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Abstract
By introducing the dimension splitting method into the reproducing kernel particle method (RKPM), a hybrid reproducing 
kernel particle method (HRKPM) for solving three-dimensional (3D) wave propagation problems is presented in this paper. 
Compared with the RKPM of 3D problems, the HRKPM needs only solving a set of two-dimensional (2D) problems in 
some subdomains, rather than solving a 3D problem in the 3D problem domain. The shape functions of 2D problems are 
much simpler than those of 3D problems, which results in that the HRKPM can save the CPU time greatly. Four numeri-
cal examples are selected to verify the validity and advantages of the proposed method. In addition, the error analysis and 
convergence of the proposed method are investigated. From the numerical results we can know that the HRKPM has higher 
computational efficiency than the RKPM and the element-free Galerkin method.

Keywords  Meshless method · Dimension splitting method · Reproducing kernel particle method · Hybrid reproducing 
kernel particle method · Wave propagation

1  Introduction

Wave propagation exists in engineering fields, thus it is nec-
essary to find efficient techniques for solving wave equa-
tions. Until now, the most commonly used approaches for 
these problems are the finite difference method [1–4] and the 
finite element method [5–7].

Meshless technique is a promising method, and its 
approximation function is based on a set of nodes [8–11]. 
Compared with the conventional numerical methods that 
need meshing the problem domain or boundary, the mesh-
less methods do not require constant mesh reconstruction, 
so they will not cause the disadvantages of time consuming 
or sometimes difficult to use when dealing with some com-
plicated problems [12–15]. Thus, the meshless methods are 
available to solve wave propagation problems. As one of 
the most widely used meshless methods, the element-free 

Galerkin (EFG) method which based on the moving least-
squares (MLS) approximation has been used to solve the 
hyperbolic equation [16–18]. By orthogonalizing the basis 
functions, Zhang et al. employed the improved element-
free Galerkin (IEFG) method for the solution of 3D wave 
equations [19]. Shivanian presented the meshless local 
Petrov–Galerkin (MLPG) method for solving 3D nonlinear 
wave equations [20]. Shivanian and Shaban studied the pseu-
dospectral meshless radial point interpolation (PSMRPI) 
method which combined meshless methods with spectral 
collocation techniques to solve 3D wave equations [21]. 
Liew and Cheng presented the mesh-free kp-Ritz method 
for solving 3D wave equations [22]. Dehghan and Salehi 
also studied some special cases of the wave equations using 
the meshless technique [23, 24].

The reproducing kernel particle method (RKPM) used 
in this paper is one of the most important meshless methods 
which was developed from the smoothed particle hydrody-
namics (SPH) method [25]. Cheng et al. studied diverse heat 
conduction problems using the RKPM [26, 27]. Ma et al. intro-
duced the Hermit-type radial basis function into the RKPM 
to solve wave equations [28]. Dehghan and Abbaszadeh have 
done much research on the RKPM and applied this method to 
solve many problems [29, 30]. Like the MLS approximation, 
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the RKPM is the approximation based on scalar functions 
[31, 32]. Then the shape functions must be computed at every 
point, which will lead to large computational cost. Therefore, 
Chen et al. presented the complex variable reproducing kernel 
particle method (CVRKPM) which is the approximation based 
on vector function and applied it to some problems [33–36]. 
Weng et al. also applied the CVRKPM for inverse heat con-
duction [37] and variable coefficient advection–diffusion prob-
lems [38]. However, the shape functions used in the RKPM 
and the CVRKPM are more complicated than the ones in finite 
element method, so they have lower computational efficiency, 
especially for 3D problems. Therefore, it is urgent to improve 
the computational efficiency of meshless methods to solve 3D 
problems.

By transforming the procedure of solving a 3D problem 
into solving a group of 2D problems, Li et al. presented the 
dimension splitting method (DSM) for many kinds of 3D prob-
lems [39–41]. Bragin and Rogov dealt with multidimensional 
scalar quasilinear hyperbolic conservation law using the DSM 
[42]. Recently, some meshless methods, such as the improved 
complex variable element-free Galerkin (ICVEFG) method 
[43–47], the IEFG method [48–50] and the RKPM [51], are 
combined with the DSM to form some approaches that can 
overcome the inefficiency of the meshless methods in solving 
3D problems. And all these papers show a great improvement 
in computational efficiency.

By introducing the DSM into the RKPM, a hybrid repro-
ducing kernel particle method (HRKPM) for solving 3D wave 
propagation problems is presented in this paper. Compared 
with the RKPM of 3D problems, the HRKPM needs only solv-
ing a set of 2D problems in some subdomains, rather than 
solving a 3D problem in the 3D problem domain. The shape 
functions of 2D problems are much simpler than those of 
3D problems, which results in that the HRKPM can save the 
CPU time greatly. Four numerical examples are selected to 
verify the validity and advantages of the proposed method. In 
addition, the error analysis and convergence of the proposed 
method are investigated. From the numerical results we can 
know that the HRKPM has higher computational efficiency 
than the RKPM and the EFG method.

