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Abstract
To achieve an efficient methodology for approximating pan evaporation (EP), this study offers two metaheuristic-integrated 
predictors. Shuffled complex evolution (SCE) and electromagnetic field optimization (EFO) are two of the fastest metaheuris-
tic algorithms that are synthesized with artificial neural network (ANN). By doing this, the ANN is optimized in a noticeably 
shorter time compared to its integration with other metaheuristic techniques. Five-year climatic data of the Bakersfield station 
(California, USA) with an 80:20 ratio are used for developing and testing the methods. The proposed hybrids are implemented 
with appropriate population sizes (20 and 35 for the SCE and EFO, respectively) and their results are compared to a single 
ANN. Accuracy evaluation (correlation coefficients > 0.99) professed that the neural network with both conventional and 
sophisticated trainers is a competent approach for the EP simulation. Besides, it was observed that the error of prediction 
by the ANN-SCE and ANN-EFO is 6.02 and 9.27% lower than the single ANN, respectively. Therefore, the used strategies 
can enhance the applicability of the ANN. The time elapsed in the optimization using SCE and EFO was 479.0 and 281.9 s, 
respectively. A comparison between these algorithms revealed that the EFO is both a faster and more accurate optimizer. 
The ANN-EFO is accordingly recommended as a new efficient model for predicting the EP.
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1  Introduction

Evaporation is known as one type of vaporization that hap-
pens on the surface of a liquid as it converts into the gas 
phase [1–4]. As a significant environmental and climatic 
concern, and to minimize the negative its effects on the 

environment, the water-loss step of the water cycle, are 
extensively discussed [5–14]. There have been many case 
studies working on current worldwide environmental con-
cerns [15–19]. In this sense, and during recent decades, 
artificial intelligence has proved to be one of the most 
popular methods for the indirect analysis of environmental 
engineering-based factors [20–27], and more specifically the 
pan evaporation (EP) [28, 29]. Fuzzy-based tools [30–32], 
regression-based methods [33, 34], neural learning [35–37], 
and support vector approaches [38–40] are well-known tech-
niques that have been highly regarded by experts. Further 
applications of intelligent tools can be found in different 
fields such as in engineering [41–46], structural health moni-
toring [47–52], reinforced concrete structure performance 
[53–56], computer vision techniques such as machine vision 
[57], moving object detection [58, 59], image enhancement 
[60, 61], air quality [62, 63], energy [64–71], computational 
image processing [72–78], groundwater remediation strate-
gies [79], big-data in traffic management [80], prefabricated 
walls [71–83], socially aware networks [84], climatic change 
[85, 86], or even in medical sciences [77–95]. Recently, pro-
grammers have used various metaheuristic algorithms for 
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optimization aims [96, 97]. A particular application of these 
techniques is hybridizing the existing predictive models. In 
this sense, hybrid kernel extreme learning machine [98], 
fruit fly optimization [99], bacterial foraging optimization 
[100], many-objective sizing optimization [101–104], Har-
ris hawks optimizer [105], data-driven robust optimization 
[106], multi-objective 3-d topology optimization [107], 
global numerical optimization [108], moth-flame optimiza-
tion [109] are some good examples of machine learning, 
conventional neural network, and hybridized optimiza-
tion algorithms. Different studies are trying to extend the 
superiority of prediction techniques such as deep learning 
[110–114], feature selection [115, 116], or feature extraction 
[117–119]. Arunkumar et al. [120] employed three data min-
ing approaches including artificial neural network (ANN), 
model tree (MT), and genetic programming (GP) for devel-
oping EP evaluative tools. With a correlation of 0.959, the 
GP was stronger than other methods. This is while the ANN 
was found to be more suitable for cause–effect mapping. 
Alsumaiei [121] applied an ANN to the prediction of the 
daily rate of EP in hyper-arid climates in Kuwait. With ref-
erence to the obtained Nash–Sutcliffe coefficients (varying 
in [0.405, 0.755]), the ANN could satisfactorily handle this 
task. The applicability of multivariate adaptive regression 
spline (MARS) and MT incorporated with maximum overlap 
discrete wavelet transform was examined by Ghaemi et al. 
[122]. As a result of this hybridization, significant decreases 
were observed in the error of both standard MARS and MT. 
Likewise, a combination of response surface method (RSM) 
and support vector regression (SVR) was proposed by Kes-
htegar et al. [123] for EP modeling. According to the accu-
racy measures, this model outperformed single methods and 
a capable ANN, namely multilayer perceptron (MLP).

