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Abstract
With the aid of the non-uniform rational B-spline (NURBS)-based isogeometric technique, for the first time, the size-
dependent geometrically nonlinear bending characteristics of microplates made of porous functionally graded materials 
(FGMs) having a central cutout with different shapes are studied. The nonlocal strain gradient continuum elasticity within the 
framework a hybrid higher-order quasi-3D plate theory is adopted to describe the kinematic relations via only four unknowns. 
To capture the effective material properties, a porosity-dependent rule of mixture is employed. The nonlocal strain gradi-
ent nonlinear load–deflection responses are obtained corresponding to various geometrical and material parameters as well 
as different boundary conditions. It is revealed that the significance of both the nonlocal and strain gradient reduces. This 
prediction is the same for all values of the material property gradient index as well as the porosity index. Also, it is demon-
strated that a central cutout leads to change the trend of load–deflection response, and this change occurs at a specific value 
for the applied distributed load which depends on several parameters such as the cutout geometry and boundary conditions. 
In addition, it is displayed that corresponding to different maximum deflections, the significance of the strain gradient size 
effect in the absence of nonlocality on the nonlinear flexural stiffness of a porous FGM microplate is more than that of the 
nonlocal size effect in the absence of the strain gradient size dependency.

Keywords  Non-classical continuum elasticity · Quasi-3D theory · Isogeometric finite element method · Nonlocality · 
Porous composite material · Strain gradient size dependency

1  Introduction

Recently, through advancement of materials science and tech-
nology, porous structures have been manufactured to develop 
lightweight as well as controlled pore systems with desired 
mechanical properties and functionality. Accordingly, several 

investigations have been carried out. Cheng et al. [1] presented 
a study on the multifaceted applications of cellulosic porous 
materials in environment, health and energy. Wang et al. [2] 
presented a review study on the photocatalytic and electrocata-
lytic applications of two-dimensional porous materials. Guo 
et al. [3] employed the microwave cavity interference enhance-
ment technique to image nano-defects in porous materials put-
ting the metal waveguides to use. Zhang et al. [4] prepared 
nitrogen-doped hierarchical porous carbon materials with the 
aid of a template free method for application in CO2 capture. 
Yu et al. [5] fabricated porous carbon materials using corn 
straw as anode materials for lithium ion batteries. Safaei [6] 
explored the effect of embedding a porous core on the free 
oscillation response of a sandwich composite plate. Gao et al. 
[7] and Moradi-Dastjerdi et al. [8] analyzed, respectively, the 
wave propagation and static performance of porous plates 
reinforced with carbon nanotubes. Lin et al. [9] introduced an 
antibacterial, thermo and light-responsive porous composite 
material having smart titanium particles.
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To capture the influences of different small scale effects, 
it is necessary to implement them into the classical con-
tinuum elasticity. Accordingly, various non-classical contin-
uum elasticity theories have been introduced to accomplish 
this purpose. In the last two decades, several investigations 
have been carried out to analyze size-dependent mechani-
cal behaviors of structures having small scaled dimensions 
[10–28]. To mention some recent studies in this field, Li 
et al. [29] developed a size-dependent inhomogeneous beam 
model accounting the through-length variation of material 
properties for nonlocal strain gradient Euler–Bernoulli 
beams made of axially functionally graded material (FGM). 
Nguyen et al. [30] introduced a refined quasi-3D isogeomet-
ric analysis for FGM microplates having seventh-order shear 
deformation including couple stress size effect. Joshi et al. 
[16] considered the temperature effect on vibration response 
of cracked Kirchhoff FGM microplates on the basis of the 
strain gradient elasticity. Radic and Jeremic [31] explored 
the vibration and buckling behaviors of orthotropic double-
layered graphene sheets subjected to hygrothermal loading 
on the basis of the differential form of nonlocal theory of 
elasticity. Sahmani and Aghdam [32–34] constructed non-
local hybrid FGM shell models to predict nonlinear static 
instability of cylindrical nanoshells under various loading 
conditions. Al-Shujairi and Mollamahmutoglu [35] con-
structed nonlocal strain gradient beam model for buckling 
and free vibrations of FGM sandwich microbeams in ther-
mal environments. Jia et al. [36] investigated the thermos-
electro-mechanical buckling behavior of FGM composite 
microbeams based upon the modified couple stress theory 
of elasticity. Thanh et  al. [37] predicted static and free 
vibrations of couple stress-based FGM carbon nanotube 
reinforced composite nanoplates. Taati [38] examined buck-
ling and postbuckling responses of FGM composite modi-
fied couple stress-based microbeams. Hajmohammad et al. 
[39] studied bending and buckling characteristics of FGM 
composite annular microplates with piezoelectric facesheet 
within the framework of the nonlocal continuum elasticity. 
Soleimani and Tadi Beni [40] reported an axisymmetric 
shell element formulation with the aid of a two node shell 
element incorporating couple stress type of size dependency.

