
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38 (Suppl 2):S1243–S1254 
https://doi.org/10.1007/s00366-020-01273-8

ORIGINAL ARTICLE

Multi‑extremum‑modified response basis model for nonlinear 
response prediction of dynamic turbine blisk

Behrooz Keshtegar1,2,3 · Mansour Bagheri4 · Cheng‑Wei Fei1   · Cheng Lu1 · Osman Taylan5 · Duc‑Kien Thai6

Received: 2 July 2020 / Accepted: 28 December 2020 / Published online: 21 January 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
For the nonlinear dynamic analyses of complex mechanical components, it is necessary to apply efficient modeling frame-
work to reduce computational burden. The accurate surrogate model for approximating the nonlinear responses of several 
failures is a vital issue to provide robust and safe design conditions in complex engineering applications. In this paper, two 
different Modified multi-extremum Response Surface basis Models (MRSM) are proposed for dynamic nonlinear responses 
of failure capacities for turbine blisk responses. The proposed MRSM is established using two regression processes including 
regressed the input variables by linear or exponential basis functions in first calibrating phase and regressed the second-order 
polynomial basis function using inputs data provided by first stage in second calibrating procedure. A sensitivity analysis 
using MRSM is proposed to consider the variation of input variables on the nonlinear responses. In the sensitivity analysis 
procedure, the effects of input variables are evaluated using the calibrating results given from the first regressed process. 
To evaluate the performance of the proposed MRSM, three multi-extremum failure modes including radial deformation 
of compressor blisk, maximum strain, and stress of compressor blade and disk are considered. the prediction of MRSM 
of nonlinear responses for Thermal-fluid–structure system with dynamical nonlinear finite-element analyses is compared 
with response surface method (RSM) and artificial neural network (ANN). The predicted results of modeling approaches 
showed that the sensitivity analysis based on MRSM accurately provided the effective degree for input variables. The gas 
temperature has the highest effects on nonlinear responses of turbine blisk which is followed by angular speed and material 
density. The MRSM combined with basic exponential function performs better than other models, while the MRSM coupled 
with linear function is more accurate than ANN and RSM. The proposed MRSM models have illustrated the accurate and 
efficient framework for approximating dynamic structural analysis of complex components.

Keywords  Multi-extremum-modified response basis model · Turbine blisk · Multi-failure mode · Nonlinear dynamics · 
Sensitivity analysis

1  Introduction

As a key part of an aeroengine, turbine blisk is applied to 
convert and transfer the energy, which significantly affects 
the efficiency and safety of aeroengine. As up to 25% of 
aeroengine failures are related to turbine blisk. Accurate 
design and estimation on the dynamic responses of turbine 
blisk are more critical for the growing demand for high-
efficiency and safe aeroengines.

The mechanical evaluation of aeroengine components 
have emerged. Meguid et al. [1] studied bird strike resist-
ance of an aeroengine applying explicit numerical approach 
and 3-D finite-element modeling. Results indicated that the 
significant effect on the impact force belongs to the first con-
tact area between the bird and target of the first phase of the 
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impulse. Qi et al. presented a method to consider the bound-
ary conditions and calculated the tip clearance of aeroengine 
considering the effects of rotation speed, pressure and tem-
perature [2]. The main findings of this work include the main 
role of shaft speed on turbine disk displacement and tem-
perature influence on turbine blade. Dong et al. investigated 
the effect of ice accretion and flowfield on the performance 
of an aeroengine structure. A comparison of the computa-
tional and experimental data showed acceptable agreement 
for strut temperature [3]. Szwaba et al. [4] examined the 
influence of aerodynamic characteristics and heat transfer 
of radial cooling passage walls of a turbine blade. Survey 
results indicated that transient method is easy to apply and 
its most important feature is that stable conditions in cool-
ing walls are that stable conditions in wall temperature are 
not necessary to consider. Peschiulli et al. [5] proposed a 
methodology to investigate thermal characteristics and clear-
ance control of complex mechanical system. Satish et al. 
[6] dynamically analyzed aeroengines blade-tip clearance 
(BTC) by an error identifying approaches to decrease system 
uncertainties.

