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Abstract
The dynamic condensation method has been recognized as an effective alternative for structural damage identification using 
spatially-incomplete modal measurements. However, comparative studies of different dynamic condensation techniques 
applied to the subject of structural damage identification have been scarcely found, especially for composite structures. In 
this regard, we conduct a comparative study of six typical dynamic condensation techniques utilized for addressing damage 
identification problems of composite plates made of functionally graded materials (FGM) and functionally graded carbon 
nanotube-reinforced composite (FG-CNTRC) materials. Firstly, the six techniques consisting of Guyan’s method, Kidder’s 
method, Neumann series expansion-based second-order model reduction (NSEMR-II) method, improved reduced system 
(IRS) method, iterated IRS (IIRS) method, and iterative order reduction (IOR) method are reviewed. Then, their performance 
for reduced Eigen and optimization-damage identification problems are evaluated by studying two numerical examples of 
FGM plate and FG-CNTRC plate. For solving the optimization-damage identification problem of plate structures, the article 
proposes to use a hybrid global–local algorithm, Manta Ray Foraging Optimization—Sequential Quadratic Programming 
(MRFO-SQP), where the MRFO algorithm is utilized for global exploration and the SQP algorithm is used for the local 
searching process. The comparative study indicates that the IOR technique is the best dynamic condensation technique and 
is effective for addressing the structural damage identification problems when comparing with the other five techniques. It 
is also found that the damage identification approach based on the hybrid MRFO–SQP algorithm combined with the IOR 
technique can archive the high accuracy and low computational cost for damage localization and quantification.

Keywords  Dynamic condensation techniques · Damage identification · Functionally graded materials · Graded carbon 
nanotube-reinforced composite · Manta ray foraging optimization · Hybrid optimization algorithm

1  Introduction

During the past decades, various dynamic condensation 
techniques have been developed to create reduced-order 
models (ROMs) that have dynamic characteristics closely 
matching those of the full-order finite element (FE) model. 
This attractive possibility has led to the investigation of the 
applicability of ROMs in both the industry and academia. 
The application fields of dynamic condensation methods can 
be found in Refs [1–5]. In the field of structural health moni-
toring, the ROMs are fundamental for FE model updating [6, 
7], optimal sensor placement [8, 9], and damage identifica-
tion [4, 10, 11].

The strategy of dynamic condensation is to retain some 
degree-of-freedoms (DOFs) (called masters) and remove 
a much larger set of DOFs (called slaves), then to solve 
the eigenproblem of the ROM. The pivot task of dynamic 
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condensation techniques is to generate a coordinate trans-
formation matrix between the master set and the slave set, 
which can also be employed to expand measured data. 
Guyan’s method [12] is recognized as the most popular and 
longstanding condensation technique already embedded 
in commercial FE analysis software like ANSYS. Due to 
the complete neglect of inertia terms associated with the 
slave DOFs, Guyan’s method does not give a good approxi-
mation for high-order frequency modes. Kidder [13] and 
Miller [14] attempted to improve Guyan’s method by includ-
ing the inertia effect. However, the approximate solution of 
the two schemes depended on the selection of an appro-
priate initial eigenvalue. Suarez and Singh [15] improved 
Guyan’s method by using an iterative process to update the 
transformation matrix. By adding the influence of the first-
order inertia terms, O’Callahan [16] proposed an improved 
reduced system (IRS) method that yields better results than 
Guyan’s method. Friswell et al. [17] introduced an iterated 
IRS (IIRS) method that is an improvement of the original 
IRS. In their study, an iterative scheme was adopted to 
calculate the transformation matrix, and the convergence 
property of the IIRS method was also proved in [18]. Sub-
sequently, some improvements to the IIRS method were 
made to accelerate its convergence property [19, 20]. In 
Ref. [20], the iterative order reduction (IOR) method can 
be considered as an improvement of the IIRS method where 
the transformation matrix is calculated by a more efficient 
iterative scheme. Yang [21] presented the Neumann series 
expansion-based model reduction (NSEMR) method that 
includes the first-order and second-order inertia items for 
deriving the dynamic condensation formula. Although a 
variety of dynamic condensation techniques have been 
constantly developed in the literature, the above-described 
methods have been widely used and accepted by the aca-
demic community.

In the field of structural damage identification, it is not 
practical and even impossible to measure the modal informa-
tion of the monitored structure of all DOFs due to restric-
tions of practical measurement conditions and budget. In 
other words, the mode shape information of the damaged 
structure in real applications is spatially-incomplete with 
reference to the lower order modes. The spatially-incomplete 
measurement problem can be solved by either expanding the 
measured data to include the unmeasured parts or by reduc-
ing the size of the full FE model to the measured DOFs. In 
this regard, the dynamic condensation approach has been 
recognized as a more practical alternative to address the 
issue [22, 23]. Various research works have been done on the 
subject of structural damage identification using dynamic 
condensation techniques [9, 10, 22, 24–33]. It is worth not-
ing that one of the most interesting findings required is to 
explore the comparative ability of various dynamic con-
densation techniques in the field. This comparative study 

can help researchers to choose an appropriate condensation 
technique for their specific problems.

In recent years, the damage identification approach based 
on FE model updating methods combined with dynamic 
condensation techniques has aroused the interest of many 
researchers. In the approach, a powerful global optimizer 
is used to update the FE model of the target structure, and 
then a dynamic condensation technique is adopted to con-
densate the FE model so that the size of the calculated data 
set closely matches the measured data set. The goal of the 
FE model updating process is to track the damage ratio of 
all elements in the target structure so that the discrepancy 
between the measured and simulated modal data becomes 
minimum. Selecting an efficient optimization solver as well 
as an appropriate condensation technique is a key issue in 
this approach. Several combinations of the two kinds of 
methods have been reported in the literature. For example, 
Kourehli et al. [34] presented a damage detection and esti-
mation method for beam and 2D frame structures by utilizing 
the pattern search algorithm and Guyan’s method. Hossein-
zadeh et al. [27] proposed a damage identification method 
based on democratic particle swarm optimization (DPSO) 
algorithm and Neumann series expansion-based first-order 
model reduction (NSEMR-I) method to detect and quantify 
damage in 2D truss and frame structures. Dinh-Cong et al. 
[31] introduced a combination of teaching–learning-based 
optimization (TLBO) algorithm and IRS method for damage 
identification in 2D frame structures. In the work of Hos-
seinzadeh et al. [35], a structural damage detection strategy 
was explored based on a hybrid optimizer (particle swarm 
optimization with colonial competitive algorithm) and Neu-
mann series expansion-based second-order model reduction 
(NSEMR-II) method. More recently, Dinh-Cong et al. [9] 
proposed an effective approach for damage localization and 
quantification in the laminated beam and composite plate 
structures by using Jaya algorithm and IIRS method. For 
damage assessment of 2D truss, frame, and plate structures, 
Dinh-Cong et al. [11] suggested a combination of lightning 
attachment procedure optimization (LAPO) algorithm and 
IIRS method. Based on the brief literature survey, it is found 
that the aforementioned studies utilized stochastic search 
algorithms which usually require a high computational cost 
to converge to the actual global optimum. One of the ways 
to remedy this drawback is to create a hybrid stochastic/
deterministic search algorithm, which will be considered in 
this current research. Besides, it is worthwhile to highlight 
that there is not any investigation on the performance of the 
approach for damage identification in structures made of 
functionally graded materials (FGM) or functionally graded 
carbon nanotube-reinforced composite (FG-CNTRC) mate-
rials, which are briefly described in the following paragraph.

