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Abstract

Matrices representations of integrations of wavelets have a major role to obtain approximate solutions of integral, differ-
ential and integro-differential equations. In the present work, operational matrix representation of rth integration of Jacobi
wavelets is introduced and to find these operational matrices, all details of the processes are demonstrated for the first time.
Error analysis of offered method is also investigated in present study. In the planned method, approximate solutions are
constructed with the truncated Jacobi wavelets series. Approximate solutions of the modified Camassa—Holm equation and
Degasperis—Procesi equation linearized using quasilinearization technique are obtained by presented method. Applicabil-
ity and accuracy of presented method is demonstrated by examples. The proposed method is also convergent even when a
minor number of grid points. The numerical results obtained by offered technique are compatible with those in the literature.

Keywords Jacobi wavelets - Nonlinear modified Camassa—Holm and Degasperis—Procesi equations - Convergence -
Quasilinearization technique - Collocation method - Approximate solution

1 Introduction

Wavelets, recognized as good-localized functions, are an
influential instrument used in signal and image processing,
computer science, quantum mechanics, communications and
various further areas of science. The wavelets methods allow
the improvement of very quick algorithms and give accurate
solutions when compared to the normally used algorithms.
Some wavelet methods such as Haar wavelets [1-10], Leg-
endre wavelets [11-16], Chebyshev wavelets [17-28] and
Gegenbauer wavelets [29-39] are given special attention in
the literature.

Many real-life problems are related to nonlinear mod-
els occurring in various fields of science and engineering,
especially in plasma physics, plasma wave, chemical phys-
ics, fluid mechanics, and solid-state physics. They can be
expressed in terms of nonlinear partial differential equations.
Nonlinear equations also include surface waves in com-
pressible liquids, acoustic waves in a harmonic crystal, and
hydromagnetic waves in cold plasma [47]. Nonlinear partial
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differential equation of the important physical model called
the modified w-equation is expressed as follows:

a<x<b,

ey
have been solved by the suggested method for w = 2 and
w = 3. When w = 2, Eq. (1) is transformed to

2 -
u, — Uy, + W+ Duu, —wuu, —uu,, =0,

U — Uy + 3M2ux - Zuxuxx — Ul = 0’ (2)

and called as modified Camassa—Holm (mCH) equation. If
initial condition is taken as u(x, 0) = —2sech2<)—2‘), the exact
solution of Eq. (2) is [40]

u(x,1) = —2sech2<§ - t).

When w = 3, Eq. (1) is transformed to

Uy — Uy + 4I/l2l/tx - Suxuxx — Ul = 0’ (3)

and called as modified Degasperis—Procesi (mDP) equation.

If initial condition is taken as u(x, 0) = —% sec h2<§>, the
exact solution of Eq. (3) is [40]

= _Dgecn?(2_2

u(x,0) = 5 sech (2 2

For nonlinear partial differential equation in
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i, t) = Fu, o', u”, ..., u") the quasilinearization method plah) — __ Cmra+prie®=f
. £ titi for li tial diff tial m 2(m+1)(m+a+p+1)2m+a+p)’
glves.a sequence of repetition for linear partial differentia ) bt pe s aontp)
equations: m (m+1)(m+a+B+1)2m+a+p)
p
it (6, 0) = Flug,ul,u!, ... ugr)) + Z <u(vlll - ui”) F o (u,, wou!, ..., ui’)), 4)
i=0

where F o (ug, ul, ul], ..., u?) = #(F(us,u’s,u”s, s u)),
i(x, 1) = @, W' (x, 1) = % and uy(x, 1) is selected as any
function that provides boundary and initial conditions [41].

In this study, integration of the Jacobi polynomial P/ (x)
from — 1 to x has been found, the general procedures for
obtaining operational matrices of integration of Jacobi
wavelets have been introduced and operational matrix of
rth integration of Jacobi wavelets and two theorems about
error analysis of presented method have been given for the
first time in this study. Presented technique is built on the
approach to the solution of problem by the truncated Jacobi
wavelet series. System of algebraic equations is attained by
handling the Chebyshev collocation points. If system of alge-
braic equations is solved, unknown coefficients of the Jacobi
wavelet series may be obtained. Therefore, implicit shape of
the approximate solutions of nonlinear partial differential
equations can be found using Jacobi wavelet series with the
obtained coefficients. This process can be performed to the
modified Camassa—Holm and Degasperis—Procesi equations
by utilization of quasilinearization technique. Approximate
results indicated that the Jacobi wavelet collocation method
has a quite superior accuracy even at a minor number of

grid points.

2 Jacobi polynomials

For m € Z*, Jacobi polynomials of degree m are defined as
P@P(x) where @ > —1 and f > —1 on the range [— 1, 1].