For deterministic studies on the behavior and character-
istics of aeroengine whole-body and components, various 
works on the probabilistic analysis of turbine blisk are con-
ducted. Zhai et al. [7] developed a stochastic model updat-
ing (SMU) procedure using Monte Carlo (MC) method and 
an improved response surface method (RSM) for reliability 
analysis of aeroengines and complex structures, and showed 
that the SMU procedure could precisely simulate aeroen-
gine system with desired efficiency. Lu et al. [8] developed 
Improved decomposed-coordinated Kriging modeling strat-
egy for dynamic probabilistic analysis of multi-component 
structures with acceptable computational efficiency. Sur-
rogate models are commonly used to optimization and 
RBDO of complex engineering problems [9, 10]. Machine-
leaning basis nonlinear relations are successfully used to 
approximate the failure domains of probabilistic functions 
in structural reliability analyses. The call function as com-
putational burden of the limit state function can be improved 
using hybrid reliability methods such as Kriging [11–18], 
response surface method [19], support vector machine 
[20–24], M5Tree [25, 26] and artificial neural network [27] 
in structural reliability design. Hu et al. [28] developed a 
low computational approach for the optimum design of 
turbine disk reliability using a single-loop-single-vector 
(SLSV) approach. Fei and Bai [29] proposed an efficient 
probabilistic numerical procedure based on support vector 
machine (SVM), and revealed the proposed approach with 
high efficiency and desirable accuracy for the optimization 
of gas turbines blade-tip radial running clearance. Wong 
et al. [30] applied Fourier series for the uncertain reliability 
analysis of turbine blade disks, and proved that its accuracy 
and efficiency are acceptable. Bai et al. [31] developed an 

efficient multi-stage multi-disciplinary model based on a 
dynamic substructure method for turbine blisk, and indi-
cated that the computational efficiency and accuracy of the 
proposed approach are better than support vector regres-
sion. Lin et al. [32] proposed a model for reliability analysis 
of aeroengine blade considering fatigue failure mode, and 
demonstrated that the proposed model was reasonable and 
matched with real-system conditions. An et al. [33] used 
the stress–strength interference (SSI) model for the reli-
ability analysis of aeroengine decelerator regarding random 
variables. Fei et al. [24] applied extremum response surface 
method (ERSM) -based support vector machine (SVM) 
for optimum design of blade-tip radial running clearance 
in respect of nonlinear properties of materials and thermal 
loads. Lu et al. [34] developed a multi-extremum response 
surface method (MERSM) for the reliability analysis of 
aeroengine turbine blisk considering multiple failure modes, 
and illustrated the good performance of MERSM in accu-
racy and efficiency. Zhang et al. [35, 36] applied improved 
RSM considering the effect of strain and stress, gas tem-
perature and gas velocity, to study on low cycle fatigue and 
high-temperature creep of turbine blisk. Fei et al. [15] pro-
posed a surrogate model method for the reliability analysis 
and robust design of turbine blisk. Wang et al. [37] investi-
gated the parameters of BTC for different rotating speed and 
active clearance control (ACC) of aeroengines. Zuo et al. 
[38] studied the reliability of aeroengine oil system using 
evidential network model based fault tree analysis consid-
ering epistemic uncertainty. To reduce the computational 
burden of complex problems, the modeling method basis 
multi-extremum surface of failure regions is significantly 
reduced computational times to evaluate failure domains. 
The main change in modeling methods is to provide the 
accurate prediction of multi-extremum performance func-
tions under complex uncertainties. Although the RSM is one 
of simple and efficient regression tools, the abilities of the 
RSM for accurate estimation of multi-extremum basis func-
tions have some limitations due to the usage of second-order 
polynomial function. The flexibility of RSM with respect to 
the nonlinear relationship for nonlinear dynamic responses 
potentially enhance to reach the efficient and accurate multi-
extremum nonlinear relationships.

