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Abstract
A retaining wall is a structure used to resist the lateral pressure of soil or any backfill material. Cantilever retaining walls pro-
vide resistance to overturning and sliding by using backfill weight. In this paper, the weight and cost of the cantilever retaining 
wall have been minimized using a hybrid metaheuristic optimization technique, namely, h-BOASOS. The algorithm has been 
developed by the ensemble of two popular metaheuristics, butterfly optimization algorithm (BOA) and symbiosis organism 
search (SOS) algorithm. BOA’s exploratory intensity is coupled with SOS’s greater exploitative capacity to find the superior 
algorithm h-BOASOS. The newly developed algorithm has been tested with a suite of 35 classical benchmark functions, and 
the results are compared with several state-of-the-art metaheuristic algorithms. The results are evaluated statistically by the 
Friedman rank test, and convergence curves measure the convergence speed of the algorithm. It is observed in both cases 
that h-BOASOS is superior to other algorithms. The suggested approach is then used to solve four real-world engineering 
design problems to examine the problem-solving capacity of the proposed algorithm, and the results are contrasted with 
a wide range of algorithms. The proposed h-BOASOS is considered to be the winner on each occasion. Finally, the newly 
suggested algorithm is applied to find the cost and weight of the cantilever retaining wall problems of two different heights, 
3.2 m and 6.3 m. The obtained results are compared with the component algorithms and found that the new algorithm works 
better than the compared algorithms.

Keywords Meta-heuristics · Hybrid algorithm · Butterfly optimization algorithm · Symbiosis organisms search · Cantilever 
retaining wall

1 Introduction

Soil is unstable in many circumstances due to its integral 
angle of inclination. There are several procedures to make 
these slopes stable. One of the most popular methods to 
stabilize slopes is the use of retaining wall structures. The 
retaining wall is the structure that holds soil behind it and 
resists lateral pressure of the soil. Designing a retaining wall 
depends on three primary criteria: structural strength, geo-
technical stability, and the economy. It generally uses a trial 

and error approach to satisfy these criteria simultaneously, 
and these criteria are checked against geotechnical and struc-
tural requirements. Thus, these approaches demand several 
repetitions, and there is no assurance that the final design is 
the best from an economic point of view.

Optimization algorithms can be exploited to reach a cost-
effective design satisfying all the geotechnical and structural 
requirements simultaneously. It is extremely challenging 
to find a design that satisfies all the safety criteria, so it is 
essential to formulate the problem as one of the mathemati-
cal non-linear programming techniques. Because of these 
reasons, these approaches demand several repetitions, which 
are time-consuming, and there is no assurance that the final 
design obtained will be safe and best from an economic 
point of view. Existing optimization structural software used 
for retaining wall design lacks the ability to find out optimal 
design because of their deterministic nature, while stochastic 
methods adopted are not tailored specifically for retaining 
walls and massive concrete structures. To overcome these 
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limitations and find out a cost-effective design, there is a 
need for an optimization algorithm to solve the retaining 
wall problem. Numerous studies have investigated the opti-
mization of retaining walls using meta-heuristic algorithms. 
Hence, it is one of the most compelling research topics in 
geotechnical and structural optimization.

The retaining wall optimization problem comprises of 
structural strength and geotechnical stability requirements. 
The objective function is to minimize both the cost and 
weight of the retaining wall. To economize the cost, satisfy-
ing these situations, there is a need to vary the dimensions 
of the wall several times, which makes it very tedious and 
monotonous. It is incredibly challenging to find a design that 
satisfies all the safety criteria, so it is essential to formulate 
the problem as one of the mathematical non-linear program-
ming techniques.

Retaining walls are the rigid wall which laterally supports 
the soil on both the sides at different levels. Retaining walls 
are further classified into gravity, cantilever, counterfort, and 
buttress retaining wall. In this study, the cantilever retaining 
wall problem is considered for optimization. The cantilever 
retaining wall is constructed of reinforced concrete with a 
thinner stem. Resistance to overturning and sliding is pro-
vided by utilizing the weight of backfill soil.

Due to the high complexity, such as highly non-linearity, 
multi-modal property, a large number of variables, and con-
straints of present-day optimization problems, the research-
ers are inclined to solve these problems by meta-heuristic 
optimization techniques as the available methods cannot 
cope with these types of complexities. Due to simplicity, 
meta-heuristic methods are gaining popularity day by day. 
The meta-heuristics are generally developed depending on 
some particular metaphors. These metaphor-based algo-
rithms can be divided into groups based on the metaphors 
on which the methods are developed. These are evolutionary 
algorithms, swarm intelligence based algorithms, physics-
based algorithms, immune algorithms, human-based algo-
rithm, etc.

The working procedure of most of the algorithms is the 
same. These algorithms randomly generate some initial can-
didate solutions within the specific range and upgrade the 
solutions depending upon the metaphors they follow. In the 
process of up-gradation, each candidate solution upgrades 
itself locally and globally, which means the candidate 
explores new regions in the search space and exploit the 
region where they already obtained a potential solution. To 
develop an efficient meta-heuristic algorithm, proper balanc-
ing of exploration and exploitation is necessary. This is why 
the optimization community is developing hybrid methods 
to get a proper balance between these two characteristics. It 
has already been proved that, in many a case, a combination 
of two algorithms (maybe two meta-heuristics or parts of 
two meta-heuristics or one meta-heuristic combined with 

another heuristic or any other method) gives better results 
in solving optimization problem than the component algo-
rithms. For the last two decades, hybrid meta-heuristic 
algorithms have been gaining popularity, and scientists are 
widely using these methods to solve real-life combinatorial 
and other complicated optimization problems.

Metaheuristics have wide applications in the field of 
structural engineering. Structural problems are non-lin-
ear and multi-modal under some complex constraints. To 
eliminate these complexities, many researchers are using 
metaheuristic algorithms to solve such types of problems. 
Dede [1] used JAYA algorithm to solve the size optimiza-
tion problem for steel grillage structures. Baradaran and 
Madhkhan [2] used an improved genetic algorithm (GA) 
for the optimal design of planar steel frames, Kaveh and 
Farhadmanesh [3] employed colliding body optimization 
(CBO) and enhanced colliding body optimization (ECBO) 
for optimal seismic design of steel plate shear walls, Kaveh 
et al. [4] proposed modified dolphin monitoring operator for 
weight optimization of skeletal structures. Teaching-learning 
based optimization (TLBO), ECBO, CBO, vibrating parti-
cles system (VPS), and harmony search algorithm (HS) were 
used by Kaveh et al. [5] for the optimal design of multi-span 
pitched roof frames with tapered members.

Considering the huge ability of meta-heuristic algorithms, 
researchers use these algorithms to optimize structural prob-
lems like retaining wall problems in recent decades. For 
instance, particle swarm optimization (PSO) was used by 
Varaee [6] to optimize the cost and weight of a 4.5 m-high 
retaining wall. Again PSO with the passive congregation was 
utilized by Khajehzadeh et al. [7] in finding optimum cost 
design for 3 m and 5.5 m high retaining walls. Also, Khaje-
hzadeh et al. [8] used modified particle swarm optimization 
(MPSO) in optimizing the cost of a 3 m-high retaining wall 
and sensitivity analysis of soil properties for a 4.5 m tall 
retaining wall. Gravitational search algorithm (GSA) was 
opted for finding the best cost design of 3 m and 5.5 m high 
retaining wall by Khajehzadeh and Eslami [9]. Yepes et al. 
[10] used simulated annealing (SA) for analyzing parameters 
of 4 m to 10 m retaining walls by considering soil proper-
ties variation. Ant colony optimization (ACO) was used by 
Bonab [11] for designing 3 m, 4 m, and 5 m-high retaining 
walls. Kaveh and Abadi [12] found out the optimal design 
of a 6.1 m high retaining wall by adopted harmony search 
(AHS), while the charged system search algorithm (CSS) 
was used for the same wall by Kaveh and Behnam [13]. 
Big bang big crunch (BBBC) was used by Camp and Akin 
[14] for optimizing cost and weight of 3 m-high and 4.5 
m-high retaining walls, including a base shear key effect. 
The same problem was also solved by Gandomi et al. [15] 
by exploring swarm intelligence techniques efficiency with 
the same case studies. Nama et al. [21] incorporated HS, 
PSO, and TLBO for optimizing seismic active earth pressure 
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coefficient. Optimum design of the tied-back retaining wall 
was accomplished by Jasim and Al-Yaqoobi [17] using GA. 
Differential evolution (DE) was used for the optimal design 
of the cantilever retaining wall by Kumar and Suribabu [18]. 
For retaining wall optimization, Bath et al. [19] used DE, 
and PSO was used for optimum design of reinforced con-
crete retaining walls by Moayyeri et al. [20]. Nama et al. [21] 
used an improved backtracking search algorithm (IBSA) to 
obtain the active earth pressure on retaining wall supporting 
c-� backfill using the pseudo-dynamic method. Except for 
all the above cases, meta-heuristic algorithms were used for 
many applications in structural engineering. Some of those 
can be seen in [22–32].

The BOA [33] is a nature-based algorithm that mimics 
butterflies’ food and mating pair search behaviors. The sys-
tem is focused primarily on the butterflies’ foraging tech-
nique, which uses their smelling sense to assess the nectar 
or mating partner. The global phase of BOA uses the best 
butterfly’s information to forage, and the local phase uses 
a random search or explores the domain for potential solu-
tions. Both these phases make the BOA a suitable algorithm 
to apply in the different optimization problems. Although the 
literature indicates enough scope for the BOA to explore the 
search space, it faces some problems such as local optima 
stagnation, slow convergence, and skipping real solutions 
when solving real-life problems. That is why many articles 
have come up in the literature, improving the basic BOA so 
that the algorithm can perform better than the basic BOA. 
Some of the improved or modified algorithms of BOA can 
be found in [35]. Also, some of the hybrid methods where 
BOA is a component algorithm can be seen in [36–38].

The SOS [39] algorithm is implemented through the eco-
system’s interactive behavior of different organisms. SOS 
is considered one of the most common algorithms for solv-
ing complex real-world problems because of its simplicity 
and higher proficiency. For various optimization problems 
of different disciplines, SOS has already proven its effec-
tiveness. The stages of mutualism and commensalism make 
good use of population data as these two stages use the posi-
tion of its best organism as a point of reference, helping 
to exploit the possible solutions. Again, by changing the 
current solution to generate new solutions, the parasitism 
process eliminates the inferior solutions and helps to explore 
the entire search room, allowing the algorithm to be well 
balanced in both exploratory and exploitative competencies. 
The simplicity of the SOS makes it one of the most com-
petitive swarm intelligence based algorithm. Motivated by 
the above claims, we believe that the effectiveness of SOS 
must be further improved by hybridizing with other efficient 
algorithms to make the algorithm more efficient, stable, and 
robust. Numerous works on SOS in literature have tried to 
improve the algorithm by modifying it in various manners to 
improve its performance. Some of the works on improving 

and hybridizing SOS can be found in [40–43]. For detailed 
improvement, hybridization, and applications of SOS, one 
can see [44].