FGM classified as a class of advanced heterogeneous 
composites are usually made of two or more components 
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with material properties varied through non-uniform dis-
tribution of the predetermined direction. To date, FGM has 
found extensive applications in many engineering fields 
such as aerospace, military, mechanics, civil engineer-
ing, etc. Inspired by the concept of FGM, carbon nano-
tubes (CNT) or Carbon Nanotube-reinforced magneto-
electro-elastic (CNTMEE) has come up with functionally 
graded distributions. Due to their typical properties, many 
investigations [36–51] have mainly focused on mechani-
cal behaviors and performance of structures using these 
materials, which support engineers for the accurate design 
and analysis. But in the field of structural damage identifi-
cation, there are very limited studies on damage diagnosis 
of FGM and FG-CNTRC structures.

Considering the above-mentioned research gaps, this 
article for the first time attempts to conduct a comparative 
study of various dynamic condensation techniques applied 
to multi-damage identification of FGM and FG-CNTRC 
plates. The major contributions of this research work are 
summarized as follows:

•	 Investigating the capability of six typical dynamic con-
densation techniques, including Guyan’s method, Kid-
der’s method, NSEMR-II, IRS, IIRS, and IOR, to solve 
the eigenproblem for special composite plate structures 
made of FGM or FG-CNTRC materials.

•	 Dealing with the spatially-incomplete measurement 
challenge by utilizing the dynamic condensation tech-
niques and examining their implementation in the field 
of structural damage identification.

•	 Proposing a hybrid global–local optimization strat-
egy that combines Manta Ray Foraging Optimization 
(MRFO) algorithm [52] and Sequential Quadratic Pro-
gramming (SQP) algorithm [53] which has not yet been 
tested for structural damage localization and quantifica-
tion problems.

•	 Exploring an effective and efficient optimization solver 
based on the hybrid MRFO–SQP algorithm combined 
with the IOR technique to localize and quantify multi-
damage in the special composite plate structures using 
the first few incomplete modes with noise pollution.

The layout of this article is organized as follows. After 
the introduction, we briefly present the formulation of all 
the six dynamic condensation techniques in Sect. 2. In 
Sect. 3, the foundation of the optimization-based damage 
detection problem is first described, and then the hybrid 
MRFO–SQP algorithm is provided. In Sect. 4, we evalu-
ate the performance of the condensation techniques for 
estimating the dynamic behavior of the monitored com-
posite plate structures (a FGM plate and a FG-CNTRC 
plate) and discuss their implementation for multi-damage 

identification in these structures. Finally, several overall 
conclusions are withdrawn in Sect. 5.

2 � Dynamic condensation techniques

In this section, the basic formulations of six commonly 
used condensation techniques will be reviewed. The six 
techniques are Guyan’s method, Kidder’s method, Neu-
mann series expansion-based second-order model reduc-
tion (NSEMR-II) method, improved reduced system (IRS) 
method, iterated IRS (IIRS) method and iterative order 
reduction (IOR) method. It should be noted that throughout 
this section, subscripts ‘G’, “Kidder”, “NSEMR-II”, “IRS”, 
“IIRS” and “IOR” represent the items of Guyan’s method, 
Kidder’s method, NSEMR-II method, IRS method, IIRS 
method, and IOR method, respectively.

2.1 � Guyan’s method

For a structural FE model with N DOFs, the free undamped 
vibration equation for the structural system can be described 
in the partitioned matrix equation as

where Φ and � denote the eigenvectors and eigenvalues of 
the full-order FE model; K and M are, respectively, the 
global stiffness and mass matrices with the dimension of 
(N × N) ; the subscripts k and r, henceforth, denote the num-
ber of kept and reduced DOFs, and k + r = N.

From the second set of Eq. (1), the following relationship 
between the kept and reduced DOFs can be expressed as

Using Neumann series expansion, the inverse of (
�

rr
− ��rr

)
 is approximately calculated as

The commonly used Guyan reduction [12] neglects all the 
inertia terms of � in Eq. (3), leading to

in which �G was named as Guyan’s transformation matrix 
between kept and reduced coordinates.
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By substituting Eq. (4) into Eq. (1), per multiplication by 
�G , one can obtain a reduced eigenvalue problem as

where �
R,G

 and ΦR,G are, respectively, the approximated 
eigenvalue and approximated eigenvectors obtained by 
Guyan’s method. The reduced mass matrix �R,G and stiff-
ness matrix �R,G are, respectively, given by

There is no doubt that Guyan’s method is simple and 
cost-effective, and this has made its continued popularity in 
the industry. Nevertheless, the method does not give a good 
approximation for high-order eigenvalues owing to neglect-
ing the inertia terms.