The objective of this paper is to develop an accurate sur-
rogate model to determine the nonlinear responses of multi-
failure modes of complex structures. In respect of this pur-
pose, two novel modified multi-extremum response surface 
models (MRSM) are developed for the dynamic response 
of aeroengine turbine blisk. Moreover, a sensitivity analy-
sis using MRSM is adopted to investigate the variation of 
input variables on the nonlinear responses. The remaining 
of this paper is structured as follows. In Sect. 2, the funda-
mentals of the two MRSMs are discussed. A general over-
view of turbine blisk specifications and dynamic analysis 
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are conducted in Sect. 3. Comparative modeling results are 
reported in Sect. 4. Section 5 summarizes some conclusions 
of this work.

2 � Multi‑extremum‑modified response basis 
model

RSM is commonly applied to approximate to the failure 
modes of aeroengine structures under complex conditions 
in loads and manufacturing materials [15]. The ability of 
RSM to balance between accuracy and simplicity is one of 
the exciting characteristics in approximating complex engi-
neering problems. The main effort in RSM is to provide a 
nonlinear relation as second-order basis polynomial func-
tions between input variables (i.e., inlet temperature, mate-
rial density, inlet velocity, and rotor speed) and outputs as 
multi-failure responses (i.e., blisk deformation, stress, and 
strain). The RSM cannot approximate highly nonlinear prob-
lems with high-correlation of input variables for complex 
problems due to approximating responses using polynomial 
function with quadratic form. Consequently, the accuracy of 
models, which is one of the major efforts in modeling pro-
cess, is depended on the nonlinearity forms of approximated 
relation, input data points, training process, and parameters 
of models. In the current work, a multi-extremum-modified 
response model is proposed based on two calibrating pro-
cesses. In the first modeling approach, each input variable 
is transferred based on a nonlinear mapping with power or 
exponential function, while the calibrating data points are 
provided by the first step, which is used for regressing the 
multi-extremum third-order polynomial functions. Figure 1 
represents the modeling framework of two regressed RSM, 
denoted as MRSM. In this modeling approach, four layers 
of 1–4 are applied, including input layer (layer 1), normal-
ized layer (layer 2), nonlinear mapping layer (layer 3) and 
calibrating layer (layer 4). The calibrating procedures using 

the nonlinear response of turbine blisk under fluid-thermal 
uncertainties are given in layer 3 and layer 4.

As seen in Fig. 1, the results of MRSM are the approxi-
mated data (Y) of multi-failure modes of blisk deformation, 
stress, strain at layer 4 which are calibrated by input vari-
ables (X = (x1, x2, …, xn)), i.e., inlet temperature, inlet veloc-
ity, material density and rotor speed at layer 1. The details 
of layers 1–4 are expressed as follows:

Layer 1: Give input variable (x1, x2, …, xn) which are 
simulated using LHS with 150 sample in the train and 44 
sample points in the test phases.

Layer 2: Normalize variables using the statistical proper-
ties of input variables [39], i.e.,

where N(X) presents the normal variable of X with mean 
of µ and standard diversion of σ, including tempera-
ture (T) (µT = 1164.94  K, σT = 26.01  K), material den-
sity (ρ) (µρ = 4450 kg/m3, σρ = 57.8 kg/m3), inlet veloc-
ity (v) (µv = 160 m/s, σv = 11.55 m/s) and rotor speed (ω) 
(µω = 1150.1 rad/s, σω = 86.6 rad/s), where µ and σ are com-
puted based on simulated data points in training phase. In 
the normalized data, the standard deviation is a scale factor 
to control the range of the normalized input data. By normal-
izing input data, the free-dimensions of input data are used 
in the calibrating process. The large and small input bounds 
could be provided by the factor σ. The input data have a nar-
row bound when σ is minimal value, while a high-bound for 
input data is obtained as σ is large value.

The layers 1 and 2 are determined based on the input 
variables which are connected with the final layer. This con-
nection is structured based on two significant calibrations, 
which are created in layers 3 and 4.

