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Abstract
This paper presents a novel C0 higher-order layerwise finite element model for static and free vibration analysis of function-
ally graded materials (FGM) sandwich plates. The proposed layerwise model, which is developed for multilayer composite 
plates, supposes higher-order displacement field for the core and first-order displacement field for the face sheets maintaining 
a continuity of displacement at layer. Unlike the conventional layerwise models, the present one has an important feature 
that the number of variables is fixed and does not increase when increasing the number of layers. Thus, based on the sug-
gested model, a computationally efficient C0 eight-node quadrilateral element is developed. Indeed, the new element is free 
of shear locking phenomenon without requiring any shear correction factors. Three common types of FGM plates, namely, 
(i) isotropic FGM plates; (ii) sandwich plates with FGM face sheets and homogeneous core and (iii) sandwich plates with 
homogeneous face sheets and FGM core, are considered in the present work. Material properties are assumed graded in 
the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. 
The equations of motion of the FGM sandwich plate are obtained via the classical Hamilton’s principle. Numerical results 
of present model are compared with 2D, quasi-3D, and 3D analytical solutions and other predicted by advanced finite ele-
ment models reported in the literature. The results indicate that the developed finite element model is promising in terms 
of accuracy and fast rate of convergence for both thin and thick FGM sandwich plates. Finally, it can be concluded that the 
proposed model is accurate and efficient in predicting the bending and free vibration responses of FGM sandwich plates.

Keywords  Functionally graded materials · Sandwich plates · Layerwise · Bending analysis · Free vibration · Finite element 
method

1  Introduction

Sandwich structures are one of the most functional forms 
of advanced composite structures developed by engineers. 
They have been ubiquitously applied in modern engineering 
especially in the civil constructions, marine industry, auto-
mobile, aerospace applications and other industrial applica-
tions due to their excellent mechanical performances, i.e., 
high bending rigidity and vibration characteristics, high ratio 
of stiffness to weight, excellent durability. Sandwich con-
structions consist of two outer strong layers and an inner 
relatively thick, lightweight core material [1]. Sandwich 
structure has become even more attractive to the introduc-
tion of advanced composite materials for the face sheets 
like functionally graded ceramic–metal materials [2]. The 
considerable advantages offered by FGM over conventional 
composite materials are to eliminates the interface prob-
lems and thus the stress distribution becomes smooth [3]. 
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Subsequently, a number of studies have been performed to 
studies the static, vibration, and buckling of functionally 
graded structures due to the increased relevance of the FGM 
structural components in the design of engineering struc-
tures [4].

For a design purpose, it is necessary to understand the 
mechanical behavior of FGM sandwich plates. Several com-
putational models, both analytically and numerically, have 
been proposed by researchers to predict accurately the vibra-
tional characteristics of FGM structures. Anderson [5] pre-
sented a three-dimensional (3D) analytical elasticity solution 
for a sandwich plates with a functionally graded (FG) core 
subjected to transverse loading using a rigid spherical inden-
tor. Vel and Batra [6] proposed an exact elasticity solution 
using the power series expansion method to study the free 
and forced vibrations behaviour of simply supported FGM 
rectangular plates. The authors used Mori–Tanaka method 
to estimate the effective material properties. Li, Iu et al. [3] 
presented a 3D analytical elasticity solutions based on Ritz 
method, in conjunction with Chebhyshev polynomial series, 
for free vibration analysis of FGM sandwich rectangular 
plates. They considered two types of FGM sandwich plates 
with simply supported and clamped boundary conditions. 
Similarly, Kashtalyan and Menshykova [7] developed a 3D 
analytical elasticity solutions based on Plevako method for 
simply supported sandwich plates with a FG core. They con-
cluded from their results that use of functionally graded core 
eliminates discontinuity of the in-plane normal stress across 
the face sheet/core interface, and reduces the magnitude of 
stresses in the face sheets and deflection of panels.

From the review paper of Swaminathan et al. [8], the 3D 
analytical elasticity solution are becomes difficult and tedi-
ous when a power law is used for the gradation of material 
properties. In addition, boundary value and eigenvalue prob-
lems of 3D elasticity equations are hard to solve. Hence, the 
development of accurate two-dimensional (2D) models has 
drawn a considerable amount of attention from research-
ers to represent accurately the behavior of FGM sandwich 
structures.

In the framework of 2D approaches, Equivalent Single-
Layer (ESL) theories of different orders [Classical Plate The-
ory (CPT), First-order Shear Deformation Theory (FSDT) 
and Higher order Shear Deformation Theories (HSDT)] have 
been used. The classical plate theory based on the Kirch-
hoff’s assumptions ignores the transverse shear strain and 
is suitable only to studies thin plates/shells [9–14]. How-
ever, it is not appropriate for the moderately thick and thick 
plates, which require that the transverse and normal strain 
should be taken into account. First-order shear deformation 
theory considers a constant transverse shear deformation 
effects and gives acceptable results for thick and thin plates 
[15–19], but needs a shear correction factor which is hard to 
find as it depends on the geometries, material properties and 

boundary conditions of each problem [20]. To overcome the 
limitation of CLPT and FSDT, various HSDT (sinusoidal, 
exponential, hyperbolic, inverse-hyperbolic, and third-order 
shear deformation theory) were developed for a better rep-
resentation of transverse shear stresses without the use of 
correction factors [21–30]. These theories include higher-
order terms in the approximation of the in-plane displace-
ment fields and satisfy zero shear stress conditions at top and 
bottom surfaces of plates.

Recently, several 2D analytical models, based on HSDT, 
have been performed to examine the realistic structural 
behavior of FGM sandwichs plates/shells. Zenkour [23, 31] 
investigated the static response, buckling and free vibration 
of a simply supported sandwich plates with FG face sheets 
and homogeneous core using sinusoidal shear deformation 
plate theory (SSDPT). Hadji et al. [32] employed a four-var-
iable refined plate theory (RPT) to study the free vibration 
analysis of FGM sandwich rectangular plates. The closed 
form solutions are obtained by using the Navier technique. 
Neves et al. [33–35] investigated the static, free vibration 
and buckling analyses of FGM isotropic and sandwich plates 
by using various non-polynomial functions. Ye et al. [36] 
presented a new higher-order refined model for the static 
and free vibration analysis of sandwich plate with FGM soft 
core. Meziane et al. [37] developed an efficient and simple 
refined shear deformation theory for the vibration and buck-
ling of sandwich plate resting on elastic foundations under 
various boundary conditions. The core layer is considered 
as a homogeneous material and the face sheets is assumed 
as FGM. The researchers used a new exponential law distri-
bution to estimate the material properties of the sandwich 
plate. Nguyen et al. [38] proposed a new inverse trigono-
metric shear deformation theory for the static, buckling and 
free vibration analyses of simply supported FGM isotropic 
and sandwich plates. In a later study, Bennoun et al. [39] 
made an attempt to analyze the free vibration behavior of 
simply supported square FGM sandwich plates using a new 
five-variable refined plate theory. Recently, Meksi et al. [40] 
proposed a new four-variable shear deformation plate theory 
for the bending, buckling and free vibration responses of 
FGM sandwich plates. Similarly, Sayyad and Ghugal [41] 
presented a unified five-variable shear deformation theory 
for the bending analysis of a simply supported softcore and 
hardcore functionally graded sandwich beams and plates. 
More recently, a novel displacement field based on expo-
nential-trigonometric HSDT was developed by Belkhodja 
et al. [42] to study the bending, free vibration, and buck-
ling analysis of FGM plates. The material properties of 
the plate are estimated as power (P-FGM) and exponential 
(E-FGM) function. Saini and Lal [43] studied a free vibra-
tion analysis of bi-directional functionally graded circular 
plates subjected to two-dimensional temperature variation 
using FSDT.
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From the previous literature review, we found that the 
majority of researchers used analytical models to study the 
behavior of FGM sandwichs plates/shells. However, the ana-
lytical approaches were limited to simple geometries, certain 
types of gradation of material properties (e.g., exponential 
or power law distribution), special loading cases and spe-
cific types of boundary conditions [44, 45]. Therefore, the 
numerical methods have been chosen to analyze the com-
plex behavior of FGM structures. Among them, the finite 
element method (FEM) is the most popular one. The FEM 
has several advantages in terms of ease in implementation 
of complex loading, arbitrary grading properties, varying 
boundary conditions and ease of solution process [46, 47].

Das et al. [48] developed a C1 triangular plate element 
based on HSDT for modelling thick sandwich panels with 
or without FG core subjected to thermo‐mechanical loading. 
Talha and Singh [49] developed a C0 continuous nine-node 
quadrilateral isoparametric plate element with 13 degrees-
of-freedom (DOFs) for the bending and vibration analysis 
of FGM plates using HSDT. With a similar effort, Natarajan 
and Manickam [50] carried-out the static deflection and free 
vibration analysis of thick/thin FGM sandwich plates using 
a C0 eight nodes quadrilateral element with 13 DOFs per 
node on the basis of HSDT. Nguyen et al. [51] developed 
a new C0 three-node triangular element having 7 DOFs for 
static and vibration analysis of FGM isotropic and sand-
wich plates using HSDT. The formulation of this element is 
based on the Mixed Interpolation of Tensorial Components 
(MITC) approach. In the same year, a C0 nine-node quadri-
lateral plate element based on HSDT is developed by Gupta 
et al. [52] to determine the natural frequencies of FGM plate 
with various boundary conditions. The influences of vol-
ume fraction indices, geometry, material inhomogeneity and 
various boundary conditions on the free vibration of FGM 
plates were demonstrated. In another study, A hybrid-mixed, 
four-node, quadrilateral element for the 3D stress analysis 
of FGM plates is developed by Kulikov et al. [53] using the 
method of sampling surfaces (SaS).

