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Abstract
In the concrete industry, compressive strength is the most essential mechanical property. Therefore, insufficient compressive strength 
may lead to dangerous failure and, thus, becomes very difficult to repair. Consequently, early, and precise prediction of concrete 
strength is a major issue facing researchers and concrete designers. In this study, high-order response surface methodology (HORSM) 
is used to develop a prediction model to accurately predict the compressive strength of high-strength concrete (HSC). Different poly-
nomial degrees order ranging from 2 to 5 is used in this model. The HORSM, with five-order polynomial degree, model outperforms 
several artificial intelligence (AI) modeling approaches which are carried out widely in the prediction of HSC compression strength. 
Besides, support vector machine (SVM) model was developed in this study and compared with the HORSM. The HORSM models 
outperformed the SVM models according to different statistical measures. Additionally, HORSM models managed to perfectly predict 
the HSC compressive strength in less than one second to accomplish the learning processes. While, other AI models including SVM 
much longer time. Lastly, the use of HORSM for the first time in the concrete technology field provided much accurate prediction 
results and it has great potential in the field of concrete technology.

Keywords High-order response surface methodology · Support vector machine · High-strength concrete · Compressive 
strength test · Machine learning

1 Introduction

High-strength concrete (HSC) is a special kind of concrete 
with advanced mechanical properties, i.e., compressive 
strength greater than 40 MPa. HSC was invented and man-
ufactured in cementitious labs during the sixth decade of 
the last century [1]. As indicated by Henry Russell [2], the 
American Concrete Institute (ACI) defines HSC as ‘‘con-
crete that meets special performance and uniformity require-
ments that cannot always be achieved routinely by using 
only conventional materials and normal mixing, placing, and 
curing procedures”. HSC has unique characteristics such as 

high durability, very low impermeability and its voids ratio 
is small that can increase uniform density [3]. HSC is usu-
ally used in many construction projects like piers, long spans 
of bridges as well as high-rise buildings such as skyscrapers.

The performance of HSC is extremely superior and more 
efficient than ordinary concrete in terms of resisting applied 
pressure. Therefore, the HSC design process is complicated 
in terms of selecting the required materials with special 
mechanical and chemical characteristics. Additionally, it usu-
ally requires several trial batches to attain this type of con-
crete which meets up constructors and engineers. Moreover, 
ordinary concrete consists of four materials including water, 
cement, coarse aggregate, silica fume, and fine aggregate. 
Whereas, HSC requires additional cementitious material such 
as fly ash and superplasticizer. These additives have a signifi-
cant and positive impact on the HSC compressive strength 
since it reduces water-–cement ratio and makes the concrete 
mixture more homogeneous compared to the classical one.

In the material science and engineering area, the accu-
rate prediction of mechanical characteristics of construction 
materials is considered as a significant research problem [4]. 
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Recently, the demand for using HSC in projects has signifi-
cantly increased [5]. To enhance and increase the durabil-
ity and compressive strength of concrete, several cement 
materials are frequently used as additives like blast furnace 
slag, silica fume, fly ash and metakaolin [5–7]. The com-
pressive strength of concrete is commonly considered the 
most vital quality of HSC especially in designing concrete 
mix and quality control sectors. Moreover, developing an 
accurate and reliable predictive model can efficiently predict 
the CCS, which leads to diminishing costs, efforts, and time 
by providing vital data to structural engineers and designers.

Generally, the (CCS) is predicted utilizing linear and non-
linear approaches [5, 8]. The general formula of the regres-
sion method can be expressed as y = f

(
bi, xi

)
 , where y is the 

compressive strength test, bi and xi are the coefficients and 
concrete parameters, respectively. Nevertheless, obtaining a 
reliable and accurate equation using these empirical-based 
models is a tough task. In addtion, many parameters affect 
the CCS varies from those that influence on the compres-
sive strength of ordinary concrete. Therefore, the prediction 
of CCS using regression method may not be the appropri-
ate choice [9, 10]. On the other hand, artificial intelligence 
approaches (i.e., neural network, support vector machine, 
extreme learning machine, and regression tree) have been 
designed to replace the conventional models which were 
used to predict CCS. These evolutionary applications have 
efficient performances and can provide more accurate 
predictions. Consequently, the use of these techniques is 
generally employed to resolve the major shortcomings of 
traditional models that suffer from fluctuations and lack of 
accuracy in predicting CCS [11].