By combining the nature-inspired searching algorithms, 
optimal configurations of the intended models are achieved. 
This measure also prevents computational threats like local 
minima [124]. Roy et al. [125], for example, used biogeog-
raphy-based optimization (BBO), teaching–learning-based 
optimization (TLBO), firefly algorithm (FFA), and particle 
swarm optimization (PSO) for optimizing an adaptive neuro-
fuzzy inference system (ANFIS) applied to evapotranspira-
tion prediction. Gocić et al. [126] achieved two powerful 
methodologies for reference evapotranspiration modeling by 
combining the support vector machine (SVM) with FFA and 
wavelet technique. They compared the performance of these 
two hybrids with ANN and GP, and witnessed the better 
performance of the FFA-SVM and SVM-wavelet. Moham-
madi and Mehdizadeh [127] created a hybrid of whale opti-
mization algorithm (WOA) and SVR for the same purpose 
in Iran. They also showed that random forest (RF) is a good 
tool for input evaluation. With normalized root-mean-square 
errors (RMSEs) of 5.466, 9.958, and 5.412% calculated for 
Isfahan, Urmia, and Yazd stations, respectively, the proposed 

method outperformed seven other predictors including typi-
cal SVR. In a different study, Liu et al. [128] proposed a 
searching algorithm to solve box constrained global optimi-
zation problems. They used an example of structural design.

As for the ANNs, many scholars have coupled these tools 
with nature-inspired optimizers for hydrological simula-
tions [129–131]. A hybrid of FFA-ANN was proposed by 
Ashrafzadeh et al. [132] for the EP approximation. Due to 
the better performance of the ensemble model relative to 
the conventional ANN, they concluded that retrofitting this 
processor with the FFA is a promising way toward accuracy 
enhancement. Tikhamarine et al. [133] predicted reference 
evapotranspiration in India and Algeria using five ensembles 
of ANN with PSO, WOA, grey wolf optimizer (GWO), ant 
lion optimizer (ALO), and multi-verse optimizer (MVO). A 
comparative assessment of the results pointed out the supe-
riority of the GWO for training the ANN. A similar appli-
cation of the GWO and WOA, as well as genetic algorithm 
(GA), was presented by Seifi and Soroush [134]. They cou-
pled these optimizers with ANN for predicting the EP in dif-
ferent parts of Iran. Among the metaheuristic-based ANNs, 
those trained the GA outperformed the WOA and GWO.

Despite the adequate competency shown by metaheuristic 
approaches in optimizing standard predictors, they mostly 
take a large time for this process. Due to the importance 
of time-efficiency in engineering assessments, this study 
offers optimal hybrids for the EP prediction. To this end, the 
optimization of an ANN is assigned to two fast metaheuris-
tic algorithms, namely shuffled complex evolution (SCE) 
and electromagnetic field optimization (EFO). While these 
algorithms have been effectively employed for optimization 
objectives [135], no prior effort can be found regarding their 
application in the EP estimation.