Based on the above discussed literature review, it appears 
that a considerable number of finite element models, based 
on ESL theories, were used in the analysis of FGM struc-
tures. The main advantages of ESL models are their inher-
ent simplicity and their low computational cost, due to the 
number of variables is independent of the number of layers. 
However, ESL approach fails to capture precisely the local 
behavior of FGM sandwich structures [54, 55]. Therefore, 
the use of layerwise (LW) theory, in which the DOFs are 
linked to specific layers, is important for accurate analy-
ses of thin and thick FGM structures [46, 56–63]. The LW 
theory provides a kinematically correct representation of the 
strain field in discrete layers [64, 65]. Liu et al. [66] stud-
ied the free vibration analysis of FGMs sandwich plates by 
using a refined higher-order layerwise model with ANSYS 

software. The authors adopted a FSDT for the face sheets 
and a 3D-elasticity solution for the core. The FGM face 
sheets is modeled using the solid46 element, whereas the 
homogeneous flexible core is modeled using the solid45 ele-
ment. Pandey and Pradyumna [46] presented a new high-
order layerwise plate formulation for static and free vibra-
tion analyses of symmetric FGM sandwich plates. A high 
order displacement field is used for the middle layer and a 
first-order displacement field for top and bottom layers. The 
authors used an eight-node isoparametric element containing 
104 DOFs to model the plate. The effective material proper-
ties of the FGM are computed using rule of mixture (ROM).

From the best knowledge of authors, the literature on the 
analysis of free vibration response of FGM sandwichs plates 
using LW finite element formulation is very few. Therefore, 
combining the advantage of ESL theories, LW theory and 
finite element formulation, an efficient layerwise C0 finite 
element model is presented to investigate the bending and 
free vibration responses of thick/thin FGM sandwichs plates. 
The presented model is an extension of the authors’ earlier 
model presented in [58]. The face sheets and the core are 
modeled individually using, respectively, the FSDT and the 
HSDT. Compatibility conditions are imposed at face sheets/
core interfaces to satisfy the interlaminar displacement 
continuity. Moreover, an eight-node quadrilateral isopara-
metric element with 13 DOFs per node is developed based 
on the proposed model. Three common types of function-
ally graded plates are studied: (i) isotropic FGM plates; (ii) 
sandwich plates with FGM face sheets and homogeneous 
core; (iii) sandwich plates with homogeneous face sheets and 
FGM core. The material properties of FGM sandwich plates 
are varied according to a power-law function. To assess the 
performance and reliability of the present layerwise FE 
model, several examples covering the various features such 
as effects of material distribution, side to-thickness ratio, 
aspect ratios, core-to-face thickness ratio, boundary condi-
tions, volume fraction index, are solved for symmetric and 
non-symmetric FGM sandwich plates. Effects of hardcore 
and softcore on the non-dimensional natural frequencies are 
discussed as well. The author’s results are compared with 
those obtained using the 3D exact elasticity theory, refined 
analytical solutions and other advanced finite element mod-
els. Finally, the new results obtained from this study are 
provided as a benchmark for future investigations.

2 � Theoretical formulation

2.1 � Geometrical configuration

A rectangular isotropic FGM plates is considered as shown 
in Fig. 1. The plate has length a, width b, and thickness 
h. The mid-plane of the plate (z = 0) is considered as the 
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reference plane. In the present study, three types of FGM 
plates are studied: (A) isotropic FGM plates; (B) sandwich 
plates with homogeneous face sheets and FGM core; (C) 
sandwich plates with FGM face sheets and homogeneous 
core.

2.1.1 � Type A: isotropic FGM plates

The plate is graded from a mixture of metal and ceramic, in 
which the composition is varied from the top to the bottom 
surface (see Fig. 1). The volume fraction of the FGM plate 
vary along the thickness direction via a power-law function 
as follows [67]:

where the volume fractions of the ceramic (Vc) and the metal 
(Vm) phases are related by Vc + Vm = 1. k is the volume frac-
tion index (0 ≤ k ≤ +∞) that allows the user to define gra-
dation of material properties through the thickness direc-
tion. The value of ‘k’ equal to 0 and + ∞ represents a fully 
ceramic and metal plate, respectively.

(1)Vc(z) =
(
2z + h

2h

)k

, z ∈
[
−h∕2, h∕2

]

2.1.2 � Type B: sandwich plates with homogeneous face 
sheets and FGM core.

In this type, the top and bottom face sheet, of thickness (ht) 
and (hb), are made of pure ceramic and metal, respectively, 
while the FGM core layer, of thickness (hc), is graded from 
metal to ceramic (see Fig. 2). Thus, there are no interfaces 
between core and face sheets.

The vertical positions of the bottom surface, the two inter-
faces between the layers, and the top surface are denoted by 
h1 = h/2, h2, h3, and h4 =− h/2, respectively. The volume frac-
tion of each component material is defined as:

Here h1 = −
(
h
c
∕2 + h

b

)
, h2 = −h

c
∕2, h3 = h

c
∕2, h4 =

(
h
t
+ h

c
∕2

) as 
shown in Fig. 2.

(2)

V1(z) = 1 for z ∈
[
h3, h4

]
, Top face sheet;

V2(z) =

(
z − h2

h3 − h2

)k

for z ∈
[
h2, h3

]
, Core;

V3(z) = 0 for z ∈
[
h1, h2

]
, Bottom face sheet

Fig. 1   Geometry of a typical FGM plate (Type A)



S3875Engineering with Computers (2022) 38 (Suppl 5):S3871–S3899	

1 3

Fig. 2   Geometry of the sandwich plate with FGM core and homogenous face sheets (Type B)

Fig. 3   Geometry of the sandwich plate with FGM face sheets and homogenous core (Type C)
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2.1.3 � Type C: sandwich plates with FGM face sheets 
and homogeneous core

As shown in Fig. 3, the top and bottom face sheets are 
assumed as FGM through the thickness direction, whereas 
the core is made of an isotropic homogeneous material. In 
this case, the volume fraction of the FGM sandwich plate 
can be expressed as [3, 23]:

Figure 4 show the through thickness variation of the vol-
ume fraction function of the mentioned three cases of FGM 
plates for various values of the power law index k.

2.2 � Estimation of mechanical properties

The effective material properties of the plate, which are 
assumed to varying smoothly across the thickness direction 
due to a power-law distribution, are calculated using the fol-
lowing rule of mixture [68]:

where P(n) (z) represents the effective material properties 
for each layer n (n = 1, 2, 3), viz., Young’s modulus E, Pois-
son’s ratio ν, and mass density � . V(n) is the volume fraction 
of each layer depends on the type of FGM plate. For type B, 
P1 and P2 are the properties of the top and bottom faces of 
layer 1 

(
h1 ≤ z ≤ h2

)
 , respectively, and vice versa for layer 

3 
(
h3 ≤ z ≤ h4

)
 depending on the volume fraction. For type 

C, P1 and P2 are the properties of layer 3 and layer 1, respec-
tively. For simplicity, Poisson’s ratio of plate is assumed to 
be constant in this study for that the effect of Poisson’s ratio 
on deformation is much less than that of Young’s modulus 
[69].

(3)

V1(z) =

(
z − h4

h3 − h4

)k

for z ∈
[
h3, h4

]
, Top face sheet;

V2(z) = 1 for z ∈
[
h2, h3

]
, Core;

V3(z) =

(
z − h1

h2 − h1

)k

for z ∈
[
h1, h2

]
, Bottom face sheet

(4)P(n)(z) = P2 +
(
P1 − P2

)
V (n)

2.3 � Kinematics of the present layerwise model

2.3.1 � Displacement field

In the present layerwise model, the HSDT is adopted for 
the core layer. Hence, the displacements fields are written 
as a cubic pattern for the in-plane displacements, and as a 
constant one for the transverse displacement:

where u0, v0 and w0 are respectively, in-plane and transverse 
displacement components at the mid-plane of the sandwich 
plate. �c

x
 , �c

y
 represent normal rotations about the x and y 

axis, respectively. The parameters �c
x
 , �c

y
 , � c

x
 and � c

y
 are higher 

order terms.
The FSDT is adopted to model the top and bottom face 

sheet. The compatibility conditions as well as the displace-
ment continuity between the face sheets and the core, which 
is assumed to be perfect, leads to the following improved 
displacement fields (Fig. 5):

•	 Top face sheet

where � t
x
 and � t

y
 are the rotations of the top face-sheet cross 

section about the y and x axis, respectively.

•	 Bottom face sheet

(5)

uc = u0 + z�c
x
+ z2�c

x
+ z3� c

x

vc = v0 + z�c
y
+ z2�c

y
+ z3� c

y

wc = w0

(6)

ut = u0 +

(
hc

2

)
�c
x
+

(
h2
c

4

)
�c
x
+

(
h3
c

8

)
� c
x
+

(
z −

hc

2

)
� t
x

vt = v0 +

(
hc

2

)
�c
y
+

(
h2
c

4

)
�c
y
+

(
h3
c

8

)
� c
y
+

(
z −

hc

2

)
� t
y

wt = w0
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Fig. 4   Variation of volume frac-
tion of the ceramic constituent 
through the thickness of three 
types of FGM plates for various 
values of the power law index 
k: a Type (A), b Type (B) and 
c Type C



S3878	 Engineering with Computers (2022) 38 (Suppl 5):S3871–S3899

1 3

where �b
x
 and �b

y
 are the rotations of the bottom face-sheet 

cross section about the y and x axis, respectively.

(7)

ub = u0 −

(
hc

2

)
�c
x
+

(
h2
c

4

)
�c
x
−

(
h3
c

8

)
� c
x
+

(
z +

hc

2

)
�b
x

vb = v0 −

(
hc

2

)
�c
y
+

(
h2
c

4

)
�c
y
−

(
h3
c

8

)
� c
y
+

(
z +

hc

2

)
�b
y

wb = w0

2.3.2 � Strain–displacement relations

The strain–displacement relations corresponding to any 
ith (i = 1, 2, 3) layer of FGM sandwich plate are given as 
follows:

For the core layer,

Fig. 5   Representation of layerwise kinematics and coordinate system

(8)

�c
xx
=

�u0

�x
+ z

��c
x

�x
+ z2

��c
x

�x
+ z3

�� c
x

�x

�c
yy
=

�v0

�y
+ z

��c
y

�y
+ z2

��c
y

�y
+ z3

�� c
y

�y

�c
xy
=

(
�u0

�y
+

�v0

�x

)
+ z

(
��c

x

�y
+

��c
y

�x

)
+ z2

(
��c

x

�y
+

��c
y

�x

)
+ z3

(
�� c

x

�y
+

�� c
y

�x

)

�c
yz
= �c

y
+

�w0

�y
+ 2z�c

y
+ 3z2� c

y

�c
xz
= �c

x
+

�w0

�x
+ 2z�c

x
+ 3z2� c

x
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For the top face sheet,

We follow the same procedure for strain–displacement 
relations of the bottom face sheet.