The present study suggests a hybrid meta-heuristic, 
viz. h-BOASOS, combining BOA and SOS and applied 
it to solve the cantilever retaining wall problem. It is seen 
that the strength of BOA lies in its exploration capability 
whereas, SOS is known for its better exploitation capacities. 
To balance the exploration and exploitation of the algorithm, 
the search agents first search the entire region through the 
steps of BOA to discover the possible solutions through-
out the entire search space. Once the possible solutions are 
obtained, the solutions are passed through the SOS steps 
to take advantage of the search space to find the optimal 
solution near the potential solutions already obtained by 
BOA. Thus the suggested h-BOASOS is assumed to be a 
well-balanced and robust algorithm that can find the optimal 
global solution. By applying the algorithm to solve a suite of 
35 (thirty-five) benchmark functions of varying complexi-
ties, the efficacy of the proposed h-BOASOS was assessed 
and the results obtained are contrasted with 10 (ten) state-
of-the-art algorithms. To prevent the error due to the algo-
rithm’s stochastic nature, each function was executed for 30 
runs with 10,000 iterations. For analysis, mean and standard 
deviation values are reported. The experimental results indi-
cate that the algorithm proposed is more potent than those of 
the algorithms compared to h-BOASOS. For further study, 
the non-parametric Friedman rank test has been performed 
considering the mean values of the proposed and compared 
algorithms and found that the rank of h-BOASOS is the least 
among all compared algorithms. For all comparative algo-
rithms, convergence graphs of selected functions are plotted 
to scrutinize the convergence velocity and find that the con-
vergence rate of the proposed algorithm is more robust than 
that of other algorithms. It is also applied to solve 04 (four) 
real-world engineering design problems, namely, gear train 
design problem, cantilever beam design problem, car-side 
impact design problem, and three-bar truss design problem 
to assess the problem-solving skill of the h-BOASOS. The 
results obtained to support our assertion of h-BOASOS’ 
supremacy and argue that the proposed algorithm is better 
than some of the literature’s well-known meta-heuristics. 
Finally, h-BOASOS was used to obtain the optimum cost 
and weight of the cantilever retaining wall problem, a rela-
tively complex problem with 12 (twelve) design variables 
and 16 (sixteen) constraints.

The remaining part of paper has been organized as fol-
lows: the two component algorithms, BOA and SOS have 
been described in Sects. 2 and  3 respectively. The pro-
posed algorithm has been elaborated in Sect. 4. Section 5 
deals with the experimental setup. Section 6 describes the 
results of the proposed algorithm. Applications of this 
hybrid method in different real-life problems are described 
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in Sect. 7. Section 8 describes the cantilever retaining wall 
problem with its mathematical formulation. Section 9 dis-
cusses the results of the problem with the aid of the proposed 
h-BOASOS and some other methods. Finally the conclusion 
and future scope of this work has been presented in Sect. 10.

2  Butterfly optimization algorithm

Butterfly optimization algorithm (BOA) was introduced by 
Arora and Singh [33] in 2018, mimicking the food foraging 
and mating pair behavior of butterflies. In BOA, butterflies 
are used as search agents for the algorithm as BOA is a 
population-based iterative algorithm. The fragrance gener-
ated by a butterfly is propagated to all other butterflies in the 
region, and other butterflies sense the propagated fragrance 
through chemoreceptors scattered over the body of butter-
flies, which are used to smell the fragrance. Thus a collec-
tive social knowledge network is formed in BOA, which 
helped the algorithm to search the entire space effectively. 
The candidate butterflies are always moving towards the best 
butterfly once they smell the best butterfly’s fragrance. This 
is known as the global search phase of BOA.

On the other hand, when a butterfly does not smell the 
fragrance from any butterfly, a random movement is con-
sidered, which is termed as a local search phase in BOA. 
The basic concept of sense depends on three special param-
eters viz., sensory modality (c), stimulus intensity (I), and 
power exponent (a). In BOA, it is assumed that many but-
terflies release fragrance simultaneously, and by the sensory 
modality, butterflies sense and differentiate the fragrances. 
I characterizes the fitness of a butterfly in BOA, and a is the 
response compression. The behavior of butterflies depends 
on two imperative factors viz. variation of I, and formulation 
of f. In BOA, the stimulus intensity I of a butterfly is linked 
with the value of the objective function, and f is relative. 
Considering all these aspects, the fragrance is formulated 
in the following way:

where, fi is the apparent magnitude of the fragrance of ith 
butterfly.

It has been already discussed that BOA consists of two 
crucial phases, viz., global search phase and local search 
phase. In the global phase, a butterfly moves towards the 
best butterfly in a particular iteration. Mathematically, it is 
represented as

where, Xi is the ith butterfly and gbest represents the current 
best solution in a particular stage. The fragrance of ith but-
terfly is represented by fi and r is a random number in [0, 1].

(1)fi = c ∗ Ia

(2)Xnew
i

= Xi + (r2 ∗ gbest − Xi) ∗ fi

The local search phase of BOA can be represented as

where, Xj and Xk are the jth and kth butterflies from the solu-
tion space and selected randomly from the current popula-
tion, and r is a random number in between 0 and 1.

3  Symbiosis organisms search

In 2014, Cheng and Prayogo [39] proposed SOS algorithm 
mimicking the interactive relationship among the organisms 
in an ecosystem. The SOS is executed in three steps: mutu-
alism phase, commensalism phase, and parasitism phase. 
During the optimization process, a set of initial solution is 
generated randomly within the search space, and each solu-
tion is updated by the three phases. The details of SOS are 
summarized below:

3.1  Mutualism phase

In the mutualism phase, two organisms of the ecosystem 
interact mutually, and both get benefits from the interac-
tion. An organism Xi tries to interact with an organism Xj , 
where Xj is randomly selected from the ecosystem. From the 
interaction, both the organisms try to improve their mutual 
survival benefit in the ecosystem. Mathematically, the new 
Xi and Xj are determined by Eqs. (4) and (5) and update in 
the ecosystem. The new organism will replace the old one 
if the new organism is better than its previous fitness value.

where,

Here, Xbest represents the best organism in the ecosystem, 
the value of benefit factors ( BF1 and BF2 ) are considered 
randomly as either 1 or 2. These factors represent the level of 
benefit to each organism, i.e., whether an organism partially 
or fully benefits from the interaction. ‘ MutualVector ’ repre-
sents the characteristic of the relationship of the organism Xi 
and Xj . r1 and r2 are two random numbers between 0 and 1.

3.2  Commensalism phase

When, in the interaction of two organisms, one gets ben-
efited, and the other neither benefited nor harmed, this inter-
action is called commensalism. In the commensalism phase 
of SOS, an organism Xi increases its beneficial advantage by 

(3)Xnew
i

= Xi + (r2 ∗ Xj − Xk) ∗ fi

(4)Xnew
i

= Xi + r1 ∗ (Xbest −MutualVector ∗ BF1)

(5)Xnew
j

= Xj + r2 ∗ (Xbest −MutualVector ∗ BF2)

(6)MutualVector = (Xi + Xj)∕2
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interacting with another organism Xj to a higher degree of 
adaptation in the ecosystem, but Xj remains the same. The 
new fitness value of Xi is determined by Eq. (7) and updates 
the new Xi if its fitness value is better than the previous Xi.

where, Xbest is the best organism according to the fitness 
value in the ecosystem and r3 is any random number between 
−1 and 1.

3.3  Parasitism phase

On the interaction of two organisms, if one organism gets 
benefited but the other organism gets harmed, then this inter-
action is called a parasitism relationship in an ecosystem. In 
the SOS algorithm, a parasite vector, namely ParasiteVector is 
determined by duplicating an organism Xi . The ParasiteVector 
is obtained in the following way:

∙ Select one dimension randomly from the dimensions of 
organism Xi i.e. from 1, 2, 3, ...D.

∙ Randomly modify the selected dimension using Eq. (8) 
and replace the position of the dimension into Xi.

Where, r4 is a random number between 0 and 1.
If the objective function value of the ParasiteVector is 

superior to that of Xj , ParasiteVector will replace Xj in the 
ecosystem. If the reverse happens, Xj is sustained and the 
ParasiteVector leaves the ecosystem.

4  Proposed methodology

An efficient and robust algorithm can be developed only 
when the balance between exploring new areas in search 
space and exploiting prior knowledge that has been already 
gathered in the search process is assured. When explora-
tion is better than exploitation, diversification becomes poor 
and causes premature convergence. On the other hand, when 
exploitation is better than exploration, it causes poor intensi-
fication, and thus the algorithm’s convergence rate becomes 
slower. The proposed meta-heuristic seems to have a bril-
liant combination of exploration and exploitation using both 
the global and local phases of BOA together with mutualism, 
commensalism, and parasitism steps of SOS. The proposed 
h-BOASOS seems to have the co-ordination of exploring 
the global search process, together with the exploitation of 
the search process.

BOA uses a random number r in order to update the loca-
tion of butterflies. The choice of the search process of but-
terflies depends on a factor known as switch probability. In 

(7)Xnew
i

= Xi + r3 ∗ (Xbest − Xj)

(8)Xi,d = ld + r4 ∗ (ud − ld)

the original BOA, the switch probability (p) was taken as 
0.8. So, when the value of random number r is less than 0.8, 
the butterflies move into the global search phase, indicating 
that most butterflies move towards the global phase when a 
smaller number of butterflies choose the local search phase. 
This makes the algorithm weaker in exploration in the search 
space though it is relatively more robust in exploiting the 
search process.

On the other hand, SOS is known for its stronger local 
searchability. The mutualism and commensalism phases 
concentrate on generating new organisms and select the 
best organism for survival. Provided that a new solution is 
updated relied on the best organism, the convergence rate 
often speeds up; however, local solutions may occur. The 
mathematical equations of these two phases show that the 
algorithm allows the organisms to search in the domain to 
discover near the best solutions they already obtained in 
the search space, thereby improving the exploitation ability 
of the algorithm. Again, the parasitism phase enables the 
search process to avoid the solution from trapping in local 
optima, thus improving the exploration ability of the algo-
rithm. The improvements happen because a new candidate 
solution, namely, ParasiteVector is generated in the ecosys-
tem by replacing some random elements of the organism 
Xi with other elements. Then ParasiteVector is compared to 
another randomly selected organism in the ecosystem. Also, 
in the mutualism phase, two organisms update their mutual 
existence from their interaction and the same organisms 
that already updated their position through mutualism again 
update their positions to attain the global optima in the com-
mensalism phase. These double impacts help the algorithm 
to expedite the convergence rate and make the algorithm 
competitive than other meta-heuristic algorithms.

From the above observations, to overcome the lacunae 
of both the algorithms, we have tried to construct a better 
algorithm by combining the above two algorithms BOA and 
SOS to propose a novel hybrid algorithm for optimization 
and named it h-BOASOS. The descriptions of BOA and SOS 
has already been given in Sects. 2 and 3 for convenience.

The main objective of the proposed algorithm is to com-
bine the exploration and exploitation skill of SOS with the 
exploration facility of BOA. The original SOS has great 
exploitation strength, and the reason behind it is already 
explained above, whereas, in contrast, the basic BOA has 
very efficient exploration capability as the majority of the 
butterflies in the swarm choose the global phase of the algo-
rithm. Thus, the proposed h-BOASOS algorithm owns an 
excellent convergence speed, can come out from the possi-
ble entrapment in the local optima, and possesses an excel-
lent computational ability. Pseudo-code and flowchart of 
the proposed h-BOASOS are given in Table 1 and Fig. 1 
respectively.
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4.1  Parameters used in the proposed h‑BOASOS

In the proposed hybrid h-BOASOS, the parameters of both 
the component algorithms, BOA and SOS are incorporated. 
The value of the parameters are given in Table 2.

4.2  Iterative technique used in proposed h‑BOASOS

The newly suggested h-BOASOS combines the concepts of 
BOA and SOS and generates solutions in every new genera-
tion by using different operators and mechanisms of BOA 

and SOS. The steps of the h-BOASOS can be described as 
follows:

Step 1: Generate the initial candidate solutions randomly 
to create an initial population.

Step 2: For each candidate solution, the fragrance is gen-
erated using the formulation as a function of the physical 
intensity of stimulus using Eq. 1.

