
Vol.:(0123456789)1 3

Engineering with Computers (2022) 38 (Suppl 5):S3927–S3949 
https://doi.org/10.1007/s00366-020-01252-z

ORIGINAL ARTICLE

Improved Salp Swarm Algorithm with mutation schemes for solving 
global optimization and engineering problems

Bhaskar Nautiyal1 · Rishi Prakash1 · Vrince Vimal2 · Guoxi Liang3 · Huiling Chen4 

Received: 2 August 2020 / Accepted: 18 December 2020 / Published online: 7 February 2021 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021

Abstract
Salp Swarm Algorithm (SSA) is a recent metaheuristic algorithm developed from the inspiration of salps’ swarming behavior 
and characterized by a simple search mechanism with few handling parameters. However, in solving complex optimiza-
tion problems, the SSA may suffer from the slow convergence rate and a trend of falling into sub-optimal solutions. To 
overcome these shortcomings, in this study, versions of the SSA by employing Gaussian, Cauchy, and levy-flight mutation 
schemes are proposed. The Gaussian mutation is used to enhance neighborhood-informed ability. The Cauchy mutation is 
used to generate large steps of mutation to increase the global search ability. The levy-flight mutation is used to increase the 
randomness of salps during the search. These versions are tested on 23 standard benchmark problems using statistical and 
convergence curves investigations, and the best-performed optimizer is compared with some other state-of-the-art algorithms. 
The experiments demonstrate the impact of mutation schemes, especially Gaussian mutation, in boosting the exploitation 
and exploration abilities.

Keywords Salp Swarm Algorithm · Gaussian mutation · Levy-flight mutation · Cauchy mutation

1 Introduction

There are many methodologies about how to handle search-
ing for the best solution, such as robust optimization [102], 
single-objective optimization [30], large scale optimization 
[17, 19], multiobjective optimization [15], robust optimi-
zation [102], memetic optimization [42], many-objective 
optimization [16, 18], large scale optimization [17, 19], 
and fuzzy optimization [26]. There are many methods, but 
optimization cores are a required step in almost any kind of 
problem in data science and industry. Some examples are 
not limited to potential directions as image enhancement 
optimization [131], deployment optimization in sensor net-
works [14], Artificial Neural Network (ANN) [93, 161], 
parameter optimization [159], water-energy optimization 
[25], deep learning tasks [28, 71, 98–100], decision-making 
processes [77, 79, 139], sustainable development [48, 78, 
178], mechanical parameters optimization [13], mechani-
cal and temperature optimization [12], optimal resource 
allocation [150] and many other domains [21, 49, 84, 96, 
143, 148, 149, 157]. Such wide application is that most of 
the tasks require higher accuracy and strong modeling to 
understand better the relations among the constraints and 
objectives systematically [2, 46, 47, 158, 181]. One main 
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category of optimization methods has a swarm and evolu-
tionary basis. In some past years, swarm intelligence (SI) 
has gained enormous attention because of its simple and 
efficient search mechanism [107, 108, 116, 120, 135, 171]. 
It is the well-known and popular branch of population-based 
metaheuristic solvers, where multiple search agents partici-
pate in the search of the optimization task. Multiple search 
agents together are called “swarm” in SI-based algorithms 
[20]. These algorithms are used to solve several important 
real-life applications in science, engineering, and medicine. 
In the literature, several SI-based algorithms are developed 
by inspiring the food foraging and social behaviors of vari-
ous creatures like bees, ants, hawks, etc.

Some comprehensive examples of SI-based algorithms 
along with their successful real-world applications are Par-
ticle Swarm Optimizer (PSO) [29, 153], Differential Evolu-
tion (DE) [118], Differential Search (DS) [75], Ant Colony 
Optimization (ACO) [173, 176, 177], Harris Hawks Opti-
mizer (HHO)1 [30, 35, 60], Slime Mould Algorithm (SMA)2 
[74], Grey Wolf Optimizer (GWO) [8, 22, 57, 58, 119, 175], 
Whale Optimizer (WOA) [21, 27, 59, 83, 86, 123, 125], 
Bacterial Foraging Optimization (BFO) [144], Moth-flame 
Optimizer (MFO) [61, 128, 145, 146, 156, 164, 165], Fruit 
Fly Optimization (FFO) [31, 36, 37, 110, 134, 155, 169, 
170], and Salp Swarm Algorithm (SSA) [6].

Regardless of the variety and different search mechanisms 
of metaheuristic algorithms, there are two common features: 
exploration (diversification) and exploitation (intensifica-
tion), which are responsible for the success of optimization 
process [44]. Different operators are applied to introduce 
both of these features in an algorithm and keep an appro-
priate balance between them. In exploration, the algorithm 
utilizes different search operators to perform a random 
search to explore various areas of the solution space deeply. 
Hence, the exploratory feature of search agents allows find-
ing all possible promising areas of the solution space. On the 
other hand, the exploitation feature represents the capacity 
of neighborhood search around the search space’s located 
regions. This feature is generally performed after the explo-
ration of all the algorithms. Hence, this exploitation can be 
used to perform a local search in the algorithm. A well-
performed algorithm should be capable of establishing an 
appropriate balance between the exploitation and explora-
tion, and the imbalance between them causes several issues 
like slow convergence speed, premature convergence, and 
prone towards the sub-optimal solutions.

The Salp Swarm Algorithm (SSA), inspired from the 
swarming behavior of salps, is introduced in 2017 by [92]. 
In the literature, researchers have proposed some modified 

variants of the SSA by aiming to remove shortcomings pre-
sent in the classical SSA. However, the classical SSA has 
shown a better convergence rate and enough exploration 
features during the search. Nevertheless, in some cases, it 
falls into sub-optimal solutions. Therefore, researchers 
have adopted different operators and search mechanisms to 
improve their search efficacy and provide better results. To 
improve the level of exploration as well as exploitation, the 
SSA is hybridized with PSO [67]. The hybrid algorithm is 
denoted by the SSAPSO, where both the SSA and PSO’s 
advantages are utilized to develop comparatively better opti-
mizers. Sayed et al. [109] have embedded the chaos theory 
in the SSA to speed up the convergence and obtain more 
accurate optimization results. Utilization of the chaotic 
signals is a way they employed intending to inject pseudo-
random motions into the searching behaviors, based on the 
well-known chaos-based properties [111, 130, 138, 140]. 
Tubishat et al. [124] have used the concepts of opposition 
based learning and new local search strategy to improve 
the swarm diversity and exploitation capability. Gupta 
et al. [52] have introduced a new variant of the SSA called 
harmonized salp chain-built optimization. In this variant, 
levy-flight search and opposition-based learning increase 
the convergence speed and avoid falling of salps into sub-
optimal solutions. An inertia weight-based new search 
mechanism is introduced by Hegazy et al. [56] in SSA to 
adjust the present best salp. This inertia weight is adopted in 
the SSA to enhance solution accuracy, reliability, and con-
vergence speed. Singh et al. [115] have hybridized the SCA 
search strategy into the SSA to improve the convergence 
rate and exploration capabilities. Wu et al. [137] have used 
the dynamic weight to update the state of salp, and adaptive 
mutation with am aim to achieve a better balance between 
exploration and exploitation. The SSA has been applied to 
intricate domains, and its enhanced variants have exposed 
trending exploratory searching patterns with global optimi-
zation [53, 162] and photovoltaic models [1]. There are also 
several in-depth studies on the structure and analysis of the 
SSA, including ensemble mutation-driven SSA with restart 
mechanisms proposed by [172], which shows a robust effi-
cacy and it can be recognized as the best study on SSA. 
Also, a multi-strategy SSA proposed by [163] demonstrates 
that the results are much better than SSA in terms of local 
optima avoidance. Chaotic multi-swarm SSA [80], multi-
objective dynamic SSA [9], time-varying hierarchical SSA 
[38], asynchronous binary SSA [7], and efficient binary SSA 
are some of the best research on this algorithm. Along with 
the improvement in the SSA, it is utilized to solve various 
real-life problems such as scheduling problems [117], image 
segmentation [142], feature selection [66], parameter esti-
mation for soil water retention curve [160], training of neu-
ral network [4] etc. All these applications demonstrate the 1 https ://alias gharh eidar i.com/HHO.html.