2.4 � Constitutive equations

The stress–strain relationship of FGM sandwich plate, for 
three layers (n = 1, 2, 3), is given by:

(9)

�t
xx
=

�ut

�x
=

�u0

�x
+

(
hc

2

)
��c

x

�x
+

(
h2
c

4

)
��c

x

�x
+

(
h3
c

8

)
�� c

x

�x
+ (z −

hc

2
)
�� t

x

�x

�t
yy
=

�vt

�y
=

�v0

�x
+

(
hc

2

)��c
y

�y
+

(
h2
c

4

)
��c

y

�y
+

(
h3
c

8

)
�� c

y

�y
+ (z −

hc

2
)
�� t

y

�y

� t
xy
=

�ut

�y
+

�vt

�x
=

(
�u0

�y
+

�v0

�x

)
+

hc

2

(
��c

x

�y
+

��c
y

�x

)
+

h2
c

4

(
��c

x

�y
+

��c
y

�x

)

+
h3
c

8

(
�� c

x

�y
+

�� c
y

�x

)
+ (z −

hc

2
)

(
�� t

x

�y
+

�� t
y

�x

)

� t
yz
=

�w0

�y
+ � t

y

� t
xz
=

�w0

�x
+ � t

x

(10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�xx

�yy

�yz

�xz

�xy

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

=

⎡⎢⎢⎢⎢⎢⎣

Q11 Q12 0 0 0

Q21 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

⎤⎥⎥⎥⎥⎥⎦

(n)⎧⎪⎪⎪⎨⎪⎪⎪⎩

�xx

�yy

�yz

�xz

�xy

⎫⎪⎪⎪⎬⎪⎪⎪⎭

(n)

where Qij is the stiffness coefficient matrix, which are func-
tions of coordinate z, defined as:

For the core layer, the efforts resultants are obtained by 
integration of the stresses through the thickness direction of 
laminated plate.

Q11 = Q22 =
E(z)

1 − �2(z)
, Q12 = Q21 = �(z)Q11, Q44 = Q55 =

Q66 =
E(z)

2(1 − �(z))

Fig. 6   Geometry and corresponding DOFs of the present element
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where N and M denote membrane and bending moment, 
respectively, and N and M are the higher order moment 
resultants. V is the shear resultant; S and R are the higher 
order shear resultant.

Substituting Eq.  (10) into Eq.  (11) and integrating 
through the thickness of the plate, the stress resultants of 
the core are given as:

where 
[
Aij

]
,
[
Bij

]
 are the elements of the reduced stiffness 

matrices of the core, defined by:

According to the FSDT, the constitutive equations for the 
two face sheets are:

where the elements of reduced stiffness matrices of the 
face sheets are given by:

•	 Top face sheet
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•	 Bottom face sheet

3 � Finite element formulation

In the present work, a Co eight-node isoparametric element, 
denoted FEM-Q8-LW, with 13 DOFs per node is developed for 
free vibration of functionally graded sandwich plates. This new 
element is formulated based on recently proposed layerwise 
model. Each node contains: two rotational DOFs for each face 
sheet, six rotational DOFs for the core, while the three transla-
tions DOFs are common for sandwich layers (Fig. 6). One of 
the characteristic features of the element is imposed the same 
transverse displacement of each layer. Hence, the number of 
variables is fixed and does not increase when increasing the 
number of layers. The proposed model can provide more accu-

rate results for symmetric and non-symmetric thin/thick FGM 
sandwich plate with various boundary conditions and arbitrary 
FG material distribution. Further, the numerical results show 
that the present finite element model is free of shear locking and 
have a high accuracy and fast rate of convergence.

The displacements vectors at any point of coordinates (x, 
y) of the plate are given by:

(15)
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where �i =
{
u0i v0i w0i �c

xi
�c
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�c
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xi

� c
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� t
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� t
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�b
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}T

 
is the displacement vector corresponding to node i (i = 1–8). 
Ni are the classical serendipity interpolation functions which 
given as:

The generalized strain vector for three layers can be 
expressed in terms of nodal displacements vector as follows:

where the matrices 
[
B
(k)

i

]
 relate the strains to nodal 

displacements.

4 � Governing differential equation

In this work, Hamilton’s principle is applied to formulate 
governing equation for the bending and free vibration analy-
ses of FGM sandwich plate, which is given as:

where t is the time, U is the strain energy, W is the work 
done due to external force and T is the kinetic energy.

The variation of strain energy of FGM sandwich plate is 
the summation of contribution from the two face sheets and 
from the core as:

The work done by external transverse static load of inten-
sity f(x, y) on jth element is

(18)
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where fj is the nodal load vector corresponding to jth 

element.
The variation of kinetic energy for an ith layer of a FGM 

sandwich plate can be expressed as:

where ui, vi and wi are the displacement in x, y and z direc-
tions, respectively, of the three-layered sandwich (i = t, c, b), 
ρi (z) are the effective density of the FGM sandwich plate, 
and (..) is a second derivative with respect to time.

•	 Kinetic energy of the core

From the displacement field of the core, defined by Eq. (5), 
the kinetic energy of the core can be expressed as:

where the inertia moments of the core Ii = (i = 0–6) are 
defined by:

We follow the same procedure for kinetic energy of the 
face sheets.
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)
dVb

(24)

𝛿Tc = ∫
Ω0

[
I0
(
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For linear static analysis, the equilibrium equation can be 
expressed as follows:

where {F} and [Ke] are the load vector and the element 
stiffness matrix of the plate, respectively.

For free vibration problem, the work done by external 
forces and the damping are neglected. The Hamilton’s prin-
ciple (Eq. 20) leads to the following dynamic equilibrium 
equation of a system.

where [Me] and [Ke] denote the total element mass matrix 
and the total element stiffness matrix respectively, which are 
computed using the Gauss numerical integration.

The total element stiffness matrix is the summation of 
contribution from the two face sheets and from the core as:

where the element stiffness matrix of the two face sheet 
is given by:

a.	 Top face sheet:

b.	 Bottom face sheet:
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For the core, the element stiffness matrix can be written 
as:

The total element mass matrix, for the three-layer sand-
wich plate, can be written as

where 
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]
 , 
[
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 and 
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 are the consistent mass matrices 

of the top face sheet, core and the bottom face sheet, respec-
tively, containing inertia terms.

(31)

[
K(c)
e

]
= ∬

([
B(0)
�

]T
[A]

[
B(0)
�

]
+
[
B(0)
�

]T
[B]

[
B(1)
�

]
+
[
B(0)
�

]T
[D]

[
B(2)
�

]

+
[
B(0)
�

]T
[E]

[
B(3)
�

]
+
[
B(1)
�

]T
[B]

[
B(0)
�

]
+
[
B(1)
�

]T
[D]

[
B(1)
�

]

+
[
B(1)
�

]T
[E]

[
B(2)
�

]
+
[
B(1)
�

]T
[F]

[
B(3)
�

]
+
[
B(2)
�

]T
[D]

[
B(0)
�

]

+
[
B(2)
�

]T
[E]

[
B(1)
�

]
+
[
B(2)
�

]T
[F]

[
B(2)
�

]
+
[
B(2)
�

]T
[L]

[
B(3)
�

]

+
[
B(3)
�

]T
[E]

[
B(0)
�

]
+
[
B(3)
�

]T
[F]

[
B(1)
�

]
+
[
B(3)
�

]T
[L]

[
B(2)
�

]

+
[
B(3)
�

]T
[H]

[
B(3)
�

]
+
[
B(0)
�s

]T[
As
][
B(0)
�s

]
+
[
B(0)
�s

]T[
Bs
][
B(1)
�s

]

+
[
B(0)
�s

]T[
Ds

][
B(2)
�s

]
+
[
B(1)
�s

]T[
Bs
][
B(0)
�s

]
+
[
B(1)
�s

]T[
Ds

][
B(1)
�s

]

+
[
B(1)
�s

]T[
Es
][
B(2)
�s

]
+
[
B(2)
�s

]T[
Ds

][
B(0)
�s

]
+
[
B(2)
�s

]T[
Es
][
B(1)
�s

]

+
[
B(2)
�s

]T[
Fs
][
B(2)
�s

])
dA

(32)

[
Me

]
= ∬

(
[N]T

[
m(t)

]
[N] + [N]T

[
m(c)

]
[N]+[N]T

[
m(b)

]
[N]

)
dA



S3883Engineering with Computers (2022) 38 (Suppl 5):S3871–S3899	

1 3

Table 1   Boundary conditions used in the present study

Boundary conditions Abbreviations Restrained edges

Simply supported SSSS w
0
= �c

x
= �c

x
= � c

x
= � t

x
= �b

x
= 0 at x= ± a∕2

w
0
= �c

y
= �c

y
= � c

y
= � t

y
= �b

y
= 0 at x= ± b∕2

Clamped CCCC​ w
0
= �c

x
= �c

y
= �c

x
= �c

y
= � c

x
= � c

y
= � t

x
= � t

y
= �b

x
= �b

y
= 0

Simply supported-Clamped SCSC Simply supported at x = ±a∕2

Clamped at y = ±b∕2

Simply supported-Free SFSF Simply supported at x = ±a∕2

Free at y = ±b∕2

Simply supported-Clamped-Free SCSF Simply supported at x = ±a∕2

Clamped at y = −b∕2 , Free at y = b∕2

Simply supported-Free SSSF Simply supported at x = ±a∕2 and y = −b∕2

Free at y = b∕2

Simply supported-Clamped SSSC Simply supported at x = ±a∕2 and y = −b∕2

Clamped at y = b∕2

Table 2   Material properties 
used in the FG plate

Properties Metal Ceramic

Aluminum
(Al*)

Aluminum
(Al)

Alumina (Al2O3) Zirconia 
(ZrO2-1)

Zirconia 
(ZrO2-2)

E (GPa) 70 70 380 200 151
υ 0.3 0.3 0.3 0.3 0.3
� (Km/m3) 2702 2707 3800 5700 3000

Now, after evaluating the stiffness and mass matrices 
for all elements, the governing equations for free vibration 
analysis of FGM sandwich plate can be stated in the form of 
generalized eigenvalue problem.

where, ω denote the natural frequency, [K] is he global 
stiffness matrix, [M] is the global mass matrix, {�} are the 
vectors defining the mode shapes.