2.2 � Kidder’s method

According to Ref. [13], Kidder improved Guyan’s method by 
only omitting the higher-order terms of � . Once two terms 
of the expansion in Eq. (3) are retained, Eq. (2) can be sim-
plified to

(5)
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2.3 � Neumann series expansion‑based second‑order 
model reduction method

To consider the influence of inertia terms, Yang [21] pre-
sented the Neumann series expansion-based second-order 
model reduction (NSEMR-II) method that includes the 
first-order and second-order inertia items for deriving the 
condensation formula. The NSEMR-II method is briefly 
presented as follows:

With considering the terms � and �2 in Eq. (3), Eq. (2) 
becomes as

In structural FE analysis, the mass matrix is generally 
diagonalized because of utilizing lumped-mass idealization. 
This leads to �kr = �rk = � . After doing some mathemati-
cal manipulation, the condensed stiffness matrix ( �

R,NSEMR−II
 ) 

and condensed mass matrix ( �R,NSEMR−II ) in the NSEMR-II 
method can be expressed as [21]

where the transformation matrix �
NSEMR

 of the NSEMR-II 
method is

with the following notations:

2.4 � Improved reduced system method

To produce a better approximation at the lower vibrating 
modes, O’Callahan [16] improved Guyan’s method through 
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As a consequence, a transformation matrix for Kidder’s 
method is approximated as

Accordingly, the reduced mass matrix �R,Kidder and stiff-
ness matrix �R,Kidder in the Kidder’s method are obtained by

It is apparent that Kidder’s method is more accurate than 
Guyan’s method when it retains the first-order term of the 
series in Eq. (3). However, Kidder’s method depends on the 
selection of an appropriate initial eigenvalue, which means 
that its high accuracy is preserved at a specific frequency and 
is far away from the initially selected eigenvalue.
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an improved reduced system (IRS) method which includes the 
inertia terms as pseudo-static forces. The method begins with 
Eq. (7) that can be rewritten as

Then, by assuming a transformation matrix � between Φr 
and Φk , one has

Accordingly, the substitution of Eqs. (15) into (14) and rear-
ranging it yields

For constructing the transformation matrix, the IRS 
method predicts the lowest k modes from Eq. (5) in Guy-
an’s method, which can be rewritten in the form of

Additionally, for the sake of simplification, the implicit 
function � in the right-hand side of Eq. (16) is replaced 
by �R,G(�R,G = −�−1
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) in Guyan’s method. Eq. (16) is 

therefore expressed as

Correspondingly, the transformation matrix for the IRS 
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2.5 � Iterated IRS method

To further enhance the accuracy of the IRS method, 
Friswell et  al. [17] proposed an iterated IRS (IIRS) 
method and then proved its convergence in Ref. [18]. In 
their study, �IRS in Eq. (18) is updated through an iterative 
process. Its iterative form is given as

where

In Eqs. (21)–(23), the superscript ‘n’ denotes the nth 
iteration. Note that when n = 1, it is equivalent to Guy-
an’s method; and when n = 2, it turns out to be the IRS 
method.

2.6 � Iterative order reduction method

As an effort to include all the inertia terms in Eq. (2), Xia 
and Lin [20] developed an iterative order reduction (IOR) 
method utilizing iterative forms of transformation and mass 
matrices which can converge faster than the Subspace Itera-
tion method. The IOR method begins from Eq. (16) that is 
rewritten in the form
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The reduced eigenvalue problem can be written in the 
form:

where

Note that in Eq. (28), �R,G is the reduced stiffness matrix 
of Guyan’s method. From Eq. (27), we can obtain the fol-
lowing form of a reduced eigenequation

Substituting Eq. (29) into Eq. (25), the transformation 
matrix of IOR method is expressed as
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Correspondingly, once the transformation matrix �(k)
IOR

 
is available, we can obtain the condensed stiffness matrix 

�
(k)

R,IOR
 and mass matrix �(k)

R,IOR
 of the IOR method as shown 

in Eq. (26). The iterative process will be stopped at a given 
iteration needed to attain the accurate requirement.

3 � Optimization‑based damage detection 
of special composite plates

Optimization-based damage detection can be treated as an 
inverse optimization problem solved by using a powerful opti-
mization algorithm. The optimization algorithm aims to mini-
mize an objective function that represents the difference between 
the predicted and measured responses of monitored structures. 
The structural parameters (i.e. density, stiffness, and geomet-
ric dimensions) of the FE model assumed to be damaged are 
considered as the design variables of the optimization problem. 
To obtain the optimal solution to the problem, this study pro-
poses a hybrid Manta Ray Foraging Optimization—Sequential 
Quadratic Programming (MRFO-SQP) algorithm. The detailed 
descriptions of the optimization problem and the hybrid MRFO-
SQP algorithm are introduced in the following subsections.

3.1 � Problem statement

The optimization-based damage detection method needs 
to be associated with an appropriate objective function 
based on modal characteristics with respect to the structural 
parameters. In this research, an effective combination of the 
model flexibility-based residual and Modal Assurance Cri-
terion (MAC)-based residual proposed by Dinh-Cong et al. 
[54, 55] is adopted to express the distinction between the 
measured and simulated modal parameters. The combined 
objective function is defined as follows

(35)
Minimize ∶ Obj(�) = w1

1

sc

sc�

n=1

Fn(�) + w2

1

nmod

nmod�

k=1

�
1 −

√
MACk(�)

�

subject to:

�
(� − ��)Φ = �

0 ≤ � ≤ 1 ,
�
� = x1, x2, ..., xe

�
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where w1 and w2 are the weighting factors to residuals; 
sc is the total number of columns of the flexible. matrix; 
nmod denotes the number of considered mode shapes; xe 
represents the damage ratio of the eth elements; Fn(�) and 
MACk(�) are the two residuals calculated by

in which �d
n
 and �

n
(�) are the nth column of the flexible 

matrices of the damaged and simulated structures, respec-
tively; ‖ ∙ ‖Fro denotes the Frobenius norm of a matrix; �d

k
 

and �
k
(�) are the kth mode shape vectors of the damaged 

and simulated structures, respectively.

3.2 � The hybrid Manta Ray foraging optimization—
sequential quadratic programming (MRFO‑SQP) 
algorithm

For solving Eq. (35), a hybrid global–local optimization strat-
egy composed of a Manta Ray Foraging Optimization (MRFO) 

(36)Fn(�) =

(‖‖�d
n
− �

n
(�)‖‖Fro

‖‖�d
n
‖‖Fro

)2

(37)MACk(�) =

|||
(
�

d
k

)T
�

k
(�)

|||
2
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�

d
k

)T
�

d
k

)((
�

k
(�)

)T
�

k
(�)

)

chaining, cyclone, and somersault in the ocean. The superior 
performance of MRFO over other optimization algorithms 
for solving different benchmark and engineering optimiza-
tion problems have been investigated in Refs. [52, 56].

Similar to other meta-heuristic optimizers, the MRFO 
algorithm starts up with an initial population ( Xi,j ) that is 
randomly generated in the search domain as

In Eq. (38), Np is the population size of manta rays and D is 
the number of design variables (the total number of elements 
of monitored structure). Each individual in the population 
set corresponds to a possible candidate solution for the opti-
mization problem. From the initial population set, the best 
solution ( Xbest,j ) is identified. After that, the updating process 
for the population in each generation is performed by chain 
foraging, cyclone foraging, and somersault foraging opera-
tors. The mathematical models of three foraging operators 
are briefly described as follows.