As machine learning approaches are sort of artificial 
intelligence (AI), they can be applied broadly in many 
engineering disciplines because they have effective abili-
ties in predicting, optimization, periodization, and planning. 
Machine learning (ML) techniques have been widely used 
in concrete industries for modeling numerously hardened 
and fresh characteristic of different sorts of concrete like 
eco-concrete compressive strength [12], elasticity modulus 
of replaced aggregate concrete [12–14], tensile and flexural 
strength of recycled aggregate concrete [15], etc. There are 
many applications of ML used to predict the CCS of con-
crete such as artificial neural network [16], support vector 
machine [17], genetic programming [18], extreme learning 
machine [19], adaptive neuro-fuzzy inference system [20], 
classification and regression trees [21], random forest [22], 
and whale optimization algorithm [23].

Although these types of AI models have achieved rela-
tively adequate computed results in estimating the CCS of 
HSC, there were some limitations and significant challenges 
faced by researchers during developing reliable predictive 
modeling techniques. One of the main issues is the need to 
establish a proper pre-processing method for CCS data by 

AI models. The second issue is the necessity of preparing a 
suitable algorithm to re-adjust weights and biases associated 
with the structure of the model and calculate the optimal val-
ues of hyperparameters for the selected model. Moreover, AI 
modeling approaches generally need trial and error methods 
to be accurately tuned [type of transfer function, number 
of hidden layer(s) and number of hidden nodes within the 
hidden layer(s)] [24–27]. On top of that, regression models 
developed using AI techniques generally encounter signifi-
cant issues related to black-box characteristics; thus, the 
trained model might not be understood [28]. However, in 
the recent decade, several researchers from different scien-
tific fields developed the traditional AI models using several 
algorithms inspired by nature for enhancing the performance 
of classical models [29–32]. The process of hybridizing AI 
models with bio-inspired algorithms has achieved significant 
successes by capturing the non-linear relationship between 
input variables and their corresponding targets through effi-
ciently tuning the essential parameters which have a great 
influence on the model accuracy [33–36]. Despite the great 
developments in the performance of predictive models by 
incorporating AI approaches with sophisticated algorithms, 
the structure of these models became very complex, thereby 
the interpretation of their outcomes and behaviors some-
times becomes extremely difficult and incomprehensible. 
To tackle these issues, this study suggests employing a new 
high-order response surface method (HORSM) model to 
predict the CCS of HSC. In recent years, several scholars 
conducted predictive models using classical response sur-
face methodology (RSM) and achieved efficient successes 
in different civil engineering and other sectors such as water 
resources [37], environmental [38–41], hydrology [42, 43], 
construction and material [44] and other fields of science 
[45, 46]. Although RSM modeling achieved promising out-
comes in several areas, in the past four years, HORSM has 
been presented as an advanced version of RSM for solv-
ing challenging issues in water resources and environmen-
tal fields [47, 48]. This study attempts to use the HORSM 
modeling approach in the concrete and construction field for 
the prediction of the HSC compression strength, and com-
paring the accuracy of the employed model with robust AI 
predictive models and other modeling approaches carried 
out in the previous studies. For a fair quantitative assessment 
and to examine the capability of the HORSM model in pre-
dicting CCS, the proposed model was validated against the 
support vector machine (SVM) model which was extensively 
used for the prediction of CCS by many researchers [49–52].

This study aims to establish a new prediction modeling 
approach based on HORSM for accurately predicting HSC 
compressive strength to be an alternative and reliable com-
petitor to AI models, which are nowadays widely used in 
concrete and construction material fields. Subsequently, The 
HORSM model leads to overcome the limitations of the AI 
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models, which were explained previously, and minimizing 
errors in calculating the HSC compressive strength. Moreo-
ver, SVM model is developed in this study to predict the 
HSC compressive strength. Later, a critical comparison of 
the performance of SVM and HORSM to predict the CCS 
of HSC is established.