5 � Numerical results and discussions

In this section, several numerical examples are presented 
and discussed to demonstrate the accuracy and robust-
ness of the developed layerwise FE model in predicting 
the bending and free vibration responses of functionally 
graded sandwich plates. A wide range of comparison and 
convergence studies are presented with 2D/3D elastic-
ity solutions and others finite elements numerical results 
found in the literature. The effect of different materials and 

(33)[K]{�} − �2[M]{�} = 0

geometric parameters with arbitrary boundary conditions 
are carried-out in the present study. The applied bound-
ary conditions and the material properties of FGM plates, 
considered for all examples, are illustrated in Tables 1 and 
2, respectively.

Several kinds of FGM sandwich plates are considered for 
presenting the numerical results.

•	 The (1-1-1) FGM sandwich plate: the plate is symmetric 
and made of three equal-thickness layers.

•	 The (1-0-1) FGM sandwich plate: the plate is symmetric 
and made of two layers of equal thickness without a core.

•	 The (2-1-2) FGM sandwich plate: the core has half the 
thickness of the functionally graded face sheets.

•	 The (1-2-1) FGM sandwich plate: the functionally graded 
face sheets have half the thickness of the core.

•	 The (2-1-1) FGM sandwich plate: the plate is non-sym-
metric and here the core thickness equals the top face 
thickness while it is half the bottom face thickness.

•	 The (1-8-1) FGM sandwich plate: the core is eight times 
thicker than the individual face sheets.
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5.1 � Bending analysis

To verify the robustness and the accuracy of the proposed 
layerwise finite element formulation, it is necessary to vali-
date it in the static analysis.

Example 1  In the first example, the convergence test of the 
developed finite element is carried out for a square isotropic 
FGM plate subjected to uniformly distributed load. The sin-
gle layered is made of aluminum and zirconia (Al/ZrO2) 
and their corresponding material properties are provided in 
Table 1. The top surface of FGM plate is ceramic-rich and 
the bottom surface is metal-rich. The study is performed 
for different volume fraction index (k) and boundary condi-
tions with side-to-thickness ratio a/h = 5. The convergence 
of non-dimensional center deflections is reported in Table 3 
for different mesh sizes (4 × 4, 6 × 6 and 8 × 8). The obtained 
results are compared with moving kriging (MK) meshfree 
methods based on HSDT [70], such as third shear deforma-
tion plate theory (TSDT), exponential shear deformation 
plate theory (ESDT) and inverse trigonometric shear defor-
mation plate theory (ITSDT); and another HSDT model [71] 

Table 3   Non-dimensional 
center deflections ( w ) of Al/
ZrO2 FGM square plate 
subjected to uniformly 
distributed load with different 
boundary conditions and 
volume fraction index (k)

a The non-dimensional center deflections are expressed as: w =
100wEmh

3

12(1−�2)q0a
4

References Models k

Ceramic 0.5 1 2 4 8 Metal

Boundary conditions: SFSF
 Present element (4 × 4) FEM-Q8-LW 0.5059a 0.6921 0.8110 0.9299 1.0186 1.1017 1.4533
 Present element (6 × 6) FEM-Q8-LW 0.5057 0.6919 0.8108 0.9296 1.0182 1.1014 1.4538
 Present element (8 × 8) FEM-Q8-LW 0.5057 0.6919 0.8108 0.9295 1.0182 1.1013 1.4537
 Gilhooley et al. [71] HOSNDPT 0.5019 0.7543 0.8708 0.9744 – – 1.4345
 Nguyen et al. [70] MK-TSDT 0.5098 0.7621 0.8793 0.9846 1.0717 1.1602 1.4563

MK-ESDT 0.5089 0.7613 0.8791 0.9845 1.0714 1.1587 1.4553
MK-ITSDT 0.5088 0.7609 0.8781 0.9840 1.0703 1.1576 1.4544

Boundary conditions: SSSS
 Present element (4 × 4) FEM-Q8-LW 0.1705 0.2318 0.2716 0.3133 0.3467 0.3768 0.4899
 Present element (6 × 6) FEM-Q8-LW 0.1705 0.2322 0.2718 0.3134 0.3468 0.3770 0.4901
 Present element (8 × 8) FEM-Q8-LW 0.1706 0.2319 0.2718 0.3135 0.3468 0.3770 0.4901
 Gilhooley et al. [71] HOSNDPT 0.1671 0.2505 0.2905 0.3280 – – 0.4775
 Nguyen et al. [70] MK-TSDT 0.1712 0.2549 0.2949 0.3326 0.3647 0.3949 0.4892

MK-ESDT 0.1710 0.2546 0.2946 0.3325 0.3646 0.3944 0.4886
MK-ITSDT 0.1707 0.2542 0.2942 0.3321 0.3641 0.3937 0.4878

Boundary conditions: CCCC​
 Present element (4 × 4) FEM-Q8-LW 0.0751 0.1000 0.1169 0.1368 0.1557 0.1724 0.2158
 Present element (6 × 6) FEM-Q8-LW 0.0750 0.0999 0.1168 0.1366 0.1554 0.1720 0.2153
 Present element (8 × 8) FEM-Q8-LW 0.0750 0.0999 0.1167 0.1366 0.1554 0.1720 0.2153
 Gilhooley et al. [71] HOSNDPT 0.0731 0.1073 0.1253 0.1444 – – 0.2088
 Nguyen et al. [70] MK-TSDT 0.0713 0.1045 0.1219 0.1404 0.1571 0.1705 0.2036

MK-ESDT 0.0708 0.1038 0.1212 0.1397 0.1562 0.1692 0.2022
MK-ITSDT 0.0703 0.1032 0.1205 0.1389 0.1553 0.1680 0.2010

using more variables (18 DOFs/node). It is clear, for all the 
boundary conditions and the volume fraction index (k), that 
the present results are in good agreement with the existing 
solutions, as shown in Table 3. Thus, the performance of 
present finite element formulation is confirmed in terms of 
both accuracy and rate of convergence. Moreover, it can be 
clear, for all the applied boundary conditions (SFSF, SSSS 
and CCCC) that increasing the volume fraction index (k) 
results in an increase the central deflection (see Fig. 7). This 
behaviour is expected because the larger volume fraction 
index means the plate has a smaller ceramic component 
whose Young’s modulus is greater than that of metal and 
hence, the stiffness is reduced. In addition, it is evident that 
the central deflection decreases as the rigidity of boundary 
restraint is increased.

Example 2.  This example is performed for symmetric and 
non-symmetric square FGM sandwich plate of type C. The 
face sheets are assumed to be made of FGM layers. The 
bottom face sheet are graded from metal to ceramic (Al/
ZrO2) and the core layer is made of pure ceramic (ZrO2). 
The plate is fully clamped along their sides (CCCC) and 
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subjected to sinusoidal load, q = q0 sin (πx/a) sin (πy/b). For 
the current study, five different core-to-face sheets thick-
ness ratio hb-hc-ht (1–0-1, 2–1-2, 1–1-1, 2–2-1, 1–2-1), three 
side-to-thickness ratio a/h (5, 10, 100) and four volume frac-
tion index k (0, 1, 5, 10) are considered. From the previous 
example, it is evident that a (6 × 6) mesh has been found to 
give good convergence for this type of plates. Therefore, 
this mesh size is employed in the present analysis. The non-
dimensional center deflections are presented in Table 4. 
The present results are compared with triangular element 
model (MITC3) of Nguyen et al. [40] using HSDT and those 
obtained by Pluciński and Jaśkowiec [61] using 3D finite 
elements models (FEM23-1, ABAQUS). A good agreement 
between the results is obtained for all schemes, volume frac-
tion index and both thin and thick FGM sandwich plates. 
Further, it should be noted that the developed element is free 
from shear locking phenomena where it is able to provide 
excellent results for thin FGM sandwich plate (a/h = 100). 
Figure 8 show the variation of the non-dimensional deflec-
tion with varying volume fraction index (k). In addition, the 
effect of volume fraction index (k) on the non-dimensional 
central deflection for different core-to-face sheets thick-
ness ratio (hc/hf) is illustrated in Fig. 9. It can be seen that 
the lowest and highest values of deflection correspond to 
the (1-0-1) and (1-2-1) FGM sandwich plate, respectively. 
For the case of (1-2-1) plate, it is observed that as the core 

thickness increases, the deflection value decreases. This is 
due to high proportion of ceramic which leads the plate to 
be more rigid.

5.2 � Free vibration analysis

The robustness of the present layerwise finite element for-
mulation is also verified for free vibration analysis of func-
tionally graded sandwich plates.