Recurrence formulae of their may be given as:

PPy =1, PP = %(a +h+2)x+ %(a )

PP () = (@5 x 4 b@P)PEH) () — D PPy

5
where
a(a,ﬂ) — Qm+a+p+1)2m+a+p+2)
m 2(m+1)(m+a+p+1)

@ Springer

The generating function for Jacobi polynomials are given
as:

2RI =t + R A+ 14+ R = Y PeD ) o,

m=0

where R = (1 — 2xt + t2)1/2. Some relations of Jacobi
polynomials can be given as [42]:

d e 1 a
G Pl = gt at f+DPI), (©)
(m+a+ f+ DHPHP ()

= (m+ &P 00 + (m + HP P (),

Qm+ a+ HPED) = (m+ a + HPSP () — (m + HPYP) (),

m—1

Q)
Qm+ a+ PP V() = (m + a + HPCP () + (m + a)POP) (),
®

PRP(—x) = (=1)" P ),

planqy = Lm+atD
m mT(a+1)’

P(a’ﬂ)(—l) _ (=D)"Tm+p+1)
m m' CB+1)

% [(1 -0 +x)ﬂ+le::ll’ﬁ+”(x)] =2m(1 — x)*(1 + x)’P@P(x),

m+1

2m/ (1 =)L+ PeP(x) dr =(1 — x) (1 + )PP (),

The following relation can be obtained by integration of
the Jacobi polynomial P(*#)(x) from — 1 to x:
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X
(. ) _ 2 (a 1.p—-1)
I PP = rremed L (I)H 1
- 2 (n+A-D) pla.p-1) (m+8) p(a,f—1)
T (mta-1) [ (2m+4) m+1 Ok (2m+/1)Pm (t)] »

_ 2 (m+4i-1) (m+4) (a ) (m+a+1) p(a,p)
T (m+a-1) [ 2m+2) ((2m+l+l) m+1( ) + 2m +A+1)Pm (t)
x

(m+p) (m+A l) a, (m+a) (aﬂ)
(2m+/1)((2m+/1 1) '(nﬂ)(t)-i- Q2m+i-1) m l(t))]
— (m+4) (a p) (a—p) Pl
- 2{ 2m+A+1)2m+1) m+1( X+ (2m+/1+1)(2m+/1 1) ;ﬂ)(x)
(m+a)(m+p) (‘1 )] (X)
(2m+/1)(2m+/1 )(m+A—1) m 1
_ @phH  pla P(=1) -
Qm+A+1)2m+1-1) m

X

-1

Q@m+A+1)2m+1) L

Q2m+A)2m+Ai=1)(m+Ai-1) m 1

(m+2) (0’ ﬁ)( 1)

(niaXmt) _ p(ap) _ 1)} m> 1

where A=a+ g+ 1.

Jacobi polynomials are orthogonal polynomials according
to the weight function w(x) = (1 —x)*(1 4+ x)” on the range
[—1, 1] as [42]:

L@

/ (1-x°(1 +x)ﬂP£l“’ﬂ)(x)P’(;’ﬁ)(x)dx={ m
4 0, m#n

where

L) _ 29 (m+ a+ DI(m+ f+ 1)
mo T QmAa+pf+DmTm+a+p+1)

is the normalizing factor.

3 Jacobi wavelet method

Wavelets are composed of functions family generated by
dilation (or contraction) and translation of a single function
named the mother wavelet. a and b are named the as dilation
parameter and translation parameter. If translation and dila-
tion parameters change continuously, continuous wavelets
family may be obtained as follows [43]:

Wap(¥) = Ial‘/ZW(ﬂ>, a,b€R, a#0. ©)

Jacobi wavelets are written as

W () = ik, n,m, x).

where k=0,1,2,...,n=1,2, ..., 2~ degree of the Jacobi
polynomial is shown as m, a, f > —1 are parameters and x €
[0,1). Jacobi wavelets can be defined as:

Y(x) = [Wm» Yits o Wim—1s> Y205 - Yop—15 -+

T
s Wokgs s Wokpr—1 ] .

k+1

2%

PP x —2n + 1),
an(x) = \/ Li,(ll’ﬁ)
0, otherwise

(10)

where P®#(2%1x — 2n + 1) is the Jacobi polynomial whose
degree is m and it is orthogonal polynomial according to the
weight function

w, () = wlx —2n 4+ 1)
=1 -2 % =2n+ 1))*A + CH'x = 2n+ 1))?
on interval 0 < x < 1. Any finite intervala < y < bcanbe
converted into the simple range 0 < x < 1 by transformation

of variable givenas y = (b — a)x + a.
Any function f(x) € Lfv[O, 1][0, 1] can be extended as:

2
=3 FrunWan), (11)
n=1 m=0
where
m = ), v, (x)). (12)

(., .)indicates the dot product according to weight func-
tion w,(x) in Eq. (12).
Truncated series of Eq. (11) may be given as:

2 M-1
FE =YY frnWum() = CT (), (13)
n=1 m=0
where W(x) and C are 2M x 1 dimensional columns vectors
assumed as:

= [flO’ fll’ e flM—l’ f20’ e f2M—1’ e f2k0’ e f2“M—l ]’

(14)
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If the function v, (x) in Eq. (10) is integrated, it may be

shown as follows:

The following equations may be obtained by calculating
D) form =0m =landm > 1:

-

n—1
0, 0<x< %
(a.p)
=J206+1 Ly -1 n
Do) =3 < -
n0 i + 1 I’LO( )+ A + 1 L(”"ﬂ) Il/nl(u)’ 2k Sx< 2/(
0
2, ? < x<1
-1
O’ 0 S x < nz_/s
_pd _G+)  plap)_ @=p _ plap) [
2{ a2 CD+ aaam i 1)} L Vio(t)
_ 2a=p) 20y (L el n
Pm () =3 +u+3)u+1>wn1(”) t G LoD Wi (1), Sx<y
“4+1) (@) 1y _ pl@h) _ (@=p) (@.) (.p)
2{ (43)(4+2) <P2 (=R 1)) u+3)u+1)(P (=P 1)>
_ (D@ ( plap) @B _ [L” n
T+ DA (P M- Py ( D)} L Wi (W), o <x<l1

(0, 0<x< 2%1
_2{(2m+/(1r:1+)2m+/1) '(:+ﬂl)(_ )+ (2m+/1-$)(§r)n+i D Sgﬂ)( D
st ) by [y
S s

2(m+1) L) n
Cmra+D@2m+2) \| L&D Vo (0): 5 2k Sx<3
(m+4) pab) @B, _ (@=p) (@h)(1\ _ paf)(_
2{ (2m+x+1>(2m+1>< Pt =P 1)> + G (P V(D) = PEP(=1)
(m+a)(m+) pab) PP g n
L (2m+/1)(2m+/1—1)(m+/1—1)< (1) ( D)} LoD Wio (), 2k <x<l

X

where A = a + f + 1 and u = 25" 'x—2n + 1. If ¥(x) col-

Pam(X) = / Woum(s)ds. (15)  umn vector is integrated, the following matrix representation
0 may be obtained:
/\P(S)ds = [P10> Pi1> - Piv=1> P20> - Pomi—1s s P2kos - Poipi—i 1" =P ¥,(»), (16)
0
where
Wi () = [Wigs Wits oo Wins Wa0s woos Wants s Waigs woos Wiy 115
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[ T IVTEQQ\:Exmwfsdawfsd _
@ +WOU~Y+WD)  (E—Y+WOI—Y+IT) @HWE-HND@Y+ID) 0 0 0 1) (goy =g+ -2+ 1)
(I-v+m)c (d-»)t I=0+p) (1-g+M)T— ( IVTE (€=V+WO(1-Y+WT) +(10) W, @Y+WOI-Y+Wo) _
=) gnd @ =)o d =m0 4
ACIV f:ixmi::ls _
(r+Y)(S+Y) (€+V)(S+Y) T+NE+N(F+Y) (g0) (T+)(T+»)
0 0 0 (e (=rr @+ 7 GG+ ¢ G
U god —g=mr— + U) gond @y~ T
(TH(E+Y) (1+0)(g+7) 1 (+D(E+Y) T, @E)
0 0 0 : 0 e [(=0r A:Laém @ T U god Wm
1+¢
0 0 0 0 0 (1-)

pringer

a's
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2 00
(A+1) (a.8) (.f) (@=p) (a.5) (a.8)
2{u+3>u+2> (PZ (=P (_1)> + D (Pl =P (_1)> 00
(@tD@E+D) ( plap) @) Ly
L — L (PP = PEPD) 4 T
! : . 0
(M+2) @B 1y _ p@h),_ @=p) @)1y _ p@h,_
2{ QM+i+1)2M+4) (PM+1(1) PM+1( 1)> + (2M+/1+1)(2M+/1—1)<PM (1 PM ( 1)) 0 0
M+ M+p) @p) @p) [
T QM DM+ - DMt A-T) <P o1 (D —P M—l(_1)> } @Wno(u)
L. F. F. - F. F L, and F,are (M + r — 1) X (M + r) dimension matrices,
1 1y 1 1 ok X . . .
0 L.F, - F, F P.is a2*(M + r — 1) X 2(M + r) dimension matrix and the
P, = | : ;1 :1 . ;1 ;1 matrices P, L. and F_have the following form:
1= 5] + + ¢ LR
0 00 --L,F, L.F.F - F F,
0 0 0 - 0L, 0 L. F - F,.F,
If the vector W(x) is integrated two times, matrix repre- Po=o5 8 8 8 b
sentation of integration may be denoted as: 0 0 0 - L F
0 00 0 L,
X X x X
/ / W(s)dsdx, = / P, ¥, (x))dx, = P, / W, (x)dx; = PyP,W,(x) # P2¥(x).
0 0 0 0
The rth integration of the vector W(x) may be denoted
as:where
X X X X1
/// ---/‘I‘(s) dsdx,_;dx,_; --- dx; = PyP, - P W, (x) # P{W(x),
00 0 0
W00 = Wios Wits oo Wintarmts W20 s Warterts s Woios s Waagarot |- a7
[ 2 0--0T7
A+D (a.8) (a.B) (a=p) (a.f) (a.8)
2{(A+3>u+2> (P2 (D =P (_1)> + Geae (Pl () =Py (_1)> 00
_ @D+ (@B gy plah), [
G211 (Po (1) =Py ( D)} L Vo)
M+2) (@.p) (@.f) (a=p) (.f) (.p)
F, = 2{ QM+A+1)2M+7) (PMH(l) _PM+1(_1)> + (2M+A+1)(2M+,1—1)<PM =P, (—1)) .
M+a)(M+p) @) @) Ly
T QM+ @M+ A-1)(M+Ai—1) (PM—I(D - PM—I(_1)> } m%o(“)
(M-+r+i—1) @1y _ pah, (@=p) (@.8) _pap)
2{(2M+2r+/1—1)(2M+2r+,1—2) (PMH(I) PM+r( 1)> + QCM+2r+A—1)2M+2r+1-3) <PM+r—1(1) PM+r—1( 1)) 0 0
_ (M+r+a=D)(M+r+p-1) (@.p) _ pp) [ &P
CM+2r+A=2)2M+2r+A=3)(M+r+1-2) <PM+r—2(1) PM+r—2( D)} e Wio (1) |
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(P=V+T+ WD) (€Y +HT+HNT)