•	 Chain foraging

Based on the best position Xbest,j(t) and the position of the 
(i-1) current individual at the tth iteration ( Xi−1,j(t) ), the position 
of manta rays at the (t + 1)th iteration is updated as

where � , a weight coefficient, is chosen according to a ran-
dom vector ( r, r ∈ [0, 1] ) as

•	 Cyclone foraging

In this operator scheme, if 
(
t
/
Tmax

< rand
)
(where Tmax is 

the total number of iterations), the current best position is 
selected as the reference point for updating their old posi-
tions. This can be expressed by the following equation

where � is the weight coefficient that is defined as

(38)
Xi,j = Xl

j
+ rand ∗

(
Xu
j
− Xl

j

)
, (i = 1, 2, ...,Np; j = 1, 2, ...,D)

(39)Xi,j(t + 1) =

{
Xi,j(t) + rand

[
Xbest,j(t) − Xi,j(t)

]
+ �

[
Xbest,j(t) − Xi,j(t)

]
, (i = 1; j = 1, 2, ...,D)

Xi,j(t) + rand
[
Xi−1,j(t) − Xi,j(t)

]
+ �

[
Xbest,j(t) − Xi,j(t)

]
, (i = 2, 3, ...,Np; j = 1, 2, ...,D)

(40)� = 2r
√
�log(r)�

(41)Xi,j(t + 1) =

{
Xbest,j(t) + r

[
Xbest,j(t) − Xi,j(t)

]
+ �

[
Xbest,j(t) − Xi,j(t)

]
, (i = 1; j = 1, 2, ...,D)

Xbest,j(t) + r
[
Xi−1,j(t) − Xi,j(t)

]
+ �

[
Xbest,j(t) − Xi,j(t)

]
, (i = 2, 3, ...,Np; j = 1, 2, ...,D)

(42)� = 2e
r 1

T−t+1

t sin(2�r 1)

algorithm followed by a Sequential Quadratic Programming 
(SQP) algorithm is proposed. The MRFO algorithm considered 
as the deterministic counterpart of the strategy is utilized for 
global exploration, while the SQP algorithm is used for the local 
searching process. Both the two algorithms are explained in brief 
in the next two subsections.

3.2.1 � Manta ray foraging optimization algorithm

Manta Ray Foraging Optimization algorithm (MRFO) is a 
novel bio-inspired based meta-heuristic optimizer developed 

by Zhao et al. [52] in 2019. The MRFO algorithm mim-
ics the food searching strategies of manta rays that include 
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with r 1 is the random number within the range of [0,1]. 
Otherwise, each individual is updated to a new position that 
is far from the current best position, which aims to improve 
the exploration of the search space

in which Xrand , a randomly generated position can be rep-
resented by

•	 Somersault foraging

At last, each individual is updated to an arbitrary new 
location located between the current location and its sym-
metrical location around the best location, which helps it 
approximate gradually to the optimal one. The mathematical 
formula of this operator is presented as

where r 2 and r 3 are two random numbers in [0, 1] and SF, 
the somersault factor, is set to be 2 in Ref. [52].

It should be noted that the updated solution in each opera-
tor is accepted if its fitness function is better than the old 
one. The MRFO algorithm will iterate the course of three 
foraging operators until the termination criterion is satis-
fied. As a summary, a flowchart of the MRFO algorithm is 
depicted in Fig. 1.

The MRFO algorithm having the ability in searching a 
large solution space is established based on the probabil-
ity search operators, which may result in the inefficiency 
of local search. Accordingly, its combination with another 
deterministic algorithm will give better quality solutions and 
higher performance.

3.2.2 � Sequential quadratic programming

The SQP search algorithm is regarded as one of the best non-
linear programming methods for solving mathematical opti-
mization problems having different inequality and equality 
constraints [53]. First, in the search algorithm, the Hessian 
matrix of the Lagrangian function using quasi-Newton method 
is approximately calculated in each iteration. Afterward, the 
approximate calculation is employed to generate a quadratic 

(43)Xi,j(t + 1) =

{
Xrand + r

[
Xrand − Xi,j(t)

]
+ �

[
Xrand − Xi,j(t)

]
, (i = 1; j = 1, 2, ...,D)

Xrand + r
[
Xi−1,j(t) − Xi,j(t)

]
+ �

[
Xi−1,j(t) − Xi,j(t)

]
, , (i = 2, 3, ...,Np; j = 1, 2, ...,D)

(44)
Xrand = Xl

j
+ r

(
Xu
j
− Xl

j

)
, (i = 1, 2, ...,Np; j = 1, 2, ...,D)

(45)Xi,j(t + 1) = Xi,j(t) + SF
[
r 2Xbest,j(t) − r 3Xi,j(t)

]
, (i = 2, 3, ...,Np; j = 1, 2, ...,D)

programming (QP) sub-problem. Finally, the solution QP sub-
problem is utilized to form the search direction for linear search 
and the target function calculation is calculated. As a summary, 
Fig. 2 presents the flowchart of the SQP search algorithm.

Similar to other gradient-based optimization methods, a 
weakness of the SQP algorithm is the trend to be stuck in 
local optimal regions. The reason is that it depends on a 
suitable starting point in searching for the optimal result. 
For highly nonlinear problems with a large number of design 
variables, selecting that kind of point is highly difficult and 
risky. Therefore, the SQP algorithm is not utilized alone in 
this research work.

3.2.3 � The hybrid MRFO‑SQP algorithm

With regard to the utilization of the advantage of MRFO 
and SQP algorithms for minimizing the combined objec-

tive function (Eq. (35)), they are combined to form a hybrid 
global–local algorithm. Firstly, the MRFO algorithm is 
executed for global exploration to get a global near-optimal 
solution. Then, the optimal solution is set as the starting 
point of the SQP algorithm which is used as a local search 
to fine-tune the search space explored by the MRFO. In this 
way, the optimal results obtained from the hybrid MRFO- 
SQP algorithm is expected to give high-quality solutions and 
low computational time.

The practical steps of the hybrid MRFO-SQP algorithm 
can be summarized as follows:

(1) Set initial parameters for the MRFO optimization 
algorithm, and then run this algorithm until the given num-
ber of iterations is reached.

(2) Consider the best solution obtained from the MRFO 
as a starting point for the SQP search algorithm.

(3) Run the SQP to find the optimal solution to the dam-
age identification problem.