Example 3  For the verification purpose, the convergence of 
developed finite element model is examined for thin and 
thick square isotropic FGM (Al*/ZrO2) plate. The plate is 
simply supported on all four sides. In the present analysis, 
different side-to-thickness ratio (a/h) and volume fraction 
index (k) are considered. The non-dimensional natural fre-
quencies is reported in Table 5 using different mesh sizes 
(4 × 4, 6 × 6 and 8 × 8). The present results are compared 
with the 3D-elasticity solutions [72], the analytical results 
based on HSDT [42] as well as finite element solutions 
[51]. The comparison shows that the performance of the 
present finite element formulation, for both thin and thick 
FGM plates, is very good in terms of the efficiency and 
the rate of convergence with mesh refinement. Indeed, for 
moderately thick plate (a/h = 10), the maximum percent-
age error predicted by present element in comparison with 

Fig. 7   Effects of volume frac-
tion index (k) with different 
boundary conditions on the non-
dimensional center deflexion of 
Al/ZrO2 FGM square plate sub-
jected to uniformly distributed 
load (a/h = 5)
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Table 4   Non-dimensional 
center deflections ( w ) of 
clamped square sandwich 
plates with Al/ZrO2 FGM face 
sheets subjected to sinusoidally 
distributed load

a The non-dimensional center deflections are expressed as: w = 10wh3Ec

/
a4q0

a/h k Reference Models Plate configuration

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1

100 0 Present element FEM-Q8-LW 0.0944a 0.0944 0.0944 0.0945 0.0944
Nguyen et al. [51] MITC3-HSDT 0.0961 0.0961 0.0961 0.0961 0.0961
Pluciński and Jaśkowiec [61] FEM23-l 0.0992 0.0992 0.0992 0.0992 0.0992

ABAQUS 0.0994 0.0995 0.0995 0.0995 0.0995
1 Present element FEM-Q8-LW 0.1561 0.1477 0.1408 0.1355 0.1306

Nguyen et al. [51] MITC3-HSDT 0.1601 0.1516 0.1445 0.1389 0.1339
Pluciński and Jaśkowiec [61] FEM23-l 0.1658 0.1571 0.1497 0.1438 0.1386

ABAQUS 0.1662 0.1576 0.1501 0.1442 0.1390
5 Present element FEM-Q8-LW 0.1978 0.1891 0.1791 0.1686 0.1612

Nguyen et al. [51] MITC3-HSDT 0.2025 0.1945 0.1844 0.1734 0.1661
10 Present element FEM-Q8-LW 0.2018 0.1952 0.1859 0.1746 0.1677

Nguyen et al. [51] MITC3-HSDT 0.2061 0.2005 0.1915 0.1797 0.1728
Pluciński and Jaśkowiec [61] FEM23-l 0.2130 0.2080 0.1988 0.1864 0.1795

ABAQUS 0.2135 0.2083 0.1993 0.1869 0.1800
10 0 Present element FEM-Q8-LW 0.1147 0.1155 0.1161 0.1284 0.1167

Nguyen et al. [51] MITC3-HSDT 0.1156 0.1156 0.1156 0.1156 0.1156
Pluciński and Jaśkowiec [61] FEM23-l 0.1159 0.1159 0.1159 0.1159 0.1159

ABAQUS 0.1159 0.1159 0.1159 0.1159 0.1158
1 Present element FEM-Q8-LW 0.1875 0.1777 0.1698 0.1723 0.1585

Nguyen et al. [51] MITC3-HSDT 0.1862 0.1760 0.1679 0.1619 0.1563
Pluciński and Jaśkowiec [61] FEM23-l 0.1868 0.1766 0.1684 0.1625 0.1567

ABAQUS 0.1868 0.1765 0.1684 0.1625 0.1567
5 Present element FEM-Q8-LW 0.2380 0.2266 0.2145 0.2081 0.1939

Nguyen et al. [51] MITC3-HSDT 0.2363 0.2238 0.2116 0.1996 0.1909
10 Present element Q8LW 0.2437 0.2340 0.2226 0.2147 0.2013

Nguyen et al. [51] MITC3-HSDT 0.2429 0.2312 0.2196 0.2067 0.1983
Pluciński and Jaśkowiec [61] FEM23-l 0.2446 0.2337 0.2213 0.2088 0.1993

ABAQUS 0.2446 0.2334 0.2212 0.2087 0.1992
5 0 Present element FEM-Q8-LW 0.1568 0.1596 0.1616 0.1919 0.1638

Nguyen et al. [51] MITC3-HSDT 0.1652 0.1652 0.1652 0.1652 0.1652
Pluciński and Jaśkowiec [61] FEM23-l 0.1622 0.1622 0.1622 0.1622 0.1622

ABAQUS 0.1622 0.1622 0.1622 0.1622 0.1622
1 Present element FEM-Q8-LW 0.2455 0.2328 0.2238 0.2407 0.2116

Nguyen et al. [51] MITC3-HSDT 0.2496 0.2351 0.2248 0.2182 0.2111
Pluciński and Jaśkowiec [61] FEM23-l 0.2451 0.2307 0.2205 0.2145 0.2070

ABAQUS 0.2451 0.2306 0.2204 0.2144 0.2069
5 Present element FEM-Q8-LW 0.3147 0.2929 0.2758 0.2792 0.2512

Nguyen et al. [51] MITC3-HSDT 0.3195 0.2935 0.2754 0.2619 0.2497
10 Present element FEM-Q8-LW 0.3262 0.3040 0.2860 0.2868 0.2596

Nguyen et al. [51] MITC3-HSDT 0.3346 0.3046 0.2856 0.2709 0.2581
Pluciński and Jaśkowiec [61] FEM23-l 0.3326 0.3054 0.2841 0.2708 0.2546

ABAQUS 0.3326 0.3053 0.2839 0.2707 0.2543
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Fig. 8   Variation of the non-
dimensional deflection of 
clamped square 1-0-1 FGM 
sandwich plate of type C 
subjected to sinusoidal load for 
different volume fraction index 
(k)

Fig. 9   Effect of volume fraction 
index (k) with different core-
to-face sheets thickness ratio 
on the non-dimensional center 
deflexion of clamped square 
sandwich plates with FGM face 
sheets (a/h = 10)
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Table 5   Non-dimensional fundamental frequency ( � ) of simply supported square Al*/ZrO2 FGM plates

a Error = [(Present result- Exact-3D [72] / Exact-3D [72]] × 100
b The natural frequencies are expressed as: � =

�ab

�2h

√
12(1 − �2)

�c

Ec

a/h References Models k

0 0.1 0.2 0.5 1 2 5 10

2 Present element (4 × 4) FEM-Q8-LW 1.2476b 1.2160 1.1915 1.1366 1.0816 1.0285 0.9724 0.9449
Présent element (6 × 6) FEM-Q8-LW 1.2470 1.2148 1.1909 1.1360 1.0810 1.0279 0.9718 0.9443
Présent element (8 × 8) FEM-Q8-LW 1.2470 1.2148 1.1909 1.1360 1.0810 1.0279 0.9718 0.9437
Uymaz and Aydogdu [72] 3D- Elasticity 1.2589 1.2296 1.2049 1.1484 1.0913 1.0344 0.9777 0.9507
Errora (%) 0,9452 1,2036 1,1619 1,0798 0,9438 0,6284 0,6035 0,7363
Belkhodja et al. [42] HSDT 1.2538 1.2239 1.1983 1.1412 1.0856 1.0322 0.9748 0.9468
Nguyen et al. [51] MITC3-HSDT 1.2502 1.2210 1.1960 1.1390 1.0821 1.0268 0.9717 0.9466

5 Present element (4 × 4) FEM-Q8-LW 1.7737 1.7211 1.6830 1.5991 1.5229 1.4618 1.4077 1.3703
Present element (6 × 6) FEM-Q8-LW 1.7725 1.7199 1.6815 1.5979 1.5218 1.4606 1.4065 1.3692
Present element (8 × 8) FEM-Q8-LW 1.7722 1.7196 1.6815 1.5976 1.5214 1.4606 1.4065 1.3692
Uymaz and Aydogdu [72] 3D- Elasticity 1.7748 1.7262 1.6881 1.6031 1.4764 1.4628 1.4106 1.3711
Errora (%) 0,1465 0,3823 0,3910 0,3431 3,0480 0.1504 0,2907 0,1386
Belkhodja et al. [42] HSDT 1.7687 1.7220 1.6827 1.5979 1.5217 1.4605 1.4059 1.3690
Nguyen et al. [51] MITC3-HSDT 1.7782 1.7270 1.6893 1.6057 1.5293 1.4677 1.4132 1.3764

10 Present element (4 × 4) FEM-Q8-LW 1.9386 1.8774 1.8341 1.7416 1.6595 1.5998 15,505 1.5103
Present element (6 × 6) FEM-Q8-LW 1.9371 1.8759 1.8326 1.7401 1.6580 1.5983 1.5491 1.5088
Present element (8 × 8) FEM-Q8-LW 1.9356 1.8759 1.8326 1.7401 1.6580 1.5983 1.5491 1.5088
Uymaz and Aydogdu [72] 3D- Elasticity 1.9339 1.8788 1.8357 1.7406 1.6583 1.5968 1.5491 1.5066
Errora (%) 0,0879 0,1544 0.1689 0,0287 0,0181 0.0939 0,0000 0,1460
Belkhodja et al. [42] HSDT 1.9318 1.8785 1.8341 1.7398 1.6583 1.5986 1.5492 1.5083
Nguyen et al. [51] MITC3-HSDT 1.9426 1.8863 1.8426 1.7488 1.6674 1.6074 1.5578 1.5168

20 Present element (4 × 4) FEM-Q8-LW 1.9896 1.9263 1.8816 1.7855 1.7025 1.6434 15,962 1.5544
Present element (6 × 6) FEM-Q8-LW 1.9872 1.9245 1.8798 1.7837 1.7007 1.6416 1.5944 1.5526
Present element (8 × 8) FEM-Q8-LW 1.9872 1.9239 1.8792 1.7831 1.7001 1.6416 1.5944 1.5520
Uymaz and Aydogdu [72] 3D- Elasticity 1.9570 1.9261 1.8788 1.7832 1.6999 1.6401 1.5937 1.5491
Errora (%) 1,5432 0,1142 0.0213 0,0056 0,0118 0.0915 0,0439 0,1872
Belkhodja et al. [42] HSDT 1.9821 1.9267 1.8806 1.7833 1.7004 1.6415 1.5943 1.5521
Nguyen et al. [51] MITC3-HSDT 1.9932 1.9286 1.8822 1.7908 1.7098 1.6507 1.6032 1.5608