(S=Y+HTHWD) (€Y +HT+HINT)

(€Y +HHW(S—V+HTHNWDF—V +HTHNT)

(CT—v++I)T

-0t

(@24 1) (=g ++ M)~

. O O

. (E+DS+Y) (HDEHD )
(g-»)c (T+0)(T+e)—

. TH(E+Y) (I+V)(E+Y)
1+t (g-»)¢

. O

(1-)

T—a4+) | (=Y +HITHUT)([ =Y +T+HINT)
@nd T

(1)

{a=,

faos

god

+ () gnyd

7, (E+0(s+Y)

and

1
god

(@ HHW(E=Y HHND(T—YHTHINTD)
(I=g+4+MW)(1=0+1+10)

A+ TV HTH WO =Y +HIT+HINT) _
(=Y ++p) <

1 U+DE+NDF+Y)
A:lvﬁsa T
¢ - (H(S+Y)
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4 Jacobi wavelet collocation method
for the mCH and mDP equations

Consider nonlinear partial differential equations in Eq. (1)
with boundary and initial conditions:

u(x,0) =fx), w@,1) =gy®), u(l,n) =g @), u(0,1)=g).
(18)

We presume that i®(x, £) may be extended like truncated
Jacobi wavelets series as:

2k M-1

(D00 =D Y funun@) = CTP(), (19)
n=1 m=0

where “” and “®”” imply differentiation according to 7 and x.

If Eq. (19) is integrated according to ¢ from #, to ¢ and three
times according to x from O to x, we can find the following
equations:

u¥(x, 1) = u®(x, 1) + (t — t,)CTP (), (20)

u®(x, 1) = u®(x, 1) + u®(0, 1) — u®(0,1,) + (¢ — t,)CTP, ¥, (%),

i@ (x, 1) = CT[PyW,(x) — 2P P,P W5 ()] —2gh(1) — 2g}(1) + 28, (D).,
(29)
u,(x, ) =u(x, 1) + (t — t,)CT
[P, P, W, (x) — 24P, P,P W, (1))]
— (I = 2x)(8,(1) — 8,(1,)) — 2x(g,(?)
= 8o(1)) + 2x(g, (1) — &, (%)),

(30)

u(x, ) =u(x, t,) + (t — 1,)CT
[P P,PW5(x) — X*P PP W5(1)]
+ (x — )&y (1) — 82(t)) + (1 — x*)(gy (1)
— 8o(1) + (g, (1) — &,(1,)).,

(€29

u,(x, 1) =C" [Py P,P3W5(x) — x*P P, P;Ws(1)]

32
+ (x = x)gh () + (1 = xX)gh (1) + x*)g) (). G2

Using quasilinearization technique, Eq. (1) can be trans-
formed into the sequence of linear differential equations.
Nonlinear terms in Eq. (1) may be written as:

CD @R, D, O )™ = 20l (e, 1y (x, Dl (1)
-(2) — 120 CTP. ¥ 2 41 2 . (33)
W (x,0) =0, + 11 (0, (22) +u' (x, t)u;r (e, 1) = 2u" (x, Du (x, 1)
w,(x, ) = u (x, 1) + 1,(0,8) — 1, (0, £,) +x(u?(0, 1) — u®(0,1,) + (¢t — t,)C'P, P, W, (%), (23)
2
uCx, 1) = u(x, 1) + u(0, 1) — u(0, 1,) + x(u, (0, 1) — u(0,1,)) + %(u(z)(O, 1) — u'?(0,1,)) 24)
+(t — t,)CTP, PP, W, (%),
2 +1 ~ ,l+1 !
(5, 1) = 1, (0, 1) + 310, (0, 1) + % #@(0,1) + CTP,P,P W, (). (w6, )T = uw (Dl (x,1) 34)
+ul (e, ) e 1) — ul e 1) il (x, 1)
(25) x ox - o
By substituting boundary and initial conditions into
Eq. (18), the following equation may be obtained:
1
70,0 = uD(0,1)) = g1(1) = g1(¢) — (228 = £2(4,)) — (20(8) = &(1,)) 26)
—(t — 1,)CTP,P,P;W;(1).
I Eqs. (18) and (26) are replaced into Egs. (20-25), we (40X )t e, ) = ™ ()l (x,1) 35)

can obtain the following equations:

uP, 1) = (t — t)CTW(x) + u®(x,1,), 27)

U, 1) = u®(x, 1) + (t — 1,)C" [P,¥ (x) — 2P, P,PW5(1)]

+u (x,1) uf; ; x, 1) — ul (x,1) ufm(x, 1.