2  Methodology

2.1  High‑order response surface

Response surface method (RSM) is a beneficial tool that can 
be utilized for modeling and simulating the physical, chemi-
cal, engineering, and environmental issues. Furthermore, it 
is useful for the complicated process calibration by applying 
several sets of polynomial functions on the set of experimen-
tal samples. RSM function describes a certain process based 
on a specific mathematical model. Second-order polynomial 

form with cross terms is commonly performed for RSM. 
The RSM modeling approach might produce an adequate 
prediction of HSC compressive strength. Nevertheless, RSM 
models might face some limitations in terms of reliability 
and accuracy due to the high nonlinear relationship between 
predictors and CCS. Therefore, it might be essential to apply 
a mathematical form with a highly polynomial nonlinear 
degree to attain reliable and precise prediction [47]. Pre-
diction of CCS using ordinary RSM based on a quadratic 
polynomial form could produce imprecise estimates with 
less reliability. Consequently, a new version of RSM is sug-
gested based on a high-order degree of polynomial function 
combined with highly nonlinear cross terms. This modeling 
technique is called a high-order response surface method 
(HORSM) which is employed in this study to predict the 
CCS of HSC. The HORSM function can be expressed by 
Eq. (1), depending on several input variables V {v1,v2, v3, …}

where Ĉ(v) refers to high-order calculated RSM for CCS, n 
is the number of input predictors, �0, �i , �ij , aij , dij and gij are 
unknown coefficients.

The number of coefficients can be determined using the 
Eq. (2) [47]

(1)Ĉ(v) = 𝛽0 +

n∑
i=1

𝛽ivi +

n∑
i=1

n∑
j=1

𝛽ijvivj +

n∑
i=1

n∑
j=1

aijviv
2
j
+

n∑
i=1

n∑
i=1

dijviv
3
j
+

n∑
i=1

n∑
j=1

gijviv
4
j
,

The coefficients are calculated according to the calibra-
tion of several experimental samples, where Q is the order 
of RSM that is set in this study from 2 to 5 orders. The 
unknown coefficients of RSM in Eq. (1) are generally esti-
mated based on least square error method. These coefficients 
are determined by minimizing the error between actual (C 
(v)) and calculated ( ̂C(v) = p(v)T ) values of CCS. The error 
can be expressed by Eq. (3):

where  C(v) =  [C1,C2,C3,…CNI]
T  i s  ac tua l  and 

P(v)T =
[
P
(
C1

)
,P

(
C2

)
,P

(
C3

)
,… .P

(
CNI

)]
 is the predicted 

target based on the higher-order polynomial form for NI 
number of input data observations. Equation (4) describes 
the predicted value of HSC concrete compressive strength 
using 5- order degree RSM based on several variables (sup-
pose 3 variables).

Minimizing error function in Eq.  (4) according to 
unknown coefficients a can lead to a linear form system. 
Consequently, the coefficients a are optimized by minimiz-
ing Eq. (4) and the predicted values of CCS can be obtained 
using the Eq. (5):

The adopted model of high-order polynomial forms 
described in Eq. (2) performs much better than ordinary 
(quadratic RSM) and provides more accurate results when it 
comes to simulating complex phenomena. The major phases 
for predicting CCS using HORSM approach can be sum-
marized as below:

• Set the input data comprising CCS (C(v)) and predictors 
v1, v2, v3,…

• Choose the order of RSM and calculate the predicted 

values using Eqs. (2) and (4) for training the model (P 
( c)) based on given data.

• Determine the predicted vector for all data samples com-
prising training and testing data ( P

(
vall

)
).

• Predicting CCS ( ̂C(v) ) by applying Eq. (6).

(2)
(n + 1)(n + 2)

2
+ (Q − 2)n2.

(3)e(v) =
[
C(v) − P(v)Ta

]T[
C(v) − P(v)Ta

]
,

(4)P(C) = [1,C1,C2,C3,C
2
1
,C1C2,C1C3,C

2
2
,… ,C3

1
,C1C

2
2
,C1C

2
3
,…C4

1
,C1C

3
2
,C1C

3
3
,…C5

1
,C1C

4
2
,C1C

4
3
,…].

(5)Ĉ(v) = P(v)T
[
P(v)TP(v)

]−1[
P(v)TP(v)

]
.
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The previous steps illustrate the process of constituting 
HORSM for estimating the CCS. In this study, the program 
code for the HORSM algorithm based on four previous 
phases was developed using MATLAB language. Figure 1 
explains the framework of the suggested HORSM model.