50 Present element (4 × 4) FEM-Q8-LW 2.0080 1.9442 1.8990 1.8016 1.7181 1.6595 1.6125 1.5699
Present element (6 × 6) FEM-Q8-LW 2.0027 1.9389 1.8934 1.7964 1.7132 1.6546 1.6084 1.5655
Present element (8 × 8) FEM-Q8-LW 2.0020 1.9386 1.8931 1.7960 1.7128 1.6543 1.6080 1.5651
Uymaz and Aydogdu [72] 3D-Elasticity 1.9974 1.9390 1.8920 1.7944 1.7117 1.6522 1.6062 1.5620
Errora (%) 0,2303 0,0206 0.0581 0,0892 0,0643 0.1271 0,1121 0,1985
Belkhodja et al. [42] HSDT 1.9971 1.9410 1.8944 1.7962 1.7129 1.6543 1.6078 1.5652
Nguyen et al. [51] MITC3-HSDT 2.0028 1.9274 1.8888 1.8001 1.7188 1.6598 1.6129 1.5700

100 Present element (4 × 4) FEM-Q8-LW 2.0221 1.9580 1.9236 1.8147 1.7311 1.6714 1.6237 1.5804
Present element (6 × 6) FEM-Q8-LW 2.0057 1.9416 1.8953 1.7983 1.7162 1.6565 1.6102 1.5685
Present element (8 × 8) FEM-Q8-LW 2.0042 1.9401 1.8953 1.7983 1.7147 1.6565 1.6102 1.5670
Uymaz and Aydogdu [72] 3D-Elasticity 1.9974 1.9416 1.8920 1.7972 1.7117 1.6552 1.6062 1.5652
Errora (%) 0,3404 0,0773 0.1744 0,0612 0,1753 0.0785 0,2490 0,1150
Belkhodja et al. [42] HSDT 1.9993 1.9431 1.8964 1.7981 1.7147 1.6562 1.6098 1.5671
Nguyen et al. [51] MITC3-HSDT 2.0050 1.9272 1.8885 1.7999 1.7188 1.6599 1.6132 1.5704
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3D-Exact elasticity solution of Uymaz and Aydogdu [72], 
is 0.0287%, 0.0181%, 0.0939%, 0.0000% with respect to 
the volume fraction index (k) of 0.5, 1, 2 and 5. For thin 
plate (a/h = 100) with k = 0.1, the maximum percentage 
error is about 0.0773% for the present model and 0.7417% 
for Nguyen model [40] when compared with the exact 3D 
dimensional solution [72]. Furthermore, the effect of side-
to-thickness ratio (a/h) and volume fraction index (k) on the 
fundamental natural frequency is illustrated in Fig. 10. It 
can be seen that the fundamental natural frequency increases 
with increased side-to-thickness ratio (a/h) up to a/h = 20 
and then varies constantly in all cases. This probably can be 
explained by the effect of shear deformation which is less 
significant when the thickness decreases (a/h > 20). To con-
clude, the non-dimensional fundamental frequency of thick 
FGM sandwich plates is more sensitive side-to-thickness 
ratio than that of thin ones. Besides, by increasing the vol-
ume fraction index (k), the fundamental natural frequency 
decreases. This is due to the reduction of the rigidity of plate 
because of the high proportion of metal. This latter having a 
Young’s modulus lower than that of ceramic. 

Example 4  In the 4th example, a rectangular FGM plate 
made of aluminum (Al) and alumina (Al2O3) is studied for 
different volume fraction index and side-to-thickness ratio. 
Both square (b = a) and rectangular (b = 2a) plates are con-
sidered. Numerical results have been obtained for six differ-
ent combinations of symmetric (SSSS, SCSC, SFSF) and 

asymmetric (SCSF, SSSC, SSSF), boundary conditions. 
Based on the convergence study, a mesh size with 6 × 6 ele-
ments is sufficient to obtain an accurate results. The com-
parison results presented in Table 6 and in Fig. 11 show 
the accuracy of the developed element where one can see 
clearly, for all types of boundary conditions, that the present 
results are in excellent agreement with the 3D-Exact elastic-
ity solutions of Jin et al. [73]. Indeed, for b/a = 2, a/h = 10 
and k = 5, the maximum percentage error of fundamental 
frequency under boundary conditions SSSS, SCSC, SFSF, 
SCSF, SSSC, and SSSF when compared with the 3D-Exact 
elasticity solution [73] is 0.2335, 0.5395, 0.0538, 0.1759, 
0.3862 and 0.0000, respectively. Further, the excellent accu-
racy of the new element is insensitive to boundary condi-
tions. In addition, it can be observed, for both square and 
rectangular FGM plates, that the lowest fundamental natural 
frequency is observed for SSSF, SFSF and SCSF boundary 
conditions, while the highest fundamental natural frequency 
is seen for SCSC and SSSC boundary conditions, as shown 
in Fig.  11. Generally speaking, the natural frequencies 
increase as the rigidity of boundary restraint is increased.

Example 5  After establishing the performance of present 
model for isotropic FGM plates, the free vibration analy-
sis of square sandwich plates with FGM face sheets and 
homogenous core (Type C) is examined in this example. 
The plate is simply supported on all four sides. The present 
study is performed for two cases of FGM sandwich plates, 

Fig. 10   Effect of side-to-
thickness ratio (a/h) with 
volume fraction index (k) on the 
non-dimensional fundamental 
frequency of clamped square 
sandwich plates with FGM face 
sheets
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namely, hardcore and softcore. In the case of hardcore, the 
bottom face sheet is graded from ceramic to metal (Al2O3/
Al) and the core layer is made of pure metal (Al). For the 
case of softcore, the plate is made of pure ceramic core 
(Al2O3) and the upper and lower surfaces of the bottom face 
sheet are rich in metal and ceramic (Al/Al2O3), respectively. 
The computed results are obtained for five different core-
to-face sheets thickness ratio hb-hc-ht (1-0-1, 2-1-2, 1-1-1, 
1-2-1, 1-8-1), three side-to-thickness ratio a/h (5, 10, 100) 
and five volume fraction index k (0, 0.5, 1, 5, 10). A mesh 
size of 6 × 6 is considered for the analysis. The accuracy of 
the developed finite element, for both hardcore and soft-
core, can be seen, respectively, in Table 7 and 8. One can 
see clearly that the present results are very close to those 

of 3D-elasticity solutions of Li, Iu et al. [3], the finite ele-
ment model of Pandey and Pradyumna [37] and the mesh-
less solution based on spline radial basis function by Xiang 
et al. [74]. It can be clearly seen, from these results, that 
the non-dimensional fundamental frequencies for hardcore 
FGM sandwich plates decreased with an increase in volume 
fraction index (see Fig. 12), whereas the opposite nature 
of variation in non-dimensional fundamental frequencies is 
observed for softcore FGM sandwich plates (see Fig. 13). 
This is due to the difference in stiffness parameters due to 
change in material properties. It is also pointed out that, 
for hardcore FGM sandwich plates, the non-dimensional 
fundamental frequencies is maximum for (1-8-1) plate 
and minimum for (1-0-1) plate, whereas for softcore FGM 

Table 6   Non-dimensional 
fundamental frequency ( � ) 
of rectangular Al/Al2O3 FGM 
plates with different boundary 
conditions

a The natural frequencies are expressed as: � = �h

√
�m

/
Em

b/a a/h k Reference Models BCs

SSSS SCSC SFSF SCSF SSSC SSSF

1 10 0 Present element FEM-Q8-LW 0.1137a 0.1592 0.0563 0.0731 0.1336 0.0678
Jin et al. [73] 3D-Elasticity 0.1135 0.1604 0.0562 0.0731 0.1339 0.0677

1 Present element FEM-Q8-LW 0.0868 0.1225 0.0429 0.0557 0.1023 0.0517
Jin et al. [73] 3D-Elasticity 0.0870 0.1236 0.0430 0.0559 0.1029 0.0518

2 Present element FEM-Q8-LW 0.0787 0.1109 0.0389 0.0506 0.0927 0.0469
Jin et al. [73] 3D-Elasticity 0.0789 0.1118 0.0390 0.0507 0.0932 0.0470

5 Present element FEM-Q8-LW 0.0740 0.1031 0.0367 0.0476 0.0867 0.0442
Jin et al. [73] 3D-Elasticity 0.0741 0.1038 0.0368 0.0477 0.0871 0.0443

5 0 Present element FEM-Q8-LW 0.4163 0.5351 0.2144 0.2712 0.4707 0.2553
Jin et al. [73] 3D-Elasticity 0.4169 0.5402 0.2141 0.2713 0.4731 0.2550

1 Present element FEM-Q8-LW 0.3207 0.4204 0.1642 0.2085 0.3658 0.1957
Jin et al. [73] 3D-Elasticity 0.3222 0.4236 0.1645 0.2092 0.3681 0.1962

2 Present element FEM-Q8-LW 0.2895 0.3793 0.1486 0.1884 0.3300 0.1770
Jin et al. [73] 3D-Elasticity 0.2905 0.3799 0.1488 0.1889 0.3310 0.1773

5 Present element FEM-Q8-LW 0.2673 0.3445 0.1386 0.1748 0.3023 0.1647
Jin et al. [73] 3D-Elasticity 0.2676 0.3412 0.1388 0.1749 0.3014 0.1649

2 10 0 Present element FEM-Q8-LW 0.0707 0.0792 0.0584 0.0608 0.0751 0.0601
Jin et al. [73] 3D-Elasticity 0.0719 0.0793 0.0568 0.0607 0.0751 0.0600

1 Present element FEM-Q8-LW 0.0548 0.0604 0.0434 0.0463 0.0573 0.0458
Jin et al. [73] 3D-Elasticity 0.0550 0.0608 0.0435 0.0465 0.0575 0.0459

2 Present element FEM-Q8-LW 0.0498 0.0548 0.0394 0.0421 0.0520 0.0416
Jin et al. [73] 3D-Elasticity 0.0499 0.0552 0.0395 0.0422 0.0522 0.0417

5 Present element FEM-Q8-LW 0.0469 0.0516 0.0372 0.0397 0.0490 0.0393
Jin et al. [73] 3D-Elasticity 0.0471 0.0519 0.0372 0.0398 0.0492 0.0393

5 0 Present element FEM-Q8-LW 0.2713 0.2931 0.2169 0.2304 0.2810 0.2284
Jin et al. [73] 3D-Elasticity 0.2713 0.2941 0.2166 0.1914 0.2814 0.1914

1 Present element FEM-Q8-LW 0.2081 0.2257 0.1661 0.1767 0.2159 0.1750
Jin et al. [73] 3D-Elasticity 0.2088 0.2271 0.1665 0.1592 0.2169 0.1592

2 Present element FEM-Q8-LW 0.1883 0.20396 0.1504 0.1599 0.1952 0.1584
Jin et al. [73] 3D-Elasticity 0.1888 0.2050 0.1507 0.1438 0.1960 0.1438

5 Present element FEM-Q8-LW 0.1753 0.1888 0.1405 0.1492 0.1814 0.1479
Jin et al. [73] 3D-Elasticity 0.1754 0.1895 0.1405 0.1243 0.1817 0.1243
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sandwich plates, the non-dimensional fundamental frequen-
cies reaches its maximum for (1-0-1) plate and minimum for 
(1-8-1) plate.

