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Abstract
Matrices representations of integrations of wavelets have a major role to obtain approximate solutions of integral, differ-
ential and integro-differential equations. In the present work, operational matrix representation of rth integration of Jacobi 
wavelets is introduced and to find these operational matrices, all details of the processes are demonstrated for the first time. 
Error analysis of offered method is also investigated in present study. In the planned method, approximate solutions are 
constructed with the truncated Jacobi wavelets series. Approximate solutions of the modified Camassa–Holm equation and 
Degasperis–Procesi equation linearized using quasilinearization technique are obtained by presented method. Applicabil-
ity and accuracy of presented method is demonstrated by examples. The proposed method is also convergent even when a 
minor number of grid points. The numerical results obtained by offered technique are compatible with those in the literature.

Keywords Jacobi wavelets · Nonlinear modified Camassa–Holm and Degasperis–Procesi equations · Convergence · 
Quasilinearization technique · Collocation method · Approximate solution

1 Introduction

Wavelets, recognized as good-localized functions, are an 
influential instrument used in signal and image processing, 
computer science, quantum mechanics, communications and 
various further areas of science. The wavelets methods allow 
the improvement of very quick algorithms and give accurate 
solutions when compared to the normally used algorithms. 
Some wavelet methods such as Haar wavelets [1–10], Leg-
endre wavelets [11–16], Chebyshev wavelets [17–28] and 
Gegenbauer wavelets [29–39] are given special attention in 
the literature.

Many real-life problems are related to nonlinear mod-
els occurring in various fields of science and engineering, 
especially in plasma physics, plasma wave, chemical phys-
ics, fluid mechanics, and solid-state physics. They can be 
expressed in terms of nonlinear partial differential equations. 
Nonlinear equations also include surface waves in com-
pressible liquids, acoustic waves in a harmonic crystal, and 
hydromagnetic waves in cold plasma [47]. Nonlinear partial 

differential equation of the important physical model called 
the modified w-equation is expressed as follows:

have been solved by the suggested method for w = 2 and 
w = 3. When w = 2 , Eq. (1) is transformed to

and called as modified Camassa–Holm (mCH) equation. If 
initial condition is taken as u(x, 0) = −2sech2

(
x

2

)
 , the exact 

solution of Eq. (2) is [40]
u(x, t) = −2sech2

(
x

2
− t

)
.

When w = 3 , Eq. (1) is transformed to

and called as modified Degasperis–Procesi (mDP) equation. 
If initial condition is taken as u(x, 0) = −

15

8
sec h2

(
x

2

)
 , the 

exact solution of Eq. (3) is [40]
u(x, 0) = −

15

8
sech2

(
x

2
−

5t

4

)
.

For nonlinear partial differential equation in

(1)
ut − uxxt + (w + 1)u2ux − wuxuxx − uuxxx = 0, a < x < b,

(2)ut − uxxt + 3u2ux − 2uxuxx − uuxxx = 0,

(3)ut − uxxt + 4u2ux − 3uxuxx − uuxxx = 0,
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u̇(x, t) = F(u, u�, u��, ... , u(r)),the quasilinearization method 
gives a sequence of repetition for linear partial differential 
equations:

where F
u
(i)
s
(us, u

�
s
, u��

s
, ... , u(r)

s
) =

�

�u
(i)
s

(
F(us, u

�
s, u

��
s, ... , u

(r)
s
)
)
 , 

u̇(x, t) =
𝜕u(x,t)

𝜕t
 , u�(x, t) = �u(x,t)

�x
 and u0(x, t) is selected as any 

function that provides boundary and initial conditions [41].
In this study, integration of the Jacobi polynomial P(�,�)

m
(x) 

from − 1 to x has been found, the general procedures for 
obtaining operational matrices of integration of Jacobi 
wavelets have been introduced and operational matrix of 
rth integration of Jacobi wavelets and two theorems about 
error analysis of presented method have been given for the 
first time in this study. Presented technique is built on the 
approach to the solution of problem by the truncated Jacobi 
wavelet series. System of algebraic equations is attained by 
handling the Chebyshev collocation points. If system of alge-
braic equations is solved, unknown coefficients of the Jacobi 
wavelet series may be obtained. Therefore, implicit shape of 
the approximate solutions of nonlinear partial differential 
equations can be found using Jacobi wavelet series with the 
obtained coefficients. This process can be performed to the 
modified Camassa–Holm and Degasperis–Procesi equations 
by utilization of quasilinearization technique. Approximate 
results indicated that the Jacobi wavelet collocation method 
has a quite superior accuracy even at a minor number of 
grid points.

2  Jacobi polynomials

For m ∈ Z+, Jacobi polynomials of degree m are defined as 
P(�,�)
m

(x) where 𝛼 > −1 and 𝛽 > −1 on the range [− 1, 1]. 
Recurrence formulae of their may be given as:

where
a(�,�)
m

=
(2m+�+�+1)(2m+�+�+2)

2(m+1)(m+�+�+1)
,

(4)u̇s+1(x, t) = F(us, u
�
s
, u��

s
, ... , u(r)

s
) +

r∑
i=0

(
u
(i)

s+1
− u(i)

s

)
F
u
(i)
s
(us, u

�
s
, u��

s
, ... , u(r)

s
),

P
(�,�)

0
(x) = 1, P

(�,�)

1
(x) =

1

2
(� + � + 2)x +

1

2
(� − �),

(5)
P
(�,�)

m+1
(x) = (a(�,�)

m
x + b(�,�)

m
)P(�,�)

m
(x) − c(�,�)

m
P
(�,�)

m−1
(x), m ⩾ 1

b(�,�)
m

=
(2m+�+�+1)(�2−�2)

2(m+1)(m+�+�+1)(2m+�+�)
,

c(�,�)
m

=
(2m+�+�+2)(m+�)(m+�)

(m+1)(m+�+�+1)(2m+�+�)
.