2 https ://alias gharh eidar i.com/SMA.html.

https://aliasgharheidari.com/HHO.html
https://aliasgharheidari.com/SMA.html
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wide applicability of the SSA. For a comprehensive survey 
on SSA, readers can refer to the literature review at [3, 39].

In the direction of modifying the SSA to obtain better 
results for the global optimization problem, this paper pro-
poses a new version of the SSA based on mutation schemes. 
The motivation of this work can be supported with the fact 
given by No Free Lunch theorem, given by [136]. This theo-
rem permits the modification of the developed algorithms 
to obtain better optimization results. The proposed strate-
gies of the paper are tested and compared on 23 standard 
benchmark optimization problems. In addition to this, the 
better-performed optimizer among the SSA with Gaussian 
mutation, SSA with Cauchy mutation, and SSA with the 
levy-flight mutation is compared with some state-of-the-art 
optimization methods. The results illustrate that the muta-
tion scheme is successful in improving the search efficacy 
of the classical SSA.

The rest of the paper is divided into four sections: A sim-
ple description of the SSA is provided in Sect. 2. Section 3 
presents a brief description of the mutation schemes and 
the framework of proposed mutation-based SSA versions. 
Section 4 conducts the experiments to test and compare the 
performance of the proposed mutation-based SSA versions. 
Finally, Sect. 5 provides the conclusion of the study and 
suggests some future works.

2  Overview of the Salp Swarm Algorithm 
(SSA)

The SSA was developed in 2017 [92]. The inspiration 
behind the proposal of the SSA was the swarming behavior 
of salps. These salps are free-floating tunicates and barrel-
shaped from the family of Salpidae. Generally, these salps 
float together in the form called a salp chain when foraging 
and navigating in oceans. The colony of salps moves in this 
form for better locomotion and foraging. Like other SI-based 
metaheuristic methods, the SSA also initializes the swarm 
with a predefined number of salps. Each salp in a swarm 
represents the search agent, which performs the search pro-
cess for a targeted optimization problem. In the swarm of 
salps, two categories of salps are present: leading salps and 
follower salps. During the search procedure, follower salps 
follow the leading salps to allocate the optimal solution. The 
swarm S consisting of n salps is represented as follows:

In the mathematical model of the SSA, two concepts are 
adopted in which the work followed by the leading salps 
and follower salps are modeled mathematically. The leading 
salps update their states with the help of Eq. (2)

where, Lj and Fj are the jth coordinates for the states of lead-
ing salps and food sources, respectively. ub and lb are the 
upper and lower boundary limits for the solution space. r2 
and r3 are the random numbers between 0 and 1. r1 is a vari-
able decreases when the iterations increase. Its mathematical 
formulation is given by Eq. (3)

where t and T are the current iteration number and maximum 
iterations, respectively.

In the second phase of the search, the follower salps 
update their stats. They utilize Newton’s law of motion 
given by

where a = vf − v0∕�t and v0 = (x − x0)∕t . The time in opti-
mization process is referred as iteration and therefore, the 
discrepancy between iterations is 1. Considering v0 = 0 , 
Eq. 4 becomes Eq. (5)

where, value of i is more than 1. Xi,j and Xi−1,j represents the 
jth coordinate of the follower salps i and (i − 1) , respectively. 
Hence, like other swarm intelligence based methods, SSA 
first initializes the swarm of salps within a provided solution 
space. In the second step, the leading salps and followers 
update their states to re-positioned at better locations. This 
process continues until the prefixed maximum iterations are 
not completed. The pseudo-code of the classical SSA is pre-
sented in Algorithm 1

(1)S =

⎛⎜⎜⎜⎝

x11 x12 ⋯ x1D
a21 a22 ⋯ x2D
⋮ ⋮ ⋱ ⋮

aN1 aN2 ⋯ xND

⎞⎟⎟⎟⎠

(2)Lj =

{
Fj + r1 × (lb + r2 × (ub − lb)) r3 ≥ 0.5

Fj − r1 × (lb + r2 × (ub − lb)) r3 < 0.5

(3)r1 = 2 × exp

[
−
(
4t

T

)2
]

(4)Xi,j =
1

2
at2 + v0t

(5)Xi,j =
1

2

(
Xi,j + Xi−1,j

)
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Algorithm 1 Pseudo-code of the classical SSA

Initialize the swarm size and positions of salps
Initialize the algorithm parameters: r1 and maximum iterations T
while (t < T ) do

Calculate the fitness value of each salp
Update the position of leading salps using eq. (2)
Update the position of follower salps using eq. (5)
Manage the boundary of salp positions if crossed the boundary

Return the best salp position xBest

rule is utilized in the proposed improved SSA during each 
mutation scheme.

3.1  Gaussian‑SSA (GSSA)

In this section, the Gaussian mutation [62], often used in GA 
and PSO, is used to mutate the salp based on mutation rate. 
We aim to do not apply the process by which every salp of 
the classical SSA travels to another state within the solution 
space with a predefined mutation rate without being affected 
by other salps but leave a certain vagueness in the transition 
to the next iteration due to Gaussian mutation. This mutation 
follows the following eq.

where xi denotes the ith salp and Gaussian(�) is a random 
number generated using the Gaussian distribution. The den-
sity function of Cauchy distribution is given by Eq. (8).

where �2 is a variance for each salp. To generate random 
numbers, the above equation is reduced with a Avg � = 0 
and standard deviation � to 1. The Gaussian mutation is 
integrated to cope with the diversity loss during the search 
process. In our approach, this mutation is used to locally 
explore the search space around the visited regions of the 
solution space.

3.2  Cauchy‑SSA (CSSA)

Similar to other swarm intelligence methods and other 
metaheuristics, the SSA also tends to fall into a sub-optimal 
solution due to insufficient diversity and escaping ability 
from the sub-optimal regions. Therefore, we should adopt 
some strategy that provides a high jump sometimes through-
out the search process. The Cauchy distribution can help in 

(7)x̂i = xi × (1 + Gaussian(𝛿))

(8)fGaussian(0,�2)(�) =
1

�
√
2�

exp

�
−
(� − �)2

2�2

�

3  Proposed improved Salp Swarm 
Algorithm with mutation strategies

Although the classical SSA enriches with some charac-
teristics like fast convergence speed and simple imple-
mentation, it may trap at sub-optimal solutions easily in 
few cases when handling the more complex optimization 
problems. The interaction between the leading and fol-
lower salps characterize the performance of the SSA. If a 
single leading salp trap at the sub-optimal solution, a salp 
can prevent from that local solution by the pull effect of 
leading salps. However, when the whole swarm of salps 
falls into a sub-optimal solution, the algorithm is trapped 
at that local solution and eventually stagnate at that sub-
optimal solution.

To explore the solution space more effectively, this 
paper introduces a strategy called mutation into SSA. 
The three different mutation schemes, namely, Cauchy 
Mutation, Gaussian Mutation, and levy-flight mutation, 
are embedded into the classical SCA. The developed ver-
sions are denoted by Cauchy-SSA (CSSA), Gaussian-
SSA (GSSA), and levy-SSA (LSSA), respectively. In the 
proposed method, before applying the mutation scheme, 
the greedy search is adopted between the states Xt of tth 
iteration and Xt+1 of (t + 1) th iteration, using the follow-
ing Eq. (6)

When the greedy search is completed corresponding to each 
salp, the mutation scheme is applied with mutation rate (mr) . 
The increasing value of the mutation rate is the cause of high 
diversity and helps complex and large-dimensional optimi-
zation problems. During the mutation scheme, new mutated 
salps are generated and compared with the parent salps. If 
the newly obtained mutated salp is found better than the 
parent salp in the sense of fitness, it replaces the parent salp 
otherwise discarded, and original salps are retained. This 

(6)Yt+1 =

{
Xt if f (Xt) < f (Xt+1)

Xt+1 if f (Xt+1) < f (Xt)
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this situation as it generates large values infrequently, which 
can provide a large step-size of mutation [51, 147]. In this 
Cauchy-SSA, a random number is generated, and if its value 
allows the mutation based on the mutation rate, then each 
salp of the swarm is mutated as follows

where xi denotes the ith salp and Cauchy(�) is a random 
number generated using the Cauchy distribution function 
given by

and the density function (DF) is given by equation (11)

where y is a uniformly distributed random number within 
(0,1). � = 0 is a location parameter and � = 1 is a scale 
parameter [126]. This Cauchy mutation generates higher 
chances of making longer jumps as compared to the Gauss-
ian mutation.