Step 3: For the iterative phase, one random number r is 
generated and checked with the switching probability (p).

Step 4: If the global exploration has opted, the candidate 
solution gets updated using Eq. 2.

Table 1   Pseudo-code of the proposed h-BOASOS algorithm

Input:
Objective function f(X), X = (X1,X2, ....Xdim) , where dim is the total number of dimensions;
Maxiter : maximum number of iteration
%Initialization%
Set Initial generation/iteration number G = 0 ; Generate initial population of n Butterflies Xi(i = 1, 2, ....n);
Stimulus Intensity Ii of Xi is determined by f (xi).
Initialize the parameters: BF1 (Benefit Factor 1), BF2 (Benefit Factor 2), C (sensor modality), a (power exponent),
 P (switch probability),  and  MutualVector

While stopping criteria do not met do
   For each butterfly in the population do
   Calculate fragrance for each butterflies using Eq.(1)
   End For
    Find the best solution;
   For each butterfly xi in the population do
   Generate a random number r from [0,1]
      If r < p then

%Gobal Phase%
   Move towards best butterfly using Eq. (2)
      Else

%Local Phase%
   Move randomly using Eq.  (4)
   End If
   Calculate fitness value of the new Butterfly and update;

% Mutualism Phase%
   Randomly select one Butterfly xj ( i ≠ j);
   Evaluate the mutual relationship vector of xi and xj using Eq. (3);
   Update population xi and xj using Eqs. (5) & (6);
   Calculate the fitness of xi and xj;

Commensalism Phase
   Randomly select one population xj ( i ≠ j);
   Update xi with the aid of xj using Eq. (7);
   Calculate the fitness of popi;

 Parasitism Phase
   Make a parasite vector by firstly duplicating popi and then randomly updating the dimensions;
   Evaluate the fitness of the parasitevector and compare with the host;
   End For

End While
Output: The best solution found.
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Step 5: If the local phase is selected, the candidate solu-
tion takes a random search and updates using Eq. 3.

Step 6: The fitness value of each candidate solution is 
checked with the previous one and replaced if needed.

Step 7: The updated solution goes for the mutualism 
phase by choosing a random solution from the search space 
and find the mutual Vector using Eq. 6.

Step 8: With the mutual Vector, both of the candidate 
solutions are updated by using Eqs. 4 and 5.

Fig. 1  Flowchart diagram of the 
proposed h-BOASOS

Table 2  Values of parameters of the proposed algorithms

Parameter Value

Population size (NP) 50
Modular modality (C) 0.01
Power exponent (a) 0.1–0.3 (Increases uniformly)
Switch probability (p) 0.8
BF1 1 or 2 (Randomly)
BF2 1 or 2 (Randomly)
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Step 9: In the commensalism phase, the opted candidate 
solution is updated using Eq. 7.

Step 10: In the parasitism phase, one ParasiteVector is 
formed and checked with the recent candidate solution and 
replaced if needed.

Step 11: The fitness of all the candidate solution is 
obtained and checked with the fitness of the previous one.

Step 12: The approach is stopped when the termination 
condition (maximum number of iterations) has been reached.

5  Experimental setup

In this section, the experimental set-up that we have per-
formed to show the proposed algorithm’s superiority is dis-
cussed briefly.

To check the efficiency, the h-BOASOS algorithm is 
tested on 35 different benchmark functions of varying com-
plexity as shown in Tables 3 and 4. These benchmark func-
tions are chosen to examine various features of the algorithm 
such as convergence rate, attainment of a large number of 
optimal points, ability to jump out of local optima, and avoid 
premature convergence. The stopping criteria can be defined 
in different ways like maximum CPU time used, maximum 
iteration number reached, the maximum number of iterations 
with no improvement, a particular value of the error rate, or 
any other appropriate criteria. In our case, we have taken 
the maximum number of iteration as the stopping criterion.

6  Results and discussions

6.1  Comparison with some state‑of‑the‑art 
algorithms

To measure the performance of a meta-heuristic, several 
tests should be conducted to approve an algorithm’s per-
formance. As these algorithms are stochastic in nature, it 
should be carefully noticed that an appropriate and a suffi-
cient number of test functions and case studies are engaged 
to assure that the obtained results are occurring through its 
solid mathematical base and not by chance.

In the present study, a set of 35 classical benchmark func-
tions of varied complexities are considered from literature 
to examine the competence of the proposed h-BOASOS, 
and the performance is compared with some state-of-the-
art meta-heuristics, including BOA and SOS. Knowing the 
meta-heuristics’s stochastic nature, each of the algorithms is 
run 30 times to avoid the variability of the results. For this 
comparative analysis, the population size is fixed at 50; the 
maximum number of iterations is taken as 10,000. The perfor-
mance of h-BOASOS over the aforesaid benchmark functions 
is compared with 12 (twelve) state-of-the-art algorithms: two 
component algorithms (BOA and SOS) and 10 (ten) popu-
lar meta-heuristics DE [45], PSO [46] and JAYA [48] sine 
cosine algorithm (SCA) [49], artificial bee colony ABC [47], 
cuckoo search (CS) [51], firefly algorithm (FA) [52], GA [53], 
monarch butterfly optimization (MBO) [54], and moth flame 
optimization (MFO) [50]. To compare the performances of 
the algorithms, simulation results containing the average 

Table 3  Unimodal classical benchmark functions

Function 
ID

Name Formulation of problem Dim Range fmin

f2 Cigar f (x) = x2
1
+ 106

∑D

i=2
x2
i

30 [−100, 100] 0

f3 Step f (x) =
∑D

i=1
(xi + 0.5)2 30 [−100, 100] 0

f4 Quadratic f (x) =
∑D

i=1
i ∗ x4

i
+ random(0, 1) 30 [−1.28, 1.28] 0

f12 Rosenbrock f (x) =
∑D

i=1
[100(xi+1 − x2

i
)2 + (xi − 1)2] 30 [−30, 30] 0

f13 Schwefel 1.2 f (x) =
∑D

i=1

∑i

j=1
x2
j

30 [−100, 100] 0

f14 Schwefel 2.21 f (x) = max|xi|, 1 ≤ i ≤ D 30 [−100, 100] 0
f15 Schwefel 2.22 f (x) =

∑D

i=1
�xi� +

∏D

i=1
�xi� 30 [−10, 10] 0

f18 Matyas f (x) = 0.26(x2
1
+ x2

2
) − 0.48x1x2 2 [−10, 10] 0

f19 Powell f (x) =
∑D∕4

i=1
(x4i−3 + 10x4i−2)

2 + 5(x4i−3 + 10x4i−2)
2 + (x4i−2 + 2x4i−1)

4 + 10(x4i−3 − x4i)
4 30 [− 100, 100] 0

f20 Sum Square f (x) =
∑D

i=1
x2
i
∗ i 30 [−10, 10] 0

f21 Zettl f (x) = (x − 12 + x − 22 − 2x1)
2 + 0.25x1 2 [-1, 5] − 0.0003075

f26 Brown f (x) =
∑D−1

i=1
(xi)

2x
2

i+1
+1

+ (xi+1)
2x

2

i
+1 30 [−1, 4] 0

f32 Booth f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 2 [−1010] 0
f34 Dejong5 f (x) = (0.002 +

∑25

i=1

1

i+(x1−a1i)
6+(x2−a2i)

6
)−1 2 [−65.536, 65.536]

f35 Tablet f (x) = (106)(x2
1
) +

∑D

i=2
x6
i

2 [−100100]
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results (MEAN) and the corresponding standard deviations 
(STD) are recorded for each algorithm. Firstly, the results of 
h-BOASOS and six other algorithms (BOA, SOS, DE, PSO, 
JAYA, and SCA) are recorded in Tables 5 and 6 . Secondly, 
the newly suggested algorithm is compared with six other 
meta-heuristics (ABC, CS, FA, GA, MBO, and MFO), and 
the results are shown in Tables 7 and 8.

From the simulation results shown in Table 5, it can be 
interpreted that the performance of the proposed h-BOASOS 
is better than the basic BOA and SOS in terms of searching 
function minimum. From this table, it is found that h-BOA-
SOS is superior to BOA and SOS in 17 and 16 benchmark 
functions, similar to 16 and 12 functions, and inferior in 2 
and 7 occasions, respectively.

To evaluate the performance of proposed h-BOASOS, it 
is compared to ten other state-of-the-art algorithms, which 
are the best performing and produce a satisfactory perfor-
mance when applied to global optimization problems. These 
algorithms are widely employed to compare the performance 
of optimization algorithms, and the results are recorded in 
Tables 5 and 7.

The observation can be made from Table 5, h-BOASOS 
obtained superior solution than DE, PSO, JAYA, and SCA 
in 23, 29, 24, and 33 functions, similar in 5, 3, 3, 1 cases and 
inferior in 7, 3, 6, 1 occasions.

By Table 7, it can be evaluated that h-BOASOS generate 
superior solution compared to ABC, CS, FA, GA, MBO, 
and MFO in 28, 33, 22,28, 29, and 15 benchmark functions. 
h-BOASOS obtained similar results with the said algo-
rithms in 2, 1, 7, 2, 3, and 19 functions. Again, h-BOASOS 
is inferior to the algorithms in 5, 1, 6, 5, 3, and 1 occasions 
(Tables 9, 10).

6.2  Statistical rank test

Also, to evaluate the statistical performance of the newly 
developed algorithm, we have introduced the Friedman rank 
test, a non-parametric statistical test considering all the algo-
rithms and mean values found by the respective algorithms 
found on the Tables 5, 6, 7 and 8 . The mean rank found for 
all the algorithms after performing the Friedman’s test is 
given in Tables 11, 12. From these two tables, it is evident 

Table 4  Multimodal classical benchmark functions

Function 
ID

Name Formulation of problem Dim Range fmin

f1 Sphere f (x) =
∑D

i=1
x2
i

30 [−100, 100] 0

f5 Bohachevsky f (x) = x2
1
+ 2x2

2
− 0.3cos(3�x1) − 0.4cos(4�x2) + 0.7 2 [−100, 100] 0

f6 Ackley
f (x) = 20 + e − 20e

1∕D(
√

1∕D
∑D

i=1
x2
i
) 30 [−100, 100] 0

f7 Griewank f (x) =
∑D

i=1
x2
i
∕4000 −

∏D

i=1
cos(xi∕

√
i) − 1 30 [−100, 100] 0

f8 Levy f (x) = sin2(3�x1) + (x1 − 1)2[1 + sin2(3x2)] + (x1 − 1)2sin2(2�x2) 2 [−10, 10] 0
f9 Rastrigin f (x) = 10D +

∑D

i=1
[x2

i
− 10cos(2�xi)] 30 [−5.12, 5.12] 0

f10 Alpine f (x) =
∑D

i=1
�xisin(xi) + 0.1xi� 30 [−10, 10] 0

f11 Schaffer f (x) = (x2
1
+ x2

2
)0.25[50(x2

1
+ x2

2
)0.1 + 1] 2 [−100, 100] 0

f16 Schwefel 2.26 f (x) = −
∑D

i=1
[xisin(

√
�xi�)] 30 [−500, 500] −418.982

f17 Goldstein price f (x) = [1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1
− 14x2 + 6x1x2 + 3x2

2
)] ∗ ..[30 + (2x1 − 3x2)

2

(18 − 32x1 + 12x2
1
+ 48x2 − 36x1x2 + 27x2

2
)]

2 [−2, 2] 3

f22 Foxholes f (x) = [
1

500
+
∑25

j=1

1

j+
∑D

i=1
x1−a

6

ij

]
−1 2 [−65.536, 65.5360] 0.0003075

f23 Branin
f (x)(x2 −

5.1x2
1

4�2
+

5x1

�
− 6)

