this multilayer slope is 24.23°. 

This slope is complex, with three different soil layers, and 
its material parameters are shown in Table 3. It is assumed 
that the cohesion c and the internal friction coefficient � 
obey a noncorrelated normal distribution, and the density � 
is assumed to have a constant value [23]. Through reliabil-
ity analysis of this multilayer slope, the advantages of the 
MKRVM–AFOSM can be well demonstrated.

Zhao [23] does not provide detailed data, so Latin hyper-
cube sampling is used to generate random samples in the 
range of �Xi

± 3�Xi
 for the HS. To compare with Zhao [23], 

the factor of safety is evaluated by the Bishop method assum-
ing circular slip surfaces. The first 36 of the 48 samples are 
used for training, and the remaining 12 samples are used for 
testing. The calculation process of the multilayer slope is the 
same as that of the single slope. The multi-kernel parameters 
optimized by the HS are m = 0.9999955 , d = 15.3330115 , 
� = 0.7380245 , r = 7.0304838 , and q = 1.5597849 , and the 
number of relevance vectors is 11. The fitting and prediction 
results of the multilayer slope are shown in Fig. 7.

Fig. 6  Multilayer slope geometry

Table 3  Material parameters of the multilayer slope

Soil type c (kPa) �(°) � (kN/m3)

Mean 
value

Standard 
deviation

Mean 
value

Standard 
deviation

I 0 0 38 4 19.5
II 5.3 0.7 23 3 19.5
III 7.2 0.2 20 3 19.5

Fig. 7  Performance of the training and testing datasets of the multilayer slope
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For the training dataset, the MAE of the factor of safety 
with the Bishop and the MKRVM methods is 0.016, and 
the MRE is 1.33%, the correlation coefficient of the training 
dataset is 0.9982. In the training process, the kernel param-
eters of the MKRVM are optimized by the HS, and the evo-
lution of MAE value are shown in Fig. 8. Compared with 
the Gauss kernel, the MKRVM reaches the optimal value 
after 48 iteration calculation showing a high convergence 
speed and accuracy. Therefore, the MKRVM has obvious 
advantages in terms of calculation accuracy and speed for 
the factor of safety. The MAE and the MRE of the testing 
datasets are 0.110 and 8.052%, respectively, and the correla-
tion coefficient of the testing dataset is 0.9719. The fitting 
and prediction precision of the multilayer slope are less than 
those of the single-layer slope, mainly due to the complexity 
of the multilayer slope and the low representativeness of the 
training dataset, which require further research.

The design points of the MKRVM–AFOSM are 
� = 32.95

◦ , cII = 5.12 kN/m2 , �II = 17.90
◦ , c = 7.20 kN/m2 , 

�III = 10.69
◦ , and the factor of safety is 1.044. It is clear that 

the design points are very close to the limit state surface of 
slope stability. Therefore, the factor of safety of design point 

proves the correctness of the MKRVM–AFOSM, which is 
feasible for the multilayer slope. According to the previous 
analysis, the AFOSM and MCS are considered to estimate 
the reliability of other algorithms. The reliability index of 
the multilayer slope with different methods is shown in 
Table 4.

The following can be concluded from Table 4:

1. The results of the point estimation method and the 
SVM–MVFOSM obtained from this paper [23], are 
similar, but the result of the SVM–MVFOSM has an 
obvious deviation compared with those of the AFOSM 
and MCS. The main reason for this difference is that the 
center point of the MVFOSM is generally not close to 
the limit state surface.

2. Compared to the results of the SVM–MVFOSM and 
point estimation method, the results from the Geostudio 
software are closer to those of the AFOSM.

3. The results of the AFOSM and the MKRVM–AFOSM 
are similar. Compared with the AFOSM results, the 
MAE and the relative error of the MKRVM–AFOSM 
are 0.0029 and 0.077%, respectively, which are much 
lower than those of the other tested algorithms. There-
fore, the reliability analysis of the multilayer slope also 
presents high precision by the MKRVM–AFOSM, ben-
efiting from the accuracy factor of safety the MKRVM 
and the precision reliability analysis by the AFOSM. 
The computing time of the MKRVM–AFOSM is 16.8 s 
when the MKRVM has been trained. Compared with 
the SVM, the MKRVM will increase approximately 
2.4 s of calculation time, but we think it is acceptable 
for the slope reliability analysis. The reliability index of 
the MKRVM–AFOSM is less than that of the AFOSM, 
so the MKRVM–AFOSM adequately considers safety. 

Fig. 8  The evolution of MAE 
value in the training process
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Table 4  Slope reliability index of a multilayer slope with different 
methods

Point 
estima-
tion 
method 
[23]

SVM–
MVFOSM 
[23]

Geostu-
dio/MCS

AFOSM MKRVM–
AFOSM

Reli-
ability 
index

3.4293 3.4218 4.007 3.7733 3.7704

Table 5  The kernel parameters 
and reliability index of the 
multilayer slope using different 
kernel functions

Type of kernel function Kernel parameter value Reliability index

m d � r q �

Gauss kernel function – 15.56 – – – 3.7284
Multi-kernel function 0.9999955 15.3330115 0.7380245 7.0304838 1.5597849 3.7704
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Therefore, for the reliability analysis of a multilayer 
slope, the MKRVM–AFOSM also has the advantages 
of high precision and speed that can satisfy the require-
ments of an actual project.

In the case that the RVM uses the Gauss kernel func-
tion or the multi-kernel function, the reliability index of the 
multilayer slope is shown in Table 5. The calculation accu-
racy and efficiency of the reliability are clearly improved 
by the multi-kernel in this paper due to the introduction of 
the polynomial kernel. Meanwhile, the computing time of 
the trained RVM with the Gauss kernel function is 16.6 s, 
which is similar with the MKRVM. Therefore, the compu-
tational efficiency of the MKRVM is stable compare with 
the traditional RVM.

5  Conclusions

To increase the efficiency and accuracy of reliability 
analysis, the MKRVM and the AFOSM are combined to 
analyze the slope reliability in this paper. In this work, 
the multi-kernel function is introduced to establish the 
MKRVM, so the accurate calculation of the safety factor 
is further improved. In addition, the HS has the advan-
tages of high precision and speed in the optimization of 
multi-kernel parameters. Furthermore, the partial deriv-
ative of the MKRVM was derived, so the AFOSM can 
be solved directly without the finite-difference method. 
Based on the above methods, the center point determined 
by MKRVM–AFOSM can be close to the limit state sur-
face, meaning the calculation results of the slope reliabil-
ity will be upgraded. Therefore, the MKRVM–AFOSM 
has the advantages of high precision, fast convergence 
speed and ease of use. A comparison of the results of two 
samples, for a single-layer slope and a multilayer slope, 
with the results of other methods shows that the calcu-
lation reliable and efficiency of the reliability index are 
clearly improved by utilizing the multi-kernel instead of 
a Gauss kernel. Thus, slope reliability analysis with the 
MKRVM–AFOSM is feasible and efficient. Despite its 
advantages, the assumptions of distribution law and the 
correlation of different material parameters in this paper 
have gaps with actual soil, and further studies need to 
be carried out to focus assumptions in slope reliability 
analysis. In short, the findings of this study provide a com-
bined method with machine learning to reliability analysis, 
which has good application prospects in slope and other 
practical engineering.
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