Example 6  To check the higher order modes of vibration, a 
square FGM sandwich plate of type C is invistigated with ℎt-
ℎc-ℎb = 2-1-2. The bottom face sheet iso graded from metal 
to ceramic (Al/Al2O3) and the core is made a fully ceramic 
material (Al2O3). Two different boundary conditions (SSSS 
and CCCC) with two side-to-thickness ratio (a/h = 10 and 
100) and volume fraction index (k = 1 and 10) are consid-
ered in the present study. The non-dimensional natural fre-
quencies of the first-five mode shapes are shown in Table 9. 
Based on the convergence study, a mesh size with 8 × 8 
elements is sufficient to obtain good results. The obtained 
results are compared with the 3D-elasticity solutions [3] and 
various numerical results found in the literature, such as, 
the eight nodes quadrilateral finite element model based on 
HSDT [50], the meshfree solution based on TSDT [70] and 
the isogeometric results (IGA) based on four-unknown shear 
and normal deformations theory (SNDT) [22]. It is evident 
from the results of comparison that the proposed finite ele-
ment model agree very well with both the 3D-elasticity solu-
tions [52] and the numerical models available in the litera-
ture. Further, the developed element is free from transverse 
shear locking, and its excellent accuracy is insensitive to thin 
FGM sandwich plates. The first six flexural mode shapes 

of a simply supported FGM sandwich plates of type C, are 
plotted in Fig. 14 for a/h = 10 and k = 1.

Example 7  After studying the free vibration of sandwich 
plate with FGM face sheets, a simply supported square 
sandwich plate with FGM core and homogenous face sheets 
(Type B) is analyzed with ℎt-ℎc-ℎb = 1-8-1 (h2 = 0.8 h and 
h1 = h3 = 0.1). The top and bottom face sheets are made of 
pure metal (Al) and ceramic (Al2O3), respectively, whereas 
the FGM core layer is graded from ceramic to metal (Al2O3/
Al). Three values of side-to-thickness ratio (a/h = 5, 10, 100) 
with five different volume fraction index (k = 0.5, 1, 2, 5, 10) 
are considered for the investigation. The non-dimensional 
fundamental frequencies predicted by the present layerwise 
model are listed in Table 10 with different mesh size (4 × 4, 
6 × 6 and 8 × 8). For comparison purposes, 3D-elasticity 
solutions derived by Li et al. [3], hyperbolic higher order 
shear deformation theory (HHSDT) computed by Bennoun, 
Houari et al. [39], semi analytical solutions based on dif-
ferential quadrature method (DQM) given by Alibeigloo 
and Alizadeh [75] as well as those obtained by Pandey and 
Pradyumna [46] using layerwise finite element solutions, 
are carried out. According the Table 9, it can be observed 
that the obtained result, for all cases presented, are in excel-
lent agreement with reported literature values and even more 
accurate than those predicted by the analytical solutions of 
Bennoun, Houari et al. [39] using HHSDT. For example, 

Fig. 11   Effect of aspect ratio 
(b/a) with different boundary 
conditions on the non-dimen-
sional fundamental frequency of 
Al/ Al2O3 FGM plate (a/h = 10, 
k = 5)



S3892	 Engineering with Computers (2022) 38 (Suppl 5):S3871–S3899

1 3

with a/h = 100, the maximum error predicted by present 
model, when compared with exact 3D-elasticity solutions 
[3], is only 0.0223%, 0.0288%, 0.0069%, 0.0391%, 0.0000%, 
with respect to the volume fraction index (k) of 0.5, 1, 2, 
5,10, whereas the maximum error of the HHSDT model 
[39] is 2.3146%, 2.1779%, 1.6956%, 0.9599%, 0.5971%. 
As expected, the comparison confirms the high accuracy of 
the developed layerwise model. It can be concluded that the 
proposed finite element formulation is not only accurate but 
also simple in predicting the natural frequencies of FGM 
sandwich plates. Moreover, it can be clear from Table 10 
that the fundamental natural frequency of FGM sandwich 

plate of type B increase when the values of volume fraction 
index (k) changes from 0.5 to 10.

6 � Conclusion

In the current study, for the first time, the original layer-
wise formulation has been generalized to predict accurately 
the deflection and natural frequency of functionally graded 
sandwich plates. The proposed model assumes a first-order 
shear deformation theory in the face sheets and a higher-
order displacement field in the core maintaining a continuity 

Table 7   Non-dimensional 
fundamental frequency ( � ) 
of simply supported square 
FGM sandwich plates with 
homogeneous hardcore

a The natural frequencies are expressed as: � = �b2
/
h

√
�0
/
E0

a/h k References Models Plate configuration

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1

100 0 Present element FEM-Q8-LW 1.8890a 1.8890 1.8890 1.8890 1.8890
Li et al. [3] 3D-Elasticity 1.8882 1.8882 1.8882 1.8882 1.8882

0.5 Present element FEM-Q8-LW 1.4840 1.5240 1.5610 1.6200 1.7640
Li et al. [3] 3D-Elasticity 1.4824 1.5235 1.5604 1.6191 1.7635

1 Present element FEM-Q8-LW 1.2740 1.3310 1.3860 1.4760 1.7000
Li et al. [3] 3D-Elasticity 1.2715 1.3297 1.3851 1.4755 1.6990

5 Present element FEM-Q8-LW 0.9650 0.9998 1.0640 1.1980 1.5710
Li et al. [3] 3D-Elasticity 0.9656 0.9990 1.0630 1.1969 1.5698

10 Present element FEM-Q8-LW 0.9503 0.9601 1.0130 1.1450 1.5430
Li et al. [3] 3D-Elasticity 0.9504 0.9593 1.0123 1.1440 1.5416

10 0 Present element FEM-Q8-LW 1.8330 1.8300 1.8290 1.8270 1.8250
Li et al. [3] 3D-Elasticity 1.8268 1.8268 1.8268 1.8268 1.8268

0.5 Present element FEM-Q8-LW 1.4480 1.4860 1.5210 1.5750 1.7090
Li et al. [3] 3D-Elasticity 1.4461 1.4860 1.5213 1.5766 1.7113

1 Present element FEM-Q8-LW 1.2460 1.3010 1.3540 1.4400 1.6490
Li et al. [3] 3D-Elasticity 1.2447 1.3018 1.3552 1.4413 1.6511

5 Present element FEM-Q8-LW 0.9458 0.9808 1.0440 1.1740 1.5280
Li et al. [3] 3D-Elasticity 0.9447 0.9810 1.0453 1.1756 1.5299

10 Present element FEM-Q8-LW 0.9276 0.9410 0.9945 1.1230 1.5010
Li et al. [3] 3D-Elasticity 0.9272 0.9407 0.9952 1.1246 1.5033

5 0 Present element FEM-Q8-LW 1.6937 1.6872 1.6822 1.6760 1.6710
Li et al. [3] 3D-Elasticity 1.6771 1.6771 1.6771 1.6771 1.6771

0.5 Present element FEM-Q8-LW 1.3565 1.3900 1.4195 1.4650 1.5750
Li et al. [3] 3D-Elasticity 1.3535 1.3905 1.4217 1.4694 1.5810

1 Present element FEM-Q8-LW 1.1747 1.2260 1.2735 1.3480 1.5245
Li et al. [3] 3D-Elasticity 1.1748 1.2291 1.2777 1.3534 1.5314

5 Present element FEM-Q8-LW 0.8930 0.9320 0.9935 1.1125 1.4212
Li et al. [3] 3D-Elasticity 0.8908 0.9336 0.9979 1.1190 1.4284

10 Present element FEM-Q8-LW 0.8707 0.8925 0.9465 1.0662 1.3985
Li et al. [3] 3D-Elasticity 0.8683 0.8922 0.9498 1.0729 1.4056
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of displacement at layer. Three common types of FGM 
plates have been taken into consideration: (i) isotropic FGM 
plates; (ii) sandwich plates with FGM face sheets and homo-
geneous core and (iii) sandwich plates with homogeneous 
face sheets and FGM core. Based on the suggested model, 

an improved C0 eight-node quadrilateral element has been 
successfully developed. Several numerical examples have 
been performed to assess the performance and reliability of 
the developed layerwise finite element model. The obtained 
results have been compared with 3D, quasi-3D, and 2D 

Table 8   Non-dimensional 
fundamental frequency ( � ) 
of simply supported square 
FGM sandwich plates with 
homogeneous softcore

a/h k References Models Plate configuration

1-0-1 2-1-2 1-1-1 1-2-1 1-8-1

100 0 Present element FEM-Q8-LW 0.9607 0.9607 0.9607 0.9607 0.9607
Li et al. [3] 3D-Elasticity 0.9602 0.9602 0.9602 0.9602 0.9602

0.5 Present element FEM-Q8-LW 1.6630 1.6240 1.5830 1.5070 1.2660
Li et al. [3] 3D-Elasticity 1.6628 1.6229 1.5817 1.5065 1.2655
Pandey and Pradyumna [46] Q8-LW – 1.6317 1.5826 1.5073 1.2661