2

+ 10(1 −
1

8�
)cos(x1) + 10

2 [[−50], [1015]] 0.3978873

f24 Kowalik f (x) =
∑11

i=1
[ai − x1(b

2

i
+ bix2)∕b

2

i
+ bix3 + x4]

2 30 [−50, 50] 0

f25 eliptic f (x) =
∑D−1

i=1
(yi − 1)2[1 + 10sin2(�yi+1) + (yD − 1)2]..... +

∑D

i=1
u(xi, 10, 100, 4)

+�∕D10sin2(�y1)

30 [−50, 50] 0

f27 Levy N.13 f (x) = sin2(3�x1) + (x1 − 1)2[1 + sin2(3�x2)] + (x2 − 1)2[1 + sin22�x2] 2 [−10, 10] 0
f28 Scaffer 4 f (x) =

∑D

i=1

∑5

j=1
jcos((j + 1)xi + j) 2 [-10, 10] − 25.740858

f29 Bohachevsky2 f (x) = x2
1
+ 2x − 22 − 0.3cos(3�x1).0.4cos(4�x2) + 0.3 2 [−100, 100] 0

f30 Bohachevsky3 f (x) = x2
1
+ 2x2

2
− 0.3cos(3�x1 + 4�x2) + 0.3 2 [−100, 100] 0

f31 Perm func 0, 
d, �

f (x) =
∑D

i=1
(
∑D

j=1
(j + �)(xi

j
−

1

ji
)2 30 [−30, 30] 0

f33 Dixon Price f (x) = (x1 − 1)2 +
∑D

i=2
i(2x2

i
− xi−1)

2 30 [−10, 10] 0
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Table 5   Simulation results of h-BOASOS and other state-of-the-art algorithms for functions 1 to 28 with NP=50 and 30 execution each with 
10,000 iterations

Function ID h-BOASOS BOA SOS DE PSO JAYA SCA

 1 MEAN 0 0 6.03E-173 2.62E-165 1.77E-51 2.68E-39 0
STD 0 0 0 0 1.12E-50 3.40E-39 4.84E-04

 2 MEAN 0 0 0 1.41E-172 3.10E-53 1.97E-26 1.53E+05
STD 0 0 0 0 2.11E-52 1.60E-26 2.24E+05

 3 MEAN 0 0 0 1.30E-01 1.31E-31 0 2.00E-04
STD 0 0 0 4.85E-01 6.65E-31 0 1.00E-04

 4 MEAN 1.33 3.89E-05 1.74 2.62E-03 3.74 2.10 0
STD 1.48E-01 2.90E-05 2.05E-01 1.05E-03 1.03 2.55E-01 1.40E-03

 5 MEAN 0 0 0 0 3.04E-02 0 4.33E-03
STD 0 0 0 0 2.62E-17 0 1.90E-02

 6 MEAN 8.88E-16 1.72 1.00E-15 1.72 1.82E+01 4.44E-15 3.85E-03
STD 0 0 6.38E-16 0 5.48 0 1.00E-02

 7 MEAN 0 1.85E-19 0 9.22E-17 4.05E+01 4.47E-01 1.74E-01
STD 0 2.69E-20 0 2.05E-17 4.13E+01 7.83E-02 2.12E-01

 8 MEAN 3.72E-04 4.41E-01 6.73E-23 5.98E-02 4.93 1.35E-31 1.17
STD 6.09E-04 5.75E-02 1.95E-22 2.08E-01 6.00 6.68E-47 2.29E-01

 9 MEAN 0 0 0 1.25E+01 1.45E+02 2.89 1.50E-02
STD 0 0 0 3.31 3.80E+01 3.31 4.04E-02

 10 MEAN 0 0 0 6.90E-16 4.44E-02 4.52E-08 1.02E-10
STD 0 0 0 2.58E-15 4.53E-01 1.33E-07 4.19E-10

 11 MEAN 0 0 4.85E-16 0 0 5.73E-11 2.00E-08
STD 0 0 2.74E-16 0 0 3.87E-11 5.33E-08

 12 MEAN 8.48 2.88E+01 1.82E-01 2.36E+01 2.57E+02 5.17E-01 2.88E+01
STD 5.58E-01 3.13E-02 1.20E-01 4.99 3.73E+02 9.01E-01 3.33E-02

 13 MEAN 0 0 0 1.14E-175 1.20E+03 1.49E-38 4.52E+04
STD 0 0 0 0 5.45E+02 1.68E-38 3.07E+04

 14 MEAN 0 7.00E-153 2.27E-74 1.02 1.06E-01 2.67E-09 3.71
STD 0 1.48E-152 2.41E-74 4.60E-01 6.54E-02 2.47E-09 1.78

 15 MEAN 0 0 1.24E-86 8.15E-91 7.28E+01 2.68E-21 3.20E-03
STD 0 0 1.26E-86 1.23E-90 2.27E+01 2.01E-21 7.59E-03

 16 MEAN − 6.52E+03 − 2.27E+03 − 4.19E+02 − 4.57E+12 − 7.57E+03 − 5.11E+03 − 4.19E+02
STD 8.06E+02 4.56E+02 0 3.19E+12 8.89E+02 3.48E+02 0

 17 MEAN 3.00 3.00 3.00 3.00 3.00 3.00 3.00
STD 6.43E-06 0 1.94E-15 0 0 8.46E-04 1.19E-05

 18 MEAN 0 0 2.62E-43 0 0 3.70E-21 0
STD 0 0 5.87E-43 0 0 1.42E-20 0

 19 MEAN 0 0 7.51E-13 1.31E+02 3.37E+03 1.10E-08 7.73E-05
STD 0 0 3.99E-12 1.85E+02 9.52E+02 1.08E-08 3.48E-04

 20 MEAN 0 0 1.09E-117 1.46E-19 9.20E+02 2.43E-81 1.40E+01
STD 0 0 3.94E-117 1.18E-19 8.27E+02 1.26E-80 4.05

 21 MEAN − 3.79E-03 − 3.79E-03 − 3.79E-03 − 3.79E-03 − 3.79E-03 − 3.79E-03  − 3.52E-03
STD 1.29E-05 0 1.76E-18 4.57E-19 0 8.05E-09 1.03E-03

 22 MEAN 9.98E-01 2.84 9.98E-01 9.98E-01 1.20 9.99E-01 1.61
STD 1.13E-03 2.55 2.92E-16 0 9.12E-01 2.87E-03 1.15

 23 MEAN 3.98E-01 4.98E-01 3.98E-01 3.98E-01 3.98E-01 3.99E-01 3.98E-01
STD 1.58E-05 1.47E-01 3.17E-07 0 5.95E-08 1.60E-03 5.94E-07

 24 MEAN 3.73E-04 6.66E-04 3.27E-04 3.07E-04 4.05E-04 3.72E-04 4.67E-04
STD 9.98E-05 7.52E-04 7.60E-05 1.25E-08 2.44E-04 1.38E-04 2.50E-04



2907Engineering with Computers (2022) 38:2897–2923 

1 3

that the rank of the proposed hybrid h-BOASOS is minimum 
in both cases. Table 6 shows that the algorithms’ respec-
tive ranks are 1 for h-BOASOS with mean rank 2.29, 2 for 
SOS, 3 for BOA, 4 for DE, 5 for JAYA, and 6 for PSO from 
the Table 11. Also, from Table 12, it can be seen that the 
first mean rank holder is the proposed h-BOASOS, the sec-
ond is ABC, third-GA, fourth-MBO, fifth-CS, sixth-MFO, 
and seventh is FA. Finally, an overall Friedman rank test 
is also performed considering all the compared algorithms, 
shown in Table 13. Evaluating Table 13, we can rank 1 for 
h-BOASOS with minimal mean rank (3.49), 2 for ABC with 
3.78 mean rank, 3 for SOS with mean rank 4.40, followed 
by BOA, DE, JAYA, GA, MBO, CS, SCA, PSO, MFO, and 
FA. So it may be concluded that the proposed h-BOASOS 
is statistically superior to all of the compared algorithms.

6.3  Convergence analysis

To verify the convergence speed of h-BOASOS, some of 
the convergence graphs with its component algorithms BOA 
and SOS, as well as with other five well-known algorithms 
DE PSO, JAYA, SCA, and MFO are presented in Fig. 2a–f. 

Different unimodal and multimodal functions for which con-
vergence graphs are given here are Booth, Ackley, Branin, 
Dejong5, Griewank, Levy N.13, Schaffer 4, and Foxholes 
functions. The best candidate solution’s fitness value in each 
iteration is considered to draw convergence curves in these 
figures. From these figures, it can be concluded that the 
proposed h-BOASOS algorithm converges faster for both 
types of functions, which establishes that the exploration and 
exploitation capacities of the proposed algorithm are more 
balanced than the other chosen algorithms.

7  Real world problem

7.1  Gear train design problem

Gear Train Design Problem: The main objective of this engi-
neering design problem is to minimize the gear ratio for a 
given set of four gears of a train. The number of teeth of the 
gears is the parameter here. It is an unconstrained problem, 

Table 5  (continued)

Function ID h-BOASOS BOA SOS DE PSO JAYA SCA

 25 MEAN 0 0 0 1.99E-153 1.40E-08 3.70E+03 2.30E+03

STD 0 0 0 2.64E-153 2.20E-08 1.09E+03 6.19E+03
 26 MEAN 0 0 0 2.26E-154 1.17E-13 9.17E-03 5.74E-06

STD 0 0 0 1.64E-154 2.10E-13 3.30E-03 1.28E-05
 27 MEAN 0 1.23 1.35E-31 2.72E-19 1.41 1.35E-31 9.28E-04

STD 0 7.74E-01 6.68E-47 4.72E-19 1.80 6.68E-47 2.57E-03
 28 MEAN 0 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.00E-01

STD 0 1.36E-05 0 2.85E-06 3.39E-05 3.65E-06 0

Table 6   Simulation results of 
h-BOASOS and other state-of-
the-art algorithms for functions 
29 to 35 with NP=50 and 30 
execution each with 10,000 
iterations

Function ID h-BOASOS BOA SOS DE PSO JAYA SCA

 29 MEAN 0 0 0 2.01E-07 5.29E+01 0 3.13E-03
STD 0 0 0 5.41E-07 8.74E+01 0 9.54E-03

 30 MEAN 0 0 0 4.45E-05 4.02E+01 2.04E-17 1.60E-04
STD 0 0 0 6.10E-05 8.14E+01 1.11E-16 5.14E-04

 31 MEAN 0 8.79E+03 1.13E-05 1.01E+58 5.49E+21 1.71E+02 2.51E+76
STD 0 5.57E-12 1.57E+02 3.11E+58 3.01E+22 2.70E+02 1.17E+77

 32 MEAN 0 2.07E-02 0 7.10E-05 1.58 0 1.34E-03
STD 0 2.46E-02 0 8.69E-05 2.98 0 2.63E-03

 33 MEAN 0 9.86E-01 6.67E-01 2.46E+03 1.66E+01 6.45E-01 3.19E+03
STD 0 1.45E-03 1.41E-16 7.23E+02 1.18E+01 1.22E-01 1.70E+04