Classical RSM is considered computationally effective in 
the process of calibrating polynomial functions. However, 
when the endeavor is to develop a flexible model used for 
predicting the compressive strength of concrete through a 
limited number of predictors that have non-linear correla-
tion coefficients, the HORSM model is a reliable and robust 
option in this case.

2.2  Support vector machine

Support vector machine (SVM) approach is a sort of AI 
technique that was developed in 1995 by Vapnik [53]. It 
is commonly used to address and deal with issues related 
to classification, regression, and prediction. SVM has been 
successfully used for modeling different civil engineer-
ing issues and achieving high-accuracy results [54–57]. In 
this supervised learning machine, SVM is created from the 
input–output mapping functions of labeled training dataset 
values. SVM can be employed to address issues related to 
classification purposes which have only specific values (i.e., 
0, 1, and 2) and regression purpose, which has continuous 
real magnitudes. Typically, the regression model of SVM is 
very different in solving complicated and nonlinear regres-
sion problems by constructing and mapping input–output 
[58] and extracting a certain relationship between predictors 
and target values. With respect to the regression task using 
the SVM model, the first stage is converting the input values 
to the n-dimensional feature space by applying a specific 
mapping method. This can be done by applying a nonlin-
ear kernel function then fit into the high-dimensional space. 

(6)Ĉ(v) = P(vall)
T
[
P(v)TP(v)

]−1[
P(v)TP(v)

]
. Thus, the input dataset converted and looked more discrete 

compared to the original data-space [59]. The mechanism 
of SVM is well described by [41]. In this context, SVM has 
been utilized as a powerful AI modeling technique to predict 
the CCS of HSC and compare its targets with the proposed 
HORSM model to check the accuracy of the adopted predic-
tive model.

For precisely estimating the quality of input parameters, 
the variabilities of each input variable are compared with 
each other to obtain a better assessment of input param-
eters. The normalization approach conducted for all input 
variables to get a better perspective, since all these variables 
have a different range of values. Thus, data, before being 
introduced to SVM, were normalized and set between − 1 
and 1 based on Eq. (7). The normalization step is very sig-
nificant in terms of enhancing and speeding up the process 
of learning and getting better generalization.

where Ẍ is the ith normalized value of variable (x).
For analyzing and examining the input factor variabilities, 

the interquartile range (IQR) is calculated by utilizing valued 
quartiles (Q75%–Q25%) as clearly exhibited in Fig. 2.

Figure 2 illustrates the IQR of scaled input parameters 
which are in range of 0.639 and 2. Moreover, water (IQR = 2) 
and fine aggregate (IQR = 0.639) have the highest and lowest 
values of variability compared to the rest of input factors.

Additionally, radial basis kernel transferee function was 
used to transfer input data to higher-dimensional space. The 
code of SVM has been written using MATLAB 2018b.

2.3  Data collection

The concrete mixture used in the study for obtaining HSC 
consists of water, coarse aggregate, fine aggregate, poly-
carboxylate superplasticizer (SP) admixture and Type 1 

(7)Ẍ = −2 +
xi − xmin

xmax − xmin

,

Fig. 1  The main structure of 
HORS for concrete compressive 
strength predicting
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Portland cement. The fine aggregate source was the crushed 
aggregate. In all samples of concrete mixture, superplasti-
cizer was utilized with a density of 1.06 g/cm3, which led to 
obtaining efficient fluidity. The cement weights ratio used 
to conduct the experimental samples varied from 0 to 2% 
with increment 0.25%. Three cylindrical samples for each 
mixture were utilized in CCS and each one of 100 mm diam-
eter and 200 mm height was cast for CCS in accordance 
with ASTMC39 code. The three samples of each mixture 
were cast and cured in a controlled environment with steady 
humidity ( 60+5% ) and temperature ( 20+ 1 °C). Addition-
ally, the CCS with the age of 25 days was carried out utiliz-
ing a universal testing machine with a capacity of 2500 KN. 
Table 1 shows the statistical description of each predictor 
and CCS (target). It is worth noting that the samples used 
in this study were 324 samples, 75% of which were used 

to train predictive models; whereas the rest of the samples 
were used to test the efficacy and validity of those models. 
All collected data obtained from reliable laboratory tests and 
published in the literature [19].

