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Abstract
This research presents bending responses of hybrid laminated nanocomposite reinforced axisymmetric circular/annular plates 
(HLNRACP/ HLNRAAP) within the framework of non-polynomial under mechanical loading and various type of initially 
stresses via the three-dimensional elasticity theory. The current structure is on the Pasternak type of elastic foundation and 
torsional interaction. The state-space approach and differential quadrature method (SS-DQM) are studied to present the 
bending characteristics of the current structure by considering various boundary conditions. To predict the material proper-
ties of the bulk, the role of mixture and Halpin–Tsai equations are studied. For modeling the circular plate, a singular point 
is studied. Finally, a parametric study investigates the impacts of various types of distribution of laminated layers, stacking 
sequence on the stress/strain information of the HLNRACP/ HLNRAAP. Results reveal that the system’s static stability and 
bending behavior improve due to increasing the value of Winkler and Pasternak factors, and the stress distribution becomes 
more uniform.

Keywords Circumferential initially stresses · Linear and torsional gradient elastic foundation · 3D-elasticity theory · 
Bending · HLNRACP/ HLNRAAP

1 Introduction

In the recent past years, a new horizon is presented by many 
researchers for using reinforcement materials because of that 
the materials provide a marvelous performance for differ-
ent applicable complex structures [1–9]. One of the most 
well-known of these reinforcements is graphene nanoplate-
lets (GPLs) composite, which solved the mentioned demand 
[10]. With the aid of an experimental research, Rafiee et al. 

[11] presented that using a little amount of GPLs in an epoxy 
basement could provide an impressive thermos mechanical 
properties compared with other reinforcements.

According to the mentioned applications, in the field 
of dynamic and static responses of the GPLRC structures, 
Hajilak et al. [12] provided a researcher about vibration 
and buckling behavior of the GPLRC shell reinforced with 
GPLs. They modeled a mathematical formulation by using 
modified strain gradient for considering size effects. Al-
Furjan et al. [13] investigated the dynamic responses of 
the GPLRC disk with finite element and numerical mod-
els. They showed that as the amount of GPLs in an epoxy 
basement increases, the system’s dynamic behavior could 
improve. Ebrahimi et al. [14] investigated wave responses 
of a GPLRC shell by considering imperfection or poros-
ity and thermal environment. They showed that increasing 
the impacts of porosity and thermal environment could 
decrease the GPLs reinforced shell’s stability. Habibi et al. 
[15] modeled an smart GPLs reinforced shell for investiga-
tion of wave propagation responses with the aid of strain 
radiant theory. They showed that due to increasing GPLs, 
the phase velocity and frequency of the mentioned system 
increase. In addition, the thermally affected GPLRC shell’s 

 * Jinwu Zhuang 
 hgzhaoyinan@163.com

 Yinan Zhao 
 1015084139@qq.com

 Zohre Moradi 
 z.moradi@edu.ikiu.ac.ir

 Mohsen Davoudi 
 davoudi@eng.ikiu.ac.ir

1 College of Electric Engineering, Naval University 
of Engineering, Wuhan 430033, China

2 Department of Electrical Engineering, Faculty 
of Engineering and Technology, Imam Khomeini 
International University, 34149-16818 Qazvin, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-020-01242-1&domain=pdf