2 � Data acquisition and statistics

As is known, data provision is a crucial step in machine 
learning implementation for predicting any parameter [136]. 
Therefore, the data should be obtained from a valid source. 
Generally, besides the intended parameter(s) (i.e., to be 
predicted), some factors are required for creating a data-
base. These factors are selected based on a logical (here 
dependent-independent) relationship and play the role of 
influencing factors for the intended parameter in the real 
world. In the case of this study, the EP is the dependent 
parameter influenced by wind speed (SW), air temperature 
(TA), daylight pressure (PD), solar radiation (RS), and day-
light humidity (HD). These independent factors are called 
inputs hereafter.

The climatic records belonging to a 5-year period are 
used in this work. More clearly, the values of EP, SW, TA, 
PD, RS, and HD from January 01, 1986 to December 31, 1990 
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were downloaded from the website of the US environmental 
protection agency (http://www.epa.gov). Figure 1 shows the 
variation of the target parameter (i.e., the EP) in this period. 
As is seen, this figure is divided into two separate parts by 
the name training and testing. The training data cover the 
first 4 years and the fifth year is dedicated to testing data. 
The reason for doing this is to evaluate the generalizability 
of the models using new climatic conditions. In this regard, 
once the models capture the EP pattern by analyzing the 
training data (1986–1989), they are asked to predict the EP 
for the year 1990. Table 1 gives the statistical description of 
both datasets.

Finally, in this section, Fig. 2 shows the location of the 
studied station. It is the Bakersfield station located in the 
central part of Kern County, California, with a warm and 

semi-arid climate [137]. The longitude and latitude are 
119° 03′ W and 35° 25′ N, respectively. Also, the elevation 
in this area is around 151 m above sea level. According to 
Table 1, the average temperature was around 18.3 °C over 
the selected time. Also, the EP ranged in [0.3, 20.5] mm 
with an average of 7.8 and 7.9 mm in the training and testing 
period, respectively.

3 � Methodology

3.1 � The SCE

The SCE was developed by Duan et al. [138] as an efficient 
and simple metaheuristic optimizer. This algorithm relies 
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Fig. 1   The EP variation in the intended period

Table 1   Statistical indices of 
data in both periods

Group Factor Unit Indicator

Mean Standard 
deviation

Skewness Minimum Maximum

Training SW mi/h 10.3 3.8 0.1 3.9 27.5
TA °C 18.3 7.8 − 0.1 0.4 34.3
PD Kpa 99.8 0.5 0.4 97.7 101.6
RS Langley 445.4 196.7 − 0.1 64.8 760.2
HD % 48.2 18.1 0.7 15.0 100.0
EP mm 7.8 4.6 0.3 0.3 20.5

Testing SW mi/h 13.8 1.5 0.5 8.7 19.5
TA °C 18.1 8.4 − 0.1 − 2.8 35.3
PD Kpa 99.8 0.5 0.7 98.8 101.2
RS Langley 458.9 187.5 − 0.1 104.9 753.3
HD % 47.6 16.4 0.5 20.0 99.0
EP mm 7.9 4.5 0.2 0.5 18.7

http://www.epa.gov
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on the synthesizing four concepts, including (a) combining 
probabilistic and deterministic techniques, (b) evolving a 
set of points (called complex) that span the space toward 
an optimal situation, (c) performing a competitive evolu-
tion strategy, and (d) shuffling the complex [139]. Like other 
algorithms, each member represents a possible solution to 
the given problem. For doing the optimization, first, initial 
individuals are equally divided into a number of complexes. 
A local optimum solution is discovered by each complex 
by executing downhill simplex method. After repeating this 
process for new points, these solutions are then processed 
and collected to attain a global response.