2.4  Performance evaluation

The proper conditions of the selection of an efficient and 
robust nonlinear predictive model can provide accurate 
predictions of complicated and nonlinear engineering 
issues. In accordance with the American Society for Civil 
Engineering area (Hydrology, 2000) for evaluating pre-
diction models, this society recommends using two dif-
ferent types of performance measures, namely descrip-
tive, and visual statistics. The predicted and actual values 
were utilized for checking the mean, standard deviation, 

Fig. 2  Boxplot diagram of nor-
malized target and its predictors

Q25% -0.665 -1.000 -0.519 -0.226 -1.000 -0.500 

Q50% -0.368 0.000 -0.196 0.090 -0.264 0.000 

Q75% 0.277 1.000 0.187 0.414 0.458 0.500 

IQR 0.942 2.000 0.706 0.639 1.458 1.000 

Table 1  Statistical description 
of input and output parameters

Variable Cement Coarse aggregate Fine aggregate Water Superplasticizer CCS

Unit kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa
Mean 417.806 898.509 767.713 170.000 0.947 51.933
Standard deviation 77.026 43.818 85.448 8.178 0.549 9.446
Max 600 989 951 180 2 73.6
Min 284 845 552 160 0 37.5
skewness 0.406 0.015 − 0.192 0.000 0.021 0.442
Correlation with CCS 0.715 − 0.096 − 0.441 − 0.312 0.591 1.000
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variance, skewness, and kurtosis; while the more standard-
ized statistical matrices are applied to predict and validate 
the actual values in the test dataset. To examine whether 
the proposed models in this study, (HORSM) and SVM 
model, qualify to predict the CCS of HSC, statistical errors 
were applied such as correlation coefficient (r), root mean 
square error (RMSE), mean absolute error (MAE), relative 
error percentage (RE), Willmott’s index (d), relative (%) 
error data (MAE and RMSE) and nash efficiency (NE). 
The mathematical expressions of these statistical param-
eters can be shown as follows:

 I. The coefficient of correlation (r) is mathematically 
expressed in Eq. (8)

 II. Mean absolute error (MAE) is mathematically 
expressed in Eq. (9)

 III. Root mean square error (RMSE) is mathematically 
expressed in Eq. (10)

 IV. Mean absolute percentage error (MAPE %) is math-
ematically expressed in Eq. (11)

 V. Relative root mean square percentage error (RRMSE) 
is mathematically expressed in Eq. (12)

 VI. Willmott’s index (d) is mathematically expressed in 
Eq. (13):

 VII. Nash efficiency (NE) is mathematically expressed in 
Eq. (14)

(8)

r =

∑n

i=1

�
CCSobsi − CCSobs

��
CCSprdi − CCSprd

�
�∑n

i=1
(CCSobsi − CCSobs)2

�∑n

i=1
(CCSprdi − CCSprd)2

.

(9)MAE =
1

N

n∑
i=1

|||
(
CCSobsi − CCSprdi

)|||.

(10)RMSE =

√√√√ 1

N

n∑
i=1

(CCSobsi − CCSprdi)
2.

(11)

MAPE% =
1

N

n∑
i=1

|||||

(
CCSobsi − CCSprdi

)
CCSobsi

|||||
× 100.

(12)RRMSE =

�
1

N

∑n

i=1
(CCSobsi − CCSprdi)

2

1

n

∑n

i=1

�
CCSobsi

� .

(13)

d = 1 −

⎡⎢⎢⎢⎣

1

N

∑n

i=1

�
CCSobsi − CCSprdi

�2
∑n

i=1

����CCSprdi − CCSobs
��� +

���CCSobsi − CCSobs
���
�2

⎤⎥⎥⎥⎦
.

 VIII. Relative error percentage is mathematically expressed 
in Eq. (15)

Here, CCSobsi and CCSprdi are the observed and pre-
dicted ith values of CCS; CCSobs and CCSprd represent 
the average CCS of observed and predicted in a trained and 
tested sample set; n refers to the total number of data points.

3  Result and discussion

The motivation of this study is to apply a new, alternative, 
and reliable predicting model called high-order response 
surface method (HORSM) for construction, and industrial 
material engineering fields (i.e., compressive strength 
of high-strength concrete). The new HORSM modeling 
approaches were validated against robust AI predictive 
models that used widely in industrial material and manu-
facture for the development of concrete mixtures sectors 
such as SVM models. All mentioned models were devel-
oped based on five input variables namely, cement, coarse 
aggregate, fine aggregate, water, and superplasticizer.