The generating function for Jacobi polynomials are given 
as:

where R = (1 − 2xt + t2)
1∕2 . Some relations of Jacobi 

polynomials can be given as [42]:

The following relation can be obtained by integration of 
the Jacobi polynomial P(�,�)

m
(x) from − 1 to x:

2�+�R−1(1 − t + R)−�(1 + t + R)−� =

∞∑
m=0

P(�,�)
m

(x) tm,

(6)
d

dx
(P(�,�)

m
(x)) =

1

2
(m + � + � + 1)P

(�+1,�+1)

m−1
(x),

(m + � + � + 1)P
(�+1,�+1)

m−1
(x)

= (m + �)P
(�,�+1)

m−1
(x) + (m + �)P

(�+1,�)

m−1
(x),

(7)
(2m + � + �)P(�−1,�)

m
(x) = (m + � + �)P(�,�)

m
(x) − (m + �)P

(�,�)

m−1
(x),

(8)
(2m + � + �)P(�,�−1)

m
(x) = (m + � + �)P(�,�)

m
(x) + (m + �)P

(�,�)

m−1
(x),

P(�,�)
m

(−x) = (−1)mP(�,�)
m

(x),

P(�,�)
m

(1) =
Γ(m + � + 1)

m! Γ(� + 1)
,

P(�,�)
m

(−1) =
(−1)mΓ(m + � + 1)

m! Γ(� + 1)
,

d

dx

[
(1 − x)�+1(1 + x)�+1P

(�+1,�+1)

m+1
(x)

]
= 2m(1 − x)�(1 + x)�P(�,�)

m
(x),

2m∫ (1 − x)�(1 + x)�P(�,�)
m

(x) dx =(1 − x)�+1(1 + x)�+1P
(�+1,�+1)

m+1
(x).
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where � = � + � + 1.
Jacobi polynomials are orthogonal polynomials according 

to the weight function w(x) = (1 − x)�(1 + x)� on the range 
[− 1, 1] as [42]:

where

is the normalizing factor.

3  Jacobi wavelet method

Wavelets are composed of functions family generated by 
dilation (or contraction) and translation of a single function 
named the mother wavelet. a and b are named the as dilation 
parameter and translation parameter. If translation and dila-
tion parameters change continuously, continuous wavelets 
family may be obtained as follows [43]:

Jacobi wavelets are written as

where k = 0, 1, 2, …, n = 1, 2, …,  2k, degree of the Jacobi 
polynomial is shown as m, 𝛼, 𝛽 > −1 are parameters and x ∈ 
[0,1). Jacobi wavelets can be defined as:

x∫
−1

P(�,�)
m

(t) dt =
2

(m+�−1)

[
P
(�−1,�−1)

m+1
(t)
]||||

x

−1

=
2

(m+�−1)

[
(m+�−1)

(2m+�)
P
(�,�−1)

m+1
(t) −

(m+�)

(2m+�)
P(�,�−1)
m

(t)
] ||||

x

−1

=
2

(m+�−1)

[
(m+�−1)

(2m+�)

(
(m+�)

(2m+�+1)
P
(�,�)

m+1
(t) +

(m+�+1)

(2m+�+1)
P(�,�)
m

(t)
)

−
(m+�)

(2m+�)

(
(m+�−1)

(2m+�−1)
P(�,�)
m

(t) +
(m+�)

(2m+�−1)
P
(�,�)

m−1
(t)
)]||||

x

−1

= 2

{
(m+�)

(2m+�+1)(2m+�)
P
(�,�)

m+1
(x) +

(�−�)

(2m+�+1)(2m+�−1)
P(�,�)
m

(x)

−
(m+�)(m+�)

(2m+�)(2m+�−1)(m+�−1)
P
(�,�)

m−1
(x)

}
− 2

{
(m+�)

(2m+�+1)(2m+�)
P
(�,�)

m+1
(−1)

+
(�−�)

(2m+�+1)(2m+�−1)
P(�,�)
m

(−1) −
(m+�)(m+�)

(2m+�)(2m+�−1)(m+�−1)
P
(�,�)

m−1
(−1)

}
, m ≥ 1

1

�
−1

(1 − x)�(1 + x)�P(�,�)
n

(x)P(�,�)
m

(x) dx =

{
L(�,�)
m

, m = n

0, m ≠ n

L(�,�)
m

=
2�+�+1Γ(m + � + 1)Γ(m + � + 1)

(2m + � + � + 1)m! Γ(m + � + � + 1)

(9)�a,b(x) = |a|1∕2�
(
x − b

a

)
, a, b ∈ R, a ≠ 0.

�nm(x) = �(k, n,m, x).

where P(�,�)
m

(2k+1x − 2n + 1) is the Jacobi polynomial whose 
degree is m and it is orthogonal polynomial according to the 
weight function

on interval 0 ⩽ x ⩽ 1 . Any finite interval a ⩽ y ⩽ b can be 
converted into the simple range 0 ⩽ x ⩽ 1 by transformation 
of variable given as y = (b − a)x + a.

Any function f (x) ∈ L2
w
[0, 1][0, 1] can be extended as:

where

⟨ . , . ⟩ indicates the dot product according to weight func-
tion wn(x) in Eq. (12).

Truncated series of Eq. (11) may be given as:

where �(x) and � are 2kM × 1 dimensional columns vectors 
assumed as:

(10)

𝜓nm(x) =

⎧
⎪⎪⎨⎪⎪⎩

2
k+1

2�
L
(𝛼,𝛽)
m

P(𝛼,𝛽)
m

(2k+1x − 2n + 1),
n − 1

2k
⩽ x <

n

2k
,

0 , otherwise

wn(x) = w(2k+1x − 2n + 1)

= (1 − (2k+1x − 2n + 1))�(1 + (2k+1x − 2n + 1))�

(11)f (x) =

2k∑
n=1

∞∑
m=0

fnm�nm(x),

(12)fnm = ⟨f (x),�nm(x)⟩.