By replacing Egs. (33), (34) and (35) into Eq. (1), trans-

formed equation is found as:

(28)

—2(85(1) — 8,(t,)) —2(go(1) — go(2,)) +2(g,1 (1) — &,(¢,)),
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Wt ) — Wt 0 + (20w + D'ty il (e, 1) — il () ult (x, 1)
+ ((w + 16 1)’ = wid (x, t)) W 0e, 1) = wid e, 0 (e, ) — e, Dt (x, ) (36)

=2(w+ 1)(ul(x, t))2ui(x, t— wui(x, t)uix(x, 1) — ul(x, 1) uixx(x, 1)

where [ =0, 1,2, ... and it is called index of quasilineariza-
tion technique. u°(x, t) which provides boundary and initial
conditions is taken as

Lemma 1 Ifthe Jacobi wavelet series expansion of a contin-
uous function f(x) converges uniformly, then Jacobi wavelet
series expansion converges to the function f(x).

W00x, 1) = u(x, ;) + (x — X (g, (1) — 8,(t,)) + (1 = x*)(go(1) — go(1,)) + x*(g, () — g,(t,), @37

which satisfies initial/boundary conditions. Substituting Egs.
(27-32) into Eq. (36), we obtain the following equation:

Proof For Jacobi wavelet, proof may be shown similar way
in [20]

(ﬁ +20w + D Cx, ) ul (e, 1) — 1l (x, f)>P1P2P3‘I’3(x) + ((w + D (e, t))2 —wul_(x, t))PlPZ‘I‘z(x)

ArC'l —(1 + wu ! (x, 1)) Py Wy (x) — ul(x, 1) mathbf P (x)

+< +x (2(w + Dud(x, t)u 1) —ul(x, t)) 2x<(w + 1)(ul(x, l‘))2 - wuix(x, t)) + 2wui(x, t))P1P2P3\I‘1(1)

XXX

=2w+ 1)(u l(x r)) ul e, 1) — wil (x, D)l (x, 1) — ul(x, 0yl (x, 1)

(38)

—(2w+ Dul(r, 0y ul (e, 1) — ul_ (e, 1) (ul(x, 1) + (6 = x2)(82(1) — 85(8)) + (1 = x%) (8o(1) — 8o (1)) + x> (g1(1) — 8,(1,)))

—<(w + 1) 0)” = widd (v, t)) (. (x, 1) + (1 = 20 (22(0) — 8,(8,))

Fwul (e, 1) (ul (x, 1) = 2(g,(1) — g2(1,)) =2
+(2 —x = 2)gh(0) + (F = 3)gh() + (2 — xP)gl (1)

- 2x) (go(l) - go(’:)) + 2x(g1(t) - gl(ts)))

(80 = 80(ty)) +2(81(1) — g,(1)) ) + u'Cx, Dl (x, 1,)

where At =1 — 1.

The collocation points may be selected as

ktly _ (M+D-dz
2 2n+ 1 =cos oy OF
1 (M+1)— iz -
Xpi = 2k+1 <21’l — 1+ cos W . 1= 1, 2, vy M

Theorem 1 A function f(x) € C'[0, 1]with the|f"*D(x)| < U
may be expanded as an infinite sum of Jacobi wavelets series
which converges uniformly to f(x), that is,

n=1, 2, .. 2~ (39)

Replacing the collocation points x — x,,; and time variable
t — t.,,into Eq. (38), vectors W(x,;), ¥, (x,;) and ¥ (x,;) may
be achieved. We can find system of algebraic equations from
Eq. (38) whose matrix notation may be written as:

C'U =B, (40)

where B and C are 2¥*M x 1 dimensional vectors, U is a
2%M x 2*M dimensional matrix. If system of algebraic equa-
tions in Eq. (40) is solved, we may achieve the coefficients
of Jacobi wavelet series in Eq. (31) which provides Eq. (1)
and initial/ boundary conditions in Eq. (18).

5 Convergence analysis

In this part, convergence and error analysis of the Jacobi
wavelet series expansion of a function f(x) are studied.

2
=D Contun).

n=1 m=0

Proof The following equation can be found from the inner
product in Eq. (12):

Com = / J) P, ()W (x)dx
0

n

/f(x)P<aﬂ)(2k+' —2n+ Dw'x = 2n+ 1) dx.

‘/ (ﬂﬂ)

By substituting 2*!x — 25 + 1 = ¢ and successive integra-
tion by parts in the above equation, it yields
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k+1
t+2n 1

T — %0 +0’ds

P(“’ﬂ)(l‘) (1

C =

272 / 7
nm \/W

1
= 2(k+1)
== / (B2 )P 0 (= (14 ar
L(“ﬂ
(2;+%)(1<+|) ) 1
/ PO (= JP a0 (1= o
= 1) o (n Ny L 4

By applying Cauchy—Schwarz inequality, above equation
can be written as:

—(2r+;)(l<+l) —r =1

Com

ng,ﬂ)

mm—1)...(m—r)

[SY

1

(r+1) t+2n-1
J (g

-1
1
2
/ <P(a+r+l ﬂ+r+l)(t)> (1 _ t)a+r+l(1 + t)ﬂ+r+1 dr
—1

2
)) (1 _ t)a+r+l(1 + [)ﬁ+r+1dt

2

m—r—1

Thus, we get

—(2n+l)(k+1)
t+2n—
Com < / f(’") e )(l—t)a+m(1+t)ﬂ+mdt
me’\/Lf,‘fﬂ)