Layer 3: Mapping the normalized data based on the first 
regression procedure.

In the current work, two nonlinear mapping data points 
are presented to provide the nonlinear effects of input vari-
ables. In the first map, the linear function in the following 
equation is adopted to improve the RSM in MRSM-LN:

In the second map, the exponential function, namely 
MRSM-EXP, is used as follows:

where a0i and a1i are the unknown coefficients.
The linear and exponential mapping data are used in the 

first calibrating process, which is provided by a connec-
tion between input data and output responses. Based on the 
calibrating, the input data are considered based on its influ-
ence that is determined by the coefficients a1i . The unknown 

(1)N(X) =
X − �

�
,

(2)Y
i
= a

0i
+ a

1i
N
(
Xi

)
.

(3)Yi = a0i + a1i exp
[
N
(
Xi

)]
,

Fig. 1   The framework of multi-extremum-modified response basis 
model
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coefficients are calculated using the dimensionless input vari-
ables, which are computed in layer 2. Therefore, a1 and a2 
have the same dimensions for each input variable. Thus, the 
sensitivity of input variable is suggested by

where ai (i = 1, 2, …, n) denotes the sensitivity degree for 
variable xi. In the proposed MRSM, the sensitivity analysis 
of input data is computed while the traditional RSM cannot 
handle input data as uncertainties. Moreover, the proposed 
model can be used as an acceptable guideline for robust 
design, controlling, and reliability analysis of complex struc-
tures. In this work, effective input variables are considered 
as the nonlinear response of dynamic turbine blisk failure 
modes.

The sensitivity degree of input variables is determined by 
the calibrating coefficients in the first stage. The flexibility 
of RSM is enhanced based on the transformation of input 
variables using linear and exponential maps.

Layer 4: Calibrate the nonlinear response of turbine blisk 
using the input mapping variables.

The approximated function of MRSMs using the linear 
and nonlinear maps are determined as [40]

where Yi is the input data which are computed in the 
first calibrating process that is determined in layers 
1–3. It is essential to compute the unknown coefficient 
a ∈ {a0, ai, aij , ij = 1, 2, ..., n} that is commonly determined 
by least squared methodology via minimizing the error 
between computed nonlinear response (O) and approximated 
function (f)e =

[
O − f

]T[
O − f

]
 [15, 24], in which f = Pa 

and P is the polynomial vector which is determined based on 
the mapping input data Y ∈

{
Y1, Y2, ..., Yn

}
 as below:

The computed responses are determined based on 
the nonlinear dynamic finite-element model in respect 
of train dataset comprising 150 samples, denoted by 
O = {o1, o2, ...o150} . Thus, four input variables with 150 
samples is used to train the models. The mapping input data 
points {Y1, Y2, ..., Yn} are computed by

w h e r e  Px = [1,N(X)]  f o r  M R S M - L N  a n d 
Px =

[
1, exp (N(X))

]
 for MRSM-EXP are train data, and 

Pxt is for test data points. The factors a0, a1 are computed 
using 150 train samples as 

(
PT

x
Px

)−1 (
PT

x
O
)
 , by determining 

(4)
�i =

a1i�∑n

i=1

�
a1i

�2 ,

(5)f = a0 +

n∑
i=1

aiYi +

n∑
i=1

n∑
j=i

aijYiYj,

(6)P =
[
1, Y1, Y2, ...Yn, Y

2
1
, Y

1
Y
2
, ..., Y

n−1
Y
n
, Y2

n

]
.

(7)Y = PT

xt

(
PT

x
Px

)−1 (
PT

x
O
)
,

the first calibrating data in Eq. (7). The predicted value of 
a nonlinear response without the dynamic FE analysis is 
approximated by

where Pt indicates the polynomial basis function for test 
data. Unlike the RSM, the proposed approach is established 
by the two main regressions procedures, while the MRSM 
is simply provided by sensitivity factors for each input vari-
able. The accurate prediction of the nonlinear response for 
complex dynamic problems with nonlinear analysis is the 
main effort in modeling process.