(13)f (x) ≅

2k∑
n=1

M−1∑
m=0

fnm�nm(x) = �
�
�(x),

�
� = [f10, f11, ..., f1M−1, f20, ..., f2M−1, ..., f2k0, ..., f2kM−1 ],

(14)�(x) = [�10, �11, ..., �1M−1, �20, ..., �2M−1, ..., �2k0, ..., �2kM−1 ]T .
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If the function �nm(x) in Eq. (10) is integrated, it may be 
shown as follows:

The following equations may be obtained by calculating 
pnm(x) for m = 0,m = 1 and m > 1:

where � = � + � + 1 and u =  2k+1x−2n + 1. If �(x) col-
umn vector is integrated, the following matrix representation 
may be obtained:

where

pn0(x) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0, 0 ⩽ x <
n − 1

2k

2(𝛽 + 1)

𝜆 + 1
𝜓n0(u) +

2

𝜆 + 1

����L
(𝛼,𝛽)

1

L
(𝛼,𝛽)

0

𝜓n1(u),
n − 1

2k
⩽ x <

n

2k

2,
n

2k
⩽ x < 1

pn1(x) =

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 0 ≤ x <
n−1

2k

−2
�

(𝜆+1)

(𝜆+3)(𝜆+2)
P
(𝛼,𝛽)

2
(−1) +

(𝛼−𝛽)

(𝜆+3)(𝜆+1)
P
(𝛼,𝛽)

1
(−1)

��
L
(𝛼,𝛽)

0

L
(𝛼,𝛽)

1

𝜓n0(u)

+
2(𝛼−𝛽)

(𝜆+3)(𝜆+1)
𝜓n1(u) +

2(𝜆+1)

(𝜆+3)(𝜆+2)

�
L
(𝛼,𝛽)

2

L
(𝛼,𝛽)

1

𝜓n2(u),
n−1

2k
≤ x <

n

2k

2

�
(𝜆+1)

(𝜆+3)(𝜆+2)

�
P
(𝛼,𝛽)

2
(1) − P

(𝛼,𝛽)

2
(−1)

�
+

(𝛼−𝛽)

(𝜆+3)(𝜆+1)

�
P
(𝛼,𝛽)

1
(1) − P

(𝛼,𝛽)

1
(−1)

�

−
(𝛼+1)(𝛽+1)

(𝜆+2)(𝜆+1)𝜆

�
P
(𝛼,𝛽)

0
(1) − P

(𝛼,𝛽)

0
(−1)

���
L
(𝛼,𝛽)

0

L
(𝛼,𝛽)

1

𝜓n0(u),
n

2k
≤ x < 1

pnm(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ x <
n−1

2k

− 2

�
(m+𝜆)

(2m+𝜆+1)(2m+𝜆)
P
(𝛼,𝛽)

m+1
(−1) +

(𝛼−𝛽)

(2m+𝜆+1)(2m+𝜆−1)
P(𝛼,𝛽)
m

(−1)

−
(m+𝛼)(m+𝛽)

(2m+𝜆)(2m+𝜆−1)(m+𝜆−1)
P
(𝛼,𝛽)

m−1
(−1)

��
L
(𝛼,𝛽)

0

L
(𝛼,𝛽)
m

𝜓n0(u)

−
2(m+𝛽)(m+𝛼)

(2m+𝜆)(2m+𝜆−1)(m+𝜆−1)

�
L
(𝛼,𝛽)

m−1

L
(𝛼,𝛽)
m

𝜓nm−1(u) +
2(𝛼−𝛽)

(2m+𝜆+1)(2m+𝜆−1)
𝜓nm(u)

+
2(m+𝜆)

(2m+𝜆+1)(2m+𝜆)

�
L
(𝛼,𝛽)

m+1

L
(𝛼,𝛽)
m

𝜓nm+1(u),
n−1

2k
≤ x <

n

2k

2

�
(m+𝜆)

(2m+𝜆+1)(2m+𝜆)

�
P
(𝛼,𝛽)

m+1
(1) − P

(𝛼,𝛽)

m+1
(−1)

�
+

(𝛼−𝛽)

(2m+𝜆+1)(2m+𝜆−1)

�
P(𝛼,𝛽)
m

(1) − P(𝛼,𝛽)
m

(−1)
�

−
(m+𝛼)(m+𝛽)

(2m+𝜆)(2m+𝜆−1)(m+𝜆−1)

�
P
(𝛼,𝛽)

m−1
(1) − P

(𝛼,𝛽)

m−1
(−1)

���
L
(𝛼,𝛽)

0

L
(𝛼,𝛽)
m

𝜓n0(u),
n

2k
≤ x < 1

(16)
x

∫
0

�(s)ds = [p10, p11, ..., p1M−1, p20, ..., p2M−1, ..., p2k0, ..., p2kM−1 ]T = �
�
�

�
(x),

�
�
(x) = [�10, �11, ..., �1M , �20, ..., �2M , ..., �2k0, ..., �2kM ]T ,

(15)pnm(x) =

x

∫
0

�nm(s)ds.
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  �
�
=

1

2k+1

⎡
⎢⎢⎢⎢⎢⎣

�
�
�
�
�
�
⋯ �

�
�
�

� �
�
�
�
⋯ �

�
�
�

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

� � � ⋯ �
�
�
�

� � � ⋯ � �
�

⎤
⎥⎥⎥⎥⎥⎦

If the vector �(x) is integrated two times, matrix repre-
sentation of integration may be denoted as:

The rth integration of the vector �(x) may be denoted 
as:where

�
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 ⋯ 0

2

�
(�+1)

(�+3)(�+2)

�
P
(�,�)

2
(1) − P

(�,�)

2
(−1)

�
+

(�−�)

(�+3)(�+1)

�
P
(�,�)

1
(1) − P

(�,�)

1
(−1)

�

−
(�+1)(�+1)

(�+2)(�+1)�

�
P
(�,�)

0
(1) − P

(�,�)

0
(−1)

���
L
(�,�)

0

L
(�,�)

1

�n0(u)
0 ⋯ 0

⋮ ⋮ ⋱ 0

2

�
(M+�)

(2M+�+1)(2M+�)

�
P
(�,�)

M+1
(1) − P

(�,�)

M+1
(−1)

�
+

(�−�)

(2M+�+1)(2M+�−1)

�
P
(�,�)

M
(1) − P

(�,�)

M
(−1)

�

−
(M+�)(M+�)

(2M+�)(2M+�−1)(M+�−1)

�
P
(�,�)

M−1
(1) − P

(�,�)

M−1
(−1)

���
L
(�,�)

0

L
(�,�)

M−1

�n0(u)
0 ⋯ 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

�
0

x1

�
0

�(s)dsdx1 =

x

�
0

�
�
�

�
(x

�
)dx1 = �

�

x

�
0

�
�
(x

�
)dx1 = �

�
�
�
�

�
(x) ≠ �

�

�
�(x).

x

�
0

x1

�
0

x2

�
0

⋯

xr−1

�
0

�(s) dsdxr−1dxr−2 ⋯ dx1 = �
�
�
�
⋯�

�
�

�
(x) ≠ �

�

�
�(x),

(17)�
�
(x) = [�10, �11, ..., �1M+r−1, �20, ... , �2M+r−1, ... , �2k0, ... , �2kM+r−1 ]T .