3.3  Levy‑SSA (LSSA)

In this section, the levy-mutation [82, 151] is used to 
improve salps diversity in the SSA. The levy-mutation can 
handle the global search more effectively by mutating the 

(9)x̂i = xi × (1 + Cauchy(𝛿))

(10)y =
1

�
arctan

(
� − �0

�

)
+

1

2

(11)fcauchy(0,�)(�) =
1

�

�

�2 + �2

salps when the mutation rate allows. Each salp in the levy-
SSA is mutated as follows

where xi denotes the ith salp and Levy(�) is a random num-
ber generated using the levy distribution function. A simpli-
fied version of the levy distribution is defined by Eq. (13)

where � is stability index. The levy-distributed random num-
ber can be obtained using

where u and v are standard normal distribution. The value 
of � is defined by Eq. (15)

The value of � is fixed to 1.5. Normally, the levy-mutation 
generates different offspring salps as it is long tailed distri-
bution. This feature is helpful to jump out from sub-optimal 
regions when the stagnation occurs during the search.

A general framework of all the mutation-based SSA is 
presented in Algorithm 2.

(12)x̂i = xi × (1 + Levy(𝛿))

(13)Levy(𝛽) ∼ y = t−𝛽−1, 0 < 𝛽 ≤ 1

(14)Levy(�) ∼
� × u

|v|1∕�

(15)� =

[
� (1 + �)sin(��∕2)

� ((
1+�

2
) × � × 2(�−1)∕2)

]1∕�

Algorithm 2 Pseudo-code of the mutation-based SSA:GSSA, CSSA and
LSSA

Initialize the swarm size and positions of salps
Initialize the algorithm parameters: r1, mutation rate mr and maximum
iterations T
while (t < T ) do

Calculate the fitness value of each salp
Update the position of leading salps using equation (2)
Update the position of follower salps using equation (5)
Manage the boundary of salp positions if crossed the boundary
Apply the greedy search corresponding to each salp position
if rand < mr then

for (each salp (xi)) do
Apply one of the mutation strategy to generate mutant salp as
explained in Subsections 3.1, Subsections 3.2 and Subsections 3.3
using one of the equations
x̂i = xi × (1 +Gaussian(δ))
x̂i = xi × (1 + Cauchy(δ))
x̂i = xi × (1 + Levy(δ))
Replace the parent salp with the generated
mutant salp if its fitness found better

Return the elite salp xBest
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evaluation of salp utilizes O(N) computational effort. The 
complexity of the position update process of leading and 
follower salp is O(N × D) , fitness evaluation of updated salp 
takes O(N) computational effort, the complexity of both the 
schemes greedy search and mutation scheme is O(N). The 
computational effort of the memorization of elite salp is 
O(N). Hence, by summing all, the complexity of the pro-
posed mutation-based SSA is O(N × D × T same to the clas-
sical SSA.

Table 1  Description of unimodal benchmark functions

Function Dimensions Range f
min

f1(x) =
∑D

i=1
x2
i

30,100 [−100, 100] 0

f2(x) =
∑D

i=1
ix2

i
30,100 [−10, 10] 0

f3(x) =
∑D

i=1
�xi� +∏D

i=1
�xi� 30,100 [−10, 10] 0

f4(x) =
∑D

i=1

�∑i

j−1
xj

�2 30,100 [−100, 100] 0

f5(x) = maxi
{|xi|, 1 ≤ i ≤ D

}
30,100 [−100, 100] 0

f6(x) =
∑D−1

i=1

�
100

�
xi+1 − x2

i

�2
+
�
xi − 1

�2� 30,100 [−30, 30] 0

f7(x) =
∑D

i=1

��
xi + 0.5

��2 30,100 [−100, 100] 0

f8(x) =
∑D

i=1
ix4

i
30,100 [−1.28, 1.28] 0

f9(x) =
∑D

i=1
ix4

i
+ random[0, 1) 30,100 [−1.28, 1.28] 0

f10(x) =
∑D

i=1
�xi�i+1 30,100 [−1, 1] 0

f11(x) =
∑D

i=1
−xi sin

�√�xi�
�

30,100 [−500, 500] −418.9829 × D

f12(x) =
∑D

i=1

�
x2
i
− 10 cos

�
2�xi

�
+ 10

� 30,100 [−5.12, 5.12] 0

f13(x) = −20 exp(−0.2

�
1

D

∑n

i=1
x2
i
) − exp

�
1

D

∑D

i=1
cos

�
2�xi

��
+ 20 + e

30,100 [−32, 32] 0

f14(x) =
1

4000

∑D

i=1
x2
i
−
∏D

i=1
cos

�
xi√
i

�
+ 1 30,100 [−600, 600] 0

f15(x) =
�

D

�
10 sin

�
�y1

�
+
∑D−1

i=1
(yi − 1)2

�
1 + 10 sin2(�yi+1)

�
+ (yD − 1)2

�

+
∑D

i=1
u(xi, 10, 100, 4)

 

yi = 1 +
xi+1

4
u(xi, a, k,m) =

⎧⎪⎨⎪⎩

k(xi − a)m xi > a

0 − a < xi < a

k(−xi − a)m xi < −a

30,100 [−50, 50] 0

f
16
(x) = 0.1

�
sin

2(3�x
1
) +

∑D

i=1

�
xi − 1

�2�
1 + sin

2(3�xi + 1)
�
+ (xD − 1)2

�
1 + sin

2(2�xD)
��

+
∑D

i=1
u(xi, 5, 100, 4)

30,100 [−50, 50] 0

f17(x) =
∑D

i=1
�xisin(xi) + 0.1xi� 30,100 [−10, 10] 0

f18(x) =
∑D

i=1
0.1D −

�
0.1

∑D

i=1
cos(5�xi) −

∑D

i=1
x2
i

�
30,100 [−1, 1] 0

f19(x) =
∑D−1

i=1
(x2

i
+ 2x2

i+1
)0.25 × [1 + sin(50(x2

i
+ x2

i+1
)0.1)2 30,100 [−10, 10] 0

f20(x) =
∑D

i=1
(106)(i−1)∕(D−1)x2

i
30,100 [−100, 100] 0

f21(x) = (−1)D+1
∏D

i=1
cos(xi) × exp(−

∑D

i=1
(xi − �)2) 30,100 [−100, 100] 0

f22(x) = 1 − cos

�
2�

�
(
∑D

i=1
x2
i
)

�
+ 0.1

�
(
∑D

i=1
x2
i
)

30,100 [−100, 100] 0

f23(x) = 0.5 +
sin2

�√
(
∑D

i=1
x2
i
)

�
−0.5

1+0.001
�∑D

i=1
x2
i

�2

30,100 [−100, 100] 0

3.4  Computational complexity

To determine the computational complexity of the pro-
posed mutation-based SSA, mainly seven components are 
used: Initialization of salp swarm, fitness evaluation of each 
salp, position update of leading salps, position update of 
follower salps, fitness evaluation of updated salps, greedy 
search, mutation scheme and memorization of elite salp. The 
complexity of initialization of swarm is O(N × D) , fitness 
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4  Experimental results and validation 
of proposed mutation‑based variants

In this section, the proposed mutation-based SSA vari-
ants are evaluated and tested in three phases. In the first 
phase, a comparison is conducted among classical SSA and 
all mutation-based variants. The best performer optimizer 
is selected from here, which is better than the remaining 
mutation-based variants and classical SSA. In the second 
phase, the winner best performer variant of the SSA is com-
pared with some state-of-the-art optimization methods. In 
the third and last phase, all the SSA variants, classical SSA, 
and other state-of-the-art algorithms are used to solve some 
real engineering test cases. The benchmark comparison 
was conducted on a set of 23 scalable benchmark problems. 
These benchmarks are provided in Table 1. The source of 
these benchmark problems is [54, 55, 81]. We follow the 
same testing way for all the compared methods [112–114]. 
This is an accepted way to ensure all methods take the same 
advantage (or no competitive advantage) according to the 
user system and conditions [85, 94, 154, 166, 167]. Experi-
mental results obtained from different SSA versions based 
on mutation scheme in terms of the Best, average (Avg.), and 
standard deviation (Std.) of the objective function are used 
to evaluate these versions’ potential. The best results are 
highlighted in bold. Furthermore, a non-parametric statisti-
cal test Wilcoxon signed-rank test [45] at 0.05 significance 
level is employed to investigate that the achieved results 
are significantly better or not. To represent these statistical 
results, “ +∕ − ∕ = ” symbols are used, which are presented 
in Table 4 and indicate that our proposed method is superior, 
worse, and statistically same to its competitive optimization 
method, respectively.