 34 MEAN 0 1.75 9.98E-01 9.98E-01 9.17 9.98E-01 1.30
STD 0 9.07E-01 1.13E-16 1.27E-16 8.56 4.36E-04 7.02E-01

 35 MEAN 0 0 0 5.29E-306 1.19E-13 1.19E+05 2.50E+09
STD 0 0 0 0 6.08E-13 1.77E+05 9.48E+09
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Table 7  Simulation results of functions 1 to 27 of h-BOASOS and some other algorithms with NP=50 and 30 execution each with 10,000 itera-
tions

f(x) h-BOASOS ABC CS FA GA MBO MFO

 1 MEAN 0 2.58E-01 6.49E-61 7.87E-04 2.20E-02 2.21E-01 0
STD 0 5.13E-01 9.77E-61 1.37E-04 9.68E-03 1.41E-01 0

 2 MEAN 0 8.43E-03 5.54E-63 1.08E-05 2.20E-04 3.40E-04 0
STD 0 2.30E-02 8.93E-63 1.46E-06 1.10E-04 4.79E-04 0

 3 MEAN 0 2.23E-01 1.22 0 2.30E-02 3.17E+04 1.13E-04
STD 0 4.83E-01 1.49 0 1.05E-02 2.57E+04 9.87E-05

 4 MEAN 7.9526 5.14E-01 1.24E+01 5.96E-02 2.74E-03 3.49E-03 9.12E-02
STD 3.25E-01 1.31E-01 1.42 2.48E-02 8.51E-04 6.23E-03 4.64E-02

 5 MEAN 0 0 4.92E-04 0 0 0 0
STD 0 0 8.67E-04 0 0 0 0

 6 MEAN 8.88E-16 3.65 1.71E+01 7.73E-04 4.67E-02 1.31E+01 8.88E-16
STD 0 6.94E-01 5.46 4.81E-05 1.68E-02 9.42 0

 7 MEAN 0 5.48E-01 2.01E+01 1.07E-07 5.56E-02 4.31E+02 0
STD 0 2.72E-01 4.31E-02 1.31E-08 2.95E-02 1.65E+02 0

 8 MEAN 4.47E-04 3.08E-02 1.62E+01 1.20 1.37E-04 3.16E+01 2.47
STD 6.97E-04 4.82E-02 1.19E+01 1.67 7.66E-05 6.32E+01 3.68E-01

 9 MEAN 0 2.36E+01 1.08E+02 3.47E+01 1.65E+01 6.38E+01 0
STD 0 5.49 5.00E+01 9.55 4.11 4.30E+01 0

 10 MEAN 0 6.06 1.06E+01 1.19E-02 3.15E-17 1.97E-01 0
STD 0 6.16E-01 4.23 6.43E-03 3.08E-16 3.77E-01 0

 11 MEAN 0 8.62E-16 9.82E-01 1.43E-02 1.69E-17 6.68E-04 0
STD 0 8.54E-16 7.87E-01 5.35E-03 1.69E-16 8.09E-04 0

 12 MEAN 2.89E+01 1.25E+02 3.95E+01 1.84E+01 3.79E+01 7.14 2.89E+01
STD 1.79E-01 8.77E+01 3.34E+01 4.24 2.53E+01 1.43E+01 6.80E-02

 13 MEAN 0 2.37E-02 4.06E-02 5.24E-02 2.42E-03 1.12E+05 0
STD 0 4.19E-02 6.06E-02 6.71E-02 1.07E-03 1.98E+04 0

 14 MEAN 0 1.01E-01 3.67E-03 1.43E-04 4.67E-02 3.54 0
STD 0 6.61E-01 1.58E-03 1.49E-05 1.09E-02 4.00 0

 15 MEAN 0 1.43E-01 1.12E+01 1.50E-03 5.44E-02 7.02E-03 0
STD 0 6.84E-02 2.50E+01 1.13E-04 1.62E-02 2.96E-03 0

 16 MEAN − 6.44E+03 − 1.05E+04 − 1.09E+02 − 7.15E+03 − 1.19E+04 − 3.94E+04 − 4.18E+02
STD 7.77E+02 2.94E+02 1.08E+01 9.10E+02 2.95E+02 5.71E+04 2.47

 17 MEAN 3.00 3.00 3.00 3.00 3.00 3.00 1.32E+01
STD 4.91E-06 6.47E-12 0 0 0 2.96E-03 1.83E+01

 18 MEAN 0 1.19E-04 1.33E-06 0 8.39E-104 0 0
STD 0 1.30E-04 2.16E-06 0 2.52E-103 0 0

 19 MEAN 0 1.52E+01 6.64 2.40E-04 3.27E-02 3.44E+03 0
STD 0 1.11E+01 7.00 4.76E-05 1.11E-02 2.63E+03 0

 20 MEAN 0 1.21E-02 2.10E+01 1.46E-06 3.43E-03 7.69E+03 0
STD 0 1.30E-02 1.16E+01 3.20E-07 2.63E-03 1.07E+03 0

 21 MEAN − 3.79E-03 − 3.79E-03 − 3.79E-03 − 3.79E-03 − 3.79E-03 2.01E-01 − 3.29E-03
STD 1.36E-05 5.71E-18 4.45E-07 4.57E-19 4.57E-19 2.23E-01 1.11E-03

 22 MEAN 9.98E-01 9.98E-01 1.30E+01 1.27E+01 1.55E+01 1.27E+05 7.03
STD 1.13E-03 0 5.35E+01 1.87E-15 0 0 4.61

 23 MEAN 3.98E-01 3.98E-01 1.84 3.98E-01 3.98E-01 3.98E-01 4.64E-01
STD 1.58E-05 0 1.11 5.85E-17 1.00E-09 3.27E-04 7.80E-02

 24 MEAN 3.73E-04 1.05E-03 1.23 2.91E-02 1.32E-03 3.01E-03 8.97E-03
STD 9.98E-05 1.08E-04 1.51 3.17E-02 3.85E-04 3.29E-03 1.02E-02
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but the ranges of variables are considered as constraints. The 
schematic diagram of the system is shown in Fig. 7 The gear 
ratio is calculated as follows:

The mathematical formulation of this problem is as follows:

Subject to

This problem is solved with h-BOASOS, and the results 
are compared to MFO, ABC, MBA, GA, CS, and ISA in 
Table 14. Table 14 shows that the h-BOASOS algorithm 
finds the better optimal gear ratio value than MFO, ABC, 
MBA, GA CS, and ISA. The obtained result proves that 
h-BOASOS can be useful in solving discrete problems as 
well. All the results except h-BOASOS have been taken from 
[55].

Gear ratio =
(angular velocity of output shaft)

(angular velocity of input shaft)

Minimize f (x) =

(
1

6.931
−

xcxb

xaxd

)2

12 ≤ xa, xb, xc, xd ≤ 60

Table 7  (continued)

f(x) h-BOASOS ABC CS FA GA MBO MFO

 25 MEAN 0 1.03E-28 2.06E+09 1.40E+09 1.00E-03 2.07E+08 0

STD 0 1.52E-28 5.37E+08 2.54E+08 5.93E-04 2.19E+08 0
 26 MEAN 0 4.73E-31 1.00E+10 8.46E-263 3.28E-05 2.95E+01 0

STD 0 7.26E-31 0 0 3.93E-05 3.63E+01 0
 27 MEAN 0 1.58E-12 7.84E-01 1.35E-31 2.27E-10 6.24E-16 5.00E-01

STD 0 1.20E-12 1.97E-01 0 5.14E-10 5.94E-16 3.69E-05

Table 8  Simulation results of 
functions 28 to 35 functions 
of h-BOASOS and some other 
algorithms with  NP=50 and 
30 execution each with 10,000 
iterations

f(x) h-BOASOS ABC CS FA GA MBO MFO

 28 MEAN 0 5.00E-01 5.00E-01 5.00E-01 5.00E-01 5.0009 5.00E-01
STD 0 0 1.30E-04 2.95E-05 1.43E-05 0 3.69E-05

 29 MEAN 0 1.72E-10 1.19E+02 0 4.21E-02 3.16E-16 0
STD 0 1.23E-10 7.05E+01 0 1.17E-01 4.73E-16 0

 30 MEAN 0 1.45E-08 1.40E+02 0 2.79E-09 1.73E-13 0
STD 0 1.64E-08 1.56E+02 0 2.89E-09 2.57E-13 0

 31 MEAN 0 4.93E+73 7.98E+05 1.67E+12 1.59E+02 3.59E+81 2.29E+03
STD 0 9.88E+73 8.59E+05 2.28E+11 2.16E+02 1.05E+82 9.47E+02

 32 MEAN 0 2.23E-11 5.25 0 1.17E-09 5.48E-04 7.24E-01
STD 0 1.75E-11 4.52 0 1.18E-09 1.72E-01 1.02

 33 MEAN 0 6.67E-01 1.65E+06 1.37E+03 1.11 1.06e+06 9.98E-01
STD 0 0 3.56E+05 6.27E+02 1.37 7.12e+05 3.29E-03

 34 MEAN 0 9.98E-01 4.74E+01 2.68 6.73 0.998 5.02
STD 0 0 2.04E+01 1.92 4.74 0 3.44

 35 MEAN 0 9.75E+07 1.00E+10 1.37E+12 3.42 3.80E+11 0
STD 0 9.39E+07 0 2.82E+11 3.16 1.31E+11 0

Table 9  Comparison of experimental results of Tables 5 and 6, where 
the numbers represent the number of functions  

 Algorithms Superior to Similar to Inferior to
to to to

BOA 17 16 2
SOS 16 12 7
DE 23 5 7
PSO 29 3 3
JAYA 24 3 6
SCA 33 1 1

Table 10  Comparison of experimental results of Tables  7 and 8, 
where the numbers represent the number of functions

 Algorithms Superior Similar Inferior
to to to

ABC 28 2 5
CS 33 1 1
FA 22 7 6
GA 28 2 5
MBO 29 3 3
MFO 15 19 1
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7.2  Cantilever beam design problem

A beam is a structural element that is capable of withstand-
ing load primarily by resisting bending. Here the cantilever 

beam has five square-shaped hollow elements. Figure 8 
depicts that each element acts as one variable with the thick-
ness as constant, so there are five structural parameters in 
total. It may be seen from Fig. 8 that a vertical load also acts 

Table 11  Friedman’s rank test 
with compared algorithms from 
Tables 5 and 6

Algorithms h-BOASOS BOA SOS DE PSO JAYA SCA

Mean Rank 2.29 3.46 2.94 3.90 5.53 4.50 5.38
Rank 1 3 2 4 7 5 6

Table 12  Friedman’s rank test 
with compared algorithms from 
Tables 7 and 8

Algorithm h-BOASOS ABC CS FA GA MBO MFO

Mean Rank 2.19 2.31 4.50 6.06 3.75 3.97 5.22
Rank 1 2 5 7 3 4 6

Table 13  Friedman’s rank 
test with all of the compared 
algorithms

Algorithm h-BOASOS BOA SOS DE PSO JAYA SCA ABC CS FA GA MBO MFO

Mean Rank 3.49 5.16 4.40 5.87 9.12 6.57 8.51 3.78 8.07 11.25 7.26 7.69 9.82
Rank 1 4 3 5 11 6 10 2 9 13 7 8 12
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to the free end of the beam (node 6), and the right side of the 
beam (node 1) is rigidly supported. Minimizing the weight 
of the beam is the objective here. One vertical displacement 
constraint is there that should be taken care of by the final 
optimal design. The mathematical formulation of the prob-
lem may be represented as:

The problem has been solved by h-BOASOS, and the results 
are compared with some other methods viz., ALO, CS, SOS, 
CGA-I, CSA-II, and MMA. The results other than h-BOA-
SOS are taken from [57]. It has been found from Table 15 
that the proposed method shows better performance for this 
problem.

7.3  Car side impact design problem

The objective of this problem is to minimize the car’s total 
weight using eleven mixed variables while maintaining 
safety performance according to the standard. These vari-
ables represent the thickness and material of critical parts of 
the car. The 8th and the 9th variables are discrete, and these 
are material design variables, while the rest of the variables 
are continuous and represents thickness design variables.