Thus, we get

—(4m+1)
2
L(a+m ,p+m) max f(m) ()C)

| < max

2m+1

n 2 m! /L&D
k
It is referred in [43] that for m = 0, {¢, }121=1 construct an
orthogonal system build by Haar s‘caling function according
Iy

to the weight function w(x), so Y, ¢,gw,o(x) is convergent.
n=1

Hence, we have

2% % oo 2%
Z Z ComWam)| < Z CaoWao@| + D5 D [Cum| W] < 2 CaoWao (0| + Z Z | < 00.
n=1 m=0 n=1 m=1 n=1 m=
B Gt iipiD. [Tt . Thus, with the help of Lemma 1, the series
|Cnm| < L Lm r—1 2 e .
m(m = 1) ...(m — r)\/LP 3 CpmWam(X) converges to f(x) uniformly.

—(2r+3)(k+2)+a+p+3
2- = U Tr+a+DIG+p+2)
S m(m —1)..(m—r) TQr+a+f+4)

Since n < 2, for m > r, we obtain

UT@r+a+2Fr+p+2) 1

n=1m=0
Theorem 2 Let f(x) € C'[0, 1] with the |f"+V(x)| < U be a

continuous function, then accuracy estimation is obtained
as:

o -’ <

2r+4=a—PT2r + a + f+4) (r+ DQr+ 1) (M

1 1 1
e [ - 22k(r+1)]'

—(@4r+3)+a+p

el \/F(r+a+2)F(r+ﬂ+2)
(m—r)

|cmn | N ey

n2 mm—1).. LQr+a+pf+4)

If m = r, it can be shown
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e - e = / {f(x)—iMZ_lc ¢ (x)]zw W dv
) i un) | 5,

0 n=1 m=0
! 2k o 2k M-1 >
= / |:z Z Cnm¢nm(x) - Z z cnm¢nm(x):| Wn(x) dx
0 n=1 m=0 n=1 m=0

)

! 2% 2 ok
/|:2 Z Cnm¢nm(x):| Wn(x) dx = 2 2 crzlm'
0

n=1 m=M n=1 m=M

2

By substituting the relation c;

desired result is obtained as:

o in the above equation,

(o]

VT +a+ 2T+ f +2)| = 5

the interval [—15,15]. It can be seen from Table 1 that the
Jacobi wavelet collocation-based algorithm produces stable
and converging solution by increasing the level of resolu-
tion of the Jacobi wavelet k. Absolute errors of Example
1 have been given in Table 2 to compare presented results
with earlier results in the interval [—15, 15]. Graphics of the
approximate and exact solutions of Example 1 have been
given Fig. 2 [45], Fig. 3 [46] and Fig. 4.2 [47]. As can be
seen in Tables 1 and 2 and Figs. 1, 2, 3, 4, 5 and 6, it is clear
that suggested method provides more accurate results if we
compare the tables and graphics in [44-47].

1

Hf(x) - CT\PHE < 24 43- = Q2r+a + f + 4) n=1

= 23 m(m = 1) .. (m — 1))

<X

< UTGr+a+2T(r+p+2)

UMNr+a+2T+p+2) /Zk dt /°° di
23T Qr+a+f+4) | Ji 2+ Jy (= 20D
1 1

1
- ]
S Q43T Qr + a + f+4) 20r + 2)2r + 1) (M — > [ 22k(r+1)

6 Numerical results

The modified Camassa—Holm and modified Degasperis—Pro-
cesi equations are solved to show the effectiveness and the
applicability of Jacobi wavelet collocation method. Approxi-
mate results of proposed method are compared with analyti-
cal and numerical results in the literature.

Example 1 Consider Eq. (1) for w = 2, modified Camassa—
Holm (mCH) equation may be obtained as:

2 -
u, — Uy, +3uu, —2uu, —uu, =0, a<x<b,

with the initial condition u(x,0) = —2sech2<§) and

boundary conditions:
M(Cl, l) = —2SCCh2 % - l>, I/t(b, [) = —2SCCh2(§ — t),

ua,t) = 2sech2(§ - z) tanh (% _ t).

Substituting boundary and initial conditions into Eq. (38)
and solving system of algebraic equations in Eq. (40), we
may find vector C, whose components give us coefficients
of Jacobi wavelet series. By substituting C in Eq. (31), we
have obtained approximate solution of mCH equation that
provides initial and boundary conditions. Graphics of the
exact solution, approximate solutions and absolute errors
of Example 1 are shown in Figs. 1, 2, 3, 4, 5 and 6 when
a=0,=0,M=71, k=0 and Ar=0.001 for various
values of ¢ in the interval [—10, 10]. In Table 1, absolute
errors can be shown for different values of M and k when a
=0,4=0, At =0.001, r = 0.1, and various values of x in

Example 2 Consider Eq. (1) for w = 3, modified Degasperis—
Procesi (mDP) equation may be obtained as:

u, — oy + 4P, — 3uu, —uu,, =0, a<x<b,

with the initial condition u(x,0) = —%sech%%) and
boundary conditions

.