�
�
and �

�
 are (M + r − 1) × (M + r) dimension matrices, 

�
�
 is a 2k(M + r − 1) × 2k(M + r) dimension matrix and the 

matrices �
�
 , �

�
and �

�
 have the following form:

�
�
=

1

2k+1

⎡
⎢⎢⎢⎢⎢⎣

�
�
�
�
�
�
⋯ �

�
�
�

� �
�
�
�
⋯ �

�
�
�

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

� � � ⋯ �
�
�
�

� � � ⋯ � �
�

⎤
⎥⎥⎥⎥⎥⎦

�
�
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 ⋯ 0

2

�
(�+1)

(�+3)(�+2)

�
P
(�,�)

2
(1) − P

(�,�)

2
(−1)

�
+

(�−�)

(�+3)(�+1)

�
P
(�,�)

1
(1) − P

(�,�)

1
(−1)

�

−
(�+1)(�+1)

(�+2)(�+1)�

�
P
(�,�)

0
(1) − P

(�,�)

0
(−1)

���
L
(�,�)

0

L
(�,�)

1

�n0(u)
0 ⋯ 0

⋮ ⋮ ⋱ ⋮

2

�
(M+�)

(2M+�+1)(2M+�)

�
P
(�,�)

M+1
(1) − P

(�,�)

M+1
(−1)

�
+

(�−�)

(2M+�+1)(2M+�−1)

�
P
(�,�)

M
(1) − P

(�,�)

M
(−1)

�

−
(M+�)(M+�)

(2M+�)(2M+�−1)(M+�−1)

�
P
(�,�)

M−1
(1) − P

(�,�)

M−1
(−1)

���
L
(�,�)

0

L
(�,�)

M−1

�n0(u)
0 ⋯ 0

⋮ ⋮ ⋱ ⋮

2

�
(M+r+�−1)

(2M+2r+�−1)(2M+2r+�−2)

�
P
(�,�)

M+r
(1) − P

(�,�)

M+r
(−1)

�
+

(�−�)

(2M+2r+�−1)(2M+2r+�−3)

�
P
(�,�)

M+r−1
(1) − P

(�,�)

M+r−1
(−1)

�

−
(M+r+�−1)(M+r+�−1)

(2M+2r+�−2)(2M+2r+�−3)(M+r+�−2)

�
P
(�,�)

M+r−2
(1) − P

(�,�)

M+r−2
(−1)

���
L
(�,�)

0

L
(�,�)

M+r−2

�n0(u)
0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



S2277Engineering with Computers (2022) 38 (Suppl 3):S2271–S2287 

1 3

�
�
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣2
(�
−
1
)

�
+
1

2

�
+
1

�
L
(�
,�
)

1

L
(�
,�
)

0

0
⋯

0
0

0

−
2

�
(�
+
1
)

(�
+
3
)(
�
+
2
)
P
(�
,�
)

2
(−

1
)
+

(�
−
�
)

(�
+
3
)(
�
+
1
)
P
(�
,�
)

1
(−

1
)��

L
(�
,�
)

0

L
(�
,�
)

1

2
(�
−
�
)

(�
+
3
)(
�
+
1
)

2
(�
+
1
)

(�
+
3
)(
�
+
2
)

�
L
(�
,�
)

2

L
(�
,�
)

1

⋯
0

0
0

−
2

�
(�
+
2
)

(�
+
5
)(
�
+
4
)
P
(�
,�
)

3
(−

1
)
+

(�
−
�
)

(�
+
5
)(
�
+
3
)
P
(�
,�
)

2
(−

1
)

−
(�
+
2
)(
�
+
2
)

(�
+
4
)(
�
+
3
)(
�
+
1
)
P
(�
,�
)

1
(−

1
)��

L
(�
,�
)

0

L
(�
,�
)

2

−
2
(�
+
2
)(
�
+
2
)

(�
+
4
)(
�
+
3
)(
�
+
1
)

�
L
(�
,�
)

1

L
(�
,�
)

2

2
(�
−
�
)

(�
+
5
)(
�
+
3
)

⋯
0

0
0

⋮
⋮

⋮
⋱

⋮
⋮

⋮

−
2

�
(M

+
r
+
�
−
1
)

(2
M
+
2
r
+
�
−
1
)(
2
M
+
2
r
+
�
−
2
)
P
(�
,�
)

M
+
r
(−

1
)
+

(�
−
�
)

(2
M
+
2
r
+
�
−
1
)(
2
m
+
2
r
+
�
−
3
)
P
(�
,�
)

M
+
r
−
1
(−

1
)

−
(M

+
r
+
�
−
1
)(
M
+
r
+
�
−
1
)

(2
M
+
2
r
+
�
−
2
)(
2
M
+
2
r
+
�
−
3
)(
M
+
r
+
�
−
2
)
P
(�
,�
)

m
−
1
(−

1
)��

L
(�
,�
)

0

L
(�
,�
)

M
+
r
−
2

0
0

⋯
−
2
(M

+
r
+
�
−
2
)
(M

+
r
+
�
−
2
)

(2
M
+
2
r
+
�
−
4
)(
2
M
+
2
r
+
�
−
5
)(
M
+
r
+
�
−
3
)

�
L
(�
,�
)

M
+
r
−
3

L
(�
,�
)

M
+
r
−
2

2
(�
−
�
)

(2
M
+
2
r
+
�
−
3
)
(2
M
+
2
r
+
�
−
5
)

2
(M

+
r
+
�
−
2
)