2 � Basic equations in HRKPM scheme

In a 3D domain Ω with the boundary Γ , the hyperbolic equa-
tion governing the wave propagation u is

the boundary conditions are

�
2u

�t2
+ r

�u

�t
+ ku − c2

(
�
2u

�x2
1

+
�
2u

�x2
2

+
�
2u

�x2
3

)
− f (x1, x2, x3, t) = 0,

(1)((x1, x2, x3) ∈ Ω, t ∈ [0, T]),

and the initial conditions are

where c2 denotes wave speed, r represents resistance, k is 
the coefficient of source term; t is time, T  is the total time; 
n = (n1, n2, n3) is the outward unit normal vector on the 
boundary Γ , Γu and Γq are essential boundary and natural 
boundary, respectively, Γ = Γu ∪ Γq ; f (x1, x2, x3, t) represents 
external applied force; and �1(x1, x2, x3) and �2(x1, x2, x3) are 
given functions.

This problem is a kind of classical mathematical and 
physical equations, and the corresponding existence and 
uniqueness of the solutions were analyzed [52].

Without loss of generality, we choose x3 as the splitting 
direction. By introducing the DSM, the problem domain Ω 
can be divided into L + 1 layers in this direction as shown in 
Fig. 1. Then, there are L + 1 subdomains Ω(k) , k = 0, 1,… , L 
existed at the layer x3 = x

(k)

3
,

in which x(k)
3

 is the value of x3 at the layer x3 = x
(k)

3
 , a and b 

represent the values of x3 at the layer x3 = x
(0)

3
 and x3 = x

(L)

3
 , 

respectively; L is the step number.
At each layer x3 = x

(k)

3
 , the plane rectangular coordi-

nate system can be expressed as O(k)x1x2 , and the origin is 
O(k)(0, 0, x

(k)

3
).

The relationship between Ω and Ω(k) can be expressed as

where [x(k)
3
,x
(k+1)

3
) (k = 0, 1,… , L − 1) means the space 

between Ω(k) and Ω(k+1).
In the subdomain Ω(k) , the 2D wave propagation problem 

can be expressed as

(2)u(x1, x2, x3, t) = u(x1, x2, x3, t), ((x1, x2, x3) ∈ Γu),

(3)

q(x1, x2, x3, t) = c2
(

�u

�x1
n1 +

�u

�x2
n2 +

�u

�x3
n3

)

= � ⋅ c2∇u(x1, x2, x3, t) = q(x1, x2, x3, t),

((x1, x2, x3) ∈ Γq),

(4)u(x1, x2, x3, 0) = �1(x1, x2, x3),

(5)
�u(x1, x2, x3, 0)

�t
= �2(x1, x2, x3),

(6)a = x
(0)

3
< x

(1)

3
< ⋯ < x

(L−1)

3
< x

(L)

3
= b,
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k=0
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3
,x
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3
)
}
∪ Ω(L),
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+ f (k),
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where

The corresponding boundary conditions are

and the initial conditions are

where Γ(k) is the boundary of subdomain Ω(k) , 
Γ(k) = Γ(k)

u
∪ Γ(k)

q
.

Then, the foregoing 2D wave propagation problem can be 
solved by the RKPM of 2D problems.

The equivalent functional of Eqs. (8)–(14) can be writ-
ten as

(8)((x1, x2) ∈ Ω(k), x3 = x
(k)

3
),

(9)u(k) = u(x1, x2, x
(k)

3
, t),

(10)f (k) = f (x1, x2, x
(k)

3
, t).

(11)
u(k)(x1, x2, t) = u

(k)
(x1, x2, t) = u(x1, x2, x

(k)

3
, t), ((x1, x2) ∈ Γ(k)

u
),

(12)
q(k)(x1, x2, t) = q

(k)
(x1, x2, t) = q(x1, x2, x

(k)

3
, t), ((x1, x2) ∈ Γ(k)

q
),

(13)u(x1, x2, x
(k)

3
, 0) = �1(x1, x2, x

(k)

3
),

(14)
�u(x1, x2, x

(k)

3
, 0)

�t
= �2(x1, x2, x

(k)

3
),

(15)

Π = ∫Ω(k)

u(k)

[
�
2u(k)

�t2
+ r

�u(k)

�t
+

1

2
ku(k) − c2

�
2u(k)

�x2
3

− f (k)

]
dΩ(k)

+
1

2 ∫Ω(k)

[
c2
(
�u(k)

�x
1

)2

+ c2
(
�u(k)

�x
2

)2
]
dΩ(k) − ∫Γ

(k)
q

u(k) ⋅ q
(k)
dΓ(k)

.

Imposing essential boundary conditions by penalty 
function method

where � is the penalty factors.
The modified equivalent integral weak form is

where

3 � The HRKPM for 3D wave propagation

3.1 � The approximation function of the RKPM

Using the RKPM [26, 30], the approximation function of 
u(k) at any points � = (x1, x2) ∈ Ω(k) can be expressed as

(16)Π∗ = Π +
�

2 ∫Γ
(k)
u

(u(k) − u
(k)
)(u(k) − u

(k)
)dΓ(k),

(17)
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]
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+ c2 ∫Ω(k)

(�u(k))T ⋅ (�u(k))dΩ(k) − ∫Γ
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q
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+ ∫Γ
(k)
u

u(k) ⋅ �(u(k) − u
(k)
)dΓ(k),

(18)�( ⋅ ) =
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(⋅).