To mention some more recent studies, Ghorbani Shenas 
et al. [41] analyzed thermal prebuckling and postbuckling 
of pre-twisted rotating FGM composite microbeams sub-
jected to a thermal environment on the basis of the modified 
strain gradient continuum elasticity. Sahmani et al. [42–45] 
anticipated the nonlinear free and forced vibrations of FGM 
nanoshells incorporating modal interactions in the pres-
ence of surface stress size effect. Sobhy and Zenkour [46] 
explored the influences of porosity and inhomogeneity on 
the size-dependent buckling and oscillations of FGM com-
posite quasi-3D nanoplates. Phung-Van et al. [47] studied 
the porosity-dependent nonlinear transient responses of 

FGM nanoplates in the presence of nonlocal type of size 
effect. Aria and Friswell [48] investigated the hygro-thermal 
vibration and buckling responses of FGM sandwich tem-
perature-dependent microbeams. Jun et al. [49] proposed a 
modified nonlocal elasticity theory incorporating much more 
general constitutive equations containing three character-
istics lengths to analyze buckling behavior of nanobeams. 
Sahmani and Safaei [50–52] studied size-dependent non-
linear mechanical responses of bi-directional FGM nanobe-
ams. Thai et al. [53] introduced a modified strain gradient-
based computational model for free vibration behavior of 
FGM composite multilayer microplates. Thanh et al. [54] 
utilized the modified couple stress elasticity for thermal 
bending and buckling of composite laminate microplates. 
Fang et al. [55] constructed a new nonlocal Euler–Bernoulli 
beam model for vibrations and thermal buckling of FGM 
composite nanobeams in thermal environment. Yuan et al. 
[56–58] employed different size-dependent continuum theo-
ries to investigate nonlinear behaviors of FGM truncated 
conical microshells. Sarthak et al. [59] studied dynamic 
buckling of curved nanobeams with the aid of nonlinear 
nonlocal finite element method together with a higher-order 
shear flexible plate model. Thai et al. [60] developed a size-
dependent Kriging meshfree model to analyze deformation 
as well as free vibrations of FGM carbon nanotube rein-
forced nanobeams. Zhang et al. [61] employed a two-node 
strain gradient Reddy beam element for static and dynamic 
analysis of microbeams. Sahmani and Safaei [62] presented 
a surface elastic-based conical shell model for nonlinear 
vibration characteristics of FGM conical nanoshells. The 
size-dependent shear buckling characteristics of FGM skew 
nanoplates are analyzed by Fam et al. [63], and Yuan et al. 
[64]. Karamanli and Vo [65] carried out a study on bending, 
buckling and free vibrations of FGM sandwich microbe-
ams based on the modified strain gradient elasticity theory. 
Fan et al. [66] investigated the dynamic stability of coni-
cal microshells surrounded by a viscoelastic medium based 
on the couple stress elasticity. Guo et al. [67] reported the 
three-dimensional nonlocal buckling loads of composite 
nanoplates with coated one-dimensional quasicrystal. Ghane 
et al. [68] conducted a flutter instability analysis of fluid-
conveying nanotubes under an external magnetic field based 
upon the nonlocal strain gradient Timoshenko beam model. 
Mao et al. [69] explored the free vibration response of FGM 
piezoelectric composite microplates within the framework 
of the nonlocal continuum elasticity. Thanh et al. [70] intro-
duced a geometrically nonlinear size-dependent plate model 
for porous FGM microplates based on the modified couple 
stress theory. Fan et al. [71–73] employed the isogeometric 
method for size-dependent nonlinear responses of porous 
FGM microplates.

In the current study, through combination of the nonlo-
cal strain gradient continuum elasticity and a hybrid-type 
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quasi-3D plate theory, the size-dependent geometrically 
nonlinear flexural behavior of porous FGM microplates 
having a central cutout with different shapes is investigated. 
The material properties of microplates are approximated 
via a porosity-dependent rule of mixture. With the aid of 
the NURBS-based isogeometric approach, the possibility 
of flexibly meeting higher-order derivatives is achieved. 
Several case studies including various porosity dispersion 
patterns, different material gradient indexes, boundary con-
ditions, and shapes of the central cutout are presented.

2 � Quasi‑3D nonlocal strain gradient porous 
FGM plate model

In the current investigation, typical rectangular micro-
plates having a central cutout made of a porous functionally 
graded material (FGM) are taken into consideration. To this 

purpose, three different kinds of porous distribution scheme 
are supposed as shown schematically in Fig. 1. Accordingly, 
a porosity-dependent rule of mixture is employed to estimate 
the material fulfilling the partition of unity in the following 
form [74]

in which Γ and k are the porosity index and the material 
property gradient index, respectively.

Consequently, the effective Young’s modulus and Pois-
son’s ratio of porous FGM microplates relevant to each kind 
of the porosity dispersion scheme can be extracted based on 
the porosity-dependent rule of mixture as

(1)

P(z) = Pc

[(
1

2
+

z

h

)k

−
Γ

2

]
+ Pm

[
1 −

(
1

2
+

z

h

)k

−
Γ

2

]
,

(2a)E(z) =
(
Ec − Em

)
�1(z) + Em −

(
Ec + Em

)
Γ�2(z),

Fig. 1   Illustration schematically a porous FGM microplate having a central cutout
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where,

In Figs. 2, 3 and 4, the variation of the dimensionless 
effective Young’s modulus ( E(z)∕Ec ) through the plate thick-
ness and porosity index of porous FGM microplates are plot-
ted corresponding to different values of the material property 
gradient index.