4.1  Comparison among classical SSA, GSSA, CSSA, 
and LSSA

This section compares the classical SSA with mutation-
based SSA versions such as GSSA, CSSA, and LSSA on 
a set of 23 benchmarks given in Table 1. Many numerical 
optimization methods also use these test problems. Further-
more, a comparison between the GSSA, CSSA, and LSSA 
is also conducted to select the best performer optimization 
method. In these experiments, the dimension of test func-
tions is taken to 30 and 100. The swarm size is set to 30. 
Maximum iterations and maximum function evaluations 
are set to 500 and 15,000, respectively. As can be observed 
from Tables 2–3 that the proposed mutation-based SSA vari-
ants outperform the classical SSA on approximately 92% at 
dimension 30 problems with the same results on remain-
ing one problem and worse results on one problem F7 only. 
However, on dimension 100 problems, the mutation-based 

SSA variants have outperformed on 100% of problems. It 
is noticed that the GSSA has the smallest Avg. objective 
function value than other mutation variants on 20 problems 
out of 23 for both dimensions 30 and 100. In addition to 
this, the GSSA has provided a near-optimal solution to most 
of the test problems. Hence, due to this comparison, the 
GSSA is selected for future comparison perspectives with 
other swarm-intelligence-based methods. To demonstrate 
the superiority of the proposed GSSA in terms of conver-
gence rate, the convergence curves are plotted in Figs. 1 and 
2. In this figure, the Avg. value of best objective function 
obtained in 30 trials is shown and compared for classical 
SCA, GSSA, CSSA, and LSSA. From these figures, it can be 
seen that according to the convergence rate, the GSSA takes 
first place, followed successively by CSSA, LSSA, and clas-
sical SSA. Obviously, the fast convergence rate results from 
the applied mutation scheme and greedy search approach 
in the proposed method. Hence, from the curves, it can be 
seen that the mutation scheme has improved the convergence 
rate of the proposed method, but the more effective is due 
to the Gaussian mutation rule. Furthermore, the Wilcoxon 
signed-rank test is utilized to determine whether the GSSA 
is performed better than the other mutation variants or not? 
The results obtained by employing this test between A and 
B (A/B) methods are listed by the symbols “ +∕ − ∕ = ” to 
indicate that the A is significantly better, worse, or equal to 
its competitive method. All the results are listed in Table 4 
corresponding to the dimension 30 and 100. By this table, 
it has been found that the GSSA has outperformed classical 
SCA on 20 problems for 30 dimensions and 21 problems for 
100 dimensions. Compared with CSSA and LSSA, GSSA is 
excellent in providing significantly better results or statisti-
cally the same results. It is clear from the table that GSSA 
is not worse, even on a single problem. Moreover, out of the 
23 test problems, CSSA has outperformed LSSA on 15 prob-
lems, statistically the same on seven problems and worse on 
only one problem.

4.2  Comparison with other metaheuristic methods

The comparison conducted above illustrates the superior 
solution accuracy by the GSSA among classical SCA and 
other mutation-based variants. In this section, the same set 
of benchmark problems with dimension 100 is used to com-
pare the results of the GSSA with other metaheuristic meth-
ods on the same parameter environment (population size and 
function evaluations) as utilized in the previous section. The 
metaheuristic methods which are used for comparison in this 
section are: Firefly Algorithm (FA) [151], Grey Wolf Opti-
mizer (GWO) [91], Moth-flame Optimizer (MFO) [89], Sine 
Cosine Algorithm (SCA) [90], Teaching-learning-based 
Optimization (TLBO) [103], Hybrid SSA with SCA (mod-
SSA) [115] and Improved Salp Swarm Algorithm (ISSA) 
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Table 2  Optimization results on 
23 problems for the dim 30

Problem Results SSA GSSA CSSA LSSA

F1 Best 3.39E−08 6.84E−124 5.02E−93 3.66E−67
Avg 2.76E−07 3.25E−109 1.27E−84 1.21E−56
Std. 6.18E−07 1.20E−108 3.14E−84 3.86E−56

F2 Best 4.88E−02 7.94E−122 1.89E−91 1.15E−64
Avg 2.86E+00 1.56E−109 1.29E−84 3.79E−56
Std. 3.28E+00 4.50E−109 4.99E−84 2.03E−55

F3 Best 1.19E−01 3.21E−61 5.16E−47 7.14E−34
Avg 2.37E+00 4.08E−54 1.22E−42 3.04E−29
Std. 1.64E+00 2.05E−53 3.44E−42 8.89E−29

F4 Best 4.83E+02 2.20E−123 1.80E−90 2.58E−63
Avg 1.78E+03 3.88E−106 8.04E−83 3.37E−55
Std. 1.27E+03 2.11E−105 4.36E−82 1.10E−54

F5 Best 4.49E+00 2.51E−60 7.92E−48 7.90E−33
Avg 1.21E+01 7.76E−56 6.56E−42 1.54E−28
Std. 3.51E+00 2.46E−55 2.51E−41 7.90E−28

F6 Best 2.48E+01 2.89E+01 2.89E+01 2.89E+01
Avg 2.85E+02 2.90E+01 2.90E+01 2.90E+01
Std. 6.26E+02 2.28E−02 3.25E−02 2.44E−02

F7 Best 3.40E−08 1.66E−01 1.43E−01 2.57E−01
Avg 4.17E−07 9.66E−01 9.14E−01 9.38E−01
Std. 1.46E−06 5.77E−01 4.96E−01 6.20E−01

F8 Best 8.43E−18 1.58E−251 2.96E−192 1.37E−134
Avg 1.64E−11 9.69E−215 3.81E−170 7.98E−117
Std. 3.45E−11 0.00E+00 0.00E+00 3.23E−116

F9 Best 7.14E−02 7.75E−05 5.12E−05 7.75E−05
Avg 1.74E−01 4.16E−04 5.02E−04 1.10E−03
Std. 6.43E−02 3.69E−04 4.75E−04 9.85E−04

F10 Best 3.55E−07 1.21E−181 6.33E−148 3.89E−101
Avg 2.04E−06 2.78E−165 4.11E−129 7.83E−87
Std. 2.10E−06 0.00E+00 2.21E−128 2.29E−86

F11 Best − 8.77E+03 − 9.47E+03 − 8.84E+03 − 9.47E+03
Avg − 7.58E+03 − 7.46E+03 − 7.59E+03 − 7.54E+03
Std. 6.82E+02 8.53E+02 8.17E+02 7.50E+02

F12 Best 3.48E+01 0.00E+00 0.00E+00 0.00E+00
Avg 5.78E+01 0.00E+00 0.00E+00 0.00E+00
Std. 1.58E+01 0.00E+00 0.00E+00 0.00E+00

F13 Best 1.34E+00 8.88E−16 8.88E−16 8.88E−16
Avg 2.62E+00 8.88E−16 8.88E−16 8.88E−16
Std. 6.76E−01 0.00E+00 0.00E+00 0.00E+00

F14 Best 7.72E−04 0.00E+00 0.00E+00 0.00E+00
Avg 1.63E−02 0.00E+00 0.00E+00 0.00E+00
Std. 1.28E−02 0.00E+00 0.00E+00 0.00E+00

F15 Best 2.20E+00 4.81E−03 3.39E−03 7.99E−03
Avg 7.20E+00 2.34E−02 2.64E−02 5.46E−02
Std. 3.48E+00 1.56E−02 2.62E−02 6.32E−02

F16 Best 4.21E−02 9.99E−02 6.69E−02 1.12E−01
Avg 1.62E+01 2.43E+00 2.14E+00 2.62E+00
Std. 1.55E+01 1.16E+00 1.33E+00 9.68E−01

F17 Best 1.08E+00 3.75E−61 1.12E−46 4.16E−33
Avg 3.87E+00 3.42E−56 1.35E−42 9.47E−30
Std. 1.63E+00 9.44E−56 4.93E−42 2.35E−29
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[56]. Each of these algorithms is independently 30 times 
implemented on a benchmark set, and the simulated results 
in terms of Best, Avg, and Std. are presented in Table 5. To 
validate that the GSSA has outperformed other metaheuristic 
algorithms, a non-parametric Wilcoxon signed rank test is 
used at a 0.05 significance level. These statistical results are 
presented in Table 6 with p-values and symbols “ +∕ − ∕ ≈ ” 
to indicate that the GSSA is significantly superior, equal or 
same as its competitive method.