(19)uh(�, x
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3
, t) = ∫Ω(k)

u(��)w(� − �
�)d��,

Fig. 1   The idea of dimension 
splitting method

(a) (b)



S1134	 Engineering with Computers (2022) 38 (Suppl 2):S1131–S1147

1 3

where w(� − �
�) is the correction kernel function,

in which w(� − �
�) is weight function which has a compact 

support domain, and C(�; � − �
�) is the correction function,

where m is the number of basis functions, �(� − �
�) is the 

vector of the basis functions pi(� − �
�) , ( i = 1, 2,… ,m ); and 

bi(�) are the coefficients of basis functions, �(�) is the vector 
of the coefficients,

In general, the basis function can be chosen as linear 
basis,

or quadratic basis,

The trapezoidal integral method is used to obtain the dis-
cretization approximation, and then Eq. (19) can be written 
as

where �I ( I = 1, 2,… , n ) are nodes in the neighborhood of 
the point � , u(k)

I
 is the value of u(k) at the node �I,

and ΔV  is a regional measure related to �I,

The matrix form of Eq. (25) can be expressed as

where � is the vector of the variable at the nodes,

�(�) is the matrix of weight functions,

(20)w(� − �
�) = C(�;� − �

�)w(� − �
�),

(21)

C(�;� − �
�) =

m∑
i=1

pi(� − �
�)bi(�) = �

T(� − �
�)�(�), (� ∈ Ω(k)),

(22)�(�) = (b1(�), b2(�),… , bm(�))
T.

(23)�
T = (1, x1 − x�

1
, x2 − x�

2
),

(24)
�
T = (1, x1 − x�

1
, x2 − x�

2
, (x1 − x�

1
)2, (x1 − x�

1
)(x2 − x�

2
), (x2 − x�

2
)2).

(25)uh(�, x
(k)

3
, t) =

n∑
I=1

C(�;� − �I)w(� − �I)u
(k)

I
ΔVI ,

(26)u
(k)

I
= u(�I , x

(k)

3
, t), I = 1, 2,… , n;

(27)
n∑

I=1

ΔVI = �.

(28)uh(�, x
(k)

3
, t) = �(�)�(�)��,

(29)� = (u
(k)

1
, u

(k)

2
,… , u(k)

n
)T,

� is the matrix of regional measures related to �I,

�(�) is the vector of correction functions,

and � is the matrix of basis functions,

The coefficients bi(x) are determined by the reproducing 
conditions of the approximation function. Let

where

then we have

Finally, the approximation function uh(�, x(k)
3
, t) is obtained 

as

where �(�) is the shape function,

(30)�(�) =

⎡⎢⎢⎢⎣

w(� − �1) 0 ⋯ 0

0 w(� − �2) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ w(� − �n)

⎤⎥⎥⎥⎦
,

(31)� =

⎡⎢⎢⎢⎣

ΔV1 0 ⋯ 0

0 ΔV2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ ΔVn

⎤⎥⎥⎥⎦
,

(32)�(�) = (C1(�),C2(�),… ,Cn(�)) = �
T(�)�,

(33)CI(�) = C(�;� − �I),

(34)� =

⎡⎢⎢⎢⎣

p1(� − �1) p1(� − �2) ⋯ p1(� − �n)

p2(� − �1) p2(� − �2) ⋯ p2(� − �n)

⋮ ⋮ ⋱ ⋮

pm(� − �1) pm(� − �2) ⋯ pm(� − �n)

⎤⎥⎥⎥⎦
.

(35)�(�) = �(�)�(�) = �,

(36)�(�) =

n∑
I=1

�(� − �I)�
T(� − �I)w(� − �I)ΔVI ,

(37)� = (1, 0,… , 0)T,

(38)�(�) = �
−1(�)�.

(39)

uh(�, x
(k)

3
, t) =

n∑
I=1

Φ
(k)

I
(�)u

(k)

I
= �(�)�, k = 0, 1,… , L,

(40)�(�) = (Φ
(k)

1
(�),Φ

(k)

2
(�),… ,Φ(k)

n
(�)) = �(�)�(�)�.
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3.2 � The discretized equation of the HRKPM for 3D 
wave propagation

According to Eq. (39), we can obtain the following approxi-
mations related to u(k),

(41)

�
2u(k)

�x2
3

=
�

�x2
3

n∑
I=1

Φ
(k)

I
(�) ⋅ u
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�
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(k)

I

�x2
3

= �(�)Dx3x3
�,

(42)
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𝜕
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Φ
(k)

I
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I
=
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Φ
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I
(�)
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(k)

I

𝜕t
= �(�)�̇,

where

(43)
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�t2
=
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2
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n∑
I=1

Φ
(k)

I
(𝐱) ⋅ u

(k)

I
=

n∑
I=1

Φ
(k)

I
(𝐱)

�
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(k)

I

�t2
= 𝚽(𝐱)𝐮̈,

(44)

�u(k) =

n∑
I=1

[
�

�x1
�

�x2

]
Φ

(k)

I
(�) ⋅ u

(k)

I
=

n∑
I=1

�
(k)

I
(�)u

(k)

I
= �(�)�,

(45)Dx3x3
� =

(
�
2u

(k)

1

�x2
3

,
�
2u

(k)

2

�x2
3

,… ,
�
2u(k)

n

�x2
3

)T

,

(46)�̇ =

(
𝜕u

(k)

1

𝜕t
,
𝜕u

(k)

2

𝜕t
,… ,

𝜕u(k)
n

𝜕t

)T

,

(47)𝐮̈ =

(
�
2u

(k)

1

�t2
,
�
2u

(k)

2

�t2
,… ,

�
2u(k)

n

�t2

)T

,

Substitute Eqs. (41)–(44) into Eq. (17) yields

The variation formulation of Eq. (50) is

(48)�(�) = (�
(k)

1
(�),�

(k)

2
(�),… ,�(k)

n
(�)),

(49)�
(k)

I
(�) =

[
Φ

(k)

I,1
(�)

Φ
(k)

I,2
(�)

]
.