1 Present element FEM-Q8-LW 1.8210 1.7930 1.7550 1.6760 1.3840
Li et al. [3] 3D-Elasticity 1.8203 1.7916 1.7537 1.6749 1.3833
Pandey and Pradyumna [46] Q8-LW – 1.7926 1.7547 1.6756 1.3839

5 Present element FEM-Q8-LW 1.9240 1.9440 1.9370 1.8860 1.5710
Li et al. [3] 3D-Elasticity 1.9209 1.9431 1.9362 1.8853 1.5703
Pandey and Pradyumna [46] Q8-LW – 1.9439 1.9370 1.8860 1.5709

10 Present element FEM-Q8-LW 1.9140 1.9470 1.9510 1.9120 1.6050
Li et al. [3] 3D-Elasticity 1.9106 1.9468 1.9504 1.9116 1.6045
Pandey and Pradyumna [46] Q8-LW – 1.9475 1.9511 1.9123 1.6052

10 0 Present element FEM-Q8-LW 0.9319 0.9308 0. 9300 0.9290 0.9280
Li, et al. [3] 3D-Elasticity 0.9289 0.9289 0.9289 0.9289 0.9289

0.5 Present element FEM-Q8-LW 1.5980 1.5430 1.4960 1.4220 1.2050
Li et al. [3] 3D-Elasticity 1.5735 1.5258 1.4845 1.4166 1.2055
Pandey and Pradyumna [46] Q8-LW – 1.5430 1.4960 1.4217 1.2060

1 Present element FEM-Q8-LW 1.7500 1.6920 1.6430 1.5630 1.3080
Li et al. [3] 3D-Elasticity 1.7222 1.6743 1.6305 1.5578 1.3082
Pandey and Pradyumna [46] Q8-LW – 1.6927 1.6435 1.5636 1.3086
Xiang et al. [74] – 1.7060 1.6647 – 1.3115

5 Present element FEM-Q8-LW 1.8560 1.8170 1.7850 1.7250 1.4640
Li et al. [3] 3D-Elasticity 1.8419 1.8261 1.7895 1.7267 1.4664
Pandey and Pradyumna [46] Q8-LW – 1.8178 1.7853 1.7250 1.4643
Xiang et al. [74] – 1.8617 1.8469 – 1.4771

10 Present element FEM-Q8-LW 1.8490 1.8180 1.7930 1.7420 1.4910
Li et al. [3] 3D-Elasticity 1.8402 1.8398 1.8081 1.7481 1.4948
Pandey and Pradyumna [46] Q8-LW – 1.8284 1.7928 1.7418 1.4915

5 0 Present element FEM-Q8-LW 0.8612 0.8580 0.8555 0.8525 0.8497
Li et al. [3] 3D-Elasticity 0.8528 0.8528 0.8528 0.8528 0.8528

0.5 Present element FEM-Q8-LW 1.4465 1.3637 1.3092 1.2387 1.0690
Li et al. [3] 3D-Elasticity 1.3789 1.3206 1.2805 1.2258 1.0701

1 Present element FEM-Q8-LW 1.5850 1.4772 1.4127 1.3345 1.1430
Li et al. [3] 3D-Elasticity 1.5089 1.4332 1.3824 1.3212 1.1445

5 Present element FEM-Q8-LW 1.6952 1.5592 1.4927 1.4225 1.2450
Li et al. [3] 3D-Elasticity 1.6586 1.5801 1.5028 1.4266 1.2521

10 Present element FEM-Q8-LW 1.6940 1.5565 1.4922 1.4270 1.2607
Li et al. [3] 3D-Elasticity 1.6727 1.6090 1.5267 1.4410 1.2706
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Fig. 12   Effect of volume frac-
tion index (k) with different 
core-to-face sheets thickness 
ratio on the non-dimensional 
fundamental frequency of 
hardcore FGM sandwich plates 
(a/h = 10)

Fig. 13   Effect of volume frac-
tion index (k) with different 
core-to-face sheets thickness 
ratio on the non-dimensional 
fundamental frequency of 
softcore FGM sandwich plates 
(a/h = 10)
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analytical solutions and those predicted by advanced finite 
element models available in the literature. The comparison 
showed that the result accuracy, fast rate of convergence and 
broad range of applicability of the proposed finite element 
model, for both thin and thick FGM isotropic and sandwich 
plates, are excellent. Furthermore, the effects of volume 
fraction index, material distribution, side-to-thickness ratio, 
aspect ratios, core-to-face thickness ratio, type of core (hard/
soft), frequency modes, and boundary conditions on the nat-
ural frequency have been all investigated and reported. From 
the numerical illustration, the key points of the present study 
are the following:

•	 The combination between both equivalent single layer 
approach and layerwise approach is very advantageous, 
because the result of present model combines the fea-
tures of both approaches, which are the simplicity and the 
accuracy. Thus, the plate theory enjoys the advantage of 
a single-layer plate theory, even though it is based on the 
concept of a layerwise plate approach.

•	 From a computational cost point of view, it is important 
to mention here that the proposed layerwise finite ele-
ment formulation needs only C0 shape functions that con-
tributes to a noticeable decrease of computational efforts.

•	 The developed finite element is free of shear locking phe-
nomenon without requiring any shear correction factors.

•	 The non-dimensional deflection increases with the 
increase of the volume fraction index (k).

•	 The natural frequency increases with the increase of 
side-to-thickness ratio (a/h) up to a/h ≤ 20 while further 
increasing this ratio (a/h > 20) has no remarkable effect 
on the natural frequency.

•	 The natural frequency of thick FGM sandwich plates is 
more sensitive side-to-thickness ratio (a/h) than that of 
thin ones.

•	 For all types of boundary conditions, the natural fre-
quency decreases by increasing the volume fraction index 
(k) and the plate’s aspect ratio (b/a).

•	 The lowest natural frequency is observed for SSSF, 
SFSF and SCSF boundary conditions, while the high-
est fundamental natural frequency is seen for SCSC 

Fig. 14   First six flexural mode shapes of a simply supported FGM sandwich plates of type C. (a/h = 10 and k = 1)
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and SSSC boundary conditions. Hence, the natural fre-
quency increases as the rigidity of boundary restraint is 
increased.

•	 The natural frequency for hardcore FGM sandwich plates 
decreased with an increase in volume fraction index (k), 
whereas the opposite nature of variation in natural fre-
quency is observed for softcore FGM sandwich plates.

•	 For hardcore FGM sandwich plates, the natural frequency 
is maximum for (1-8-1) plate and minimum for (1-0-1) 
plate, whereas for softcore FGM sandwich plates, the 

natural frequency reaches its maximum for (1-0-1) plate 
and minimum for (1-8-1) plate.

•	 In the case of sandwich plate with FGM core, the natural 
frequency increases when the values of volume fraction 
index (k) changes from 0.5 to 10.

It is concluded that the present layerwise finite element 
model is not only accurate, but also simple in solving the 
free vibration problems for all types of FGM sandwich 
plates.

Table 9   First five non-
dimensional fundamental 
frequency ( � ) of square 2-1-2 
FGM sandwich plates (Al/
Al2O3) of type C with two 
different boundary conditions

a/h k References Models Modes

1 2 3 4 5

Boundary conditions: SSSS
 10 1 Present element (4 × 4) FEM-Q8-LW 1.3020 3.1930 3.1930 5.0320 6.3830

Present element (6 × 6) FEM-Q8-LW 1.3010 3.1610 3.1610 4.9190 6.0950
Present element (8 × 8) FEM-Q8-LW 1.3010 3.1550 3.1550 4.9080 6.0450
Li et al. [3] 3D-Elasticity 1.3018 3.1587 3.1587 4.9165 6.0404
Thai et al. [22] IGA-SNDT 1.3128 3.1992 3.1992 4.9874 6.1306
Natarajan and Manickam [50] FEM-Q8-HSDT 1.3019 3.1606 3.1606 4.9188 6.0586
Nguyen et al. [70] MK-TSDT 1.3016 3.1484 3.1484 4.9141 5.3609

10 Present element (8 × 8) FEM-Q8-LW 0.9409 2.2900 2.2900 3.5720 4.4080
Li et al. [3] 3D-Elasticity 0.9404 2.2861 2.2861 3.5646 4.3844
Thai et al. [22] IGA-SNDT 0.9625 2.3695 2.3695 3.7192 4.3937
Natarajan and Manickam [50] FEM-Q8-HSDT 0.9418 2.2948 2.2948 3.5832 4.4225
Nguyen et al. [70] MK-TSDT 0.9441 2.2997 2.2997 3.6119 4.3984

 100 1 Present element (8 × 8) FEM-Q8-LW 1.3300 3.3270 3.3270 5.3370 6.6770
Li et al. [3] 3D-Elasticity 1.3297 3.3232 3.3232 5.3154 6.6428

10 Present element (8 × 8) FEM-Q8-LW 0.9595 2.4010 2.4010 3.8550 4.8190
Li et al. [3] 3D-Elasticity 0.9593 2.3976 2.3976 3.8350 4.7928

Boundary conditions: CCCC​
 10 1 Present element (4 × 4) FEM-Q8-LW 2.2980 4.5830 4.5830 6.6550 8.2170

Present element (6 × 6) FEM-Q8-LW 2.2810 4.4680 4.4680 6.3600 7.6650
Present element (8 × 8) FEM-Q8-LW 2.2790 4.4510 4.4510 6.3270 7.5640
Li et al. [3] 3D-Elasticity 2.2904 4.4672 4.4672 6.3505 7.5600

10 Present element (8 × 8) FEM-Q8-LW 1.6590 3.2570 3.2570 4.6480 5.5710
Li et al. [3] 3D-Elasticity 1.6607 3.2493 3.2493 4.6307 5.5217

 100 1 Present element (8 × 8) FEM-Q8-LW 2.4430 5.0230 5.0230 7.6410 9.0630
Li et al. [3] 3D-Elasticity 2.4334 4.9581 4.9581 7.3059 8.8860

10 Present element (8 × 8) FEM-Q8-LW 1.7670 3.6390 3.6390 5.5790 6.5680
Li et al. [3] 3D-Elasticity 1.7557 3.5774 3.5774 5.2717 6.4120
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