Figure 2 illustrates the framework of the current work 
using MRSM. The computational effort in the structure to 
build a nonlinear model is provided by the simple framework 
without complicated relations. The high-flexibility as the 
nonlinearity of the input variables is enhanced based on the 
first calibrating process in layer 3. The nonlinear mapping 
data using the exponential function can be improved by the 
nonlinearity of relations between input data and computed 
dynamic responses.

3 � Two‑way fluid‑thermal–structural analysis 
of turbine blisk

A high gas pressure turbine blisk of an aeroengine (in Fig. 3) 
under high temperature–speed is considered as the case 
study of this work. To completely simulate the performance 

(8)f = PT

t

(
PTP

)−1(
PTO

)
,

Fig. 2   The framework of MRSM basis nonlinear input map
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of aeroengine, the flight profile and computing range are 
selected from start to cruise state [15, 41]. The Superal-
loy (Titanium alloy) is selected for the material of blisk. 
The analysis of blisk structure is performed by the fluid-
thermal–structural coupling method considering nonlinear 
properties of materials and the dynamics of temperature and 
rotational speed. The time-dependent temperature load T and 
rotational speed ω are reported in Table 1.

3.1 � Finite‑element model

Turbine blisk is symmetrically typical. Thus, a single blisk 
could be considered as the object of simulation in Fig. 4. 
As shown in Figs. 4 and 5, the cooling hole of blade and 
convex platform of disk are selected to create a FE model 
of turbine blisk. The FE model of blisk consists of hexahe-
dron and tetrahedron with 9 577 elements and 25 015 nodes, 
whiles the finite-volume (FV) model of flow field is built by 
hexahedron with 1 044 528 elements and 1 009 035 nodes.

Statistical properties of input variables for train and test 
data points, including rotating speed (ω), gas temperature 
(T), material density (ρ), and inlet velocity (v), are reported 
in Table 2, where Xmin, Xmax, XMean, and STD are, respec-
tively, minimum, maximum, average, and standard deviation 
of input variables. The data in the train and test phases are 

simulated by optimum Latin hypercube sampling with 150 
points in train and 45 samples in test phases.

3.2 � Nonlinear dynamic analysis of blisk

The deterministic analysis of blisk within the time domain 
[0, 215s] is summarized as follows:

(1)	 FV method is employed to investigate the fluid features 
of turbine blisk as the standard k-ε turbulence model.

(2)	 The law of energy conservation is used to resolve the 
thermodynamic property of flow flied in fluid-thermal 
analysis.

(3)	 FE method is employed to accomplish the structural 
analysis of turbine blisk and displacement function, 
geometric equation and constitutive equation are used 
to obtain analytical results based on shape equations of 
tetrahedron and hexahedron elements.

(4)	 The system coupling is used to actualize the solution 
of turbine blisk with fluid-thermal–solid interaction by 
multiple iterations and coupling information updating.

Fig. 3   Aeroengine turbine blisk

Table 1   Temperature and speed value change with time

Time t, s Tempera-
ture T, K

Rotate 
speed ω , 
rad/s

Time t, s Tempera-
ture T, K

Rotate 
speed ω, 
rad/s

0 20 0 140 700 930
0.1 200 460 150 800 980
10 300 498 160 900 1168
95 400 627 165 1000 1168
100 500 725 200 1100 950
130 600 800 215 1150 950

Fig. 4   FE model of the turbine 
blisk

Fig. 5   FE model of the flow field
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From the two-way fluid-thermal–structural analysis of 
turbine blisk, the change curves of deformation, stress, and 
strain during the time domain are presented in Fig. 6.