Within the framework of a higher-order shear deforma-
tion plate theory, the displacement field can be expressed as

(2b)�(z) =
(
�c − �m

)
�1(z) + Em −

(
�c + �m

)
Γ�2(z),

(3)�1(z) =
�
1

2
+

z

h

�k

, �2(z) =

⎧
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1

2
U-PFGM

1

2
−

�z�
h

O-PFGM

−
�z�
h

X-PFGM

in which u, v,w are the mid-plane displacement variables 
along x, y, and z axes, respectively. Also, �x,�y are the rota-
tions about y-axis and x-axis, respectively. � (z) represents the 
transverse shear shape function to take shear deformation 
into account.

By separating the transverse displacement variable into 
the bending and shear components, and implementing the 
transverse normal shape function �(z) to take the normal 

(4a)

Ux(x, y, z) = u(x, y) − z
�w(x, y)

�x
+ � (z)

(
�x(x, y) +

�w(x, y)

�x

)
,

(4b)

Uy(x, y, z) = v(x, y) − z
�w(x, y)

�y
+ � (z)

(
�y(x, y) +

�w(x, y)

�y

)
,

(4c)Uz(x, y, z) = w(x, y),

Fig. 2   Variation of Young’s modulus of a U-PFGM microplate with porosity index and through thickness corresponding to different material 
property gradient indexes
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strains through the thickness into consideration, one will 
have

where wb(x, y) and ws(x, y) denote, respectively, the bending 
and shear displacement variables. By assuming a sinusoidal 
shear function for � (z) , and a trigonometric shape function 

(5a)Ux(x, y, z) = u(x, y) − z
�wb(x, y)

�x
+ (� (z) − z)

�ws(x, y)

�x
,

(5c)Uy(x, y, z) = v(x, y) − z
�wb(x, y)

�y
+ (� (z) − z)

�ws(x, y)

�y
,

(5c)Uz(x, y, z) = wb(x, y) + (1 + �(z))ws(x, y),

for �(z) , the hybrid-type quasi-3D higher-order shear defor-
mation theory can be achieved. So, it is supposed that

Figure 5 demonstrates the through-thickness profiles of 
the introduced shape functions and their derivatives.

Now, the strain–displacement equations including the 
von-Karman geometric nonlinearity can be written within 
the developed hybrid-type quasi-3D higher-order shear 
deformation theory as below

(6a)� (z) = sin

(
�z

h

)
− z,

(6b)�(z) = 1 +
5

12�
cos

(
�z

h

)
,

Fig. 3   Variation of Young’s modulus of an O-PFGM microplate with porosity index and through thickness corresponding to different material 
property gradient indexes
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Fig. 4   Variation of Young’s modulus of a X-PFGM microplate with porosity index and through thickness corresponding to different material 
property gradient indexes
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Accordingly, the stress–strain constitutive equations can 
be expressed in the following form

where,

On the basis of the nonlocal strain gradient continuum 
elasticity, the total stress tensor can be expressed as follows 
[75]

where the classical and higher-order stresses can be defined, 
respectively, as below,

(8)
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,

(9)

Q11(z) = Q22(z) = Q33(z) =
(1 − �(z))E(z)

(1 − 2�(z))(1 + �(z))
,

Q12(z) = Q13(z) = Q23(z) =
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(1 − 2�(z))(1 + �(z))
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Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + �(z))
.

(10)Φij = �ij − ∇�∗
ijm
,

in which e1 and e2 represent the nonlocal parameters regard-
ing the size effect of the nonlocal stress. Also l denotes the 
material length scale parameter to take the strain gradient 
size dependency into account. �kl , �kl,m and Cijkl are the strain 
components, strain gradient components and elastic coeffi-
cients. In accordance with nonlocal strain gradient theory, it 
is assumed that the two kernel functions of �1

(
x′, x, e1

)
 and 

�2

(
x′, x, e2

)
 should satisfy the associated conditions intro-

duced by Eringen [76] as follow

As a result, the generalized constitutive equation on the 
basis of the nonlocal strain gradient elasticity can be writ-
ten as

(11a)�ij = ∫
V
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)
= l2Cijkl�kl,m.

Fig. 5   Variation of shape 
functions and their deriva-
tives through plate thickness 
considered for the developed 
hybrid higher-order quasi-3D 
plate model
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With assumption of e1 = e2 = e , one will have

Accordingly, the variation of the strain energy for a 
porous FGM microplate modeled via the nonlocal strain 
gradient hybrid-type quasi-3D higher-order shear deforma-
tion theory can be expressed as

(13)

[
1 − e2

1

(
�2

�x2
+

�2

�y2

)][
1 − e2

2

(
�2

�x2
+

�2

�y2

)]
Φij

=

[
1 − e2

1

(
�2

�x2
+

�2

�y2

)]
Cijkl�kl − l2

[
1 − e2

2

(
�2

�x2
+

�2

�y2

)]
Cijkl

�2�kl

�x2

Φij − e2

(
�2Φij

�x2
+

�2Φij

�y2

)
= Cijkl�kl − l2Cijkl

(
�2�kl

�x2
+

�2�kl

�y2

)
.