(2
M
+
2
r
+
�
−
3
)
(2
M
+
2
r
+
�
−
4
)

�
L
(�
,�
)

M
+
r
−
1

L
(�
,�
)

M
+
r
−
2

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦
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4  Jacobi wavelet collocation method 
for the mCH and mDP equations

Consider nonlinear partial differential equations in Eq. (1) 
with boundary and initial conditions:

We presume that u̇(3)(x, t) may be extended like truncated 
Jacobi wavelets series as:

where “ ” and “(3)” imply differentiation according to t and x . 
If Eq. (19) is integrated according to t from ts to t and three 
times according to x from 0 to x , we can find the following 
equations:

By substituting boundary and initial conditions into 
Eq. (18), the following equation may be obtained:

If Eqs. (18) and (26) are replaced into Eqs. (20–25), we 
can obtain the following equations:

(18)
u(x, 0) = f (x), u(0, t) = g0(t), u(1, t) = g1(t), ux(0, t) = g2(t).

(19)u̇(3)(x, t) =

2k∑
n=1

M−1∑
m=0

fnm𝜓nm(x) = �
�
�(x),

(20)u(3)(x, t) = u(3)(x, ts) + (t − ts)�
�
�(x),

(21)
u(2)(x, t) = u(2)(x, ts) + u(2)(0, t) − u(2)(0, ts) + (t − ts)�

�
�
�
�

�
(x),

(22)u̇(2)(x, t) = u̇(2)(0, t) + �
�
�
�
�

�
(x),

(23)ux(x, t) = ux(x, ts) + ux(0, t) − ux(0, ts) + x(u(2)(0, t) − u(2)(0, ts)) + (t − ts)�
�
�
�
�
�
�

�
(x),

(24)u(x, t) = u(x, ts) + u(0, t) − u(0, ts) + x(ux(0, t) − ux(0, ts)) +
x2

2
(u(2)(0, t) − u(2)(0, ts))

+(t − ts)�
�
�
�
�
�
�
�
�

�
(x),

(25)
ut(x, t) = ut(0, t) + xuxt(0, t) +

x2

2
u̇(2)(0, t) + �

�
�
�
�
�
�
�
�

�
(x).

(26)
1

2
(u(2)(0, t) − u(2)(0, ts)) = g1(t) − g1(ts) − (g2(t) − g2(ts)) − (g0(t) − g0(ts))

−(t − ts)�
�
�
�
�
�
�
�
�

�
(1).

(27)u(3)(x, t) = (t − ts)�
�
�(x) + u(3)(x, ts),

(28)u(2)(x, t) = u(2)(x, ts) + (t − ts)�
�
[
�
�
�

�
(x) − 2�

�
�
�
�
�
�

�
(1)

]
−2(g2(t) − g2(ts)) − 2(g0(t) − g0(ts)) + 2(g1(t) − g1(ts)) ,

Using quasilinearization technique, Eq. (1) can be trans-
formed into the sequence of linear differential equations. 
Nonlinear terms in Eq. (1) may be written as:

(29)
u̇(2)(x, t) = �

�
[
�
�
�

�
(x) − 2�

�
�
�
�
�
�

�
(1)

]
− 2g�

2
(t) − 2g�

0
(t) + 2g�

1
(t) ,

(30)

ux(x, t) =ux(x, ts) + (t − ts)�
�

[
�
�
�
�
�

�
(x) − 2x�

�
�
�
�
�
�

�
(1)

]
− (1 − 2x)(g2(t) − g2(ts)) − 2x(g0(t)

− g0(ts)) + 2x(g1(t) − g1(ts)),

(31)

u(x, t) =u(x, ts) + (t − ts)�
�

[
�
�
�
�
�
�
�

�
(x) − x2�

�
�
�
�
�
�

�
(1)

]

+ (x − x2)(g2(t) − g2(ts) ) + (1 − x2)(g0(t)

− g0(ts)) + x2(g1(t) − g1(ts)) ,

(32)
ut(x, t) =�

�
[
�
�
�
�
�
�
�

�
(x) − x2�

�
�
�
�
�
�

�
(1)

]

+ (x − x2)g�
2
(t) + (1 − x2)g�

0
(t) + x2)g�

1
(t).

(33)
(u2(x, t)ux(x, t))

l+1 ≅ 2ul(x, t)ul
x
(x, t)ul+1(x, t)

+ ul
2

(x, t)ul+1
x

(x, t) − 2ul
2

(x, t)ul
x
(x, t)

(34)
(ux(x, t) uxx(x, t))

l+1 ≅ ul+1
x

(x, t) ul
xx
(x, t)

+ ul
x
(x, t) ul+1

xx
(x, t) − ul

x
(x, t) ul

xx
(x, t)

By replacing Eqs. (33), (34) and (35) into Eq. (1), trans-
formed equation is found as:

(35)
(u(x, t) uxxx(x, t))

l+1 ≅ ul+1(x, t) ul
xxx
(x, t)

+ ul(x, t) ul+1
xxx

(x, t) − ul(x, t) ul
xxx
(x, t).
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where l = 0, 1, 2, ... and it is called index of quasilineariza-
tion technique. u0(x, t) which provides boundary and initial 
conditions is taken as

which satisfies initial/boundary conditions. Substituting Eqs. 
(27–32) into Eq. (36), we obtain the following equation:

where Δt = t − ts.
The collocation points may be selected as 

2k+1xni − 2n + 1 = cos
((M+1)−i)�

(M+1)
 or

Replacing the collocation points x → xni and time variable 
t → ts+1 into Eq. (38), vectors �(x

��
),�

�
(x

��
) and �

�
(x

��
) may 

be achieved. We can find system of algebraic equations from 
Eq. (38) whose matrix notation may be written as:

where � and � are 2kM × 1 dimensional vectors, � is a 
2kM × 2kM dimensional matrix. If system of algebraic equa-
tions in Eq. (40) is solved, we may achieve the coefficients 
of Jacobi wavelet series in Eq. (31) which provides Eq. (1) 
and initial/ boundary conditions in Eq. (18).

5  Convergence analysis

In this part, convergence and error analysis of the Jacobi 
wavelet series expansion of a function f (x) are studied.