The table indicates that the proposed GSSA has outper-
formed FA, GWO, MFO, SCA, TLBO, mod-SSA, and ISSA 
on 22, 19, 21, 22, 14, 19, and 18 problems and inferior to 
them on 0, 3, 1, 0, 5, 2 and 3 problems, respectively. Thus, 
the results conclude that the proposed Gaussian mutation-
based SSA (GSSA) is superior in solution accuracy to its 
competitive metaheuristic methods.

4.3  Application of proposed GSSA on engineering 
design problems

In this subsection, the proposed GSSA is applied to optimize 
three engineering design cases with constraints such as three-
bar truss design, pressure vessel design, and speed reducer 
design problem. These optimization cases consist of some 
inequality and equality constraints [182], so the constraint han-
dling method should be employed in the GSSA. The methods 
based on giving a penalty to the objective function to construct 
a fitness function can be used to tackle such situations. In this 
study, the death penalty is a popular and easiest method to 
deal with the constraints [34]. In this approach, the SSA will 

automatically discard the infeasible solutions. This approach 
has the advantages of small computation and simple calcula-
tion. However, this approach does not take advantage of the 
information of infeasible solutions, which may be useful in 
solving problems with dominated infeasible areas of the solu-
tion space. To verify its efficacy, GSSA is merged with the 
death penalty approach to solving constrained engineering 
cases.

4.3.1  Three‑bar truss design

This design case was firstly introduced by Nowacki [95]. In 
this, the objective function is given by minimizing the vol-
ume of a statically loaded 3-bar truss by minimizing the cross-
sectional area f (A1,A2) with restrictions in the form of stress 
constraints on each truss member. The mathematical formula-
tion of the problem is given as follows:

subject to

(16)Minimize f (A1,A2) = (2
√
(2) × A1 + A2) × l

(17)g1(A1,A2) =

√
2A1 + A2

2A1A2 +
√
2A2

1

× P − � ≤ 0

(18)g2(A1,A2) =
A2

2A1A2 +
√
2A2

1

× P − � ≤ 0

Table 2  (continued) Problem Results SSA GSSA CSSA LSSA

F18 Best 4.43E−01 0.00E+00 0.00E+00 0.00E+00

Avg 1.22E+00 0.00E+00 0.00E+00 0.00E+00

Std. 3.87E−01 0.00E+00 0.00E+00 0.00E+00
F19 Best 1.99E+01 5.37E−124 1.04E−94 1.47E−63

Avg 5.95E+01 5.35E−106 6.97E−81 9.31E−55
Std. 3.18E+01 2.28E−105 3.79E−80 4.67E−54

F20 Best 3.01E+06 4.58E−116 4.97E−86 3.37E−60
Avg 1.29E+07 3.40E−105 5.53E−78 7.37E−53
Std. 8.01E+06 1.47E−104 1.90E−77 1.96E−52

F21 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F22 Best 1.30E+00 1.12E−52 3.46E−37 3.53E−22
Avg 1.93E+00 1.81E−43 1.08E−28 2.46E−12
Std. 4.04E−01 9.82E−43 5.84E−28 9.42E−12

F23 Best 2.73E−01 0.00E+00 0.00E+00 0.00E+00
Avg 3.99E−01 0.00E+00 0.00E+00 3.96E−03
Std. 4.25E−02 0.00E+00 0.00E+00 4.80E−03
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Table 3  Optimization results on 
23 problems for the dim 100

Problem Results SSA GSSA CSSA LSSA

F1 Best 8.08E+02 3.34E−118 2.79E−90 1.39E−64
Avg 1.42E+03 6.41E−104 6.61E−81 6.21E−55
Std. 3.81E+02 2.41E−103 3.58E−80 1.96E−54

F2 Best 5.18E+02 1.49E−116 5.51E−90 1.18E−62
Avg 8.87E+02 5.40E−106 8.33E−79 1.21E−54
Std. 2.43E+02 2.28E−105 4.56E−78 4.04E−54

F3 Best 3.67E+01 1.25E−60 1.05E−45 1.40E−33
Avg 4.65E+01 6.21E−54 2.58E−41 4.47E−28
Std. 7.30E+00 2.27E−53 9.54E−41 8.96E−28

F4 Best 1.88E+04 2.15E−115 1.30E−89 3.24E−62
Avg 5.06E+04 2.22E−105 1.47E−78 3.58E−51
Std. 2.22E+04 1.11E−104 7.98E−78 1.93E−50

F5 Best 1.96E+01 3.77E−59 1.55E−45 3.03E−31
Avg 2.77E+01 9.98E−53 6.19E−42 1.52E−28
Std. 3.99E+00 5.30E−52 2.33E−41 5.07E−28

F6 Best 7.00E+04 9.89E+01 9.89E+01 9.89E+01
Avg 1.91E+05 9.90E+01 9.90E+01 9.90E+01
Std. 7.35E+04 1.51E−02 2.27E−02 1.74E−02

F7 Best 6.96E+02 1.04E+01 1.06E+01 1.10E+01
Avg 1.61E+03 1.50E+01 1.54E+01 1.50E+01
Std. 4.80E+02 2.82E+00 2.64E+00 2.65E+00

F8 Best 9.56E−02 4.11E−241 1.23E−185 2.99E−139
Avg 3.10E−01 8.98E−214 1.04E−168 1.08E−114
Std. 1.75E−01 0.00E+00 0.00E+00 5.63E−114

F9 Best 1.36E+00 2.15E−05 2.22E−05 2.90E−05
Avg 2.70E+00 3.86E−04 3.67E−04 1.02E−03
Std. 6.21E−01 3.40E−04 2.91E−04 1.03E−03

F10 Best 4.18E−07 1.77E−179 1.86E−145 3.35E−100
Avg 3.15E−06 7.05E−157 9.07E−129 1.70E−84
Std. 2.81E−06 3.86E−156 4.83E−128 8.38E−84

F11 Best − 2.44E+04 − 2.49E+04 − 2.38E+04 − 2.49E+04
Avg − 2.15E+04 − 2.06E+04 − 2.09E+04 − 2.14E+04
Std. 1.58E+03 1.81E+03 1.48E+03 2.02E+03

F12 Best 1.41E+02 0.00E+00 0.00E+00 0.00E+00
Avg 2.50E+02 0.00E+00 0.00E+00 0.00E+00
Std. 4.99E+01 0.00E+00 0.00E+00 0.00E+00

F13 Best 7.06E+00 8.88E−16 8.88E−16 8.88E−16
Avg 1.06E+01 8.88E−16 8.88E−16 8.88E−16
Std. 1.41E+00 0.00E+00 0.00E+00 0.00E+00

F14 Best 9.37E+00 0.00E+00 0.00E+00 0.00E+00
Avg 1.44E+01 0.00E+00 0.00E+00 0.00E+00
Std. 2.87E+00 0.00E+00 0.00E+00 0.00E+00

F15 Best 1.69E+01 8.55E−02 7.87E−02 1.08E−01
Avg 3.36E+01 1.42E−01 1.30E−01 1.48E−01
Std. 9.54E+00 3.33E−02 3.22E−02 3.13E−02

F16 Best 2.17E+02 9.99E+00 9.99E+00 9.99E+00
Avg 9.62E+03 1.00E+01 9.99E+00 1.00E+01
Std. 1.70E+04 2.44E−03 2.67E−03 2.30E−03

F17 Best 1.54E+01 2.06E−60 1.75E−46 1.54E−32
Avg 2.87E+01 4.76E−55 4.13E−43 8.84E−29
Std. 4.82E+00 2.35E−54 1.18E−42 3.55E−28
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where 0 ≤ A1,A2 ≤ 1 , l = 100 cm, P = � = 2 KN/cm2.
The problem formulation shows that this is a non-linear 

optimization problem with the continuous nature of decision 
variables. This problem has been solved by [105], and by 
[121]. In the study of [97] this problem is also attempted to 
solve. Furthermore, the cuckoo search metaheuristic method 
[43] is also adopted to solve this problem. [152] have used 
the bat algorithm (BA) to solve this problem. [50] have used 
the classical sine cosine algorithm (SCA) and their modi-
fied SCA (m-SCA) to solve this problem. In this paper, the 
GSSA is applied to this problem using 25 salp swarm size 
and 1000 iterations. Numerical results of all the optimization 
methods are presented in Table 7. The table indicates that 
the GSSA is superior to provide the best results than other 
methods. It also verified from this study that the proposed 
GSSA could deal with the constraints of this optimization 
case more effectively.