Also, the virtual work caused by the external distributed 
load q can be written as

On the basis of the virtual work principle, and through 
substituting Eqs. (7) and (8) into Eq. (15), one will have

in which
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3 � Isogeometric solution methodology

The isogeometric numerical solving process has been widely 
use in recent years [77–88]. Within a one-dimensional 
domain, the associated knot vector can be expressed in a 
non-decreasing form as below:

where m and n stand for the number of basis function and the 
order of the B-spline basis function. In addition, it is neces-
sary that each ith knot satisfies the condition of 0 ≤ �i ≤ 1 . 
As a consequence, the B-spline basis function is written 
based on the recursive Cox–de Boor formula as below

Within a two-dimensional domain, the tensor product of 
two basic functions can be utilized to achieve the associated 
B-spline basis function as follows

where Pi denote the control points within the bi-directional 
control net, and

(20)�(�) =
{
�1, �2, �3,… , �m+n+1

}
,

(21a)Xi,0(𝜉) =

{
1 𝜉i ≤ 𝜉 < 𝜉i+1
0 else,

(21b)
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(22)F
p,q

i,j
(�, �) =

m∑
i=1

�i(x, y)Pi,

in which Xi,p(�) and Xj,q(�) represent, respectively, the shape 
functions of orders p and q along � and � directions. Also, 
�i,j is the relevant weight coefficient. Thereafter, the knot 
vector of �(�) is employed to extract the derivation of the 
shape function Xj,q(�) . In Fig. 6, the considered cubic ele-
ments for square microplates with and without a central cut-
out are illustrated.

By taking the non-uniform rational B-spline (NURBS)-
based isogeometric analysis into consideration, an approxi-
mation for the associated displacement field within a plate-
type domain can be given in the following form.

where,

In accordance with Eq. (7), and considering Eq. (24), the 
strain components can be rewritten as below

where
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As a result, the variation of the strain tensor can be 
expressed as

After that, the discretized form of the nonlinear differ-
ential equations of the system can be presented as follows

where ℑ(�) stands for the global stiffness matrix including 
linear and nonlinear parts as below
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and ℑG is the geometric stiffness matrix which can be 
achieved in the following form

(34)�i+1 = �i +�,

in which

and Nx , Ny are the load-type stress resultants along x axis 
and y axis, respectively.

4 � Numerical results and discussion

The dimensionless nonlocal strain gradient load–deflection 
curves associated with the porosity-dependent nonlinear 
flexural response of the uniformly distributed loaded porous 
FGM microplates with and without a central cutout having 
different shapes are presented. It is assumed that the top and 
bottom surfaces of porous FGM microplates are ceramic-
rich and metal-rich, respectively. The material properties 
are: Ec = 210 GPa, v = 0.24 for the ceramic phase, Em = 70 
GPa, v = 0.35 for the metal phase [89]. Also, the dimension-
less load and deflection are calculated as P = PL2

1
∕Emh

3 , 
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]
, TG2 =
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]
,Also, the load vector can be given as

Thereafter, an iterative solution methodology based 
on the Newton–Raphson technique is employed to solve 
Eq. (29). To this purpose, the residual force vector is intro-
duced as follows

Accordingly, the considered increment in the value of 
displacement vector is as below
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,

where
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W = w∕h . Moreover, the geometric parameters are assumed 
as h = 20 µm, L1 = 50 h, L1/L2 = 1.

At first, the validity of the present solution process is 
checked. To this end, by neglecting the size dependent terms, 
the nonlinear load–deflection response associated with the 
geometrically nonlinear flexural response of a square com-
posite plate is obtained and compared with that presented 
by Singh et al. [90] as shown in Fig. 7. A very good can be 
observed which confirms the introduced numerical solution 
methodology.

In Figs. 8 and 9, the classical and nonlocal strain gradient 
load–deflection curves associated with the nonlinear bending 
response of U-PFGM microplates without any central cutout 

are displayed for various values of the nonlocal parameter 
and strain gradient parameter, respectively. By comparing 
the nonlocal strain gradient curves with the classical coun-
terparts, it is deduced that by taking the strain gradient type 
of size dependency into consideration, the maximum deflec-
tion associated with a given applied distributed load gets 
smaller which indicated the stiffening influence of the couple 
stress size effect. However, in the presence of the nonlocal 
size effect, an opposite pattern is found which represents 
the softening influence of it. This observation has a similar 
pattern for the both fully simply supported (SSSS) and fully 
clamped (CCCC) boundary conditions.