(36)

ul+1
t

(x, t) − ul+1
xxt

(x, t) +
(
2(w + 1)ul(x, t) ul

x
(x, t) − ul

xxx
(x, t)

)
ul+1(x, t)

+
(
(w + 1)

(
ul(x, t)

)2
− wul

xx
(x, t)

)
ul+1
x

(x, t) − wul
x
(x, t)ul+1

xx
(x, t) − ul(x, t)ul+1

xxx
(x, t)

= 2(w + 1)
(
ul(x, t)

)2
ul
x
(x, t) − wul

x
(x, t)ul

xx
(x, t) − ul(x, t) ul

xxx
(x, t)

(37)u0(x, t) = u(x, ts) + (x − x2)(g2(t) − g2(ts) ) + (1 − x2)(g0(t) − g0(ts)) + x2(g1(t) − g1(ts)),

(38)

ΔtCT

⎡
⎢⎢⎢⎣

�
1

Δt
+ 2(w + 1)ul(x, t) ul

x
(x, t) − ul

xxx
(x, t)

�
�
�
�
�
�
�
�

�
(x) +

�
(w + 1)

�
ul(x, t)

�2
− wul

xx
(x, t)

�
�
�
�
�
�2(x)

−
�
1 + wul

x
(x, t)

�
�
�
�

�
(x) − ul(x, t)mathbfΨ(x)

+
�

2−x2

Δt
+ x2

�
2(w + 1)ul(x, t) ul

x
(x, t) − ul

xxx
(x, t)

�
− 2x

�
(w + 1)

�
ul(x, t)

�2
− wul

xx
(x, t)

�
+ 2wul

x
(x, t)

�
�
�
�
�
�
�
�1(1)

⎤
⎥⎥⎥⎦

= 2(w + 1)
�
ul(x, t)

�2
ul
x
(x, t) − wul

x
(x, t) ul

xx
(x, t) − ul(x, t) ul

xxx
(x, t)

−
�
2(w + 1)ul(x, t) ul

x
(x, t) − ul

xxx
(x, t)

� �
ul(x, ts) + (x − x2)

�
g2(t) − g2(ts)

�
+ (1 − x2)

�
g0(t) − g0(ts)

�
+ x2

�
g1(t) − g1(ts)

��
−
�
(w + 1)

�
ul(x, t)

�2
− wul

xx
(x, t)

��
ul
x
(x, ts) + (1 − 2x)

�
g2(t) − g2(ts)

�
− 2x)

�
g0(t) − g0(ts)

�
+ 2x

�
g1(t) − g1(ts)

��
+wul

x
(x, t)

�
ul
xx
(x, ts) − 2

�
g2(t) − g2(ts)

�
− 2

�
g0(t) − g0(ts)

�
+ 2

�
g1(t) − g1(ts)

��
+ ul(x, t)ul

xxx
(x, ts)

+(x2 − x − 2)g�
2
(t) + (x2 − 3)g�

0
(t) + (2 − x2)g�

1
(t)

(39)xni =
1

2k+1

(
2n − 1 + cos

((M + 1) − i)�

(M + 1)

)
, i = 1, 2, ..., M n = 1, 2, ..., 2k.

(40)�
�
� = �,

Lemma 1 If the Jacobi wavelet series expansion of a contin-
uous function f (x) converges uniformly, then Jacobi wavelet 
series expansion converges to the function f (x).

Proof For Jacobi wavelet, proof may be shown similar way 
in [20]

Theorem 1 A function f (x) ∈ C
r[0, 1] with the ||f (r+1)(x)|| < U 

may be expanded as an infinite sum of Jacobi wavelets series 
which converges uniformly to f (x) , that is,

Proof The following equation can be found from the inner 
product in Eq. (12):

By substituting 2k+1x − 2n + 1 = t and successive integra-
tion by parts in the above equation, it yields

f (x) =

2k∑
n=1

∞∑
m=0

cnm�nm(x).

c
nm

=

1

∫
0

f (x)�
nm
(x)w

k
(x)dx

=
2

k+1
2√

L
(�,�)
m

n

2k

∫
n−1

2k

f (x)P(�,�)
m

(2k+1x − 2n + 1)w(2k+1x − 2n + 1) dx.
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By applying Cauchy–Schwarz inequality, above equation 
can be written as:

Thus, we get

cnm =
2
−

k+1

2√
L
(�,�)
m

1

∫
−1

f
(
t + 2n − 1

2k+1

)
P(�,�)
m

(t) (1 − t)�(1 + t)�dt

=
2
−

3

2
(k+1)

2m

√
L
(�,�)
m

1

∫
−1

f �
(
t + 2n − 1

2k+1

)
P
(�+1,�+1)

m−1
(t) (1 − t)�+1(1 + t)�+1 dt

= ⋯

=
2
−

(2r+3)(k+1)

2

2r+1m(m − 1) ... (m − r)

√
L
(�,�)
m

1

∫
−1

f (r+1)
(
t + 2n − 1

2k+1

)
P
(�+r+1,�+r+1)

m−r−1
(t) (1 − t)�+r+1(1 + t)�+r+1 dt.

cnm ⩽
2

−(2r+3)(k+1)

2
− r − 1
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Since n ⩽ 2k , for m > r , we obtain

||cnm|| ⩽ 2
−(2r+3)(k+1)

2
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(�,�)
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If m = r , it can be shown

||cnm|| ⩽ 2
−(4r+3)+�+�

2 U

n
(2r+3)

2 m(m − 1) ... (m − r)

√
Γ(r + � + 2)Γ(r + � + 2)

Γ(2r + � + � + 4)
.

Thus, we get

It is referred in [43] that for m = 0 , 
{
�n0

}2k

n=1
 construct an 

orthogonal system build by Haar scaling function according 

to the weight function �(x) , so 
2k∑
n=1

cn0�n0(x) is convergent. 

Hence, we have

Thus, with the help of Lemma 1, the series 
2k∑
n=1

∞∑
m=0

cnm�nm(x) converges to f (x) uniformly.