In the quantitative assessment Table 2 shows the train-
ing and testing performance indicators as well as the 
optimal parameters for all developed SVM models. In 
accordance with the same table, the HORSM models with 
different order degrees ranging from 2 to 5 degrees were 
evaluated against SVM modeling approaches. The SVM 
models enerally performed very well during the training 
phase and achieved higher values of performance meas-
ures like r, N, and d ranging from 0.998 to 0.970, 0.997 to 
0.941, and 0.999 to 0.984, respectively. However, HORSM 
models provided varying values of other statistical param-
eters like MAE, RMSE, MAPE, RRMSE and maximum 
absolute relative error ranging from 1.924 to 0.419, 2.299 
to 0.550, and 3.816% to 0.852%, 4.451% to 1.064%, and 
11.945% to 11.002%, respectively. Based on these results, 
it can be concluded that the most unfavored model was 
HORSM 2. Additionally, the predictive results improved 
by the raising HORSM order, Thus, HORSM with 5 poly-
nomial orders generated the highest accuracy results in 
comparison with all HORSM modeling strategies during 
the training phase. For fair evaluation, SVM models in the 
training set were evaluated according to the same statisti-
cal matrices that utilized before and these models yielded 
higher values of r, N, and d ranging from 0.999 to 0.997, 

(14)NE = 1 −

�∑n

i=1
(CCSobsi − CCSprdi)

2

∑n

i=1
(CCSobsi − CCSobs)2

�
.

(15)RE% = 100 ×
CCSobsi − CCSprdi

CCSobsi
.
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Fig. 3  Scatter plot between 
target and predicted values of 
CCS of HSC over the testing 
set: SVM models
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Fig. 4  Scatter plot between 
target and predicted values of 
CCS of HSC over the testing 
set: HORSM models
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0.995 to 0.998, and 0.999 to 0.999, respectively. Neverthe-
less, SVM models provided varying values of other sta-
tistical parameters such as MAE, RMSE, MAPE, RRMSE 
and maximum absolute relative error ranging from 0.394 
to 0.194, 0.683 to 0.466, 0.409% to 0.813%, 1.323% to 
0.902%, and 7.371% to 4.071%, respectively.

Although SVM models provided slightly better accu-
racy in the prediction of CCS than HORSM models, the 
training stage is not considered the decisive phase for 
determining the best predicting modeling method. Thus, 
the testing phase is the most important stage in the selec-
tion process of the best and reliable predictive models 
because, in this stage, the model’s accuracy will be 

examined by introducing unseen data and monitoring its 
performance in generalization capabilities. Returning to 
Table 2, the HORSM models generally produced excellent 
responses during the testing stage in terms of r, N and d 
which ranging from 0.995 to 0.967, 0.989 to 0.903, and 
0.997 to 0.980, respectively. With respect to other statis-
tical measures such as MAE, RMSE, MAPE, RRMSE, 
and maximum absolute relative error, their values were 
ranging from 2.084 to 0.734, 2.483 to 0.989, 3.957% 
to 1.437%, 4.704% to 1.874%, and 11.608% to 5.144%, 
respectively. The most impressive observation could 
attract attention when the HORSM models showed almost 
similar behavior in both testing set, and training set and 
the accuracy was gradually improved with the increase in 
the nonlinear order. For instance, the HORSM (5) model 
produced the most accurate predicted results compared 
to other HORSM modeling approaches during both train-
ing and testing phases. Moreover, increasing polynomial 
nonlinear degrees to five generated a robust predictive 
model that managed to recognize and capture effectively 
the complicated and nonlinear relationship between com-
pressive strength and its input variables compared to other 
HORSM models. With respect to SVM models, it is useful 
to check their performances during the testing phase and 
compare it to the training stage. Generally, the accuracies 
of these models are reduced in comparison to the train-
ing set according to statistical indices. However, there 
was relatively a good agreement between actual and pre-
dicted values of CCS and had achieved with r, N, d, MAE, 

Fig. 5  Relative error percent-
age for all SVM models and 
HORSM (5) over the testing set
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Fig. 7  Histogram distribution for all predictive models validated against actual values of CCS: testing set

Fig. 8  The ratio magnitude 
between statistical measures 
during the training phase over 
the testing phase
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RMSE, MAPE, RRMSE and Maximum Absolute Rela-
tive Error ranging from 0.994 to 0.992, 0.986 to 0.983, 
0.996 to 0.997, 0.930 to 0.875,1.222 to 1.123, 1.878% 
to 1.761%, 2.316% to 2.127%, and 10.435% to 5.022%, 
respectively.