Figures 10 and 11 illustrate the classical and nonlo-
cal strain gradient load–deflection curves relevant to the 

Fig. 6   Illustration of cubic elements for square microplates with geometrical parameters: a microplate without a central cutout, b microplate 
with a square cutout, c microplate with a circular cutout
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nonlinear bending behavior of U-PFGM microplates with-
out any central cutout corresponding to different material 
property gradient indexes, and respectively, for various 
nonlocal and strain gradient parameters. It is demonstrated 
that by moving from the fully ceramic-rich microplate to the 
fully metal-rich one, the rate of load–deflection variation 
decreases significantly, so a specific maximum deflection 
occurs at a lower applied distributed load. Also, the gap 
between the nonlocal strain gradient curve and its classical 
counterpart becomes larger by moving from the fully metal-
rich microplate to the fully ceramic-rich one.

The classical and nonlocal strain gradient load–deflection 
curves associated with the nonlinear bending characteris-
tics of porous FGM microplates without a central cutout 
are depicted in Figs. 12 and 13 corresponding to different 
porosity dispersion patterns. It is seen that by taking only 
the nonlocality into consideration, the gap between nonlin-
ear bending curves relevant to various patterns of poros-
ity dispersion is a bit lower for the nonlocal strain gradient 
case than the classical one. But, in the presence strain gradi-
ent size dependency and in the absence of nonlocality, the 
observation becomes reverse. In addition, a same trend can 
be observed for different patterns of porosity dispersion, and 
this issue is for the both types of SSSS and CCCC boundary 
conditions.

In Tables 1 and 2, the classical and nonlocal strain gradi-
ent dimensionless distributed loads associated with given 
maximum deflections resulted from the nonlinear bending 
response of porous FGM microplates without any central 
cutout are tabulated corresponding to different material 
property gradient indexes and in the presence and absence 
of one of the nonlocal and strain gradient size dependencies. 
The percentages presented in parentheses indicate the differ-
ence between the nonlocal strain gradient distributed load 
and its classical counterpart. It is revealed that for a larger 
maximum deflection, the significance of the both nonlocal 
and strain gradient reduces. This prediction is the same for 
all values of the material property gradient index. Further-
more, it can be seen that corresponding to different maxi-
mum deflections, the both nonlocality and strain gradient 
size effects on the distributed load is a bit lower for a fully 
clamped porous FGM microplate than that a fully simply 
supported one. It is revealed that among various patterns 
of porosity dispersion, the geometrically nonlinear bending 
stiffness associated with the O-PFGM and X-PFGM micro-
plates is minimum and maximum, respectively.

In Fig. 14, the nonlocal strain gradient nonlinear bending 
responses of O-PFGM and X-PFGM microplates without 
any central cutout are shown corresponding to various val-
ues of the porosity index. It is obvious that for a porous FGM 
microplate with a higher value of the porosity index, the gap 
between nonlocal strain gradient nonlinear bending curves 
associated with the O-PFGM and X-PFGM dispersion 

patterns enhances. This anticipation may be related to this 
fact that a higher porosity index results in bigger internal 
pores that makes increase the importance of the role of 
porosity dispersion pattern. This conclusion can be deduced 
for the both types of SSSS and CCCC edge supports.

Tables 3 and 4 give the classical and nonlocal strain gra-
dient dimensionless distributed loads associated with given 
maximum deflections resulted from the nonlinear bending 
response of porous FGM microplates without any central 
cutout corresponding to different porosity indexes and in the 
presence and absence of one of the nonlocal and strain gradi-
ent size dependencies. The percentages presented in paren-
theses indicate the difference between the nonlocal strain 
gradient distributed load and its classical counterpart. It is 
observed that corresponding to different maximum deflec-
tions, the significance of the strain gradient size effect in 
the absence of nonlocality on the nonlinear flexural stiff-
ness of a porous FGM microplate is more than that of the 
nonlocal size effect in the absence of the strain gradient size 
dependency.