Theorem 2 Let f (x) ∈ C
r[0, 1] with the ||f (r+1)(x)|| < U be a 

continuous function, then accuracy estimation is obtained 
as:

Proof We have

cnm ⩽
2

−(2m+1)(k+1)

2

2mm !

√
L
(�,�)
m

1

∫
−1

f (m)
(
t + 2n − 1

2k+1

)
(1 − t)�+m(1 + t)�+mdt.

||cnm|| ⩽ 2
−(4m+1)

2

n
2m+1

2 m !

√
L
(�,�)
m

L
(�+m,�+m)

0
max
0⩽x⩽1

f (m)(x).

||||||

2k∑
n=1

∞∑
m=0

cnm𝜓nm(x)

||||||
⩽

||||||

2k∑
n=1

cn0𝜓n0(x)

||||||
+

2k∑
n=1

∞∑
m=1

||cnm|| ||𝜓nm(x)
|| ⩽

||||||

2k∑
n=1

cn0𝜓n0(x)

||||||
+

2k∑
n=1

∞∑
m=1

||cnm|| < ∞.

‖‖‖f (x) − �
�
�
‖‖‖
2

2
⩽

U2Γ(r + � + 2)Γ(r + � + 2)

24r+4−�−�Γ(2r + � + � + 4)

1

(r + 1)(2r + 1)

1

(M − r)2r+1

[
1 −

1

22k(r+1)

]
.



S2281Engineering with Computers (2022) 38 (Suppl 3):S2271–S2287 

1 3

By substituting the relation c2
nm

 in the above equation, 
desired result is obtained as:

6  Numerical results

The modified Camassa–Holm and modified Degasperis–Pro-
cesi equations are solved to show the effectiveness and the 
applicability of Jacobi wavelet collocation method. Approxi-
mate results of proposed method are compared with analyti-
cal and numerical results in the literature.

Example 1 Consider Eq. (1) for w = 2 , modified Camassa–
Holm (mCH) equation may be obtained as:

with the initial condition u(x, 0) = −2sech2
(

x

2

)
 and 

boundary conditions:
u(a, t) = −2sech2

(
a

2
− t

)
, u(b, t) = −2sech2

(
b

2
− t

)
,

u
x
(a, t) = 2sech2

(
a

2
− t

)
tanh

(
a

2
− t

)
.

Substituting boundary and initial conditions into Eq. (38) 
and solving system of algebraic equations in Eq. (40), we 
may find vector � , whose components give us coefficients 
of Jacobi wavelet series. By substituting � in Eq. (31), we 
have obtained approximate solution of mCH equation that 
provides initial and boundary conditions. Graphics of the 
exact solution, approximate solutions and absolute errors 
of Example 1 are shown in Figs. 1, 2, 3, 4, 5 and 6 when 
� = 0, � = 0,M = 71, k = 0 and Δt = 0.001 for various 
values of t  in the interval [−10, 10] . In Table 1, absolute 
errors can be shown for different values of M and k when α 
= 0, β = 0, ∆t = 0.001, t = 0.1, and various values of x in 

���f (x) − �
�
�
���
2

2
=

1

∫
0

⎡⎢⎢⎣
f (x) −
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�
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ut − uxxt + 3u2ux − 2uxuxx − uuxxx = 0, a < x < b,

the interval [−15,15]. It can be seen from Table 1 that the 
Jacobi wavelet collocation-based algorithm produces stable 
and converging solution by increasing the level of resolu-
tion of the Jacobi wavelet k . Absolute errors of Example 
1 have been given in Table 2 to compare presented results 
with earlier results in the interval [−15, 15] . Graphics of the 
approximate and exact solutions of Example 1 have been 
given Fig. 2 [45], Fig. 3 [46] and Fig. 4.2 [47]. As can be 
seen in Tables 1 and 2 and Figs. 1, 2, 3, 4, 5 and 6, it is clear 
that suggested method provides more accurate results if we 
compare the tables and graphics in [44–47].

Example 2 Consider Eq. (1) for w = 3 , modified Degasperis–
Procesi (mDP) equation may be obtained as:

with the initial condition u(x, 0) = −
15

8
sech2(

x

2
) and 

boundary conditions

ut − uxxt + 4u2ux − 3uxuxx − uuxxx = 0, a < x < b,

Fig. 1  Exact solution of Example 1
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u(a, t) = −
15

8
sech2(

a

2
−

5t

4
), u(b, t) = −

15

8
sech2(

b

2
−

5t

4
), ux(a, t) =

15

8
sech2(

a

2
−

5t

4
) tanh(

a

2
−

5t

4
).

Fig. 2  Approximate solution of Example 1

Fig. 3  Absolute errors of Example 1 at t = 0.05

Fig. 4  Absolute errors of Example 1 at t = 0.1

Fig. 5  Absolute errors of Example 1 at t = 0.2
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Substituting boundary and initial conditions into Eq. (38) 
and solving system of algebraic equations in Eq. (40), we 
may find vector � , whose components give us coefficients 
of Jacobi wavelet series. By substituting � in Eq. (31), we 
have obtained approximate solution of mDP equation that 
provides boundary and initial conditions. Graphics of the 
absolute errors, approximate solution and exact solution of 
Example 2 are shown in Figs. 7, 8, 9, 10, 11 and 12 when 

� = 0, � = 0,M = 71, k = 0 and Δt = 0.001 for various val-
ues of t  in the interval [−10, 10] . Like in the Example 1, 
absolute errors can be shown in Table 3 for different values 
of M and k when α = 0, β = 0, ∆t = 0.001, t = 0.1 and vari-
ous values of in the interval. It can be seen from Table 3 that 
the Jacobi wavelet collocation-based algorithm produces sta-
ble and converging solution by increasing the level of resolu-
tion of the Jacobi wavelet k . Absolute errors of Example 2 
have been given in Table 4 to compare presented results with 
earlier results in the interval [−15, 15] . Graphics of the exact 

Fig. 6  Absolute errors of Example 1 at t = 0.5

Table 1  Absolute errors of Example 1 for various values of x 

M t x k = 0 k = 1 k = 2

10 0.1 6 0.2200871e−1 0.8767495e−2 0.7759534e−5
8 0.3877695e−1 0.1062448e−1 0.4621556e−3
9 0.2688397e−1 0.7936734e−2 0.1643928e−4
10 0.2005588e−2 0.1097291e−1 0.3012546e−3
12 0.1716181e−1 0.8136334e−2 0.1753762e−3