S940 Engineering with Computers (2022) 38 (Suppl 2):S939–S961

1 3

static and dynamic stability are investigated by Safarpour 
et al. [16]. They presented the best pattern of GPLRC for 
having the highest frequency in the structure that is affected 
by a nonlinear thermal site and a foundation. By employ-
ing the differential quadrature method, Halpin–Tsai model, 
higher-order shear deformation, and proelasticity theories, 
Al-Furjan et al. [17] presented bending, static stability, and 
stress responses of a GPLs reinforced disk. Pourjabari et al. 
[18] presented a comprehensive study about free and forced 
vibration responses of the GPLs reinforced shell with the 
aid of modified strain gradient theory to consider the size 
effects. They reported three value for length scale param-
eters of the modified strain gradient theory. By using a semi 
numerical method Safarpour et al. [19] investigated the fre-
quency responses of a GPLRC disk. Their results show that 
viscoelastic properties have an impressive impact on the sys-
tem’s dynamics and the mentioned issue was more consider-
able at the higher value of GPLs weight fraction. Ebrahimi 
et al. [20] did research about the effects of GPLs patterns 
and porosity on the critical thermal loading and dynamic 
stability with the aid of modified couple stress theory for 
considering size effects. They showed that when the sym-
metric GPLs patterns are employed the structure could be 
able to encounter with the higher critical thermal loading. 
Habibi et al. [21] presented frequency of the smart GPLRC 
rotary nanoshell by using differential quadrature method, 
Halpin–Tsai model, and first-order shear deformation theory. 
They showed that the critical rotary speed of the smart struc-
ture could improve due to increasing the value of GPLs. 
Using the finite element method, Tam et al. [22] presented 
a research about nonlinear bending behaviors of a cracked 
GPLRC beam. they prove that when the crack depth and 
temperature of the environment increase, the strength of the 
structure decreases but this issue become negligible due to 
increasing GPLs weight fraction. Li et al. [23] showed bend-
ing responses of the GPLs reinforced plate with the aid of 
2D approach and energy method. Liu et al. [24] studied the 
effects of six kinds of GPLs patterns on the linear free vibra-
tion and stress responses of the composite spherical shell 
based on 3D elasticity theory. Also, this material can be used 
in advanced structures and systems [25, 26]. A frequency 
up-conversion mechanism was suggested by Onsorynezhad 
et al. [27] to improve the performance of the piezoelectric 
energy harvester, and the mechanical and electrical behav-
iors of the energy harvester were analytically investigated. 
The frequency response results showed that the frequency 
up-conversion mechanism has significantly improved the 
energy harvester’s performance.

Furthermore, Wave responses, static and dynamic stabil-
ity of different applicable complex and simple structures are 
investigated in many researches [28–40] with numerical and 
experimental methods. Based on the mentioned literature 
review, this is the first research to present bending responses 

of hybrid laminated nanocomposite reinforced axisymmetric 
circular/annular plates within the framework of non-polyno-
mial under mechanical loading and various type of initially 
stresses via the three-dimensional elasticity theory. The cur-
rent structure is on the Pasternak type of elastic foundation 
and torsional interaction. The state-space approach along 
with differential quadrature method is studied to present the 
bending characteristics of the current structure by consider-
ing various boundary conditions. For predicting the mate-
rial properties of the bulk, role of mixture and Halpin–Tsai 
equations are studied. For modeling the circular plate, a 
singular point is studied. Finally, a parametric study is done 
to investigate the impacts of various types of distribution 
of laminated layers, stacking sequence on the stress/strain 
information of the HLNRACP/ HLNRAAP.

2  Mathematical modeling

In this research HLNRACP reinforced by various distribu-
tion GPLs is presented. Based on the Halpin–Tsai model, 
have [41]

where �L = 2
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tGPL
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Based on the following expression, the 
−

v of the composite 
is as follows [42]

For effective shear module have:

FG and uniform distribution of the laminated layers are 
formulated as below [41]
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Here, zj =
(

1

2
+

1

2n
−

j

n

)

h, j = 1, 2, 3,… , n.

2.1  Governing equations of the current structure

Figure 1 shows the geometry and coordinate of the current 
structure. 3D governing differential equation of motion by 
neglecting of body forces are [43–48]

where bigger and smaller value of �0 than zero means 
the compressive stress, and tensile stress, respectively. 
Stress–strain relations [49–51] of HLNRACP/ HLNRAAP 
reinforced by GPLs can be presented as follows:
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where the used parameters in Eq. (6) are presented in 
Refs. [52–61]. The strains of the HLNRACP/ HLNRAAP 
reinforced by GPLs can be given as [62]:

The other parameter in the Eq. (6) are as below:

In the Eq. (9a), parameter � = 0 for un-drained condi-
tions of fluid leads to:
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where

(7)�r = ur,r, �� = r−1
(

ur + u�,�
)