In the first step, the problem and parameters are initial-
ized. Given OF(H) as the objective function, Eq. 1 expresses 
how the problem is defined.

where H symbolizes the group of each decision parameter. 
In the second step, the initial population is generated as 
follows:

in which rand is a random number uniformly distributed 
from 0 to 1, and Hmin(i, j) and Hmax(i, j) denote the lower and 
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,

upper bounds of j at the ith node. In the following, the OF(H) 
is calculated for all individuals. Given N as the number of 
unknown nodes, the population matrix can be expressed as 
follows:

In the third step, the algorithm sorts S solutions with 
respect to the objective functions. Next in the fourth step, it 
partitions these solutions into M complexes, so that each of 
these units contains m points. In this regard, the points by the 
number M(k − 1) + 1 go to the first complex, the points by 
the number M(k − 1) + 2 go to the first complex, and so on 
(k = 1, 2, …, m). After implementing the competitive com-
plex evolution as the fifth step, the sixth step is dedicated 
to shuffling the complexes. Finally, termination criteria are 
checked to stop repeating steps 3, 4, and 5 [140]. The SCE 
is also explained in earlier studies [141, 142].

3.1.1 � The EFO

The EFO draws on electromagnetics rules to provide a fast 
and capable optimizer. Abedinpourshotorban et al. [143] 
developed the EFO in 2016. In a cooperative process, the 
population, which is composed of electromagnet particles 
(EMPs), enhances the positions to replace poor solutions 

(3)P =

⎡⎢⎢⎢⎣

C1

C2

⋮

CNP

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

H1
1

H1
2

… H1
N

H2
1

H2
2

… H2
N

⋮ ⋮ ⋱ ⋮

HNP
1

HNP
2

… HNP
N

⎤⎥⎥⎥⎦
.

Fig. 2   Location of the Bakersfield station (WBAN Number: 23155)
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with promising ones. The interaction between the EMPs is 
based on the attraction–repulsion rule.

The optimization strategy in the EFO can be expressed 
in four major stages. First, a certain number of EPMs are 
randomly generated. Concerning their fitness, the EMPs are 
organized. The next stage is dedicated to the classification 
of individuals. Three groups of EMPs are formed, so that 
the first group, called positive field, contains the best-fitted 
individuals; the second group, called negative field, contains 
the worst individuals; and the third group, called neutral 
field, contains the individuals with low negative polarities. 
Producing and organizing new EMPs are crucial steps of the 
EFO. The production process is illustrated in Fig. 3.

The bounds of the new member have to comply with the 
existing space. In other words, once it is not limited to space, 
another EMP is produced. Given n as the number of EMPs 
and GR as the golden ratio, the production process can be 
mathematically expressed as follows:

where rand is a random value ranging in [1]. Also, DNnKn

n  and 
D

PnKn

n  are obtained by the following equations:

where EMPNn

n
 , EMPPn

n
 , and EMPKn

n
 stand for the negative, 

positive, and neutral electromagnet, respectively.
In the last step, a random number is generated and com-

pared to the parameter RRate to decide about the replace-
ment process. Note that RRate is the probability of changing 
an electromagnet (of the produced EMP) with a random 
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n
= EMPPn

n
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n
,

one. If RRate is larger than the random value, the replace-
ment occurs [144]. Further explanations about the EFO 
mechanism can be found in Refs. [145, 146].

3.2 � Hybridization

The SCE and EFO aim to train the ANN for predicting 
the EP. For this purpose, a valid ANN structure should 
be determined as the skeleton of the hybrid models. The 
ANN structure suggested for this work is shown in Fig. 4. 
It is an MLP network with five inputs and one output. As 
is seen, there are five neurons in the middle layer that are 
determined after a trial and error proceeding. The suit-
ability of this structure has also been professed in earlier 
studies [147]. In such networks, the calculation is carried 
out by the neurons by applying an activation function to 
a linear combination of weights, biases, and input values. 
The same process is executed by the subsequent neurons to 
produce the overall response (i.e., EP) [148–150]. Accord-
ing to Table 2, 36 parameters are involved in the prediction 
procedure. Therefore, each of the SCE and EFO should 
tune 36 parameters to attain an optimal ANN.