(50)

Π∗ = ∫Ω(k)

[𝐁(𝐱)𝐮]T ⋅ c2 ⋅ [𝐁(𝐱)𝐮]dΩ(k) + ∫Ω(k)

𝚽(𝐱)𝐮 ⋅𝚽(𝐱)𝐮̈dΩ(k)

+ ∫Ω(k)

𝚽(𝐱)𝐮 ⋅ r ⋅𝚽(𝐱)𝐮̇dΩ(k) +
1

2 ∫Ω(k)

𝚽(𝐱)𝐮 ⋅ k ⋅𝚽(𝐱)𝐮dΩ(k)

− ∫Ω(k)

𝚽(𝐱)𝐮 ⋅ c2 ⋅𝚽(𝐱)Dx3x3
𝐮dΩ(k) − ∫Ω(k)

𝚽(𝐱)𝐮 ⋅ f (k)dΩ(k)

− ∫Γ
(k)
q

𝚽(𝐱)𝐮 ⋅ q
(k)
dΓ(k) + ∫Γ

(k)
u

𝚽(𝐱)𝐮 ⋅ 𝛼 ⋅𝚽(𝐱)𝐮dΓ(k)

− ∫Γ
(k)
u

𝚽(𝐱)𝐮 ⋅ 𝛼 ⋅ u
(k)
dΓ(k).

(51)

𝛿Π∗ = ∫Ω(k)

𝛿𝐮
T
[
𝐁
T(𝐱) ⋅ c2 ⋅ 𝐁(𝐱)

]
𝐮dΩ(k) + ∫Ω(k)

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅𝚽(𝐱)
]
𝐮̈dΩ(k)

+ ∫Ω(k)

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅ r ⋅𝚽(𝐱)
]
𝐮̇dΩ(k) + k ∫Ω(k)

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅𝚽(𝐱)
]
𝐮dΩ(k)

− ∫Ω(k)

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅ c2 ⋅𝚽(𝐱)
]
Dx

3
x
3
𝐮dΩ(k) − ∫Ω(k)

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅ f (k)
]
dΩ(k)

− ∫Γ
(k)
q

𝛿𝐮
T

[
𝚽

T(𝐱) ⋅ q
(k)
]
dΓ(k) + ∫Γ

(k)
u

𝛿𝐮
T
[
𝚽

T(𝐱) ⋅ 𝛼 ⋅𝚽(𝐱)
]
𝐮dΓ(k)

− ∫Γ
(k)
u

𝛿𝐮
T

[
𝚽

T(𝐱) ⋅ 𝛼 ⋅ u
(k)
]
dΓ(k)

.

Since �� is arbitrary, from �Π∗ = 0 , the discrete system 
equation can be obtained as

where

(52)𝐂𝐮̈ + r𝐂𝐮̇ − c2𝐂Dx3x3
𝐮 + 𝐊̂𝐮 = 𝐅̂,

(53)�̂ = � + k� +�
𝛼 ,

(54)�̂ = �
(1) + �

(2) + �
𝛼 ,

(55)� = ∫Ω(k)

�
T(�)�(�)dΩ(k),

(56)� = c2 ∫Ω(k)

�
T(�)�(�)dΩ(k),

(57)�
� = � ∫Γ

(k)
u

�
T(�)�(�)dΓ(k),
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According to finite difference method, we have

Then Eq. (52) can be written as

And the discrete system formulas in each subdomain can 
be expressed as

where

The matrix form of Eqs. (63)-(67) is

(58)�
(1) = ∫Ω(k)

�
T(�)f (k)dΩ(k),

(59)�
(2) = ∫Γ

(k)
q

�
T(�)q

(k)
dΓ(k),

(60)�
� = � ∫Γ

(k)
u

�
T(�)u

(k)
dΓ(k).

(61)Dx3x3
� ≈

�
(k−1) − 2�(k) + �

(k+1)

(Δx3)
2

, k = 1, 2,… , L − 1.

(62)

𝐂𝐮̈
(k) + r𝐂𝐮̇

(k) − c2𝐂
𝐮
(k−1) − 2𝐮(k) + 𝐮

(k+1)

(Δx3)
2

+ 𝐊̂𝐮

(k)
= 𝐅̂.