As seen in Fig. 6, the maximum deformation, stress, and 
strain of turbine blisk are gained simultaneously at the time 
domain [160, 200 s]. The time point t = 200 s is considered 
as the critical point and computing point to estimate the 
safety of turbine blisk during the flight. Thus, the pressure 
distribution on the fluid-thermal–structural interface, the 
temperature distribution on turbine blisk, the nephograms 
of turbine blisk deformation, stress and strain, are shown in 
Figs. 7, 8, 9, respectively, in which p, Tb, u, σ, and ε indicate 

the pressure, temperature, deformation, stress, and strain 
values of turbine blisk, respectively.

As seen in Fig. 9, the maximum of blisk deformation 
emerges at the top of turbine blade, and the maximum val-
ues of blisk stress and strain are located at the bottom of the 
turbine blade.

To obtain modeling samples as train data and validated 
samples as test data generated by Latin hypercube sampling, 
three failure modes of turbine blisk, including maximum 
deformation, stress and strain are determined by nonlinear 
FE analysis regarding input variables. The data points of out-
put responses of turbine blisk corresponding to the obtained 
input samples are acquired by two-way fluid-thermal–struc-
tural analyses. The statistical properties in training and test 
phases are listed in Table 3. The models are calibrated using 
training data, while the models performances are validated 
using the test dataset.

4 � Comparative modeling results

The accuracy and agreement of the MRSM (i.e., MRSM-
EXP and MRSM-LN) are compared with RSM, ANN mod-
els using four comparative statistics such as mean absolute 
error (MAE), root mean square error (RMSE), modified 
agreement index (d), and modified Nash and Sutcliffe effi-
ciency (NSE) [42, 43], i.e.,

Table 2   Statistical 
characteristics of input variables 
for FE analysis

Variables Train (150 data samples) Test (44 data samples)

Xmin Xmax XMean STD Xmin Xmax XMean STD

ω, rad·s−1 1001 1299 1150.11 86.90 1125 1188 1156.66 14.49
V, m·s−1 140.14 179.79 160.00 11.59 152.77 171.45 161.42 3.94
P, kg·m−3 4351 4550.00 4449.98 58.00 4409 4495 4445.02 20.67
T, K 1120.20 1209.40 1164.94 26.10 1144.90 1186.50 1165.70 10.50

   

7
6

5
4

3

2

1
0

0.5

1.5

2.5

2.0

1.0

2

0

4

8

12

10

6

010 95 160 215
Time/s

8 -3

-3
D
ef
or
m
at
io
n/
×1

0
m

St
ra
in
/×
10

m
/m

St
re
ss
/×
10

Pa

Deformation of blisk
Strain of blisk
Stress of blisk

Start Idle Take-off Climb Cruise

200

Fig. 6   Variation of deformation with time for turbine blisk

Fig. 7   Pressure distribution on the fluid-thermal–structure interface

Fig. 8   Temperature distribution on turbine blisk
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where N denotes the number of data; Oi and Pi are, respec-
tively, i-th data point for computed FE responses and pre-
dicted models; O is the average of computed data using non-
linear dynamic FE. The RMSE and MAE values for each 
model are tended to zero. Thus, it can be induced that the 
predicted model relates to accurate predictions with mini-
mum errors. d varies from 0 to 1 with no-correlation by the 
perfect fitness. The NSE presents the goodness-of-fitness 
of the model where NSE = 1 indicates perfect agreement 