To better explain the above process, the flowchart of the 
hybrid MRFO-SQP algorithm to solve damage identifica-
tion problems is depicted in Fig. 3. It should be mentioned 
here that in this kind of hybrid optimization algorithm, other 
gradient-based optimization schemes may also be used and 
tested.
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4 � Numerical examples

The six typical dynamic condensation techniques (Guyan’s 
method, Kidder’s method, NSEMR-II, IRS, IIRS and IOR) 
and the proposed damage identification approach were pre-
sented in the previous sections. This section investigates the 
applicability of the condensation techniques for multi-dam-
age identification of FGM and FG-CNTRC plates by simu-
lating different damage scenarios. Damage characteristics 
of the plate structures are represented by a local reduction 
of the stiffness of selected members. To simulate realistic 

conditions, the artificial random noise is added to the simu-
lated experimental data using the following equation

where datanoise are the components of the eigenvectors or 
eigenvalues matrices contaminated by noise; and � is the 
level of the additive noise. While the natural frequencies are 
polluted by 1% noise, the spatially-incomplete mode shapes 
by 8% noise.

It is noted that for both the IIRS and IOR techniques, five 
iterations are needed to obtain the eigensolutions for the 

(46)datanoise = data(1 + (2rand − 1)�)

Fig. 1   The flowchart of MRFO algorithm
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plate structures. Moreover, considering the random nature 
of noise, 10 independent runs are performed for each dam-
age detection problem, and the average results of the runs 
will be reported as the final result in graphical forms. The 
parameter settings used in the MRFO algorithm are adopted 
as follows: Np is set to 30; Tmax is set to 10 for the FGM plate 
and 15 for the FG-CNTRC plate; SF is set to 2. While the 
SQP search algorithm is implemented using MatLab opti-
mization toolbox. Matlab program is used in all numerical 
computations executed on a PC (Intel® Core (TM) i7-6700, 
3.40 GHz CPU, 16 GB RAM).

4.1 � A FGM plate

In the first example, we consider a cantilevered FGM plate 
made of a mixture of aluminum (Al) (as metal) and alumina 
(Al2O3) (as ceramic) [57], the material properties vary con-
tinuously in the plate thickness direction in accordance with 
a power-law distribution as

where the subscripts “c” and “m” denote the ceramic 
and metal constituents; Vf  is the volume fraction of the 

(47)
E(z) =

(
Ec − Em

)
Vf (z) + Em

�(z) =
(
�c − �m

)
Vf (z) + �m

constituents that is calculated based on the power-law index 
n as follows

The mechanical properties of the constituent materi-
als (Al and Al2O3) used in the FGM plate are tabulated 
in Table 1. The FGM plate dimensions are given as width 
b = 1 m, length a = 1 m, and uniform thickness h = 0.1 m, 
as shown in Fig. 4. The FE model of the FGM structure is 
discretized into 64 quadrilateral Reissner–Mindlin plate ele-
ments, resulting in 81 nodes and 405 DOFs.

To investigate the performance of the six dynamic con-
densation techniques applied to multi-damage identification, 
four various hypothetical damage scenarios are created for 
the FGM plate. A detailed description of these damage sce-
narios is listed in Table 2. The first twelve modal frequen-
cies (f1–f12) of the FGM structure of intact and damaged 
states are presented in Fig. 5. It can be seen in the figure 
that the variation of the natural frequencies between intact 
and damaged states is very small. For studying the problem 
of spatially-incomplete measurement data, a set of sensors 
are placed at 16 locations (nodes 13, 15, 18, 27, 29, 32, 35, 
39, 47, 51, 53, 58, 64, 69, 75, and 80) on the FGM plate to 
assemble the first few eigenvalues and partial mode shapes. 
The positions of the measurement points are marked with 
red dots, as depicted in Fig. 4b.

4.1.1 � Dynamic condensation techniques for the solution 
of eigenproblem

We utilized the six dynamic condensation techniques to 
create reduced-order models (ROMs) for the calculation of 
dynamic analysis. In the ROMs, the kept DOFs are selected 
by the DOFs corresponded to the 16 installed sensor loca-
tions, whereas the remaining DOFs are considered as the 
reduced DOFs. As a result, the full-order FE model with 405 
DOFs is reduced to just 80 DOFs (20% of the total DOFs).

For comparison purposes, the eigensolutions of the intact 
plate structure are calculated by the six dynamic condensa-
tion techniques and the full-order FE model. The percentage 
of relative error between each ROM and the full-order FE 
model is calculated as

where �Full and �ROM are the natural frequencies of the full-
order FE model and ROM, respectively. Herein, the results 
from the full-order FE model are regarded as the exact target 
solution.

The relative errors of the first twelve natural frequen-
cies obtained by various ROMs are exhibited in Table 3. 

(48)Vf (z) =
(
z∕h +

1∕2

)n

(49)er(%) =
||||
�Full − �ROM

�Full

||||
× 100

Fig. 2   The brief flowchart of SQP search algorithm
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It is apparent from the table that for the twelve target fre-
quencies, the IOR has very good agreement with the full-
order FE model with a maximum error of 4.00E−11%, 
whereas the Guyan, Kidder, NSEMR-II, IRS and IIRS 
yield maximum errors of 1.25E+01%, 2.70E−02%, 
9.10E−02%, 1.70E−03% and 1.32E−04%, respectively. In 
other words, the IOR technique provides the best results 
among the six techniques. Compared with the IOR tech-
nique, the IIRS and IRS technique can be regarded as the 

second-best and the third-best, and Guyan’s method is 
the worst.

Further comparison of the six ROMs is ascertained 
based on the Modal Assurance Criterion (MAC) [58]. 
This criterion is used to compare the eigenvectors of each 
ROM and the full-order FE model. It is expected that the 
diagonal MAC-values will equal unity and the off-diago-
nal MAC-values will equal to zero, which means a perfect 
eigenvector-correlation. Figure 6 depicts the MAC values 
of the first twelve modes obtained by the six condensation 
techniques for the FGM plate structure. As can be seen 
in the figure, only the Guyan’s method cannot identify 
the 7th mode shape. Whereas for the other methods, all 
the diagonal elements of the MAC matrix are very close 
to 1 and off-diagonal MAC-values are very near to zeros 
with the exception of a few high values. Overall, it can be 
noticed that ROMs including Kidder’s method, NSEMR-
II, IRS, IIRS and IOR are able to represent the first twelve 
mode shapes of the full-order FE model.