(63)

𝐂𝐮̈
(1) + r𝐂𝐮̇

(1) − c2𝐂
𝐮
(0) − 2𝐮(1) + 𝐮

(2)

(Δx3)
2

+ 𝐊̂𝐮

(1)
= 𝐅̂

(1),

(64)

𝐂𝐮̈
(2) + r𝐂𝐮̇

(2) − c2𝐂
𝐮
(1) − 2𝐮(2) + 𝐮

(3)

(Δx3)
2

+ 𝐊̂𝐮

(2)
= 𝐅̂

(2),

(65)

𝐂𝐮̈
(3) + r𝐂𝐮̇

(3) − c2𝐂
𝐮
(2) − 2𝐮(3) + 𝐮

(4)

(Δx3)
2

+ 𝐊̂𝐮

(3)
= 𝐅̂

(3),

⋮

(66)

𝐂𝐮̈
(L−2) + r𝐂𝐮̇

(L−2) − c
2
𝐂
𝐮
(L−3) − 2𝐮(L−2) + 𝐮

(L−1)

(Δx3)
2

+ 𝐊̂𝐮

(L−2)
= 𝐅̂

(L−2)
,

(67)

𝐂𝐮̈
(L−1) + r𝐂𝐮̇

(L−1) − c2𝐂
𝐮
(L−2) − 2𝐮(L−1) + 𝐮

(L)

(Δx3)
2

+ 𝐊̂𝐮

(L−1)
= 𝐅̂

(L−1),

(68)�
(k) = �(�, x

(k)

3
, t),

(69)�
(0) = �(�,a,t),

(70)�
(L) = �(�,b,t),

(71)Δx3 = x
(k)

3
− x

(k−1)

3
= (b − a)∕L.

where

Let

Equation (72) can be derived as following equation

(72)

𝐑

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐮̈
(1)

𝐮̈
(2)

𝐮̈
(3)

⋮

𝐮̈
(L−2)

𝐮̈
(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ r𝐑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐮̇
(1)

𝐮̇
(2)

𝐮̇
(3)

⋮

𝐮̇
(L−2)

𝐮̇
(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− k̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐇 𝐂

𝐂 𝐇 𝐂

𝐂 𝐇 𝐂

⋱ ⋱ ⋱

𝐂 𝐇 𝐂

𝐂 𝐇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐮
(1)

𝐮
(2)

𝐮
(3)

⋮

𝐮
(L−2)

𝐮
(L−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐅̂
(1) +𝐌

𝐅̂
(2)

𝐅̂
(3)

⋮

𝐅̂
(L−2)

𝐅̂
(L−1) +𝐖

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(73)k̃ =
c2

(Δx3)
2
,

(74)� =
c2��(0)

(Δx3)
2
,

(75)� =
c2��(L)

(Δx3)
2
,

(76)� =

⎡⎢⎢⎢⎢⎢⎢⎣

�

�

�

⋱

�

�

⎤⎥⎥⎥⎥⎥⎥⎦

,

(77)� = −2� −

(
Δx3

)2
c2

�̂.

(78)�̃ =
(
�
(1)T , �(2)

T

, �(3)
T

,… , �(L−2)
T

, �(L−1)
T
)T

,

(79)̈
𝐮̃ =

(
𝐮̈
(1)T , 𝐮̈(2)

T

, 𝐮̈(3)
T

,… , 𝐮̈(L−2)
T

, 𝐮̈(L−1)
T
)T

,

(80)̇
𝐮̃ =

(
𝐮̇
(1)T , 𝐮̇(2)

T

, 𝐮̇(3)
T

,… , 𝐮̇(L−2)
T

, 𝐮̇(L−1)
T
)T

,

(81)� = k̃

⎡⎢⎢⎢⎢⎢⎢⎣

� �

� � �

� � �

⋱ ⋱ ⋱

� � �

� �

⎤⎥⎥⎥⎥⎥⎥⎦

,

(82)
� = ((�̂(1) +�)T, �̂(2)T, �̂(3)T,… , �̂(L−2)T, (�̂(L−1) +�)T)T.
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We obtain the time discretization of Eq. (83) by the center 
difference method

that is

where Δt represents time step length.

4 � Numerical examples

To test whether the proposed method can improve the com-
putational efficiency, the numerical results of the following 
examples obtained by the HRKPM are compared with ana-
lytical ones and the ones of the RKPM and the EFG method.

4.1 � Wave propagation problem with Dirichlet 
boundary conditions

In the 3D domain Ω = [0, π] × [0, π] × [0, π] , the hyperbolic 
equation governing the wave propagation u is [19]

with the boundary conditions

and the initial conditions

The analytical solution used to compare with the approxi-
mate solution is

(83)𝐑
̈
𝐮̃ + r𝐑 ̇

𝐮̃ − 𝐄𝐮̃ = 𝐆.

(84)

�
�̃
(i+2) − 2�̃(i+1) + �̃

(i)

(Δt)2
+ r�

�̃
(i+1) − �̃

(i)

Δt
− �

�̃
(i+1) + �̃

(i)

2
= �,

(85)

2��̃
(i+2) =(4� − 2rΔt� + (Δt)2�)�̃(i+1)

+ (2rΔt� + (Δt)2� − 2�)�̃(i) + 2(Δt)2�,

(86)

�
2u

�t2
=

�
2u

�x2
1

+
�
2u

�x2
2

+
�
2u

�x2
3

− u, ((x1,x2,x3) ∈ Ω, t ∈ [0, T]),

(87)u(0, x2, x3, t) = −u(π, x2, x3, t) = sin x2 sin(x3 + 2t),

(88)u(x1, 0, x3, t) = −u(x1, π, x3, t) = sin x1 sin(x3 + 2t),

(89)u(x1, x2, 0, t) = −u(x1, x2, π, t) = sin(x1 + x2) sin(2t),

(90)u(x1, x2, x3, 0) = sin(x1 + x2) sin(x3),

(91)
�u(x1, x2, x3, 0)

�t
= 2 sin(x1 + x2) cos(x3).