Fig. 1 Exact solution of Example 1
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000018+

000016+

000014+

000012+

000010+

0.00008+

0.00006+

000004+

000002+

-8 -6 -4 -2 0 2 4 6 8
Fig.2 Approximate solution of Example 1

Fig.4 Absolute errors of Example 1 at¢ = 0.1

0.000091
0.00008
000035+
0.000071
0.00030+
0.00006
0.00005- 0.000251
0.00004 0.00020+
0.00003 1
000015+
0.00002
000010+
0.00001 1
| 0 T T ' 1 L] Al Al Al 0.00005-
-8 -6 -4 -2 0 2 4 6 8
pd
-8 -6 -4 -2 0 2 4 6 8
Fig.3 Absolute errors of Example 1 at¢ = 0.05 x
Fig.5 Absolute errors of Example 1 at# = 0.2
15 ,.a St 15 ».b 5t 15 >.a St a 5t
u(a,t) = ——=sech“(= — =), u(b,t) = ——sech“(= — =), u.a,t) = —sech’(= — =) tanh(= — =).
()8(24)()8(24)"()8(24) (24)
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00008+
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0.0006+

00005+

0.0004+

00003+

00002+

00001+

Fig.6 Absolute errors of Example 1 at¢ = 0.5

Substituting boundary and initial conditions into Eq. (38)
and solving system of algebraic equations in Eq. (40), we
may find vector C, whose components give us coefficients
of Jacobi wavelet series. By substituting C in Eq. (31), we
have obtained approximate solution of mDP equation that
provides boundary and initial conditions. Graphics of the
absolute errors, approximate solution and exact solution of
Example 2 are shown in Figs. 7, 8, 9, 10, 11 and 12 when

Table 1 Absolute errors of Example 1 for various values of x

Mt X k=0 k=1 k=2
10 01 6 0.2200871e—1  0.8767495e—2  0.7759534e—-5
8 0.3877695e—1  0.1062448e—1  0.4621556e—3
0.2688397e—1  0.7936734e—2  0.1643928e—4
10 0.2005588e—2  0.1097291e—1  0.3012546e—-3
12 0.1716181e—1  0.8136334e—2  0.1753762e—3
16 0.1 6 0.3949731e—1  0.1211893e-2  0.3990758e—4
8 0.3656204e—1  0.5439444e-3  0.1129990e—3
9 0.4959233e—2  0.1201144e-2  0.3566888e—4
10 0.2687046e—1  0.1034337e—2  0.4532343e—4
12 0.2022488e—1  0.1007097e-3  0.3379564e—4
20 01 6 0.2023316e—1  0.3788986e—4  0.3655249e—5
8 0.1602632e—1  0.1713941e—4  0.3073483e—6
9 0.1389905e—1  0.4161723e—4  0.2468175e—6
10 0.1668122e—1  0.5697625e—4  0.1268681e—6
12 0.1160108e—1  0.4337532e—4  0.3455865e—6

a=0,=0,M =71, k=0and At = 0.001 for various val-
ues of ¢ in the interval [-10, 10]. Like in the Example 1,
absolute errors can be shown in Table 3 for different values
of M and k whena =0, f =0, At =0.001, = 0.1 and vari-
ous values of in the interval. It can be seen from Table 3 that
the Jacobi wavelet collocation-based algorithm produces sta-
ble and converging solution by increasing the level of resolu-
tion of the Jacobi wavelet k. Absolute errors of Example 2
have been given in Table 4 to compare presented results with
earlier results in the interval [-15, 15]. Graphics of the exact

Table2 Comparison with

X t Exact solution VIM [44] ADM [45] HPM [46] QuBSMs [47] Present
absolute errors of offered

method and existing methods 6 005 —002179598  2.005e-3 - - 3.349e—4 4.268e—6
i:vtgz ?;fr;tg_‘l’ Z;S;ﬁifm ame g 000296375  2.807e—4  3.332e—4  3332e—4 43595 2221e~7
9 —0.00109081  — 1.229e—4  1230e-4  1.596e—5 7.350e—7
10 —0.00040136  3.817e-=5  4.52le—=5  4.530e-5  5.860e—6 6.831e—7
12 —0.00005432  5.170e-6  — - 7.900e—7 5.413e-7
0.10 —0.02407444  4226e-3 - - 8.847e—4 1.097e-5
—0.00327520  591le-4  7.108e—4  7.109e—4  1.159e—4 1.105e—6
—0.00120550  — 2.623e—4  2.624e—4  4.248e-5 2.682e—6
10 —0.00044356  8.035e—5  9.659e—5  9.664e—5  1.560e—5 2.509¢—6
12 —0.00006004  1.088e-5 - - 2.100e—6 1.816e—6
8 015 -000361934 - 1.139e-3  1.139e-3  2.238e—4 2.404e—6
-0.00133224 - 4203e-4  4203e-4  8.208e-5 5.416e—6
10 —0.00049021 - 1.547e-4  1.548e—-4  3.014e-5 5.086e—6
8 020 —0.00399961 - 1.624e-3  1.624e-3  3.765e—4 3.771e—6
-0.00147230 - 5.992e—4  5993e—4  1.381le—4 8.324e—6
10 - 0.00054176 - 2207e—4  2.207e—4  5.073e=5 7.845¢—6
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Taw