Fig. 3   The flowchart of the hybrid MRFO-SQP algorithm to solve damage identification problems considered in this study

Table 1   Material properties of the used FGM components

Material

Young’s modu-
lus (E) (MPa)

Poisson’s ratio Mass den-
sity ( � ) (kg/
m3)

Alumina (Al2O3) 380 0.3 3800
Aluminum (Al) 70 0.3 2707
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4.1.2 � Dynamic condensation techniques for damage 
identification

In this subsection, a comparative study is carried out to eval-
uate the performance of the six dynamic condensation tech-
niques in the proposed damage identification approach when 
the incompleteness condition is considered. It should be 
noted that the spatially-incomplete measurement data of only 
the first five vibration modes are available for calculating 

Fig. 4   a The FGM plate model and (b) its two-dimensional node and element numbering

Table 2   Four damage scenarios of the FGM plate

Scenario Description Damaged elements (reduction of 
stiffness)

A Double damage 1 (20%) & 10 (30%)
B Triple damage 1 (20%) & 2 (15%) & 28 (40%)
C Multi-damage 1 (30%) & 5 (20%) & 28 (40%) & 37 

(30%)
D Multi-damage 1 (20%) & 20 (15%) & 31 (40%) & 32 

(30%) & 60 (50%)

Fig. 5   The first twelve natural 
frequencies of the FGM plate of 
undamaged and damaged states
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the cost function (Eq. (35)). The measurement data with 
noise-free environment and noise contamination are both 
examined for damage identification of the FGM plate.

Figures 7, 8, 9, 10 present the comparison results of the 
six dynamic condensation techniques in the damage identifi-
cation approach for scenario A to D of the FGM plate under 
the noise-free and noise conditions. It is observed that for 
all considered damage scenarios, the damage identification 
approach using Guyan’s method or Kidder’s method can-
not localize the assumed damages accurately due to having 
many false identifications. Whereas the dynamic condensa-
tion techniques like NSEMR-II and IRS can provide better 
damage identification results than both the Guyan’s method 
and Kidder’s method, although they produce a few false 
alarms in the damage localization for scenarios A and C. 
It is also found that the IIRS and IOR can be considered as 
the best choice to achieve the desired damage localization 
results.   

Further, Fig. 11 shows the mean error for damage quan-
tification of each damage scenario with and without noise 
contamination. The results in the figure demonstrate that 
using the IOR technique yields a good estimation for the 
actual damage severities with the smallest error. Thus, the 
performance, in terms of accuracy, of the proposed damage 
identification approach based on the hybrid MRFO-SQP 
algorithm combined with the IOR technique for damage 
localization and quantitation of the FGM plate structure is 
revealed.

Last but not least, the performance of the suggested 
MRFO-SQP algorithm in term of solution accuracy and 
computational time is compared with those of the other 
three meta-heuristic algorithms including the cuckoo search 
(CS) algorithm [59], artificial ecosystem-based optimiza-
tion (AEO) algorithm [60] and MRFO algorithm [52]. To 
do so, the common parameter settings (i.e., population size 
(Np) = 30, stop criterion = 10–6 and the maximum number of 

generations = 1000) used for each optimization algorithm are 
the same, meanwhile, the remaining control parameters of 
the CS, AEO, and MRFO are taken from [59, 60] and [52], 
respectively. Here, damage scenario D with noise-corrupted 
measurements is again used for the aim of the comparison. 
To deal with the spatially-incomplete measurement data, 
only the IOR technique is adopted in this investigation.

Figure 12 shows damage identification results for the 
damage scenario D of the FGM plate using four different 
optimization algorithms. One can easily observe from the 
figure that the MRFO and hybrid MRFO–SQP algorithms 
seem to be the best option for finding the real damaged sites 
in the structure, the AEO algorithm is the second best and 
the CS algorithm is the worst. For further investigation, the 
error and elapsed time comparisons of the four optimiza-
tion algorithms for damage identification are provided in 
Figs. 13a, b, respectively. As can be seen in the figures, the 
hybrid MRFO–SQP algorithm can estimate the actual dam-
age severities with more accuracy and lower computational 
time compared with the three others. In comparison with 
the original MRFO algorithm, the computational time of the 
hybrid MRFO–SQP algorithm is significantly reduced about 
4 times for this case. Thus, this investigation indicates the 
reason for the selection of the hybrid MRFO–SQP algorithm 
in the damage detection process instead of the others. 

4.2 � A FG‑CNTRC plate

The second example is a functionally graded carbon nano-
tube-reinforced composite (FG-CNTRC) plate structure [61] 
with length a = 1 m, width b = 1 m, and thickness h = 0.1 m, as 
shown in Fig. 14. The material properties of the FG-CNTRC 
plate is a mixture of armchair (10,10) single-walled carbon 
nanotubes (SWCNTs) (fiber) and isotropic matrix (polymer), 
which can be defined according to the extended rule of mixture 
as [61]

Table 3   The relative errors 
of the first twelve natural 
frequencies obtained by various 
reduced-order models compared 
with the full-order FE model

Mode Percentage relative errors (%)

Guyan Kidder NSEMR-II IRS IIRS IOR

1 5.49E−02 3.29E−05 5.32E−04 4.61E−11 1.01E−10 2.86E−11
2 2.34E−01 3.24E−04 1.25E−03 1.04E−09 5.21E−11 4.00E−11
3 6.36E−01 9.68E−04 1.74E−02 1.10E−06 2.08E−08 2.68E−13
4 1.69E+00 2.45E−03 1.22E−02 1.50E−06 4.35E−08 2.18E−11
5 2.73E+00 9.82E−03 1.45E−02 4.58E−06 1.39E−07 1.15E−11
6 2.33E+00 6.37E−03 1.59E−02 5.17E−06 2.51E−07 3.74E−12
7 3.47E+00 5.36E−03 5.92E−02 9.29E−05 4.04E−06 9.66E−13
8 7.21E+00 7.99E−03 5.38E−02 1.18E−04 6.35E−06 5.31E−13
9 4.17E+00 4.21E−03 9.10E−02 1.57E−04 2.44E−06 1.83E−13
10 1.05E+01 4.55E−03 3.93E−02 8.87E−04 5.52E−05 1.84E−12
11 1.25E+01 2.70E−02 2.64E−02 9.79E−04 5.77E−05 1.24E−12
12 1.18E+01 9.20E−03 4.31E−02 1.70E−03 1.32E−04 2.27E−13
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where Gm and Em represent the shear and Young modulus of 
the isotropic matrix; GCNT

12
,ECNT

11
 and ECNT

22
 are the shear and 

Young modulus of the carbon nanotubes (CNTs); �1 , �2 and 
�3 are the CNT efficiency parameters for considering the 
scale-dependent material properties; Vm(z) and VCNT (z) are, 
respectively, the volume fractions of the matrix and the 
SWCNTs, which are related by Vm(z) + VCNT(z) = 1 . In the 
plate structure, the material properties of the isotropic matrix 
[62] are assumed to be Em = 2.1 (GPa), �m = 1.15 (g/cm3), 
and �m = 0.34 at room temperature 3000 K. The material 
properties of the SWCNT considered by Zhang and Shen 
[63] are taken as follows: ECNT

11
= 5.6466 (TPa), 

ECNT
22

= 7.08  (TPa), GCNT
12

= 1.9445  (TPa), �CNT = 1.4 (g/

(50)

E11(z) = �1VCNT(z)E
CNT
11

+ Vm(z)E
m

�2
E22(z)

=
VCNT(z)

ECNT
22

+
Vm(z)

Em

�3
G12(z)

=
VCNT(z)

GCNT
12

+
Vm(z)

Gm

cm3), and �CNT = 0.175 . The distribution of the CNTs along 
the thickness direction is given as: VCNT(z) = 2

(
2|z|∕h

)
V∗

CNT
 . 