To indicate the influence of a central cutout with different 
shapes on the nonlocal strain gradient nonlinear bending 
characteristics of porous FGM microplates, the nonlinear 
load–deflection curves associated with U-PFGM microplates 
with square and circular shapes having various side lengths 
and diameters are plotted in Figs. 15 and 16, respectively. 
It can be found that a central cutout leads to change the 
trend of load–deflection response. As a consequence, for 
smaller value of the applied distributed load, the induced 
maximum deflection for a microplate without any central 
cutout is higher than that induced in microplates with a 
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Fig. 7   Comparison of load deflection curves associated with the non-
linear bending of composite square plate under inform distributed 
load
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Fig. 8   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses asso-
ciated with the nonlinear bend-
ing of U-PFGM microplates 
corresponding to various values 
of the nonlocal parameter in 
the absence of strain gradient 
size effect (l = 0 µm, Γ = 0.4 , 
k = 0.5 , a∕L = d∕L = 0)
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Fig. 9   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses asso-
ciated with the nonlinear bend-
ing of U-PFGM microplates 
corresponding to various values 
of the strain gradient param-
eter in the absence of nonlocal 
size effect (e = 0 µm, Γ = 0.4 , 
k = 0.5 , a∕L = d∕L = 0)
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Fig. 10   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses asso-
ciated with the nonlinear bend-
ing of U-PFGM microplates 
corresponding to various values 
of the material gradient index 
in the absence of strain gradi-
ent size dependency (l = 0 µm, 
Γ = 0.4 , a∕L = d∕L = 0)
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Fig. 11   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses asso-
ciated with the nonlinear bend-
ing of U-PFGM microplates 
corresponding to various values 
of the material gradient index 
in the absence of nonlocal size 
dependency (e = 0 µm, Γ = 0.4 , 
a∕L = d∕L = 0)
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Fig. 12   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses asso-
ciated with the nonlinear bend-
ing of porous FGM microplates 
corresponding to various poros-
ity dispersion patterns in the 
absence of strain gradient size 
dependency (l = 0 µm, Γ = 0.4 , 
k = 0.5 , a∕L = d∕L = 0)
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Fig. 13   Dimensionless classical 
and nonlocal strain gradient 
load–deflection responses 
associated with the nonlinear 
bending of porous FGM micro-
plates corresponding to various 
porosity dispersion patterns in 
the absence of nonlocal size 
dependency (e = 0 µm, Γ = 0.4 , 
k = 0.5 , a∕L = d∕L = 0)
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Table 1   Classical and nonlocal strain gradient dimensionless distrib-
uted loads of porous FG composite microplates corresponding to dif-
ferent nonlocal parameters, porosity dispersion patterns, maximum 
deflections, and various material property gradient indexes ( Γ = 0.4 , 
l = 0 µm)

k e (µm) U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.5 w/h = 0.4

0 0.0553 0.0515 0.0591
60 0.0522 (− 5.64%) 0.0486 (− 5.64%) 0.0558 (− 5.64%)
120 0.0428 

(− 22.56%)
0.0399 

(− 22.55%)
0.0458 

(− 22.55%)
w/h = 0.8
0 0.2662 0.2478 0.2846
60 0.2526 (− 5.11%) 0.2351 (− 5.11%) 0.2700 (− 5.11%)
120 0.2118 

(− 20.41%)
0.1972 

(− 20.41%)
0.2265 

(− 20.41%)
2 w/h = 0.4

0 0.0518 0.0483 0.0554
60 0.0489 (− 5.64%) 0.0455 (− 5.64%) 0.0523 (− 5.64%)
120 0.0402 

(− 22.56%)
0.0374 

(− 22.55%)
0.0429 

(− 22.56%)
w/h = 0.8
0 0.2496 0.2324 0.2669
60 0.2369 (− 5.11%) 0.2205 (− 5.11%) 0.2532 (− 5.11%)
120 0.1987 

(− 20.41%)
0.1849 

(− 20.41%)
0.2124 

(− 20.41%)
CCCC boundary conditions
0.5 w/h = 0.4

0 0.0715 0.0666 0.0765
60 0.0676 (− 5.44%) 0.0630 (− 5.44%) 0.0723 (− 5.44%)
120 0.0560 

(− 21.72%)
0.0521 

(− 21.72%)
0.0599 

(− 21.72%)
w/h = 0.8
0 0.3961 0.3687 0.4234
60 0.3763 (− 4.98%) 0.3503 (− 4.98%) 0.4023 (− 4.98%)
120 0.3172 

(− 19.92%)
0.2953 

(− 19.92%)
0.3391 

(− 19.92%)
2 w/h = 0.4

0 0.0671 0.0624 0.0717
60 0.0634 (− 5.44%) 0.0590 (− 5.44%) 0.0678 (− 5.44%)
120 0.0525 

(− 21.72%)
0.0489 (21.72%) 0.0561 

(− 21.72%)
w/h = 0.8
0 0.3714 0.3458 0.3971
60 0.3529 (− 4.98%) 0.3285 (− 4.98%) 0.3773 (− 4.98%)
120 0.2975 

(− 19.92%)
0.2769 

(− 19.92%)
0.3180 

(− 19.92%)

Table 2   Classical and nonlocal strain gradient dimensionless dis-
tributed loads of porous FG composite microplates corresponding 
to different strain gradient parameters, porosity dispersion patterns, 
maximum deflections, and various material property gradient indexes 
( Γ = 0.4 , e = 0 µm)

k l (µm) U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.5 w/h = 0.4

0 0.0553 0.0515 0.0591
60 0.0654 

(+ 18.32%)
0.0609 

(+ 18.32%)
0.0699 (+ 18.32%)

120 0.0958 
(+ 73.23%)

0.0892 
(+ 73.23%)

0.1024 (+ 73.23%)

w/h = 0.8
0 0.2662 0.2478 0.2846
60 0.3139 

(+ 17.91%)
0.2922 

(+ 17.91%)
0.3355 (+ 17.91%)

120 0.4566 
(+ 71.53%)

0.4250 
(+ 71.53%)

0.4881 (+ 71.53%)

2 w/h = 0.4
0 0.0518 0.0483 0.0554
60 0.0613 

(+ 18.32%)
0.0571 

(+ 18.32%)
0.0656 (+ 18.32%)

120 0.0898 
(+ 73.23%)