Fig.7 Exact solution of Example 2

Fig.8 Approximate solution of Example 2

solution and approximate solution of Example 2 have been
given in Fig. 4 [45], Fig. 4 [46] and Fig. 4.4 [47]. As can be
seen in Tables 3 and 4 and Figs. 7, 8,9, 10, 11 and 12, it is
clear that suggested method provides more accurate results
if we compare the tables and graphics in [44—47].
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Fig.9 Absolute errors of Example 2 at t = 0.05
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X

Fig. 10 Absolute errors of Example 2 at# = 0.1

7 Discussions and conclusion

Jacobi wavelets are general form of the Legendre, first-kind
Chebyshev, second-kind Chebyshev and Gegenbauer wave-
lets. For Jacobi wavelet collocation method, matrix represen-
tation, called as operational matrices, of rth integration of
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0.0005+

0.0004+

0.0003+

0.0002+

00001+

3 -6 4 -3 Q@ 2

Fig. 11 Absolute errors of Example 2 at 7 = 0.2

Table 3 Absolute errors of Example 2 for various values of x

Mt X k=0 k=1 k=2
10 01 6 0.2587883e—1  0.9805439e—2  0.1110053e—4
8 0.4547073e—1  0.1190818e—1  0.5053005e—3
0.3152833e—1  0.8902112e-2  0.1792033e—4
10 0.2355687e—2  0.1230602e—1  0.3294656e—3
12 0.2013117e—1  0.9124526e-2  0.1917984e-3
16 0.1 6 0.4604518e—1  0.1262394e—2  0.4141376e—4
8 0.4287237e—1  0.5665013e-3  0.1115217e-3
9 0.5822258e—2  0.1254883e—2  0.3523935e—4
10 0.3148907e—1 0.1081645e—2  0.4467676e—4
12 0.2371258e—1  0.1052091e-3  0.3321313e—4
20 01 6 0.2365279e—1  0.3515931e—4  0.5747485e—5
8 0.1866599e—1  0.1718983e—4  0.1041548e—6
9 0.1618755e—1  0.4075308e—4  0.5361357e—7
10 0.1945787e—1  0.5607931e—4  0.2011723e—7
12 0.1353210e—1  0.4264685e—4  0.3628106e—6

000124

00010+

0.0008+

0.0006

0.0004+

0.0002+

o

-8 -6 -4 -2 0

Fig. 12 Absolute errors of Example 2 att = 0.5

Jacobi wavelets have been introduced and convergence anal-
ysis of offered method has been also investigated in present
study. Suggested method has been applied to find approxi-
mate solutions of the nonlinear modified Camassa—Holm
and Degasperis—Procesi equations linearized using quasi-
linearization technique. The advantage of this method is
that it transforms problems into matrix products. Therefore,
present method can be easily applied to obtain solutions
of physical and engineering problems and its application
is simple. When the Jacobi wavelets collocation method is
applied to obtain approximate solutions of engineering prob-
lems using a small number of grids it has given convergent
results. Algebraic equation systems depend on the number
of grids so using a small number of grids reduces the size
of equation systems. In Tables 1, 2, 3 and 4, convergence of
the proposed method, even in the case of a small number of
grid points, is observed. Comparison of the absolute errors
given in Tables 1, 2, 3 and 4 and Figs. 1, 2,3,4,5,6,7, 8,9,
10, 11 and 12 show that suggested method is superior to the
results in [44-47] and offered method give highly accurate
solution for the examples.

This study is applied to obtain approximate solutions of
one-space dimensional problems. However, this method can
also be applied for two- and three-dimensional problems as
well.
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Table 4 Comparison with

X t Exact solution VIM[44] ADM][45] HPM[46] QuBSM[47] Present
absolute errors of offered

method and existing methods 005  —002094811  2.005¢-3 - - 4.490e—4 5.814e—6
12\}:12 lfl;f‘;i‘fl‘;‘if gfgggfm tme ¢ ~ 000284880  2.807e—4  3332e—4  3332e-4  6312e-5 23927
—0.00104851 - 1229e—4  1230e—4  2.332e-5 9.460e—7
10 —0.00038580  3.817e=5  4.52le=5  4.530e=5  8.590e—6 8.990e—7
12 —0.00005222  5.169e=5 - - 1.160e—6 7.063e~7
0.0  —002371963  4.226e-3 - - 9.037e—4 1.462e—5
—0.00322779  591le—=4  7.108e—=4  7.109e—4  1.276e—4 1.273e—6
—0.00118808  — 2.623¢—4  2.624e—4  4.720e—5 3.378e—6
10 —0.00043716  8.036e=5  9.65%—5  9.664e—5  1.740e—5 3.209¢—6
12 —0.00005917  1.088¢—=5 - - 2.350e—6 2.325e—6
8 0.15  —0.00365714 - 1.139e-3  1.139e-3  1.932¢—4 2.608¢—6
9 — 000134624 - 4203e—4  4203e—4  1.46le=5 6.438¢—6
10 —0.00049536  — 1.547e—4  1.548e—4  2.635e—5 6.138e—6
8 020  —0.00414355  — 1.624e—=3  1.624e—3  2.585¢—4 3.632¢—6
9 —0.00152539 - 5992%e—-4  5.993e—4  9.568¢—5 9.038e—6
10 —0.00056130 - 2207e-4  2207e—4  3.529¢-5 8.672¢—6
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