The symbols a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11 are 
used here to represent the variables thickness of B-pillar 
inner, the thickness of B-pillar reinforcement, the thick-
ness of floor side inner, the thickness of cross members, the 
thickness of door beam, the thickness of door beltline rein-
forcement, the thickness of roof rail, the material of B-pillar 
inner, the material of floor side inner, barrier height, bar-
rier hitting position respectively. The problem is subjected 
to ten inequality constraints. The car side impact design is 
considered a real case of a mechanical optimization problem 
with mixed discrete and continuous design variables. This 
problem can be mathematically described as:

Minimizef (x) = 0.06224(x1 + x2 + x3 + x4 + x5);

Subject to ∶ g(x) = 61∕x3
1
+ 37∕x3

2
+ 19∕x3

3
+ 7∕x3

4
+ 1∕x3

5
≤ 1;

Where 0.01 ≤ x1, x2, x3, x4, x5 ≤ 100;

a = (a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)

Min f (a) = 1.98 + 4.90a1 + 6.67a2 + 6.98a3

+ 4.01a4 + 1.78a5 + 2.73a7

Subject to

h1(a) = 1.16 − 0.3717a2a4 − 0.00931a2a10 − 0.484a3a9

+ 0.01343a6a10 ≤ 1

h2(a) = 0.261 − 0.0159a1a2 − 0.188a1a8 − 0.019a2a7

+ 0.0144a3a5

+ 0.0008757a5a10 + 0.080405a6a9 + 0.00139a8a11

+ 0.00001575a10a11 ≤ 0.32

h3(a) = 0.214 + 0.00817a5 − 0.131a1a8

− 0.0704a1a9 + 0.03099a2a6

− 0.018a2a7 + 0.0208a3a8 + 0.121a3a9 − 0.00364a5a6

+ 0.0007715a5a10 − 0.0005354a6a10

+ 0.00121a8a11 ≤ 0.32

h4(a) = 0.074 − 0.061a2 − 0.163a3a8

+ 0.001232a3a10 − 0.166a7a9 + 0.227a2
2
≤ 0.32

h5(a) = 28.98 + 3.818a3 − 4.2a1a2 + 0.0207a5a10

+ 6.63a6a9 − 7.7a7a8 + 0.32a9a10 ≤ 32

h6(a) = 33.86 + 2.95a3 + 0.1792a10 − 5.05a1a2 − 11.0a2a8

− 0.0215a5a10 − 9.98a7a8 + 22.0a8a9 ≤ 32

h7(a) = 46.36 − 9.9a2 − 12.9a1a8 + 0.1107a3a10 ≤ 32

h8(a) = 4.72 − 0.5a4 − 0.19a2a3 − 0.0122a4a10

+ 0.009325a6a10 + 0.000191a2
11

≤ 4

h9(a) = 10.58 − 0.674a1a2 − 1.95a2a8 + 0.02054a3a10

− 0.0198a4a10 + 0.028a6a10 ≤ 9.9

h10(a) = 16.45 − 0.489a(3)a7 − 0.843a5a6 + 0.0432a9a10

− 0.0556a9a11 − 0.000786a2
11

≤ 15.7

where, 0.5 ≤ a(1) − a(7) ≤ 1.5

a(8), a(9) ∈ (0.192, 0.345)

− 30 ≤ a(10), a(11) ≤ 30

Table 14  Comparison of results 
on the gear train design problem

h-BOASOS MFO ABC MBA GA CS ISA

xa 48 43 49 43 49 43 33
xb 27 19 16 169 16 16 15
xc 16 16 19 19 19 19 13
xd 44 49 43 49 43 49 41
f(x) 1.37e-19 2.70e-12 2.70e-12 2.70e-12 2.70e-12 2.70e-12 2.15e-08
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To judge the efficiency of the newly proposed h-BOASOS 
in the car side impact design problem, the results have been 
compared to that of 11 other state-of-the-art algorithms 
viz., WOAmM, ABC, PSO, MFO, ALO, ER-WCA, GWO, 
WCA, MBA, SSA, and WOA. Tables 15, 16 and 17 shows 
the result found by h-BOASOS and comparison with the 
results found in literature [55]. Results are taken using a 
population size of 35, and 850 is the maximum number of 
iterations in one run, whereas the proposed h-BOASOS find 
the minimum solution in 50 iterations. f(x) here represents 
the value of the optimal weight of the car.

7.4  Three bar truss design problem

The purpose of the problem is to reduce the weight of the 
bar structures. Stress, deflection, and buckling constraints 
are the limitations of the problem. The objective function of 
the problem is a non-linear function with three non-linear 
limitations. The mathematical formulation of the problem 
is given below:

where

Minimize f (x) = Lx2 + 2
√
2x1

Table 15  Comparison of results 
on the cantilever beam design 
problem

h-BOASOS ALO SOS CS MMA GCA-I GCA-II

x1 1.298659 6.01812 6.01878 6.0089 6.0100 6.0100 6.0100
x2 15.3227301 5.31142 5.30344 5.3049 5.3000 5.30400 5.3000
x3 57.345186 4.48836 4.49587 4.5023 4.4900 4.4900 4.4900
x4 23.2403325 3.49751 3.49896 3.5077 3.4900 3.4980 3.4900
x5 87.429983 2.158329 2.15564 2.1504 2.1500 2.1500 2.1500
f(x) 1.298659 1.33995 1.33996 1.33999 1.3400 1.3400 1.3400

Table 16  Comparison of results 
on the car-side impact design 
problem

Method h-BOASOS WOAmM ABC PSO MFO ALO ER-WCA 

a1 0.81 0.50 0.50 0.50 0.50 0.50 0.50
a2 0.75 0.9601 1.0624 1.1165 1.1165 1.1159 1.1186
a3 0.54 0.8674 0.5148 0.50 0.50 0.50 0.50
a4 0.82 0.50 1.4491 1.3018 1.3019 1.3028 1.2984
a5 0.63 0.6433 0.50 0.50 0.50 0.50 0.50
a6 0.82 1.8295 1.50 1.50 1.50 1.50 1.50
a7 0.52 0.50 0.50 0.50 0.50 0.50 0.50
a8 0.19 0.3450 0.3450 0.3450 0.3450 0.3450 0.3450
a9 0.17 0.3450 0.192 0.3450 0.3450 0.192 0.192
a10 − 11.65 −30 −29.34 19.52 −19.53 19.63 −19.14
a11 − 4.75 −4.8066 0.74109 −0.019 0.000006 0.02364 −0.01527
f(a) 20.5422 21.4034 23.175 22.842 22.842 22.842 22.842

Table 17  Comparison of results 
on car-side impact design 
problem

Method h-BOASOS GWO WCA MBA SSA WOA

a1 10.81 0.50 0.50 0.50 0.50 0.50
a2 0.75 1.1114 1.1155 1.1172 1.1093 1.1080
a3 0.54 0.50 0.50 0.50 0.50 0.5344
a4 0.82 1.3122 1.3034 1.3008 1.3148 1.3057
a5 0.63 0.5012 0.50 0.50 0.50 0.50
a6 0.82 1.50 1.50 1.4999 1.4999 1.4738
a7 0.52 0.50 0.50 0.50 0.50 0.50
a8  0.19 0.3450 0.3450 0.3450 0.3450 0.3450
a9 0.17 0.192 0.192 0.3450 0.192 0.192
a10 − 11.65 −20.60 −19.69 −19.40 −20.82 −19.69
a11 − 4.75 −0.25531 −0.2385 −0.3732 0.44129 3.48169
f(a) 20.5422 22.852 22.843 22.846 23.042 23.042
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To evaluate the performance of the h-BOASOS on this prob-
lem, the result evaluated by the proposed method is com-
pared to ten other algorithms, among which few are col-
lected from the literature [50]. Table 18 contains the best 
value found by the h-BOASOS and other algorithms. Here 
to check the convergence speed of the proposed method total 
iteration has been set to 35 with 1000 iteration. It seems 
that the proposed method finds a new optimal solution, 
‘150.451’, with a new set of parameters value, [0.41471 
0.33153] to this problem.

8  Cantilever retaining wall

In the optimum design of the structure, three stages are 
generally considered: structural modeling, optimum design 
modeling, and the optimization algorithm. In the first stage, 
i.e., structural modeling, the formulation of the problem is 
done, and the objective function of the problem is defined 
without violating the constraints. The problem considered 

h1(x) =
x2

(2x2x1 +
√
2x2

1
)
P − � ≤ 0

h2(x) =
x2 +

√
2x1

(2x2x1 +
√
2x2

1
)
P − � ≤ 0

h1(x) =
1

(x1 +
√
2x2)

P − � ≤ 0

where, 0 ≤ x1, x2 ≤ 1 andP = 2, L = 100, � = 2.

for optimization is solved in the past by using optimtool 
[58]. Figure 3 shows a sketch of the cantilever retaining wall 
model showing variables used for optimization.

8.1  Structural modeling

In most of the structural problems, the objective function is 
defined based on the weight and cost of the structure depend-
ing on some constraints. Weight is calculated by assuming a 
density of concrete and steel, and the cost is estimated as the 
combined cost of reinforcement and concrete. The optimiza-
tion equation can be formulated as:

where, objective function is given by f(X), gi(X) and hj(X) 
are equality and inequality constraints respectively, Lk and 
Uk are lower and upper bounds of the kth variable.

8.2  Optimum design modeling

In this stage, the parameters of the problems are studied in-
depth so that parameters, design variables, constraints, and 
the objective function can be decided.

Minimize f (x)

Subject to

gi(x) = 0.........i = 1, 2, ....p

hj(x) ≤ 0.........j = 1, 2, ....m

Lk(x) ≤ Xk(x) ≤ Uk(x)....k = 1, 2, ....n

Table 18  Comparison of 
results on three bar truss design 
problem

Method h-BOASOS MFO DEDS PSO-DE MBA Ray and Sain Tsa CS

a1 10.41471 0.78824 0.78868 0.78868 0.78857 0.795 0.788 0.78867
a2 0.33153 0.40947 0.40825 0.40825 0.40856 0.395 0.408 0.40902
f(a) 150.45075 263.89598 263.89584 263.89584 263.89585 264.3 263.68 263.9716

Fig. 3  Retaining wall model 
representing variables used for 
optimization
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8.2.1  Design variables

Figure 3 shows design variables for retaining wall, include: 
width of the base of retaining wall ( X1 ), toe projection ( X2 ), 
thickness at the bottom of the stem ( X3 ), thickness at the top 
of the stem ( X4 ), thickness of base slab ( X5 ), area of vertical 
reinforcement in the stem ( X6 ), area of horizontal reinforce-
ment in the toe ( X7 ), area of horizontal reinforcement in the 
heel ( X8 ), distance from toe to the front of the shear key 
( X9 ), shear key width ( X10 ), shear key depth ( X11 ), area of 
vertical reinforcement in the base shear key ( X12).