In metaheuristic algorithms, an iterative strategy is 
taken for improving the quality of the results. The good-
ness of the response in each iteration (i.e., the weights and 
biases) is evaluated by measuring the accuracy of train-
ing. Note that training data are used for this process. The 
algorithm tries to increase the accuracy by achieving a 
more promising solution to the ANN problem, and eventu-
ally, it is terminated somewhere. The last response of the 
algorithm builds the optimal ANN. The trained hybrids, 
called ANN-SCE and ANN-EFO, then predict the EP for 
the testing period.

Fig. 3   Generating new members 
in the EFO
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3.3 � Accuracy assessment indices

To have a valid assessment of the prediction results, dif-
ferent accuracy criteria can be defined. In this work, the 
error of prediction is measured by two standard criteria, 
namely root-mean-square error (RMSE) and mean absolute 
error (MAE). A percentage form of the MAE, called mean 
absolute percentage error (MAPE), is also used to give the 
relative error. Given Error as the difference between the 
recorded EP ( EPRecord

 ) and modeled EP ( EPModel
 ), these criteria 

are expressed by the following equations:

(7)MAE =
1

Z

Z∑
i=1

|Errori|

(8)RMSE =

√√√√ 1

Z

Z∑
i=1

[Errori]
2

where Z stands for the number of days.
Moreover, Eq. 10 expresses Pearson correlation coeffi-

cient (PCC) that is used for assessing the agreement between 
the EPRecord

 and EPModel
:

4 � Results and discussion

4.1 � Training results

The optimization mechanism was explained in Sect. 3.2. 
Based on the behavior of the used algorithms, different 
measures are taken for the implementation. As shown in 
Fig. 5a shows, for the ANN-SCE, eight values, including 
2, 5, 10, 15, 20, 50, 100, and 200, are considered as the 
population size (NP). It is observed that all tested networks 
reach a relatively stable convergence after 600 iterations. 
The magnified section illustrates that the response of NP = 20 
achieved the lowest objective function (i.e., the RMSE in 
this case). Therefore, this network represents the proposed 
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Fig. 4   The suggested ANN for 
hybridization

Table 2   The number of parameters in the suggested ANN

Parameter Weight Bias

Location Input-hidden Hidden-output Hidden Output

Number 5 × 5 = 25 5 × 1 = 5 5 1
Sum 30 6
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Fig. 5   Optimization of ANN using different NPs of the a SCE and b EFO
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ANN-SCE. As for the ANN-EFO, Fig. 5b shows the con-
vergence curves for the NPs of 25, 30, 35, 40, 50, 80, 100, 
and 200. Due to the same reason, the network with NP = 35 
is selected to represent the ANN-EFO. A distinction between 
the implementation of these two algorithms is the number 
of iterations, which, based on their behaviors, is selected to 
be 1000 and 30,000 for the SCE and EFO, respectively. A 
single ANN trained by the Levenberg–Marquardt [151] is 
also considered as a benchmark to validate the performance 
of the used metaheuristic algorithms.

Figure 6 shows the training results in terms of error val-
ues (the same as Error explained above). In this phase, the 
RMSEs calculated for the single ANN, ANN-SCE, and 
ANN-EFO were 0.6958, 0.6802, and 0.6749, respectively. 
Likewise, the MEAs were 0.6080, 0.5954, and 0.5901. It 
indicates excellent training provided by all three strategies 
(i.e., LM, SCE, and EFO).

The high quality of training can also be confirmed by 
the PCCs of 0.98888, 0.98917, and 0.98934. However, by 
comparison, it can be derived that the SCE and EFO have 
made stronger ANNs. It implies that the ANN can be prop-
erly improved by metaheuristic techniques. It is due to the 
more suitable responses found by the SCE and EFO. These 
responses, as explained, comprise the neural parameters that 
reveal the intricate relationship between the EP and SW, TA, 
PD, RS, and HD (Fig. 4).