(92)u(x1, x2, x3, t) = sin(x1 + x2) sin(x3 + 2t).

In the HRKPM scheme for this example, we discuss 
factors that affect relative errors when x3 is the selected 
splitting direction, such as the scale parameter of the 
influence domain dmax , penalty factor � , the time step 
length Δt and node distribution. Figure  2 shows the 
relative errors of the HRKPM with different dmax when 
� = 5.22 × 103 , Δt = 0.001 , T = 0.1 and the node distribu-
tion is 11 × 11 × 11 . Figure 3 shows the relative errors of 
the HRKPM with different � when dmax = 1.1 , Δt = 0.001 , 
T = 0.1 and the node distribution is 11 × 11 × 11 . Figure 4 
shows the relative errors of the HRKPM with different 
Δt when dmax = 1.1 , � = 4.36 × 102 , T = 0.1 and the node 
distribution is 11 × 11 × 11 . Figure 5 shows the relative 
errors of the HRKPM with different number of nodes 
when dmax = 1.1 , Δt = 0.001 , T = 0.1 , and l  is the is the 
distance between adjacent nodes.

Fig. 2   Relative errors versus scale parameter d
max

Fig. 3   Relative errors versus penalty factor �
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From Figs. 2 and 3, we can know that the HRKPM can 
obtain higher computational accuracy when dmax is in the 
interval from 1.07 to 1.5 , � is in the interval from 2 × 102 
to 1 × 103 . It can be seen from Fig. 4 that when the time 
step length Δt is less than 0.001, the relative error tends 
to be stable. It can be seen from Fig. 5 that when there are 
more nodes in the domain, the distance between nodes is 
smaller, and the computational accuracy is higher. There-
fore, the numerical result is convergent about the distance 
between nodes, and the order of convergence is 2.

In this example, we also use following polynomial basis 
[53]

(93)�
T(x1, x2) = (1, (x1 − x�

1
)∕h, (x2 − x�

2
)∕h),

where the fill distance h for a set of nodes {
�i

}M

i=1

 in the 
subdomain Ω(k) can be defined as [10]

When the basis function in Eq.  (93) is employed to 
the HRKPM, the factors affecting the relative errors, 
such as the scale parameter of the influence domain dmax 
and penalty factor � , are discussed. Figure 6 shows the 
relative errors of the HRKPM with different dmax when 
� = 4.4 × 102 , Δt = 0.001 , T = 0.1 and the node distribu-
tion is 11 × 11 × 11 . Figure 7 shows the relative errors of 
the HRKPM with different � when dmax = 1.18 , Δt = 0.001 , 
T = 0.1 and the node distribution is 11 × 11 × 11 . From 
Figs. 6 and 7, the HRKPM has higher computational accu-
racy when dmax is in the interval from 1.01 to 1.25 , � is in 
the interval from 2 × 102 to 6 × 102.

Using the original basis function in Eq. (23) for this 
example, when L = 10 , node distribution in each subdo-
main Ω(k) is 11 × 11 , dmax = 1.1 , � = 4.36 × 102 , Δt = 0.001 
and T = 0.1 , the relative error is 0.0016 , the CPU time is 
19.65 . Using the basis function in Eq. (93) for this exam-
ple, when L = 10 , node distribution in each subdomain 
Ω(k) is 11 × 11 , dmax = 1.18 , � = 4.74 × 102 , Δt = 0.001 and 
T = 0.1 , the relative error is 0.0082 , the CPU time is 19.89 . 
The comparison of the results shows that the original basis 
function can obtain higher computational accuracy than 
the basis function in Eq. (93). Therefore, the original basis 
function is used in this paper.

Table  1 lists the numerical results of the HRKPM, 
the RKPM and the EFG method at T = 0.1 , T = 0.3 and 
T = 0.5 . It is seen that the HRKPM can obtain more 

(94)h = sup
�∈Ω(k)

min
1≤j≤M

‖‖‖� − �j
‖‖‖2.

Fig. 4   Relative errors versus time step length Δt

Fig. 5   Relative error versus the distance between adjacent nodes l

Fig. 6   Relative errors using the basis function in Eq. (93) versus scale 
parameter d

max
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accurate and efficient numerical results. Especially when 
the time value is larger, the superiority of the HRKPM in 
computing speed is more obvious.

Table 2 shows the relative errors and CPU time of the 
HRKPM with different Gaussian points. From this table, 
we can see that when we choose more Gaussian points, 
the computational accuracy is improved, but the CPU 
time also increases. To balance the computational effi-
ciency and the computational accuracy, we need to select 
the appropriate Gaussian points to compute the appeared 
integrals in Eqs. (55)–(60).

Figure 8 shows that the numerical solution obtained by 
the HRKPM, the RKPM and the EFG method are in good 
agreement with the analytical solution in the direction x1 , 
x2 and x3 at T = 0.1 , T = 0.3 and T = 0.5 . Compared with 
the RKPM and the EFG method, the HRKPM is imple-
mented in a more time-saving way.