The scatter plot generated between predicted and 
observed values of CCS over the testing stage for all 
HORSM and SVM modeling approaches (see Figs. 3, 4). 
Consequently, the efficiency of the proposed modeling 
approach can be easily observed by identifying visually the 
diversion of each single data point. In accordance with the 
coefficient of determination magnitude ( R2 ), and the coef-
ficient of correlation (r) which exhibited an exquisite and 
subtle correlation to the ideal line of 45° for the HORSM 
(5) model. By the evidence above, it can be concluded that 
the HORSM with 5-order degrees provided more accurate 
results in comparison with other HORSM models; therefore, 
it is vital to carry out more comprehensive assessments with 

comparable SVM models. Moreover, most of the SVM mod-
els generally provided satisfactory predictions in terms of 
relative error percentage (see Fig. 5). However, these models 
generated relatively higher values of mean absolute rela-
tive error in comparison with HORSM (5) over the testing 
stage (see Fig. 6). Besides, there was a good match that can 
be observed from Fig. 7 between actual and predicted val-
ues where HORSM (5) provided more accurate predictions 
among all SVM modeling approaches. As mentioned above, 
the HORSM (5) model exhibited excellent results compared 
to other HORSM models, it is crucial to conduct further 
and detailed comparisons with SVM modeling approaches. 
Based on the known fact that the reliable models should 
perform very well in both training and testing set, there-
fore, HORSM (5) and SVM models were evaluated accord-
ing to the ratio of statistical parameters like (MAE, RMSE, 
MAPE%, and RRMSE%) during training phase over their 
values in the testing phase. Thus, the highest values of sta-
tistical indicators, close to one, recorded reference to the 
most reliable modeling technique. Among the five predictive 
models, HORSM (5) exhibited the best and more accurate 
model (see Fig. 8). The adopted modeling approach per-
formed very well in both training and testing phases, thereby 
reducing the predicting errors to the lowest level compared 
to other AI models. Moreover, the statistical characteristics, 
such as mean, standard deviation, skewness, and so on, of 
the employed model were very close to the actual values of 
CCS over the testing of data proving smaller magnitudes of 
absolute differences than SVM models (see Table 3). Addi-
tionally, Table 3 demonstrates that the process learning time 
of proposed models was extremely fast in comparison with 
SVM models. The adopted model trained efficiently within 
less than one second. Wherein, the SVM models needed 

Table 3  Statistical properties of actual and predicted CCS (MPa) 
presented as the absolute difference of HPRSM (5) and four different 
SVM models with respect to the actual CCS in the testing phase

Statistical prop-
erty

HORSM-5 SVM1 SVM2 SVM3 SVM4

Mean 0.135 0.326 0.153 0.235 0.400
Standard devia-

tion
0.109 0.310 0.207 0.370 0.293

Quartile (Q75%) 0.052 0.200 0.738 0.320 0.133
Quartile (Q25%) 0.273 0.661 0.182 0.619 0.761
Skewness 0.025 0.117 0.134 0.115 0.095
Variance 2.056 5.964 3.956 7.127 5.625
kurtosis 0.071 0.110 0.059 0.119 0.058
Learning time 

(s)
0.771 466.964 392.553 503.198 97.8111

12.82

20.26 20.95

15.77 16.43 16.45

0.00

5.00

10.00

15.00

20.00

25.00

RMSE MAE MAPE

Im
pr

ov
em

en
t %

Sta�s�cal parameters
Tes�ng phase Training phase

Fig. 9  Improvement in accuracy of predictions due to using HORSM 
with five polynomial order degrees compared to ELM modeling 
approach developed by a previous study [19] over the training and 
testing phases

Fig. 10  Influence of each input parameter on the proposed model out-
put
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a long time to completely train the model which ranged 
between 97.8111 and 503.198 s. Thus, it was clear to state 
that the HORSM model was considered less computation-
ally cost and less time-consuming as well as more efficiently 
accurate in predicting than the SVM modeling strategies.      