4.1.1 � Testing results

The testing inputs were then given to the built networks to 
estimate the EP for the year 1990. Regarding the fact that 
the networks had not come across these data, their perfor-
mance in this section represents the generalizability of their 
knowledge. The results are assessed in the same way as the 
training phase. Figure 7 depicts the obtained errors. Hav-
ing a look at the actual range of testing EPs in Table 1 (i.e., 
[0.5, 18.7] mm) and comparing it with the calculated errors 
demonstrate that all three models can elegantly estimate the 
EP pattern in the testing period. In this regard, the RMSEs 
were 1.5647, 1.4764, and 1.4239. A low range of MAEs, i.e., 
1.4947, 1.4047, and 1.3561, is another indicator of the high 
accuracy for all applied models. Moreover, the histogram 
charts show a suitable frequency of error values.

Furthermore, the agreement between the EPs recorded in 
the testing period and those estimated by the used models 
is graphically shown in Fig. 8. As is seen, the products are 
strongly correlated with real-world data. Referring to the 
obtained PCCs of 0.99838, 0.99824, and 0.99802, all three 
models enjoy a very good potential for prediction.

Moreover, Table 3 gives a correlation-based assessment 
of the testing results from a seasonal point of view. Based on 
the calculated coefficients of determination (R2s), the models 
have done a very good prediction for all seasons.

Comparing the testing results of the ANN with hybrid 
models (i.e., ANN-SCE and ANN-EFO) reveals that 
although the obtained PCCs have slight differences, both 
error criteria indicate a significantly more accurate predic-
tion for the ANNs trained by the SCE and EFO. It is even 
more highlighted when the single ANN is evaluated versus 
the EFO-ANN. In detail, letting the ANN be trained by the 
SCE and EFO resulted in around 5.64 and 9.00% reduction 
of RMSE and nearly 6.02 and 9.27% reduction of MAE, 
respectively. It reflects the higher capability of metaheuris-
tic-trained ANNs in predicting the daily EP. This finding 
becomes even more noticeable after knowing that the SCE 
and EFO are two of the fastest optimizers. The matter of 
time-effectiveness is discussed in the next section.

4.2 � Comparison

The objective of the study was met after the above assess-
ments. The ANN, which is a popular predictive model for 
the EP modeling, experienced appreciable improvements in 
the accuracy of prediction by incorporating with the SCE 
and EFO metaheuristic techniques. Depending on different 
parameters like the type of problem, the number of variables, 
and the size of data, these algorithms mostly take a con-
siderable time for attaining optimal solutions [152]. Some 
long calculations regarding ANN optimization can be men-
tioned for teaching–learning-based optimization and cuckoo 
optimization algorithm [65], spotted hyena optimizer [153], 
wind-driven optimization [154], etc. In contrast, scholars 
like Zheng et al. [155] have reached their desired optimiza-
tion using the SCE in a shorter time.

In this work, the time taken by the SCE and EFO was 
about 479.0 and 281.9 s, respectively (on an Intel core i7 
64-bit operating system with 16 gigs of RAM). It means that 
the EFO is a faster algorithm than SCE. Moreover, based 
on the lower values of the RMSE and MAE obtained for 
the ANN-EFO, the EFO can also be pointed out as a more 
capable algorithm, too.

4.3 � Importance assessment

To investigate the effect of each input factor, a bagged 
ensemble of 200 regression trees is executed. The results 
are shown in Fig. 9. As is seen, SW plays the most important 
role in the EP simulation, while the lowest effect is exerted 
by the PD factor. Also, the effect of three other factors can 
be considered as relatively gentle.

4.4 � The EP equation

This section gives the formula of the EP created by the 
ANN-EFO. Based on Fig. 4, the contribution of the inputs 
to the output (i.e., the EP) passes through a complicated 
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neural network. It was explained that 36 parameters that 
are optimized by the EFO are involved in this process. 
Equation 11 calculates the EP: In the above relationship, [LW] is the vector of the hid-

den-output weights given in Eq. 12, [IW] is the vector of the 

(11)EP = [LW] ⋅ (f (([IW] ⋅ [Input])+[b1]))+[b2].