(9)RMSE =
1

N

√√√√ N∑
i=1

[O
i
− f

i
]2,

(10)MAE =
1

N

N∑
i=1

|O
i
− f

i
|,

(11)d = 1 −

∑N

i=1
�O

i
− f

i
�

∑N

i=1
�O

i
− O� + �f

i
− O�

, 0 < d ≤ 1,

(12)NSE = 1 −

∑N

i=1
�O

i
− f

i
�

∑N

i=1
�O

i
− O�

, −∞ < NSE ≤ 1,

predictions. These different statistics are determined for the 
train and test data points for blisk deformation, stress, and 
strain which are presented in Table 4. The ANN models is 
structured with 4 nodes in input layers, 4–10 nodes in the 
hidden layer which is obtained by trial and errors as 5, 7 
and 8 nodes for blisk deformation, stress and strain, respec-
tively. The bold numbers in the table are the best model. 
The results presented in Table 4 indicated that two modi-
fied models using linear and exponential maps are enhanced 
the performances of RSM for both accuracy (lowest RMSE, 
MAE) and agreement (highest d and NSE) for train and test 
phases. It can be conducted that ANN model is performed 
with worst abilities for all failure modes. Using MRSM-
EXP, MAE (RMES) is enhanced about 82% (85%) and 77% 
(78%) for blisk deformation and about 24% (29%) and 
10% (9%) for stress by comparing RSM and MRSM-LN 
models, respectively. The two regression processes in pro-
posed MRSM models are improves the abilities of RSM for 
approximating the failure modes of this complex problem. 
It is suggested that the MRSM-LR and MRSM-EXP models 
are applied to simulate the performances of structure reli-
ability design analyses in the future. Commonly, three failure 
modes of turbine blisk are predicted with the accurate results 
and acceptable agreement using MRSM-EXP compared to 
other models.

Fig. 9   The nephograms of turbine blisk deformation

Table 3   Statistical 
characteristics of train and 
test data points for nonlinear 
responses of turbine blisk

Response Train phase Test phase

Xmin Xmax XMean STD Xmin Xmax XMean STD

Deformation, mm 1.917 2.831 2.406 0.198 2.326 2.625 2.459 0.066
Stress, GPa 1.01 1.33 1.177 0.076 1.13 1.24 1.182 0.027
Strain, mm/mm 4.592 6.989 6.068 0.507 6.020 6.658 6.340 0.138
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The scatterplot of test data between FE response and pre-
dicted models for blisk deformation are presented in Fig. 10. 
In this figure, R2 is the correlations between the computed 
and predicted data points for different models. The larger 
value for R2 denotes to higher tendency between predicted 
data and computed points. The scatterplot diagram for dif-
ferent models in the approximation of the test data for stress 
and strain are presented in Figs. 11 and 12, respectively. 
From the results of Fig. 10, the best and worst models are the 
MRSM-LN and ANN, respectively, against the other mod-
els. Moreover, the ability of MRSM-EXM is similar to the 
MRSM-LR and it is more robust and accurate than the RSM.

The scatterplot of test data for stress and strain in Figs. 11 
and 12 demonstrated that the MRSM models with nonlinear 
exponential map enhances the abilities of MRSM to provide a 
nonlinear relation, compared to the RMS and ANN. The linear 

Table 4   Comparative statistics 
for different models of multi-
nonlinear response in test and 
train datasets

Failure modes Models Train (150 points) Test (44 points)

MAE RMSE d NSE MAE RMSE d NSE

Blisk deformation, mm RSM 0.520 0.644 0.998 0.997 7.394 10.863 0.972 0.928
MRSM-LN 0.504 0.621 0.998 0.997 6.546 8.596 0.983 0.936
MRSM-EXP 0.285 0.348 0.999 0.998 6.820 8.952 0.981 0.933
ANN 68.919 84.740 0.744 0.583 33.458 39.597 0.633 0.658

Stress (MPa) RSM 2.931 3.566 0.977 0.954 3.282 4.570 0.923 0.848
MRSM-LN 2.610 3.026 0.980 0.959 2.947 3.926 0.931 0.863
MRSM-EXP 2.369 2.772 0.981 0.963 2.913 3.987 0.931 0.865
ANN 24.655 30.111 0.764 0.613 8.020 9.832 0.780 0.627

Strain (mm/m) RSM 0.024 0.031 0.971 0.941 0.016 0.023 0.923 0.842
MRSM-LN 0.017 0.017 0.980 0.959 0.012 0.016 0.942 0.885
MRSM-EXP 0.000 0.000 1.000 0.999 0.012 0.015 0.943 0.887
ANN 0.123 0.163 0.830 0.702 0.099 0.104 0.564 0.049

Fig. 10   Scatterplot for blisk deformation in test data
Fig. 11   Scatterplot for stress in test data

Fig. 12   Scatterplot for strain in test data
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cross-correlations using second-order terms in RSM, i.e., YiYj 
can improve the accuracy of the models while it is not applied 
in ANN. It can be conducted that artificial intelligent models 
basis ANN relations are required to improve their structures in 
training phase such as nonlinear active functions or input data 
as cross-terms, in the future.