4.2 � Wave propagation problem with mixed 
boundary conditions

In the 3D domain Ω = [0, π] × [0, π] × [0, π] , the hyperbolic 
equation governing the wave propagation u is [19]

with the boundary conditions

and the initial conditions

The analytical solution used to compare with the approxi-
mate solution is

In the HRKPM scheme for this example, the discussion 
about different types of boundary conditions is applied.

1.	 When Neumann boundary condition exists in the split-
ting direction

	 Set x3 as splitting direction, the boundary conditions in this 
direction are �u(x1,x2,0)

�x3
= 0 and �u(x1,x2,π)

�x3
= 0 . It means that 

the smaller Δx3 is, the closer the value of u on plane x3 = 0 
is to that on plane x3 = Δx3 , and the closer the value of u 
on plane x3 = π is to that on plane x3 = π−Δx3.

(95)

�
2u

�t2
= 6

(
�
2u

�x2
1

+
�
2u

�x2
2

+
�
2u

�x2
3

)
, ((x1,x2,x3) ∈ Ω, t ∈ [0, T]),

(96)
u(0, x2, x3, t) = u(π, x2, x3, t) = u(x1, 0, x3, t) = u(x1, π, x3, t) = 0,

(97)
�u(x1, x2, 0, t)

�x3
=

�u(x1, x2, π, t)

�x3
= 0,

(98)u(x1, x2, x3, 0) = sin x1 sin x2 cos(2x3),

(99)
�u(x1, x2, x3, 0)

�t
= 0.

(100)u(x1, x2, x3, t) = sin x1 sin x2 cos(2x3) cos(6t).

Fig. 7   Relative errors using the basis function in Eq. (93) versus pen-
alty factor �

Table 1   The relative errors and 
CPU time of the HRKPM, the 
RKPM and the EFG method at 
different times

Time Relative error CPU time

HRKPM RKPM EFG HRKPM RKPM EFG

T = 0.1 0.0016 0.0031 0.0035 19.65 425.88 245.67
T = 0.3 0.0046 0.011 0.0090 50.7 1182.17 678.87
T = 0.5 0.0095 0.0156 0.012 84.11 2013.66 1338.3

Table 2   The relative errors and 
CPU time of the HRKPM with 
different Gaussian points

Gaussian points 4 × 4 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9

Relative error 0.001632 0.001601 0.001596 0.001588 0.001592 0.001595
CPU time 19.65 27.713 38.227 48.347 50.632 59.634
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	   When L = 100 , node distribution in each subdomain 
is 11 × 11 , dmax = 1.05 , � = 1.01 × 104 , Δt = 0.001 and 
T = 0.1 , the relative error is 0.0062 , the computing time 
is 15.82.

2.	 When Dirichlet boundary condition exists in the splitting 
direction

Set x2 as splitting direction, the boundary conditions in 
this direction are u(x1, 0, x3, t) = 0 and u(x1, π, x3, t) = 0 , 
which are exactly the values of u on plane x2 = 0 and x2 = π , 
respectively.

When L = 10 , node distribution in each sudomain is 
11 × 11 , dmax = 1.23 , � = 1.7 × 103 , Δt = 0.001 and T = 0.1 , 
the relative error is 0.0024 , the computing time is 1.1.

According to the above description and discussion, bet-
ter results are obtained when Dirichlet boundary condition 
is set as the splitting direction. Therefore, to obtain higher 
accuracy, it is necessary to choose more suitable splitting 
direction according to boundary conditions.

We employ the HRKPM, the RKPM and the EFG 
method to solve this 3D example. A good agreement 
between the numerical solutions obtained by these meth-
ods and the analytical solution are shown in Fig. 9 when 
T = 0.1 and T = 0.5 . Moreover, the HRKPM has higher 
numerical efficiency, which is exactly what we want to 
achieve with the proposed method.

(a) (b)

(c)

Fig. 8   Wave propagation obtained by the HRKPM, the RKPM and the EFG method a in the direction x
1
 ; b in the direction x

2
 and c in the direc-

tion x
3
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4.3 � Wave propagation problem in cylindrical 
coordinates

Consider the following equation in cylindrical coordinates [50]

with the boundary conditions
(101)

�
2u

�t2
=

�
2u

�r2
+

�
2u

��2
+

�
2u

�x2
3

+ u, (r ∈ [1, 2], � ∈ [0, π], x3 ∈ [0, 1]),

(102)u(1, �, x3, t) = (sin � + x3) ⋅ e
t,

(103)T(2, �, x3, t) = x3 ⋅ e
t,

and the initial conditions

(104)T(r, 0, x3, t) = x3 ⋅ e
t,

(105)T(r, π, x3, t) = x3 ⋅ e
t,

(106)T(r, �, 0, t) =
4

3

(
1

r
−

r

4

)
sin � ⋅ et,

(107)T(r, �, 1, t) =
[
4

3

(
1

r
−

r

4

)
sin � + 1

]
⋅ et,

(108)

u(r, �, x3, 0) =
�u(r, �, x3, 0)

�t
=

4

3

(
1

r
−

r

4

)
sin � + x3.