0.0836 
(+ 73.23%)

0.0960 (+ 73.23%)

w/h = 0.8
0 0.2496 0.2324 0.2669
60 0.2943 

(+ 17.91%)
0.2740 

(+ 17.91%)
0.3147 (+ 17.91%)

120 0.4282 
(+ 71.53%)

0.3986 
(+ 71.53%)

0.4578 (+ 71.53%)

CCCC boundary conditions
0.5 w/h = 0.4

0 0.0715 0.0666 0.0765
60 0.0845 

(+ 18.16%)
0.0787 

(+ 18.16%)
0.0904 (+ 18.16%)

120 0.1234 
(+ 72.57%)

0.1149 
(+ 72.57%)

0.1320 (+ 72.57%)

w/h = 0.8
0 0.3961 0.3687 0.4234
60 0.4666 

(+ 17.82%)
0.4344 

(+ 17.82%)
0.4989 (+ 17.82%)

120 0.6778 
(+ 71.14%)

0.6310 
(+ 71.14%)

0.7246 (+ 71.14%)

2 w/h = 0.4
0 0.0671 0.0624 0.0717
60 0.0793 

(+ 18.16%)
0.0738 

(+ 18.16%)
0.0847 (+ 18.16%)

120 0.1158 
(+ 72.57%)

0.1078 
(+ 72.57%)

0.1238 (+ 72.57%)

w/h = 0.8
0 0.3714 0.3458 0.3971
60 0.4376 

(+ 17.82%)
0.4074 

(+ 17.82%)
0.4678 (+ 17.82%)

120 0.6357 
(+ 71.14%)

0.5917 
(+ 71.14%)

0.6796 (+ 71.14%)
central cutout. However, by increasing the distributed load, 
this pattern becomes vice versa. Accordingly, there is a spe-
cific value for the applied distributed load that this shift of 
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trend occurs, and it depends on several parameters such as 
the cutout geometry and boundary conditions.

5 � Conclusion

In this work, the nonlocal strain gradient geometrically non-
linear flexural response of porous FGM microplates hav-
ing a central cutout with different shapes was predicted. To 
accomplish this issue, a hybrid-type quasi-3D higher-order 
shear deformation plate theory was formulated within the 
framework of the nonlocal strain gradient continuum elas-
ticity. Afterwards, using the NURBS-based isogeometric 
approach, the possibility of flexibly meeting higher-order 
derivatives was achieved.

It was indicated that by taking the strain gradient type of 
size dependency into consideration, the maximum deflec-
tion associated with a given applied distributed load gets 

smaller which indicated the stiffening influence of the couple 
stress size effect. However, in the presence of the nonlocal 
size effect, an opposite pattern is found which represents the 
softening influence of it. Also, the gap between the nonlocal 
strain gradient curve and its classical counterpart becomes 
larger by moving from the fully metal-rich microplate to the 
fully ceramic-rich one. Additionally, it was found that for 
a larger maximum deflection, the significance of the both 
nonlocal and strain gradient reduces. This prediction was the 
same for all values of the material property gradient index 
as well as porosity index.

Furthermore, it was seen that corresponding to different 
maximum deflections, the significance of the strain gradi-
ent size effect in the absence of nonlocality on the nonlinear 
flexural stiffness of a porous FGM microplate is more than 
that of the nonlocal size effect in the absence of the strain 
gradient size dependency. In addition, it was revealed that a 
central cutout leads to change the trend of load–deflection 

Fig. 14   Dimensionless nonlocal 
strain gradient load–deflection 
responses associated with the 
nonlinear bending of porous 
FGM microplates correspond-
ing to various values of the 
porosity index (e = l = 120 µm, 
k = 0.5 , a∕L = d∕L = 0)
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response. As a consequence, for smaller value of the applied 
distributed load, the induced maximum deflection for a 
microplate without any central cutout is higher than that 
induced in microplates with a central cutout. However, by 
increasing the distributed load, this pattern becomes vice 
versa.

Table 3   Classical and nonlocal strain gradient dimensionless distrib-
uted loads of porous FG composite microplates corresponding to dif-
ferent nonlocal parameters, porosity dispersion patterns, maximum 
deflections, and various porosity indexes ( k = 0.5 , l = 0 µm)

� e (µm) U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.3 w/h = 0.4

0 0.0587 0.0559 0.0616
60 0.0554 (− 5.64%) 0.0527 (− 5.64%) 0.0581 (− 5.64%)
120 0.0455 

(− 22.56%)
0.0433 

(− 22.56%)
0.0477 

(− 22.56%)
w/h = 0.8
0 0.2828 0.2690 0.2966
60 0.2683 (− 5.11%) 0.2553 (− 5.11%) 0.2814 (− 5.11%)
120 0.2251 

(− 20.41%)
0.2141 

(− 20.41%)
0.2361 

(− 20.41%)
0.5 w/h = 0.4

0 0.0517 0.0470 0.0565
60 0.0488 (− 5.64%) 0.0443 (− 5.64%) 0.0533 (− 5.64%)
120 0.0401 