4.3.2  Tension‑compression spring design

Another engineering case optimization problem is a tension-
compression spring design. In this problem, the optimization 
task is described by the minimization of the heaviness of 
a spring. Three decision variables: diameter d, mean coil 
diameter D, and the number of dynamic coils N are involved 

(19)g3(A1,A2) =
1

A1 +
√
2A2

× P − � ≤ 0
in this problem. The mathematical description of this case 
problem is as follows:

subject to

where
0.05 ≤ d ≤ 2.0 , 0.25 ≤ D ≤ 1.30 , 2.0 ≤ N ≤ 15.0.
In the previous studies, several metaheuristic methods 

are utilized to solve this case of the optimization problem. 
In our experiments, we have performed 15,000 searches 
with 25 salp swarm sizes, and the results obtained by the 
proposed GSSA are presented in Table 8. In this table, 
results of various other methods such as GSA ([104]), ES 
([87]), GA ([33]), mathematical optimization ([11]) and 
Constraint Correction [10] are presented for comparison 
of the GSSA. The table indicates that the GSSA has pro-
vided better results than other compared method.

(20)Minimize f (d,D,N) = (N + 2)d2D

(21)g1(d,D,N) = 1 −
D3N

71785d4
≤ 0

(22)g2(d,D,N) =
4D2 − dD

12566(d3D − d4)
+

1

5108d2
≤ 0

(23)g3(d,D,N) = 1 −
140.45d

D3N
≤ 0

(24)g4(d,D,N) =
d + D

1.5
− 1 ≤ 0

Table 3  (continued) Problem Results SSA GSSA CSSA LSSA

F18 Best 3.61E+00 0.00E+00 0.00E+00 0.00E+00

Avg 4.89E+00 0.00E+00 0.00E+00 0.00E+00

Std. 7.22E−01 0.00E+00 0.00E+00 0.00E+00
F19 Best 1.53E+03 3.50E−119 7.06E−93 6.18E−65

Avg 1.79E+03 1.36E−108 2.48E−82 4.10E−55
Std. 1.89E+02 4.91E−108 1.08E−81 1.74E−54

F20 Best 3.10E+07 7.60E−112 3.54E−85 9.74E−58
Avg 1.06E+08 1.90E−101 2.77E−75 6.57E−51
Std. 5.28E+07 6.26E−101 1.52E−74 2.31E−50

F21 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F22 Best 1.02E+01 1.42E−51 6.80E−36 3.16E−22
Avg 1.21E+01 5.84E−45 9.22E−27 2.36E−10
Std. 1.07E+00 2.77E−44 3.52E−26 1.15E−09

F23 Best 4.98E−01 0.00E+00 0.00E+00 0.00E+00
Avg 4.99E−01 0.00E+00 0.00E+00 5.60E−03
Std. 2.81E−04 0.00E+00 0.00E+00 4.82E−03
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Table 4  Statistical comparison through Wilcoxon signed rank test for 23 benchmark problems

Problem Dimension SSA/GSSA SSA/CSSA SSA/LSSA GSSA/CSSA GSSA/LSSA CSSA/LSSA

F1 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F2 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F3 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F4 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F5 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F6 30 1.48E−04 (+) 1.36E−04 (+) 1.48E−04 (+) 4.05E−01 ( ≈) 1.11E−02 (+) 7.71E−04 (−)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 2.62E−01 ( ≈) 4.78E−01 ( ≈) 4.95E−02 (−)

F7 30 1.73E−06 (−) 1.73E−06 (+) 1.73E−06 (+) 6.44E−01 ( ≈) 2.89E−01 ( ≈) 6.29E−01 ( ≈)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.59E−01 ( ≈) 7.97E−01 ( ≈) 1.78E−01 ( ≈)

F8 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F9 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 2.71E−01 ( ≈) 4.07E−05 (+) 1.36E−04 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 8.13E−01 ( ≈) 2.83E−04 (+) 6.64E−04 (+)

F10 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F11 30 4.65E−01 ( ≈) 7.34E−01 ( ≈) 7.66E−01 ( ≈) 9.06E−02 ( ≈) 4.89E−01 ( ≈) 7.11E−01 ( ≈)
100 5.45E−02 ( ≈) 9.78E−02 ( ≈) 5.44E−01 ( ≈) 2.67E−01 ≈ 2.99E−02 ( ≈) 1.27E−01 ( ≈)

F12 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)

F13 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)

F14 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)

F15 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 8.45E−01 ≈ 3.61E−03 (+) 4.99E−03 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 7.19E−02 ( ≈) 2.71E−01 ≈ 8.73E−03 (+)

F16 30 3.06E−04 (+) 8.19E−05 (+) 3.06E−04 (+) 3.93E−01 ( ≈) 5.32E−03 (+) 3.06E−04 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 6.56E−02 ( ≈) 1.57E−02 (+) 5.71E−04 (+)

F17 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F18 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1 ( ≈) 1 ( ≈) 1 ( ≈)

F19 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F20 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F21 30 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈)
100 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈) 1 ( ≈)

F22 30 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
100 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)

F23 30 1.69E−06 (+) 1.69E−06 (+) 1.73E−06 (+) 1 ( ≈) 1.32E−04 (+) 1.32E−04 (+)
100 1.65E−06 (+) 1.65E−06 (+) 1.73E−06 (+) 1 ( ≈) 8.30E−06 (+) 8.30E−06 (+)
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4.3.3  Speed reducer design

In this subsection, the proposed GSSA is applied to the opti-
mization task of designing a speed reducer, where the weight 
of the speed reducer is minimized. This problem is consid-
ered as a structural optimization problem with the decision 
variable: module of teeth m, face width b, the number of 

teeth on pinion z, length of shaft-I and shaft-II between bear-
ings l1 and l2 , respectively, the diameter of shaft-I and shaft-
II d1 and d2 , respectively. The constraints in this problem 
are applied on bending stress of the gear teeth, transverse 
deflections of shafts 1 and 2 due to transmitted force, surface 
stress, and stresses in shafts-I and shaft-II. In the mathemati-
cal form, the problem is stated as follows:

(25)
Minimize f (b,m, z.l1, l2, d1, d2) = 0.7854bm2(14.9334z + 3.3333z2 − 43.0934)

− 1.508b(d2
1
+ d2

2
) + 0.7854(l1d

2
1
+ l2d

2
2
) + 7.477(d3

1
+ d3

2
)
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Fig. 1  Convergence curves for benchmark problems



S3940 Engineering with Computers (2022) 38 (Suppl 5):S3927–S3949

1 3

subject to

(26)g1 =
27

bzm2
× P − 1 ≤ 0

(27)g2 =
397.50

bz2m2
− 1 ≤ 0

(28)g3 =
1.93

mzl3
1
d4
1

− 1 ≤ 0

(29)g4 =
1.93

mzl3
1
d4
2

− 1 ≤ 0

(30)g5 =

√
1.69 × 106 + (745l1∕mz)

2

110d3
1
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Fig. 2  Convergence curves for benchmark problems
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Table 5  Comparison with other metaheuristic methods on dim 100

Problem Results FA GWO MFO SCA TLBO mod-SSA ISSA GSSA

F1 Best 8.47E+03 1.65E−13 3.73E+04 1.55E+03 1.12E−34 9.74E−17 1.17E−12 3.34E−118
Avg 1.23E+04 1.64E−12 6.32E+04 1.50E+04 2.33E−33 2.59E−14 1.69E−12 6.41E−104
Std. 2.07E+03 1.04E−12 1.39E+04 1.19E+04 3.09E−33 6.98E−14 2.13E−13 2.41E−103