 Analytical
 HRKPM (T=0.1)
 RKPM (T=0.1)
 EFG (T=0.1)

 HRKPM (T=0.5)
 RKPM (T=0.5)
 EFG (T=0.5)
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(a) (b)

(c)

Fig. 9   Wave propagation obtained by the HRKPM, the RKPM and the EFG method a in the direction x
1
 ; b in the direction x

2
 and c in the direc-

tion x
3
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The analytical solution used to compare with the 
approximate solution is

In the HRKPM scheme for this example, the step number 
in the selected splitting direction x3 is 20, the node distribu-
tion in each 2D subdomain Ω(k) is 9 × 31 . The arrangement 
of nodes can be shown in Fig. 10. Using the RKPM and the 
EFG method for this example, the node distribution in the 
3D domain Ω is 9 × 31 × 21.

Table  3 lists the numerical results obtained by the 
HRKPM, the RKPM and the EFG method at T = 0.01 , 
T = 0.03 and T = 0.05 . We can observe that the HRKPM 
has higher computational accuracy and efficiency. Especially 
when the time value is larger, the superiority of the HRKPM 
in computing speed is more obvious.

We employ the HRKPM, the RKPM and the EFG method 
to solve this 3D example. A good agreement between the 
numerical solutions obtained by these methods and the ana-
lytical solution are shown in Fig. 11. Again, the HRKPM 
has higher computational efficiency than the RKPM and the 
EFG method for solving 3D wave propagation problems.

For randomly node distribution in each subdomain, as 
shown in Fig. 12, when the node distribution is 9 × 31 × 21 , 
the relative errors of the HRKPM, the RKPM and the EFG 
method are 4.6 × 10−4 , 0.0011 and 0.001 , respectively. The 
CPU times are 28.5 , 780.53 and 515.67 , respectively. Based 
on the results, we can know that the HRKPM can also obtain 
higher computational efficiency than the RKPM and the 
EFG method with randomly node distribution.

(109)u(r, �, x3, t) =
[
4

3

(
1

r
−

r

4

)
sin � + x3

]
⋅ et.

The numerical solutions in the directions r , � and x3 
obtained by the HRKPM, the RKPM and the EFG method 
with randomly node distribution are presented in Fig. 13. 
And these numerical solutions are in agreement with the 
analytical one.

4.4 � Wave propagation problem with non‑smooth 
solution

In the 3D domain Ω = [0, π] × [0, π] × [0, π] , the hyperbolic 
equation governing the wave propagation u is

with the boundary conditions

and the initial conditions

The analytical solution used to compare with the approxi-
mate solution is

Using the HRKPM scheme for this example, when 
L = 10 , the node distribution in each subdomain Ω(k) is 
11 × 11 , dmax = 1.5 , Δt = 0.01 and T = 0.1 , the relative error 
is 0.0036 , the CPU time is 11.12 . Using the RKPM scheme 
for this example, when the node distribution in 3D domain 
Ω is 11 × 11 × 11 , dmax = 1.21 , � = 2.7 × 102 , Δt = 0.01 and 
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Fig. 10   Node distribution in 2D subdomain of a half torus

Table 3   The relative errors and 
CPU time of the HRKPM, the 
RKPM and the EFG method at 
different times

Time Relative error CPU time

HRKPM RKPM EFG HRKPM RKPM EFG

T = 0.01 4.54 × 10−4 0.0011 0.0010 21.3 685.18 472.93
T = 0.03 6.77 × 10−4 0.0042 0.0038 55.74 1031.72 714.29
T = 0.05 7.25 × 10−4 0.01 0.0103 91.51 1479.43 1019.12
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T = 0.1 , the relative error is 0.0037 , the CPU time 118.1 . 
Using the EFG method for this example, when the node 
distribution in 3D domain Ω is 11 × 11 × 11 , dmax = 1.01 , 
� = 2.6 × 102 , Δt = 0.01 and T = 0.1 , the relative error is 
0.0052 , the CPU time is 36.04 . From these results, it can be 
seen that the HRKPM is more efficient than the RKPM and 
the EFG method.

We employ the HRKPM, the RKPM and the EFG method 
to solve this 3D example. A good agreement between the 
numerical solutions obtained by these methods and the ana-
lytical solution are shown in Fig. 14. Again, the HRKPM 
has higher computational efficiency than the RKPM and the 
EFG method for solving 3D wave propagation problems.

(a) (b)

(c)

Fig. 11   Wave propagation obtained by the HRKPM, the RKPM and the EFG method a in the direction r ; b in the direction � and c in the direc-
tion x

3

Fig. 12   Randomly distribution in 2D subdomain of a half torus
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5 � Conclusions

This paper studies the HRKPM for solving 3D wave propa-
gation problems. Four selected numerical examples are used 
to evaluate the effectiveness and superiority of the proposed 
method. Compared with the RKPM and the EFG method, 
the following conclusions can be obtained:

1.	 The HRKPM has greater computational precision when 
dmax is in the interval from 1.07 to 1.5 , � is in the interval 
from 2 × 102 to 1 × 103 , the number of nodes increase 
or the time step length decrease. Moreover, the proper 
splitting direction is also one of the factors affecting the 
calculation accuracy.

2.	 The HRKPM greatly improves the computational effi-
ciency. Especially when the time value is larger, the 
superiority of HRKPM in computing speed is more 
obvious.

(a) (b)

(c)

Fig. 13   Wave propagation obtained by the HRKPM, the RKPM and the EFG method a in the direction r ; b in the direction � and c in the direc-
tion x

3
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