As reported in Ref. [62], when V∗

CNT
= 0.14 , �

1
= 0.149 and 

�
2
= �

3
= 1.381 . The FE model of the FG-CNTRC plate is 

discretized into 81 quadrilaterals Reissner–Mindlin plate 
elements, resulting in 100 nodes and 500 DOFs.

Four various hypothetical damage scenarios on the 
FG-CNTRC plate model are considered to investigate the 
performance of the six dynamic condensation techniques 
applied to multi-damage identification. The damaged loca-
tions and corresponding severities for the considered dam-
age scenarios are provided in Table 4. Figure 15 shows 
the first twelve modal frequencies (f1 to f12) of the FG-
CNTRC structure of intact and damaged states. As can be 
seen from the figure, there is not a significant change in 
the natural frequencies before and after the occurrence of 
damages. For studying the spatially-incomplete measure-
ment problem, only the 80 DOFs at 16 nodes (nodes 12, 
14, 17, 25, 26, 29, 46, 49, 62, 63, 65, 67, 73, 77, 83, and 

Fig. 6   The MAC values of the first twelve modes obtained by different dynamic condensation techniques for the FGM plate: (a) Guyan; (b) Kid-
der; (c) NSEMR-II; (d) IRS; (e) IIRS; (f) IOR
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Fig. 7   Comparison of damage identification results for scenario A of the FGM plate using different dynamic condensation techniques: (a) Noise-
free; (b) Noise

Fig. 8   Comparison of damage identification results for scenario B of the FGM plate using six different dynamic condensation techniques: (a) 
Noise-free; (b) Noise
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Fig. 9   Comparison of damage identification results for scenario C of the FGM plate using six different dynamic condensation techniques: (a) 
Noise-free; (b) Noise

Fig. 10   Comparison of damage identification results for scenario D of the FGM plate using six different dynamic condensation techniques: (a) 
Noise-free; (b) Noise
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89) are measured and collected via installed sensors. The 
measurement point locations are marked by red dots, as 
shown in Fig. 14b.

4.2.1 � Dynamic condensation techniques for the solution 
of eigenproblem

The accuracy of the six dynamic condensation techniques 
in the calculation of the eigenvalues and eigenvectors for 
the undamaged FG-CNTRC plate structure is first investi-
gated. Here, the selected 80 DOFs are the master DOFs of 
the condensation techniques. Table 5 reports the relative 
errors of the first twelve natural frequencies obtained by the 
six ROMs compared with the full-order FE model. Accord-
ing to the table, the relative errors obtained by the IOR 
method are much smaller than those obtained by the other 
methods. Specifically, for the target natural frequencies, the 
largest observed errors of the Guyan, Kidder, NSEMR-II, 
IRS, IIRS, and IOR are 4.72E+01, 1.97E+01, 4.90E−01, 
2.88E−01, 6.99E−02, and 1.00E−07, respectively. Thus, 
the ROM based on the IOR is the best, providing very accu-
rate frequency solutions with reference to the full-order FE 
model.

Further, the MAC criterion is utilized for checking the 
correlation of the eigenvectors between each ROM and the 
full-order FE model. The MAC values of the first twelve 
modes obtained by the six condensation techniques for the 
FG-CNTRC plate structure are reported in Fig. 16. One can 
find from the figure that for Guyan’s method and Kidder’s 
method, a few-mode shapes (modes 1 and 2) are well identi-
fied. While for the other methods like NSEMR-II, IRS, IIRS, 
and IOR, all the twelve target modes are well identified with 
off-diagonal values close to zero and diagonal values close 

Fig. 11   Mean error of damage severity estimation for each damage scenario of the FGM structure using six different dynamic condensation tech-
niques: (a) Noise-free; (b) Noise

Fig. 12   Damage identification results for scenario D of the FGM 
plate using four different optimization algorithms
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to 1. It is hence concluded that both the Guyan’s method and 
Kidder’s method yield a really poor eigenvector-correlation; 
on the contrary, the NSEMR-II, IRS, IIRS, and IOR are 
capable of providing a good eigenvector-correlation.

4.2.2 � Dynamic condensation techniques for damage 
identification

In this subsection, a comparative study is performed among 
the six dynamic condensation techniques to find out the best 
technique for damage identification of the FG-CNTRC plate 
structure. Herein, it is assumed that the spatially-incomplete 
measurement data of only the first five vibration modes is 
utilized for minimizing the cost function (Eq. (35)). The four 
hypothetical damage scenarios with noise-free environment 
and noise-polluted measurements are examined.

Figure  17 presents the comparison results of the 
six dynamic condensation techniques in the damage 

identification approach for the four scenarios of the FG-
CNTRC plate under the noise-free condition. It is obvi-
ously seen from the figure that the damage identification 
process using the IOR technique yields good predictions 
for both the locations and magnitudes of multi-damages 
in the FG-CNTRC plate structure. Meanwhile, the per-
formance of using the other five condensation techniques 
(Guyan, Kidder, NSEMR-II, IRS, and IIRS) is very poor 
as they are unable to predict the real damaged sites for 
all considered scenarios. Therefore, it can be stated that 
among all the tested techniques, only the IOR technique is 
suitable for addressing the damage identification problem 
of the plate structure. Due to this reason, only the IOR 
technique is adopted for the process of damage identifica-
tion with noise-polluted measurements.

Figure 18 shows damage identification results for four 
considered scenarios of the FG-CNTRC plate using the 
IOR technique under the noise condition. As indicated in 
the figure, the damage identification approach based on 
the hybrid MRFO–SQP algorithm combined with the IOR 
technique provides good predictions of both the locations 
and magnitudes of multi-damages in the case of noise-
polluted measurements. Accordingly, this combination 
(MRFO–SQP algorithm and IOR technique) has demon-
strated the best damage identification performance also for 
the FG-CNTRC plate.