Fig. 6   Training errors for a, b 
single ANN, c, d ANN-SCE, 
and e, f ANN-EFO
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input-hidden weights given in Eq. 13, [Input] is the vector 
of input factors given in Eq. 14, [b1] is the vector of hid-
den biases given in Eq. 15, and [b2] is the vector of output 
bias given in Eq. 16. Also, f denotes the activation function 
expressed in Eq. 17:

(12)
LW =

[
−0.9935 0.3151 −0.7192 −0.9814 −0.1872

] (13)

IW =

⎡
⎢⎢⎢⎢⎢⎣

0.6170 −0.1241 1.1595 −0.6882 −1.2317

−1.0706 −0.2674 0.2105 0.7013 −1.4062

0.1757 −1.1247 −0.7690 0.9611 0.9593

1.2087 0.3759 1.0580 0.9998 −0.0992

−1.2847 −0.6414 0.1228 −1.2334 −0.3647

⎤⎥⎥⎥⎥⎥⎦

Fig. 7   Testing errors for a, b 
single ANN, c, d ANN-SCE, 
and e, f ANN-EFO
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(14)Input =
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Fig. 8   Regression between the recorded and modeled EPs in the testing period after the prediction of a single ANN, b ANN-SCE, and c ANN-
EFO

Table 3   Seasonal assessment of the results

Model R2

Winter Spring Summer Fall

ANN 0.9873 0.9914 0.9937 0.9948
SCE-ANN 0.9906 0.9927 0.9934 0.9930
EFO-ANN 0.9898 0.9962 0.9939 0.9876
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Fig. 9   Importance assessment of the input factors
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According to the above formula, the EFO first creates the 
appropriate weights and biases to produce some middle param-
eters in the hidden layer. Next, the outcomes are treated as 
inputs to produce the final output in the last layer.

4.5 � Further discussion

The findings of this paper revealed that the suggested opti-
mizers can be favorably used for pan evaporation modeling 
through neural network. Apart from accuracy, a significant 
strength of the used algorithms was their low computation 
time. It means that both SCE and EFO are able to find an 
optimal way for the EP prediction. Back to Fig. 5, while most 
of metaheuristic optimizers give their best solution with high 
number of population, the SCE and EFO performed better with 
small NPs. Another appreciable point was the optimization 
behavior of the EFO which reached a relatively steady situa-
tion after 15,000 iteration in the case of this problem. In other 
words, the EFO has a good potential to improve the established 
contribution of the input factors for many times. Therefore, the 
number of iterations should be properly regarded for further 
applications of this algorithm.

5 � Conclusions

The performance of an artificial neural network was super-
vised by shuffled complex evolution and electromagnetic 
field optimization toward the optimal prediction of pan 
evaporation. These algorithms found suitable biases and 
weights of the ANN in a short time. The quality of their 
performance was compared to the Levenberg–Marquardt 
algorithm which is a default trainer for the ANN. It showed 
that the hybridized ANN can predict the EP pattern with 
higher accuracy. For example, the RMSE fell from 1.5647 
to 1.4764 after the performance of the SCE. The EFO was 
even more capable and reduced this value to 1.4239. This 
advantage, as well the shorter computation time, made 
the EFO superior over the SCE. It is also a newer strategy. 
All in all, due to the crucial role of time-efficient accuracy 
enhancement in engineering simulations, the findings of 

(15)b1 =

⎡
⎢⎢⎢⎢⎢⎣

−1.9316

0.9658

0.0000

0.9658

−1.9316

⎤
⎥⎥⎥⎥⎥⎦

(16)b2 =
[
−0.1385

]

(17)f (x) =
2

1 + e−2x
− 1.

this study are of interest. Accordingly, testing different 
metaheuristic strategies on other leading predictive models 
(e.g., the ANFIS and SVM) in future efforts can improve 
the EP modeling in new ways.
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