(− 22.56%)
0.0364 

(− 22.56%)
0.0437 

(− 22.56%)
w/h = 0.8
0 0.2490 0.2261 0.2720
60 0.2363 (− 5.11%) 0.2145 (− 5.11%) 0.2581 (− 5.11%)
120 0.1982 

(− 20.41%)
0.1799 

(− 20.41%)
0.2165 

(− 20.41%)
CCCC boundary conditions
0.3 w/h = 0.4

0 0.0760 0.0723 0.0797
60 0.0719 (− 5.44%) 0.0684 (− 5.44%) 0.0754 (− 5.44%)
120 0.0595 

(− 21.72%)
0.0566 

(− 21.72%)
0.0624 

(− 21.72%)
w/h = 0.8
0 0.4208 0.4003 0.4413
60 0.3998 (− 4.98%) 0.3803 (− 4.98%) 0.4193 (− 4.98%)
120 0.3370 

(− 19.92%)
0.3206 

(− 19.92%)
0.3534 

(− 19.92%)
0.5 w/h = 0.4

0 0.0669 0.0608 0.0731
60 0.0633 (− 5.44%) 0.0574 (− 5.44%) 0.0691 (− 5.44%)
120 0.0524 

(− 21.72%)
0.0476 

(− 21.72%)
0.0572 

(− 21.72%)
w/h = 0.8
0 0.3706 0.3364 0.4047
60 0.3521 (− 4.98%) 0.3196 (− 4.98%) 0.3845 (− 4.98%)
120 0.2968 

(− 19.92%)
0.2694 

(− 19.92%)
0.3241 

(− 19.92%)

Table 4   Classical and nonlocal strain gradient dimensionless distrib-
uted loads of porous FG composite microplates corresponding to dif-
ferent strain gradient parameters, porosity dispersion patterns, maxi-
mum deflections, and various porosity indexes ( k = 0.5 , e = 0 µm)

� l (µm) U-PFGM O-PFGM X-PFGM

SSSS boundary conditions
0.3 w/h = 0.4

0 0.0587 0.0559 0.0616
60 0.0695 

(+ 18.32%)
0.0661 (+ 18.32) 0.0729 (+ 18.32%)

120 0.1018 
(+ 73.23%)

0.0968 
(+ 73.23%)

0.1067 (+ 73.23%)

w/h = 0.8
0 0.2828 0.2690 0.2966
60 0.3335 

(+ 17.91%)
0.3172 

(+ 17.91%)
0.3497 (+ 17.91%)

120 0.4851 
(+ 71.53%)

0.4615 
(+ 71.53%)

0.5088 (+ 71.53%)

0.5 w/h = 0.4
0 0.0517 0.0470 0.0565
60 0.0612 

(+ 18.32%)
0.0556 

(+ 18.32%)
0.0668 (+ 18.32%)

120 0.0896 
(+ 73.23%)

0.0814 
(+ 73.23%)

0.0979 (+ 73.23%)

w/h = 0.8
0 0.2490 0.2261 0.2720
60 0.2936 

(+ 17.91%)
0.2666 

(+ 17.91%)
0.3207 (+ 17.91%)

120 0.4272 
(+ 71.53%)

0.3878 
(+ 71.53%)

0.4666 (+ 71.53%)

CCCC boundary conditions
0.3 w/h = 0.4

0 0.0760 0.0723 0.0797
60 0.0898 

(+ 18.16%)
0.0854 

(+ 18.16%)
0.0942 (+ 18.16%)

120 0.1311 
(+ 72.57%)

0.1247 
(+ 72.57%)

0.1375 (+ 72.57%)

w/h = 0.8
0 0.4208 0.4003 0.4413
60 0.4958 

(+ 17.82%)
0.4716 

(+ 17.82%)
0.5200 (+ 17.82%)

120 0.7202 
(+ 71.14%)

0.6850 
(+ 71.14%)

0.7553 (+ 71.14%)

0.5 w/h = 0.4
0 0.0669 0.0608 0.0731
60 0.0791 

(+ 18.16%)
0.0718 

(+ 18.16%)
0.0864 (+ 18.16%)

120 0.1155 
(+ 72.57%)

0.1048 
(+ 72.57%)

0.1261 (+ 72.57%)

w/h = 0.8
0 0.3706 0.3364 0.4047
60 0.4366 

(+ 17.82%)
0.3963 

(+ 17.82%)
0.4768 (+ 17.82%)

120 0.6342 
(+ 71.14%)

0.5757 
(+ 71.14%)

0.6926 (+ 71.14%)
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Fig. 15   Influence of a square 
central cutout on dimension-
less nonlocal strain gradient 
load–deflection responses 
associated with the nonlinear 
bending of U-PFGM micro-
plates (e = l = 120 µm, Γ = 0.4 , 
k = 0.5)
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Fig. 16   Influence of a circular 
central cutout on dimension-
less nonlocal strain gradient 
load–deflection responses 
associated with the nonlinear 
bending of U-PFGM micro-
plates (e = l = 120 µm, Γ = 0.4 , 
k = 0.5)
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