The Taylor diagram basis standard deviations and NSE is 
illustrated in Fig. 13 for the test database of three failure modes 
of (a) blisk deformation, (b) stress, and (c) strain. As seen in 
Fig. 13, the computed data point using nonlinear dynamic FE 
is shown with the gray point on the horizontal line. The Taylor 
diagram in Fig. 13 indicates that the ANN models generally 
provide less performances than RSM and MRSM. However, 
the MRSM showed close predictions for blisk deformation 
and stress with the highest agreement index. The MRSM-EXP 
provided most accurate and robust predictions for strain data 
compared to RSM and MRSM-LN. Form the results of the 
Taylor diagram, it can be conducted that the models from best 
to worst predictions could be listed by following models of 
MRSM-EXP, MRSM-LN, RSM and ANN.

The effects of input variables can be evaluated based on 
the correlation coefficient with responses of failure modes in 
turbine blisk. Thus, it is defined as the sensitivity factor for 
each input data [44]:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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, i = 1, 2, ..., n

where � is sensitivity degree; N and n indicate the numbers 
of data points and input variables, respectively; O is the 
response of turbine blisk; x is the input variable. The sensi-
tivity degree based on correlation and the proposed MRSM 
is compared with respect of the same input variables (ω, v, 
ρ, and T). The results for sensitivity degree of input vari-
ables are presented in Fig. 14 for relative failure modes. It 
can be seen that the strong agreements are provided by the 
exponential and linear relations with the correlation sensi-
tivity degree. The sensitivity frameworks in the proposed 
modeling approach can accurately evaluate the impor-
tance of input variables. By comparing the sensitivity of 
blisk deformation, stress, and strain performance functions, 
the temperature provides highest effects on the nonlinear 
responses of the failure modes, while rotor speed as the load 
of the problem is positively affected in Layer 2 for deforma-
tion and strain failure modes. Inlet velocity adversely effects 
on the performances of studied failure modes, while other 
input variables of ω, ρ and T hold positive effects. The dif-
ferent sensitivity values of inlet velocity are computed for 
each model. It is obtained that inlet velocity significantly 
influences the performances of blisk deformation and stress, 
while it is insensitive on the strain and blisk deformation is 
more sensitive than v.

Fig. 13   Taylor diagram for test data (a) blisk deformation, (b) stress and (c) strain
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5 � Conclusions

The main effort in this work was to develop a modified 
multi-extremum response (MRSM) to approximate the 
multi-failure nonlinear dynamic responses of aeroengine 
components under high-temperature and rotating speed 
loads, with regard to fluid-thermal–structure interaction. 
Two multi-extremum-modified response basis models are 
established based on two regressing processes. In the first 
regression phase, the exponential and linear functions are 
used to calibrate the input variable. In respect of the acquired 
calibrating results, it is a fast and straightforward sensitiv-
ity analysis during the modeling process. The influences 
of input variables on multi-failure modes are investigated 
using the proposed sensitivity factors. The abilities of the 
proposed MRSM models coupled with linear (MRSM-LN) 
and exponential (MRSM-EXP) mappings are compared 
with RSM and ANN. Compared results indicated that the 
proposed sensitivity vector for linear and exponential func-
tions reveals the largest influence of gas temperature, fol-
lowing by angular speed and material density. At the same 
time, inlet velocity is an insensitive parameter for maximum 
strain. Two models of MRSM-LN and MRSM-EXP have 
superior performances compared to RSM and ANN. The 

proposed MRSM is a promising approach in approximat-
ing and simulating in optimization, reliability analysis and 
reliability-based design optimization of the complex struc-
tures under multi-failure response in future.
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