8.2.2  Constraints

Retaining structures seeks designs that provide safety and 
stability against different types of failure modes and meet 
the terms with concrete building code requirements. These 
requirements can be categorized into four general groups 
of design constraints: capacity, stability, reinforcement con-
figuration, and geometric limitations. Design constraints 
are imposed as penalties on the objective functions and are 
non-zero only when violated. If the design is reasonable, 
the sum of the constraint penalties will be zero. The design 
constraints are based on geotechnical and structural require-
ments as per IS code 456:2000. There are different types of 
failure modes such as bearing capacity, sliding, and over-
turning, and for these modes of failure minimum factor of 
safety should be provided by retaining wall (Table 20).

i. Overturning Failure Mode:

where, Fo is Factor of safety against overturning, 
∑

Mvo rep-
resents the total moment of vertical forces that resist over-
turning about toe, 

∑
Mho is the total horizontal moment of 

forces that tends to overturn about the toe.
ii. Bearing Capacity:

in which, Pmin and Pmax is minimum, and maximum contact 
pressure at the interface between the foundation soil and 
the wall structure and safe bearing capacity of the soil is 
represented as SBC.

iii. Sliding Failure Mode

where, Fs represents factor of safety against sliding , 
∑

H 
and 

∑
V  are total horizontal and vertical driving forces 

respectively and Hp denotes horizontal passive pressure.
iv. Tension Failure Mode

g1(x) = F0 − (
∑

Mvo∕
∑

Mho) ≤ 0

g2(x) = Pmin ≤ 0

g3(x) = Pmax − SBC ≤ 0

g4(x) = Fs −
[(∑

V ∗ � + Hp

)
∕
∑

H
]
≤ 0

in which, eccentricity of the resultant force is given by E and 
base width of retaining wall by B.

v. Moment failure mode
The flexural strength Mrs is computed as:

where, Xu is the location of the neutral axis, As is c/s area of 
steel, ds is effective depth of stem, fy is the yield strength of 
reinforcement, Ms represents the maximum bending moment 
at the face of the wall, Mrs is flexural strength of stem.

where, Mt and Mh are maximum bending moment at the 
junction of the stem with toe slab and heel slab, Maximum 
bending moment at base shear key, Mrt and Mrh are Modulus 
of rupture of the toe slab, heel slab, Mk is the moment at the 
base of the shear key.

vi. Shear failure mode

where, Vs , Vt , Vh , and Vk are the maximum shear carrying 
capacity of the stem, toe, heel, and shear key, respectively. 
Similarly, Vus , Vut , Vuh and Vuk are the shear capacity of the 
concrete stem, toe, heel, and shear key.

vii. Criteria for minimum reinforcement

where, the base width of the retaining wall is given by b, 
Ds and D are thickness at the bottom of stem and base slab, 
As , At , and Ah are the area of reinforcement in the stem, toe, 
and heel.

viii. Criteria for maximum reinforcement

ix. Additional geometric criteria

g5(x) = E − (B∕6) ≤ 0

Mrs = 0.87Asfy(ds − 0.416Xu)

Xu = 0.87Asfy(0.36fckb)

g6(x) = Ms −Mrs ≤ 0

g7(x) = Mt −Mrt ≤ 0

g8(x) = Mh −Mrh ≤ 0

g9(x) = Mk −Mrk ≤ 0

g10(x) = Vs − Vus ≤ 0

g11(x) = Vt − Vut ≤ 0

g12(x) = Vh − Vuh ≤ 0

g13(x) = Vk − Vuk ≤ 0

g14(x) = (0.12∕100b)bDs − As ≤ 0

g15(x) = (0.12∕100b)bDs − At ≤ 0

g16(x) = (0.12∕100b)bDs − Ah ≤ 0

g17(x) = As − (4∕100)bDS ≤ 0

g18(x) = At − (4∕100)bD ≤ 0

g19(x) = Ah − (4∕100)bD ≤ 0
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In order to prevent infeasible retaining wall dimensions, 
some additional geometrical constraints have been added.

x. Lower and upper bound constraints
The derived constraint expressions are found to be highly 

nonlinear in the design variables.

8.2.3  Objective function

As mentioned earlier, the objective of the problem is the 
minimization of weight and cost. The forms of two objective 
functions for this sort of optimization problem in structural 
engineering are reliable. The cost function f(cost) is given 
by:

where Cs is the unit cost of steel and concrete, Ws is the 
weight of reinforcement per unit length of the wall, and Vc is 
the volume of concrete per unit length. The second objective 
function depends exclusively on the weight of the materials. 
The weight function f (weight) is:

Where, �c is the unit weight of concrete, and a factor of 100 
is used for consistency of units

9  Results and Discussions

In this section, the results of minimum cost and minimum 
weight for cantilever retaining wall of height 3.2 m and 6.3 
m are obtained by the newly proposed h-BOASOS algo-
rithm, and some discussions on the obtained results are 

g20(x) = X2 + X3 − X1 ≤ 0

g21(x) = X9 + X10 − X1 ≤ 0

fcost = CsWs + CcVc

fweight = Ws + 100Vc�c

performed. Table 21 shows different input parameters for 
the cantilever retaining wall.

9.1  For 3.2 m and 6.3 m high retaining wall

For the retaining wall with a height of 3.2 m, lower and 
upper bounds of design variables for the two objective func-
tions which are constructed to obtain cost and weight are 
presented in Table 19.

Values of design constraints for a 3.2 m high retaining 
wall are presented in Table 23. Again, Table 22 depicts the 
optimized weight and cost for the entire structure. Results 
obtained from the h-BOASOS algorithm for the opti-
mized weight of steel and volume of concrete required for 

Table 19  Lower and upper bounds of design variables

Design variables Lower bounds Upper bounds

Width of the base X1 X1 = 0.4 ∗ h ∗ (12∕11) X1 = (0.7 ∗ h)∕0.9

Projection of toe X2 X2 = [0.4 ∗ h ∗ (12∕11)]∕3 X2 = [(0.7 ∗ h)∕0.9]∕3

Thickness at the bottom of the stem X3 X3 = 0.2 X3 = (h∕0.9)∕10

Thickness at the top of the stem X4 X4 = 0.2 X4 = 0.2

Thickness of base slab X5 X5 = [h ∗ (12∕11)]∕12 X5 = (h∕0.9)∕10

Area of vertical reinforcement in the stem, per unit lengthof wall X6 X6 = 0.0012 ∗ X3 X6 = 0.04 ∗ X3

Area of horizontal reinforcement in the toe X7 X7 = 0.0012 ∗ X5 X7 = 0.04 ∗ X5

area of horizontal reinforcement in the heel of wall X8 X8 = 0.0012 ∗ X5 X8 = 0.04 ∗ X5

The distance from toe to the front of the base shear key X9 X9 = 0.4 ∗ h ∗ (12∕11) X9 = (0.7 ∗ h)∕0.9

Shear key width X10 X10 = 0.3 X10 = (h∕0.9)∕10

Depth of the shear key X11 X11 = 0.3 X11 = (h∕0.9)∕10

area of vertical reinforcement in the base shear key X12 X12 = 0.0012 ∗ X10 X12 = 0.04 ∗ X3

Table 20  Constraints of cantilever retaining wall

Inequality Failure mode constraints

g1(X) Overturning failure mode
g2(X) Bearing failure mode (min)
g3(X) Bearing failure mode (max)
g4(X) Sliding failure mode
g5(X) Tension failure mode
g6(X) Moment failure mode at bottom of stem
g7(X) Moment failure mode at toe
g8(X) Moment failure mode at heel
g9(X) Moment at shear key
g10(X) Shear at bottom of stem
g11(X) Shear at Toe
g12(X) Shear at heel
g13(X) Shear at shear key
g14(X) Criteria for minimum reinforcement
g15(X) Criteria for maximum reinforcement
g16(X) Additional geometric constraints
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construction to be safe have been shown in Table 24. The 
minimum weight obtained using the h-BOASOS algorithm 
is 2630.8284 Kg/m, and the minimum cost is 1895.3257 
Rs/m (1 $ = Rs.74.2 approx).

In Table 25, optimized results of design variables are pre-
sented for 6.3 m high retaining wall.

Values of design constraints for 6.3 m high retaining wall 
are presented in Tables 26 and 27 shows optimized weight 
and cost for the entire structure. Minimum weight obtained 
by using h-BOASOS algorithm is 9093.9172 Kg/m and 
minimum cost is Rs.3359.5348/m.

Figure 2 shows the optimum value of cost function and 
weight function at different heights of cantilever retain-
ing wall from 3 m to 6 m obtained from the h-BOASOS 
Algorithm.

The range of the stem height (3–6 m) shows that for 
higher values of height, the optimum cost and weight 
become more sensitive to variations in the stem height. This 
is more apparent for the cost function. Higher stem height 
produces higher values of the objective function. It is obvi-
ous that weight and cost will increase as the retaining wall’s 
height increases, which is reflected in Fig. 2. The optimum 
values for both objective models are shown for different 
heights from 3 to 6 m; the optimum weight increases 3.42 
times while the optimum cost by 1.53 times.

Figure 4 shows the optimum value of concrete required 
for both the objective functions at different heights of the 
cantilever retaining wall from 3 to 6 m. Although it does not 
follow a particular trend of increase or decrease, a weight 
function optimum volume of concrete for 6 m high retain-
ing wall is almost 1.79 times greater than that of 3 m high. 
Similarly, for cost function, the optimum volume of concrete 
for a 6 m high retaining wall is almost 3.43 times greater 
than a 3 m high wall.

Figure 5 represents the optimum value of the weight 
of steel obtained for both objective functions at different 
heights of the cantilever retaining wall from 3 to 6 m. For 
the weight function, the optimum weight of steel for a 6 m 
high retaining wall is almost 0.73 times lesser than 3 m high. 
Similarly, for cost function, the optimum volume of concrete 
for a 6 m high retaining wall is almost 0.377 times greater 
than that of 3 m high (Fig. 6).

Table 21  Input parameters for the retaining wall problem

Input Parameter Unit Symbol Value

Stem Height m H 3.2, 6.3
Angle of internal friction Degree � 35
Surcharge load kN∕m2 Q 10
Backfill slope Degree � 0
Yield strength of steel kN∕m2 fy 500 ∗ 103

Characteristic strength of concrete kN∕m2 fck 25 ∗ 103

Density of soil kN∕m3 �soil 17
Unit weight of concrete kN/m �D 25
Concrete cover m cover 0.025
Safe bearing capacity of soil kN/m SBC 250
Coefficient of friction under base NA � 0.55
Factor of safety against overturning NA Fo 1.4
Factor of safety against sliding NA Fs 1.4
Factor of safety for bearing capacity NA Fb 3
Cost of steel Rs/kg Cs 60
Cost of concrete Rs/m Cc 80
% minimum steel % Pmin 0.12
% maximum % Pmax 4

Table 22  Optimum values of 
design variables for 3.2 m high 
retaining wall

Design vari-
ables

Unit Lower bounds Upper bounds For optimized cost For 
optimized 
weight

X1 m 1.396 2.488 2.4471 2.0541
X2 m 0.466 0.8296 0.6258 0.5735
X3 m 0.2 0.356 0.3154 0.3435
X4 m 0.2 0.2 0.2 0.2
X5 m 0.291 0.356 0.3103 0.3484
X6 m 0.00024 0.0142 0.0048 0.0003
X7 m 0.000349 0.0142 0.0007 0.0004
X8 m 0.000349 0.0142 0.0016 0.0004
X9 m 1.3964 2.4889 2.0005 2.0447
X10 m 0.3000 0.3556 0.3535 0.3
X11 m 0.3000 0.3556 0.3293 0.3
X12 m 0.00036 0.142 2.4471 0.0004
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9.2  Comparison of results

In this section, the optimum values of design variables, the 
optimum volume of concrete, and optimum cost and weight 
of retaining wall obtained by h-BOASOS are compared with 
the optimtool, BOA, and SOS results.