F2 Best 4.30E+03 1.72E−13 1.72E+04 7.23E+02 8.86E−35 3.69E−17 5.89E−13 1.49E−116
Avg 6.16E+03 5.35E−13 3.02E+04 4.46E+03 6.16E−34 3.21E−15 8.34E−13 5.40E−106
Std. 1.03E+03 3.25E−13 8.34E+03 3.35E+03 6.05E−34 3.54E−15 1.08E−13 2.28E−105

F3 Best 9.68E+01 1.96E−08 1.78E+02 3.38E−01 8.96E−18 1.50E−13 8.72E−07 1.25E−60
Avg 1.33E+02 3.88E−08 2.45E+02 7.00E+00 2.78E−17 6.33E−12 1.03E−06 6.21E−54
Std. 2.48E+01 1.25E−08 3.02E+01 6.66E+00 1.59E−17 9.14E−12 7.98E−08 2.27E−53

F4 Best 5.79E+04 4.93E+01 1.64E+05 1.42E+05 1.76E−08 4.36E+01 6.55E−12 2.15E−115
Avg 1.36E+05 5.31E+02 2.38E+05 2.59E+05 8.11E−06 2.40E+04 4.62E−11 2.22E−105
Std. 4.60E+04 5.71E+02 5.90E+04 5.67E+04 2.17E−05 3.81E+04 3.80E−11 1.11E−104

F5 Best 2.76E+01 7.59E−02 8.81E+01 8.44E+01 2.09E−15 9.18E+01 2.86E−07 3.77E−59
Avg 3.54E+01 1.01E+00 9.34E+01 8.98E+01 5.60E−15 9.62E+01 3.40E−07 9.98E−53
Std. 3.81E+00 1.29E+00 2.10E+00 2.68E+00 2.64E−15 1.49E+00 2.86E−08 5.30E−52

F6 Best 2.01E+06 9.64E+01 5.41E+07 2.07E+07 9.58E+01 9.72E+01 9.87E+01 9.89E+01
Avg 3.56E+06 9.79E+01 1.67E+08 1.20E+08 9.71E+01 9.85E+01 9.88E+01 9.90E+01
Std. 1.18E+06 6.23E−01 7.07E+07 4.60E+07 6.83E−01 4.30E−01 4.36E−02 1.51E−02

F7 Best 8.68E+03 8.28E+00 3.09E+04 1.91E+03 3.12E+00 1.79E+01 1.62E+01 1.04E+01
Avg 1.30E+04 9.99E+00 5.98E+04 1.23E+04 4.87E+00 1.91E+01 1.87E+01 1.50E+01
Std. 2.32E+03 1.04E+00 1.39E+04 9.46E+03 7.89E−01 4.95E−01 9.31E−01 2.82E+00

F8 Best 2.51E+00 5.20E−27 5.91E+01 4.31E+01 2.38E−73 3.20E−30 4.34E−32 4.11E−241
Avg 5.77E+00 2.99E−25 2.94E+02 1.49E+02 6.36E−71 2.45E−24 1.06E−31 8.98E−214
Std. 1.78E+00 5.57E−25 1.65E+02 6.67E+01 2.04E−70 1.09E−23 3.74E−32 0.00E+00

F9 Best 2.17E+00 3.48E−03 1.04E+02 2.88E+00 1.07E−03 1.64E−03 6.62E−06 2.15E−05
Avg 5.28E+00 7.45E−03 2.57E+02 1.42E+02 8.29E−03 1.19E−02 1.30E−04 3.86E−04
Std. 1.80E+00 2.48E−03 9.17E+01 7.87E+01 4.39E−03 1.37E−02 1.15E−04 3.40E−04

F10 Best 8.63E−07 1.49E−84 3.08E−05 1.84E−02 4.87E−113 1.22E−02 2.84E−24 1.77E−179
Avg 3.99E−05 8.16E−64 1.37E−02 2.08E−01 2.67E−105 1.43E+00 9.13E−22 7.05E−157
Std. 5.27E−05 4.47E−63 3.40E−02 1.49E−01 1.40E−104 4.78E−01 1.52E−21 3.86E−156

F11 Best − 1.47E+04 − 1.97E+04 − 2.84E+04 − 8.20E+03 − 2.58E+04 − 9.01E+03 − 8.35E+03 − 2.49E+04
Avg − 1.15E+04 − 1.62E+04 − 2.33E+04 − 6.85E+03 − 2.20E+04 − 6.96E+03 − 6.44E+03 − 2.06E+04
Std. 2.49E+03 2.43E+03 2.17E+03 5.53E+02 2.08E+03 8.63E+02 6.97E+02 1.81E+03

F12 Best 6.70E+02 5.51E−11 7.50E+02 6.39E+01 0.00E+00 0.00E+00 2.27E−13 0.00E+00
Avg 7.38E+02 8.42E+00 8.53E+02 2.66E+02 0.00E+00 8.72E−01 3.87E−13 0.00E+00
Std. 4.84E+01 5.83E+00 6.80E+01 1.06E+02 0.00E+00 4.78E+00 1.02E−13 0.00E+00

F13 Best 1.10E+01 4.64E−08 1.95E+01 8.85E+00 4.44E−15 2.00E+01 1.40E−07 8.88E−16
Avg 1.23E+01 1.29E−07 1.99E+01 1.91E+01 7.88E−15 2.00E+01 1.67E−07 8.88E−16
Std. 5.59E−01 4.33E−08 1.21E−01 3.83E+00 6.49E−16 2.82E−04 1.15E−08 0.00E+00

F14 Best 7.72E+01 1.31E−13 3.07E+02 1.35E+01 0.00E+00 0.00E+00 8.89E−13 0.00E+00
Avg 1.12E+02 2.49E−03 5.51E+02 1.19E+02 0.00E+00 1.54E−03 1.59E−12 0.00E+00
Std. 1.87E+01 8.11E−03 1.47E+02 6.63E+01 0.00E+00 6.58E−03 5.18E−13 0.00E+00

F15 Best 8.61E+01 1.58E−01 9.04E+07 3.79E+07 3.67E−02 6.11E−01 4.83E−01 8.55E−02
Avg 2.74E+04 3.31E−01 3.53E+08 3.24E+08 6.06E−02 7.72E−01 6.22E−01 1.42E−01
Std. 4.62E+04 9.73E−02 2.17E+08 1.45E+08 1.23E−02 8.38E−02 6.02E−02 3.33E−02

F16 Best 3.16E+05 6.08E+00 1.27E+08 2.10E+08 5.29E+00 8.83E+00 9.97E+00 9.99E+00
Avg 1.99E+06 6.91E+00 5.55E+08 5.88E+08 6.62E+00 9.21E+00 9.97E+00 1.00E+01
Std. 1.11E+06 4.23E−01 2.19E+08 2.69E+08 7.93E−01 2.53E−01 3.26E−03 2.44E−03
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Table 5  (continued)

Problem Results FA GWO MFO SCA TLBO mod-SSA ISSA GSSA

F17 Best 6.20E+01 5.94E−04 4.31E+01 6.09E+00 1.04E−18 5.30E−12 8.83E−08 2.06E−60

Avg 8.04E+01 3.46E−03 6.66E+01 2.22E+01 2.92E−18 8.17E−01 1.04E−07 4.76E−55

Std. 8.67E+00 1.65E−03 1.41E+01 1.07E+01 1.32E−18 4.24E+00 6.36E−09 2.35E−54
F18 Best 8.18E+00 1.42E−14 1.07E+01 2.36E−

E−01
0.00E+00 0.00E+00 0.00E+00 0.00E+00

Avg 9.13E+00 3.06E−14 1.32E+01 3.04E+00 0.00E+00 5.92E−17 0.00E+00 0.00E+00
Std. 5.01E−01 1.01E−14 1.50E+00 2.09E+00 0.00E+00 3.24E−16 0.00E+00 0.00E+00

F19 Best 1.05E+13 4.52E+01 2.23E+03 4.00E+02 1.51E+01 1.98E+00 1.97E−14 3.50E−119
Avg 8.02E+13 9.31E+01 2.70E+03 6.62E+02 8.86E+01 6.63E+01 2.63E−13 1.36E−108
Std. 4.33E+13 3.06E+01 2.37E+02 1.62E+02 4.32E+01 6.76E+01 4.31E−13 4.91E−108