To further examine the robustness of the damage identi-
fication approach under different noise conditions, the last 
damage scenario is designed and higher noise levels, i.e. 
12% and 15% on mode shapes are included. According to 

Fig. 13   Error and elapsed time comparisons of four optimization algorithms for damage scenario D of the FGM structure

Table 4   Four damage scenarios of the FG-CNTRC plate

Scenario Description Damaged elements (reduction of 
stiffness)

A Double damage 1 (20%) & 11 (30%)
B Triple damage 1 (20%) & 41 (15%) & 45 (40%)
C Multi-damage 1 (20%) & 2(15%) & 41 (40%) & 51 

(20%)
D Multi-damage 5 (30%) & 14 (50%) & 48 (20%) & 52 

(40%)
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Fig. 19a, the average identified percentages of undamaged 
elements becomes slightly worse with the increase of the 
noise level, although the real damaged elements are still jus-
tified perfectly. According to Fig. 19b, when the noise level 
is increased, the relative error between actual and estimated 
damage elements is decreased accordingly. Also, the stand-
ard deviation of the damage identification results becomes 
larger with adding the noise levels, as shown in Fig. 20. 
However, the proposed approach can till yield satisfactory 
results for structural damage locations and quantification 

under different noise levels, which exhibits strong resist-
ance to measurement noise influence.

5 � Conclusion

This article aims at exploring the comparative capability of 
various dynamic condensation techniques used in the realm 
of damage localization and quantification of composite plate 
structures made of functionally graded materials (FGM) and 

Fig. 14   a The FG-CNTRC plate model and (b) its two-dimensional node and element numbering.

Fig. 15   The first twelve natural 
frequencies of undamaged and 
damaged states of the FG-
CNTRC plate
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functionally graded carbon nanotube-reinforced composite 
(FG-CNTRC) materials. To this end, six commonly used 
dynamic condensation techniques such as Guyan’s method, 

Kidder’s method, NSEMR-II, IRS, IIRS and IOR are firstly 
reviewed, and their performance for reduced Eigen and opti-
mization-damage identification problems are then evaluated 

Table 5   The relative errors 
of the first twelve natural 
frequencies obtained by various 
reduced models compared with 
the full-order FE model

Mode Percentage relative errors (%)

Guyan Kidder NSEMR-II IRS IIRS IOR

1 9.49E+00 3.06E−03 2.96E−02 5.79E−04 1.03E−04 1.00E−07
2 1.07E+01 6.42E−03 2.67E−02 1.84E−03 2.80E−04 6.83E−09
3 2.14E+01 9.28E−03 3.78E−02 2.24E−02 5.03E−03 1.10E−09
4 1.98E+01 1.56E+00 1.40E−01 1.52E−02 2.22E−03 9.56E−12
5 2.61E+01 2.13E+00 7.97E−02 2.76E−02 6.00E−03 1.39E−08
6 4.25E+01 1.65E+01 6.32E−02 1.94E−02 2.33E−03 2.27E−08
7 3.07E+01 6.02E+00 5.32E−02 1.66E−01 2.40E−02 5.10E−11
8 3.88E+01 1.30E+01 1.49E−01 5.98E−02 9.68E−03 1.05E−09
9 4.72E+01 1.93E+01 4.17E−01 2.88E−01 6.99E−02 2.11E−09
10 3.79E + 01 1.21E+01 4.90E−01 2.49E−01 5.30E−02 6.90E−09
11 2.98E+01 1.41E+01 4.27E−01 2.03E−01 3.20E−02 1.00E−07
12 4.16E+01 1.97E+01 3.54E−01 1.94E−01 3.12E−02 1.22E−10

Fig. 16   The MAC values of the first twelve modes obtained by different dynamic condensation techniques for the FG-CNTRC plate: (a) Guyan; 
(b) Kidder; (c) NSEMR-II; (d) IRS; (e) IIRS; (f) IOR
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by using a FGM plate and a FG-CNTRC plate. For solving 
the optimization-damage identification problem of the plate 
structures, Manta Ray Foraging Optimization (MRFO) and 
Sequential Quadratic Programming (SQP) algorithms are 

combined to form a hybrid global–local (MRFO-SQP) opti-
mization strategy. In the proposed strategy, the MRFO algo-
rithm considered as the deterministic counterpart is utilized 
for global exploration and the SQP algorithm is employed 

Fig. 17   Comparison of damage identification results of the FG-CNTRC plate using different dynamic condensation techniques under noise-free 
condition: (a) Scenario A; Scenario B; Scenario C; Scenario D
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for the local searching process. Based on the results and 
discussions presented in the above section, the salient points 
of the research work are summarized as follows:

(1)	 For reduced Eigen problem, the IOR technique can cre-
ate a reduced-order model of the considered structure 
that has dynamic characteristics closely matching with 

Fig. 18   Damage identification results of the FG-CNTRC plate using IOR technique under noise condition: (a) Scenario A; (b) Scenario B; (c) 
Scenario C; (d) Scenario D
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the full-order finite element (FE) model. The relative 
errors of eigenvalues obtained by the IOR technique 
are much smaller than those obtained by the other five 
techniques like Guyan’s method, Kidder’s method, 
NSEMR-II, IRS and IIRS. As a result, the eigensolu-
tions of the structures with high accuracy are achieved 
by using the best dynamic condensation technique, 
IOR.

(2)	 For damage identification problem of the plate struc-
tures, the IOR technique has good performance in 
structural damage localization and quantification with 
the highest accuracy. Whereas the other five techniques 

are unable to identify the damages in the FG-CNTRC 
plate.

(3)	 Among all the tested optimization algorithms (CS, 
AEO, MRFO, and MRFO–SQP algorithms), the 
MRFO–SQP algorithm shows the best performance in 
terms of both accuracy and computational cost.

(4)	 The proposed damage identification approach based on 
the hybrid MRFO–SQP algorithm combined with the 
IOR technique provides good predictions for both the 
locations and magnitudes of multi-damages in the FGM 
and FG-CNTRC plate structures using the first few 
incomplete modes with noise-polluted measurements. 

Fig. 19   The damage identification results and the relative errors of the proposed approach for damage scenario D of the FG-CNTRC structure 
under various noise levels

Fig. 20   The standard deviation of the damage identification results for scenario D of the FG-CNTRC structure under various noise levels



S3974	 Engineering with Computers (2022) 38 (Suppl 5):S3951–S3975

1 3

Further, the application of this damage identification 
approach can be extended to other kinds of engineering 
structures.
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