Tables 19, 20, 21 and 22 present the comparison of results 
obtained from Optim tool [58], BOA, SOS and proposed 
methodology, i.e., h-BOASOS. Optimized geometrical 
parameters for which weight and cost are minimum, the opti-
mum weight of steel, and the concrete volume are presented 
in Tables 19, 20, 21 and 22. From these tables, it is seen that 
the proposed algorithm h-BOASOS gives efficient results 
for both cost and weight function for 3.2 m and 6.3 m height 
of cantilever retaining wall. The optimum weight of the 3.2 

m retaining wall obtained from the h-BOASOS algorithm 
is 3115.34 Kg/m, and its Optimum Cost is Rs.11895.33/m. 
While, Optimum Weight of 6.3 m is 3115.34 Kg/m and it’s 
Optimum Cost is 11895.33 Rs/m (1 $ = Rs.74.2 approx) 
(Tables 28, 29, 30, 31).

Table 23  Values of constraints at optimum values of design variables 
for 3.2 m high retaining wall

Constriant For minimum cost For minimum weight

g1(X) −4.9038 −11.4667
g2(X) −0.029 0.0194
g3(X) −0.6152 −0.8939
g4(X) −5.2007 −11.1403
g5(X) −0.5891 −0.6703
g6(X) 121787.6 2652.872
g7(X) 115450.7 3749.243
g8(X) 117770.2 3758.298
g9(X) 0 0
g10(X) −0.0374 −0.0374
g11(X) 0.0002 −0.0002
g12(X) −0.0014 −0.0012
g13(X) 0 0
g14(X) 0.0006 0.0009
g15(X) 0.0006 0.0009
g16(X) 0.0006 0.0009
g17(X) −0.0091 −0.028
g18(X) −0.0092 −0.0283
g19(X) −0.009 −0.0283
g20(X) −0.5867 −1.1372
g21(X) 0.7035 0.2907

Table 24  Minimum values of objective function for 3.2 m high 
retaining wall

Objective func-
tion

Unit Optimum value Weight of 
steel (kg/m)

Volume of 
concrete 
( m3∕m)

For minimum 
weight

Kg/m 2630.8284 22.1173 1.0434

For minimum 
cost

Rs/m 1895.3257 25.5198 1.2955

Table 25  Optimum values of design variables for 6.3 m high retain-
ing wall

Design 
vari-
ables

Unit Lower 
Bounds

Upper 
Bounds

For Opti-
mized 
Cost

For 
Optimized 
Weight

X1 m 2.749 4.90 3.278 3.7016
X2 m 0.916 1.633 1.3088 0.9285
X3 m 0.2 0.7 0.6867 0.4636
X4 m 0.2 0.2 0.2 0.2
X5 m 0.573 0.70 0.6879 0.604
X6 m 0.00024 0.028 0.0003 0.0244
X7 m 0.000688 0.028 0.0007 0.0134
X8 m 0.000688 0.028 0.0007 0.027
X9 m 2.7490 4.9 2.9598 3.8216
X10 m 0.3 0.7 0.3 0.3
X11 m 0.3 0.7 0.3 0.3
X12 m 0.00024 0.028 0.0004 0.0004

Table 26  Values of constraints at optimum values of design variables 
for 6.3 m high retaining wall

Constraint For minimum cost For minimum weight

g1(X) −5.1468 −10.0623
g2(X) −0.0056 0.2593
g3(X) −1.2683 −1.7422
g4(X) −5.7392 −11.3786
g5(X) −1.0975 −1.0741
g6(X) 2838.869 260395.2
g7(X) 7268.645 141971.4
g8(X) 7298.247 287488.6
g9(X) 0 0
g10(X) −0.145 −0.145
g11(X) −0.0004 −0.0021
g12(X) −0.0022 0.0001
g13(X) 0 0
g14(X) 0.0028 0.002
g15(X) 0.0028 0.0027
g16(X) 0.0028 0.0026
g17(X) −0.0898 −0.0443
g18(X) −0.0895 −0.0761
g19(X) −0.0895 −0.0625
g20(X) −1.2825 −2.3096
g21(X) −0.0182 0.4201
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10  Conclusion

In this envisage, the cantilever retaining wall problem is 
solved by a newly proposed hybrid algorithm h-BOASOS. 
The proposed algorithm is tested on a suite of thirty-five 
classical benchmark functions. The obtained results are 
then compared with a wide variety of popular optimization 
algorithms and found that the proposed method outperforms 
the compared algorithms in numerical results. To support 
our claim, we have performed the Friedman rank test and 
found that the rank of the proposed algorithm is the least. To 
examine the convergence speed of the h-BOASOS, some of 
the convergence graphs are plotted and found that the pro-
posed algorithm converges faster than the compared algo-
rithms. Further, two real-world engineering design problems 
obtained from literature are also solved by the suggested 
algorithm. The experimental results prove the efficiency 
of the proposed algorithm over several state-of-the-art 

algorithms. Finally, the reduction of weight and cost of 
retaining wall is achieved successfully by the newly pro-
posed algorithm. Using h-BOASOS, for 3.2 m and 6.3 m 
high retaining wall, approximately 8.75% and 5.43% mate-
rial weight is reduced compared to the results obtained from 
the optimtool, 19.6% and 2.05% compared to SOS. Simi-
larly, in the case of cost obtained from h-BOASOS, the cost 
saved for the retaining wall of heights 3.2 m and 6.3 m are 
14.02% and 56.53% compared to results obtained from the 
optimtool. While, as compared to SOS, cost saved is 14.7% 
and 2.2%, respectively.

Table 27  Minimum values of objective function for 6.3 m high 
retaining wall

Objective func-
tion

Unit Optimum value Weight of 
steel (kg/m)

Volume of 
concrete 
(m3∕m)

For minimum 
weight

kg/m 9093.9172 45.64164 3.6193

For minimum 
cost

Rs/m 3359.5348 73.3119 3.6495

Fig. 4  Comparison of cost func-
tion at different stem height of 
cantilever retaining wall

Fig. 5  Comparison of optimum volume of concrete for both the 
objective function at different stem height of cantilever retaining wall
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The researchers are always involved in exploring new 
hypotheses and simultaneously seeking to refine existing 
theories, so there is always space for finding new studies 
and improving existing research. Several further extensions 
can be made from the review of the research discussed in 
this article. Some of those are listed below:

• The present study may be upgraded by considering the 
adaptive or self-adaptive parameter setting of both the 

component algorithms. Specifically, the switching prob-
ability of BOA and the beneficial factors of SOS can be 
taken adaptively.

• The concept of fuzzy and its extensions may be incorpo-
rated in the parameter setting. For example, fuzzy-adap-
tive, neighborhood-based, fitness distance-based, etc., 
may be combined with this study to improve its efficiency 
further.

• The mathematical foundation of the metaheuristic algo-
rithms has not been widely studied so far. So, mathemati-
cal analysis of stability, convergence, divergence, com-
plexity, etc., may be done for better understanding.

• Depending upon the physiognomies of the design vari-
ables (integer, mixed-integer, binary, discrete, etc.), some 
modified algorithms can be established to solve real-life 
industrial problems.

• The proposed algorithm may further be extended to the 
multimodal and multi and many-objective scenario.

• The suggested algorithm may be applied to the optimiza-
tion of complex systems such as designing the structures 
of civil engineering, business models, inventory control, 
transportation problems, power system problem, simula-
tion and planning, controlling, and scheduling problems, 
etc.

Fig. 6  Comparison of optimum weight of steel for both the objective 
function at different stem height of cantilever retaining wall

Table 28  Comparison of 
results—optimum weight 
as objective function for 3.2 
m high retaining wall

Unit Optimtool BOA SOS h-BOASOS

X1 m 1.7594 1.9223 1.4535 2.0541
X2 m 0.5979 0.6432 0.6603 0.5735
X3 m 0.301 0.2513 0.2153 0.3435
X4 m 0.2 0.2 0.2 0.2
X5 m 0.291 0.3103 0.3439 0.3484
X6 m2 0.000519 0.0003 0.0099 0.0003
X7 m2 0.000349 0.0004 0.0079 0.0004
X8 m2 0.000349 0.0004 0.0042 0.0004
X9 m 1.9175 1.8283 2.0447
X10 m 0.3 0.3 0.3
X11 m 0.3 0.3 0.3
X12 m 0.0004 0.0004 0.0004
Volume of concrete m3∕m 1.1212 1.1543 1.2943 1.2374
Weight of steel kg/m 80.1159 5.01467 36.7628 21.7159
Min.weight kg/m 2883.2 4.0303e+08 3272.6549 2630.8284



2920 Engineering with Computers (2022) 38:2897–2923

1 3

Table 29  Comparison of 
results—optimum cost as 
objective function for 3.2 
m high retaining wall

Unit Optimtool BOA SOS h-BOASOS

X1 m 1.7594 2.3566 2.1745 1.6842
X2 m 0.5979 0.7559 0.6057 0.7945
X3 m 0.301 0.2638 0.2622 0.3031
X4 m 0.2 0.2 0.2 0.2
X5 m 0.291 0.3084 0.3376 0.295
X6 m2 0.000519 0.0003 0.013 0.0114
X7 m2 0.000349 0.0004 0.0006 0.0108
X8 m2 0.000349 0.0004 0.001 0.011
X9 m 1.6735 1.6703 2.0876
X10 m 0.3 0.3 0.3
X11 m 0.3 0.3 0.3
X12 m 0.0004 0.0004 0.0004
Volume of concrete m3∕m 1.3136 1.2645 1.4361 1.2955
Weight of steel kg/m 51.4396 4.9471 35.9331 25.5198
Min. cost Rs/m 13585 3.8858e+08 13644.9537 11895.3257

Table 30  Comparison of 
results—optimum weight as 
objective function for 6.3 m 
high retaining wall

Unit Optimtool BOA SOS h-BOASOS

X1 mm 3.3108 2.8645 3.3289 3.7016
X2 m 1.1057 1.0459 1.3474 0.9285
X3 m 0.3060 0.2427 0.5881 0.4636
X4 m 0.2 0.2 0.2 0.2
X5 m 0.5910 0.6176 0.6472 0.604
X6 m2 0.004639 0.0004 0.0006 0.0244
X7 m2 0.000702 0.0008 0.001 0.0134
X8 m2 0.001252 0.0008 0.0009 0.027
X9 m 3.0313 3.5485 3.8216
X10 m 0.3 0.3 0.3
X11 m 0.3 0.3 0.3
X12 m 0.0004 0.0004 0.0004
Volume of concrete m3∕m 3.5506 2.8945 3.6942 3.6193
Weight of steel kg/m 739.390 8.82176 49.2574 45.64164
Min.weight kg/m 9615.8 1.3174e+09 9284.9191 9093.9172
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Table 31  Comparison of 
results—optimum weight as 
objective function for 6.3 m 
high retaining wall

Unit Optimtool BOA SOS h-BOASOS

X1 m 3.3008 3.1059 3.2157 3.278
X2 m 1.0305 1.1143 0.9986 1.3088
X3 m 0.6284 0.4289 0.6064 0.6867
X4 m 0.2 0.2 0.2 0.2
X5 m 0.5910 0.6348 0.6228 0.6879
X6 m2 0.0015 0.0003 0.0271 0.0003
X7 m2 0.00070 0.0008 0.0011 0.0007
X8 m2 0.001139 0.0008 0.0231 0.0007
X9 m 3.4673 5.2457 2.9598
X10 m 0.3 0.3 0.3
X11 m 0.3 0.3 0.3
X12 m 0.0004 0.0004 0.0004
Volume of concrete m3/m 4.5602 2.5106 3.98298 3.6495
Weight of steel kg/m 269.296 8.6078 41.2017 73.3119
Min. cost Rs/m 52589 1.2667e+09 34335.9510 33595.3482

Fig. 7  Schematic diagram of 
Gear Train Design Problem

Fig. 8  Cantilever beam design
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