F20 Best 3.33E+08 2.06E−10 4.03E+08 1.44E+06 1.03E−30 2.03E−14 6.68E−08 7.60E−112
Avg 6.72E+08 3.06E−09 1.37E+09 1.77E+07 9.57E−30 4.25E−11 1.34E−07 1.90E−101
Std. 1.97E+08 2.79E−09 7.74E+08 1.62E+07 1.34E−29 1.04E−10 5.16E−08 6.26E−101

F21 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Avg 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std. 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F22 Best 1.15E+01 3.00E−01 2.77E+01 6.10E+00 9.99E−02 9.99E−02 1.18E−07 1.42E−51
Avg 1.32E+01 3.53E−01 3.49E+01 1.22E+01 1.27E−01 1.73E−01 1.31E−07 5.84E−45
Std. 8.31E−01 5.07E−02 3.34E+00 3.29E+00 4.48E−02 4.50E−02 7.16E−09 2.77E−44

F23 Best 5.00E−01 3.72E−02 5.00E−01 4.98E−01 9.72E−03 9.72E−03 1.15E−12 0.00E+00
Avg 5.00E−01 9.30E−02 5.00E−01 5.00E−01 1.89E−02 3.22E−02 1.78E−12 0.00E+00
Std. 5.38E−05 2.82E−02 1.24E−06 3.54E−04 1.32E−02 1.46E−02 2.87E−13 0.00E+00

Table 6  Statistical comparison through Wilcoxon signed rank test for 23 benchmark problems

Problem GSSA/FA GSSA/GWO GSSA/MFO GSSA/SCA GSSA/TLBO GSSA/mod-SSA GSSA/wSSA

F1 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F2 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F3 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F4 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F5 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F6 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (−) 1.73E−06 (−)
F7 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (−) 5.22E−06 (+) 3.18E−06 (+)
F8 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F9 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.92E−06 (+) 1.73E−06 (+) 1.60E−04 (−)
F10 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F11 1.73E−06 (+) 2.88E−06 (+) 1.80E−05 (−) 1.73E−06 (+) 8.22E−03 (−) 1.73E−06 (+) 1.73E−06 (+)
F12 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.00E+00 ( ≈) 5.90E−05 (+) 1.18E−06 (+)
F13 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 6.80E−08 (+) 1.73E−06 (+) 1.73E−06 (+)
F14 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.00E+00 ( ≈) 3.78E−06 (+) 1.73E−06 (+)
F15 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (+) 1.73E−06 (+)
F16 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (−) 1.73E−06 (−) 1.73E−06 (−)
F17 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F18 1.73E−06 (+) 1.67E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈)
F19 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F20 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F21 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈) 1.00E+00 ( ≈)
F22 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.7344E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
F23 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.7344E−06 (+) 1.73E−06 (+) 1.73E−06 (+) 1.73E−06 (+)
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(31)
g6 =

√
157.50 × 106 + (745l1∕mz)

2

85d3
2

− 1 ≤ 0

where
2.60 ≤ b ≤ 3.60 , 0.70 ≤ m ≤ 0.80 , 17 ≤ z ≤ 28

7.30 ≤ l1 ≤ 8.30 , 7.80 ≤ l2 ≤ 8.30

2.90 ≤ d1 ≤ 3.90 , 5.00 ≤ d2 ≤ 5.50

In our study, we have fixed the swarm size to 50 and itera-
tions to 5,000 for obtaining the solution of this problem. In 
the previous literature, many studies [5, 63, 69, 88, 105] are 
done to perform this optimization task. [43] have applied 
the CS to solve this problem. The simulated results on this 
problem by the GSSA is presented in Table 9, which indi-
cates that the GSSA than other results produces the superior 
results.

5  Conclusions and future directions

In this study, the recently proposed salp swarm algorithm’s 
performance is enhanced using new search rules based on 
greedy search and mutation strategies. Significantly, to 
improve the exploitation feature and to balance exploration 
and exploitation in the algorithm. Further, the swarm diver-
sity is managed by the different mutation rules: Gaussian, 
Cauchy, and levy. Based on these mutation rules, the differ-
ent variants GSSA, CSSA, and LSSA are proposed. These 
rules have significantly improved the SSA’s exploitation and 
exploration abilities. Experimental results have also shown 
that these rules are fruitful in preventing local optima and 
faster convergence. The experiments for evaluating these 
variants and choosing the best mutation rule for the SSA, 
23 benchmark test problems with dimension 30 and 100 are 
utilized. Convergence analysis and statistical tests ensure 

(32)g7 =
mz

40
× −1 ≤ 0

(33)g8 =
5m

B − 1
× −1 ≤ 0

(34)g9 =
b

12m
× −1 ≤ 0

Table 7  Comparison results of the GSSA for the three-bar truss 
design problem

Algorithm Optimum variable Optimum cost

A
1

A
2

GSSA 0.788703186 0.408168954 263.895844
[105] 0.795 0.395 264.3
[121] 0.788 0.408 263.68 (infeasible)
[97] 0.78879 0.40794 263.8965
CS 0.78867 0.40902 263.9716
BA 0.78863 0.40838 263.8962
SCA 0.78669 0.41426 263.9348
m-SCA 0.81915 0.36956 263.8972

Table 8  Comparison results of the GSSA for tension-compression 
spring design problem

Algorithm Optimum variable Optimum 
cost

d D N

GSSA 0.050806005 0.33584285 12.62658005 0.0126797
GSA 0.050276 0.32368 13.52541 0.0127022
ES 0.051989 0.363965 10.890522 0.012681
GA 0.05148 0.351661 11.632201 0.0127048
Math-

ematical 
Optimi-
zation 
(Bel-
egundu)

0.053396 0.39918 9.1854 0.0127303

Constraint 
cor-
rection 
(Arora)

0.05 0.3159 14.25 0.0128334

Table 9  Comparison results 
of the GSSA for speed reducer 
design problem

Algorithm Optimum variable Optimum cost

b m z l
1

l
2

d
1

d
2

GSSA 3.500957 0.7 17 7.331317 7.806692 3.351851 5.28669 2997.5658
CS 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981
[105] 3.514185 0.700005 17 7.497343 7.8346 2.9018 5.0022 2732.9006

(infeasible)
[87] 3.506163 0.700831 17 7.460181 7.962143 3.3629 5.309 3025.005
[5] 3.506122 0.700006 17 7.549126 7.85933 3.365576 5.289773 3008.08
[69] 3.6 0.7 17 7.3 7.8 3.4 5 2876.117623

(infeasible)
[63] 3.5197 0.7039 17.3831 7.3 7.7152 3.3498 5.2866 3,007.80
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that the GSSA is the best variant to solve global optimization 
problems. Furthermore, the best-chosen method, the GSSA, 
is used to solve some engineering design optimization cases. 
The results and comparison indicate the superiority of the 
GSSA over other studies that are done to find the solution to 
these engineering cases.

There are many future domains for the utilized and 
suggested SSA-based optimizers according to the many 
domains that need optimization and solution finding in 
general. We have initialized research works to employ the 
mutation-based SSA for the sensor networks [40, 41], struc-
tural health assessment and promising optimization founda-
tion [32], possible optimization features of the solar systems 
[129, 132], GIS [122, 179, 180, 183], and a set of industrial 
tasks in the power engineering [65, 106]. As the proposed 
method has a more stable exploratory basis, we suggest the 
application of it to the data modeling of the location-based 
services (LBS) [72], landslide prediction and forecasting 
[133], prediction methods [68, 101], and modeling in the 
environmental scenarios [23, 73, 168]. In the future, apply-
ing the proposed mutation-based variant to solve more prac-
tical engineering cases such as multiobjective optimization, 
binary optimization is a worthwhile research direction. The 
proposed method and its resulted variations can be a suit-
able tool for operation under intelligent systems, and med-
ical diagnosis cases [24, 64, 70, 76, 127, 141, 174]. The 
proposed mutation-based variants can also be hybridized 
with other metaheuristic methods to propose a new better 
optimization method. The proposed mutation-based SSA 
can also be used in other areas, such as optimizing machine 
learning models’ structure and weights.
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