The proficiency of the adopted model was intensively 
evaluated against another AI modeling approach that 
was used in a previous study for the same dataset. Al-
Shamiri et al. [19] conducted a study to predict the CCS 
of HSC using two different AI modeling methods, includ-
ing feed-forward backpropagation artificial neural net-
work (FFBANN) and extreme learning machine (ELM) 
approach. The study recommended using the ELM in 
the prediction of CCS since it is very fast and has robust 
capabilities in predicting as well as better generalization 
performance. ELM models achieved the best prediction 
results during training and testing stages with minimum 
predicted errors. For instance, the ELM model produced 
MAPE value during the testing phase equal to 1.8178%, 
while the HORSM produced a smaller value of MAPE 
(1.43%), which means there was a satisfactory enhance-
ment achieved using HORSM (5), thereby improving the 
predicted result within 20.95%. Figure 9 illustrated more 
detailed analyses regarding the improvement in accuracy 
of predictions to using the HORSM (5) in comparison 
with outcomes achieved by Al-Shamiri et  al. for both 
training and testing phases according to several statistical 
measures.

3.1  Sensitivity analysis

An accurate Investigation of identifying the most signifi-
cant parameters that have a major impact on compressive 
strength of high-strength concrete is crucial in material 
and structural engineering. To carry out the analysis, 
cosine amplitude [60, 61] method can be employed for that 
aim. The mathematical expression of the adopted method 
can be illustrated as below Eq. (16):

In the equation previously stated, the parameters Xi and 
Xj , respectively, represent the input and output values, while 
n denotes the number of datasets in testing phase. Lastly, 
Rij with range between 0 and 1, giving more information on 
the strength between each variable and target. Based on the 
given formula, if the magnitude of Rij (for a certain param-
eter) is 0, that means there is no relationship between that 

(16)Rij =

∑n

k=1
(Xik x Xjk)�∑n

k=1
X2
ik

∑n

k=1
X2
jk

.

parameter and the target. However, when the value of Rij is 
close to 1 for specific variable(s), then it can be said that 
the parameter(s) can strongly affect the capacity of compres-
sive strength of concrete. Figure 10 showed the assessment 
results regarding the influence of each applied parameters to 
the target. As exhibited from the figure, the cement, coarse 
aggregate, and water variable are, respectively, having the 
strongest effects on the model output values.

4  Conclusion

This study attempted to develop a reliable and modern 
model to accurately predict compressive strength of HSC. 
Establishing a robust modeling approach is a tough mis-
sion in material sectors because the presence of several 
parameters affects the properties of HSC in comparison to 
ordinary concrete. Thus, achieving an accurate predicting 
model is considered an extremely difficult task. However, 
precise and early forecasting can save time, effort, and 
cost by reducing trial mixtures. In this context, HORSM 
was used with different order polynomial degrees ranging 
from 2 to 5 for developing predictive models. The adopted 
models have been developed to compete with AI modeling 
approaches which carried out widely in the prediction of 
CCS. SVM approach used broadly in the prediction of 
CCS, therefore, it was developed as a comparable model to 
examine the performance of HORSM modeling strategies 
in this study. The obtained result of this study revealed 
that the accuracies of HORSM modeling improved as 
order polynomial degrees increased and reached 5 which 
produced the most accurate outcomes. Yet, the HORSM 
models outperform the SVM models and generate fewer 
predicted errors. Additionally, HORSM models managed 
to perfectly predict the CCS and its algorithm needed in 
general, less than one second to accomplish the learn-
ing processes. In contrast, the algorithm of SVM needed 
a long time to train the model varying from 97.8111 to 
503.198 s. For further assessment, the obtained results of 
the HORSM also compared with other robust AI modeling 
techniques such as extreme learning machine using the 
same data set. The prediction accuracies of the HORSM 
were more efficient than the extreme learning machine 
models for both the training and testing set. In accordance 
with the mentioned results, it can be concluded that the 
excellent performances of HORSM modeling technique 
provided very promising results that could compete with 
AI models in the future.
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