16 0.1 6 0.3949731e−1 0.1211893e−2 0.3990758e−4
8 0.3656204e−1 0.5439444e−3 0.1129990e−3
9 0.4959233e−2 0.1201144e−2 0.3566888e−4
10 0.2687046e−1 0.1034337e−2 0.4532343e−4
12 0.2022488e−1 0.1007097e−3 0.3379564e−4

20 0.1 6 0.2023316e−1 0.3788986e−4 0.3655249e−5
8 0.1602632e−1 0.1713941e−4 0.3073483e−6
9 0.1389905e−1 0.4161723e−4 0.2468175e−6
10 0.1668122e−1 0.5697625e−4 0.1268681e−6
12 0.1160108e−1 0.4337532e−4 0.3455865e−6

Table 2  Comparison with 
absolute errors of offered 
method and existing methods 
in the literature at different time 
levels for mCH equation

x t Exact solution VIM [44] ADM [45] HPM [46] QuBSMs [47] Present

6 0.05 − 0.02179598 2.005e−3 – – 3.349e−4 4.268e−6
8 − 0.00296375 2.807e−4 3.332e−4 3.332e−4 4.359e−5 2.221e−7
9 − 0.00109081 – 1.229e−4 1.230e−4 1.596e−5 7.350e−7
10 − 0.00040136 3.817e−5 4.521e−5 4.530e−5 5.860e−6 6.831e−7
12 − 0.00005432 5.170e−6 – – 7.900e−7 5.413e−7
6 0.10 − 0.02407444 4.226e−3 – – 8.847e−4 1.097e−5
8 − 0.00327520 5.911e−4 7.108e−4 7.109e−4 1.159e−4 1.105e−6
9 − 0.00120550 – 2.623e−4 2.624e−4 4.248e−5 2.682e−6
10 − 0.00044356 8.035e−5 9.659e−5 9.664e−5 1.560e−5 2.509e−6
12 − 0.00006004 1.088e−5 – – 2.100e−6 1.816e−6
8 0.15 − 0.00361934 – 1.139e−3 1.139e−3 2.238e−4 2.404e−6
9 − 0.00133224 – 4.203e−4 4.203e−4 8.208e−5 5.416e−6
10 − 0.00049021 – 1.547e−4 1.548e−4 3.014e−5 5.086e−6
8 0.20 − 0.00399961 – 1.624e−3 1.624e−3 3.765e−4 3.771e−6
9 − 0.00147230 – 5.992e−4 5.993e−4 1.381e−4 8.324e−6
10 − 0.00054176 – 2.207e−4 2.207e−4 5.073e−5 7.845e−6
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solution and approximate solution of Example 2 have been 
given in Fig. 4 [45], Fig. 4 [46] and Fig. 4.4 [47]. As can be 
seen in Tables 3 and 4 and Figs. 7, 8, 9, 10, 11 and 12, it is 
clear that suggested method provides more accurate results 
if we compare the tables and graphics in [44–47].

7  Discussions and conclusion

Jacobi wavelets are general form of the Legendre, first-kind 
Chebyshev, second-kind Chebyshev and Gegenbauer wave-
lets. For Jacobi wavelet collocation method, matrix represen-
tation, called as operational matrices, of rth integration of 

Fig. 7  Exact solution of Example 2

Fig. 8  Approximate solution of Example 2

Fig. 9  Absolute errors of Example 2 at t = 0.05

Fig. 10  Absolute errors of Example 2 at t = 0.1
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Jacobi wavelets have been introduced and convergence anal-
ysis of offered method has been also investigated in present 
study. Suggested method has been applied to find approxi-
mate solutions of the nonlinear modified Camassa–Holm 
and Degasperis–Procesi equations linearized using quasi-
linearization technique. The advantage of this method is 
that it transforms problems into matrix products. Therefore, 
present method can be easily applied to obtain solutions 
of physical and engineering problems and its application 
is simple. When the Jacobi wavelets collocation method is 
applied to obtain approximate solutions of engineering prob-
lems using a small number of grids it has given convergent 
results. Algebraic equation systems depend on the number 
of grids so using a small number of grids reduces the size 
of equation systems. In Tables 1, 2, 3 and 4, convergence of 
the proposed method, even in the case of a small number of 
grid points, is observed. Comparison of the absolute errors 
given in Tables 1, 2, 3 and 4 and Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 
10, 11 and 12 show that suggested method is superior to the 
results in [44–47] and offered method give highly accurate 
solution for the examples.

This study is applied to obtain approximate solutions of 
one-space dimensional problems. However, this method can 
also be applied for two- and three-dimensional problems as 
well.

Fig. 11  Absolute errors of Example 2 at t = 0.2

Fig. 12  Absolute errors of Example 2 at t = 0.5

Table 3  Absolute errors of Example 2 for various values of x 

M t x k = 0 k = 1 k = 2

10 0.1 6 0.2587883e−1 0.9805439e−2 0.1110053e−4
8 0.4547073e−1 0.1190818e−1 0.5053005e−3
9 0.3152833e−1 0.8902112e−2 0.1792033e−4
10 0.2355687e−2 0.1230602e−1 0.3294656e−3
12 0.2013117e−1 0.9124526e−2 0.1917984e−3

16 0.1 6 0.4604518e−1 0.1262394e−2 0.4141376e−4
8 0.4287237e−1 0.5665013e−3 0.1115217e−3
9 0.5822258e−2 0.1254883e−2 0.3523935e−4
10 0.3148907e−1 0.1081645e−2 0.4467676e−4
12 0.2371258e−1 0.1052091e−3 0.3321313e−4

20 0.1 6 0.2365279e−1 0.3515931e−4 0.5747485e−5
8 0.1866599e−1 0.1718983e−4 0.1041548e−6
9 0.1618755e−1 0.4075308e−4 0.5361357e−7
10 0.1945787e−1 0.5607931e−4 0.2011723e−7
12 0.1353210e−1 0.4264685e−4 0.3628106e−6
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