,�z = uz,z,

(8)
�r� = u�,r + r−1ur,� − r−1u� , �rz = ur,z + uz,r, ��z = r−1uz,� + u�,z

(9a)P =

(

� −

(

�rr + ��� + �zz
)

�
)

K−1

(9b)K = −

(

k − ku
)

�−2

(9c)ku =

[

1 −
kf �

2

(� − �)(1 − �)kf + kf�

]

k

(10)P = −K�� = −K
(

�rr + ��� + �zz
)

� ,

(11a)�rr = ℚ
∗

13
uz,z + r−1ℚ

∗

12
(ur + u�,�) +ℚ

∗

11
ur,r

(11b)��� = ℚ
∗

23
uz,z +ℚ

∗

12
ur,r + r−1ℚ

∗

22
(u�,� + ur)

(11c)�zz = ℚ
∗

33
uz,z + r−1ℚ

∗

23
(ur + u�,�) +ℚ

∗

13
ur,r

(11d)��z = ℚ44

(

r−1uz,� + u�,z
)

(11e)�rz = ℚ55

(

uz,r + ur,z
)

(11f)�r� = ℚ66

(

r−1ur,� − r−1u� + u�,r
)

,

(12a)ℚ
∗

11
=

K

�−2
+ℚ11

(12b)ℚ
∗

12
=

K

�−2
+ℚ12

(12c)ℚ
∗

13
=

K

�−2
+ℚ13

Fig. 1  Geometry and coordinate of the HLNRACP/ HLNRAAP
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Using Eqs. (5a–c) and (11a–f):

The form of matrix of Eqs. (13a–f) can be written as:

(12d)ℚ
∗

22
=

K

�−2
+ℚ22

(12e)ℚ
∗

23
=

K

�−2
+ℚ23

(12f)ℚ
∗

33
=

K

�−2
+ℚ33.

(13a)
�ur

�z
= −uz,r +

�rz

ℚ55

(13b)
�u�

�z
= −

uz,�

r
+

�z�

ℚ44

(13c)
�uz

�z
= −

ℚ
∗

13

ℚ
∗

33

ur,r − r−1
ℚ

∗

23

ℚ
∗

33

ur − r−1
ℚ

∗

23

ℚ
∗

33

u�,� +
�z

ℚ
∗

33

(13d)
��z

�z
= r−2�0uz,�� − �rz,r − r−1�rz + r−1�z�,�

(13e)

��rz

�z
= −

⎛

⎜

⎜

⎝

ℚ
∗

11
−

ℚ
∗2

13

ℚ
∗

33

⎞

⎟

⎟

⎠

ur,rr + r−2�0
�

ur,�� − 2u�,� − ur
�

− r−1
⎛

⎜

⎜

⎝

ℚ
∗

11
−

ℚ
∗2

13

ℚ
∗

33

⎞

⎟

⎟

⎠

ur,r − r−2ℚ66ur,��

−

ℚ
∗

13

ℚ
∗

33

�z,r −

�

ℚ
∗

13
−ℚ

∗

23

ℚ
∗

33

�

�z − r−2
⎛

⎜

⎜

⎝

ℚ
∗

12
ℚ

∗

33
+ℚ

∗2

23
−ℚ

∗

13
ℚ

∗

23
−ℚ

∗

22
ℚ

∗

33

ℚ
∗

33

⎞

⎟

⎟

⎠

ur

− r−1

�

ℚ
∗

12
+ℚ66 −

ℚ
∗

13
ℚ

∗

23

ℚ
∗

33

�

u�,r� − r−2
⎛

⎜

⎜

⎝

ℚ
∗

12
ℚ

∗

33
+ℚ

∗2

23
−ℚ

∗

13
ℚ

∗

23
−ℚ

∗

22
ℚ

∗

33

ℚ
∗

33

⎞

⎟

⎟

⎠

u�,�

(13f)

���z

�z
= −r−1

�

ℚ
∗

12
+ℚ66 −

ℚ
∗

13
ℚ

∗

23

ℚ
∗

33

�

ur,r� − r−2
⎛

⎜

⎜

⎝

ℚ
∗

22
+ 2ℚ66 −

ℚ
∗2

23

ℚ
∗

33

⎞

⎟

⎟

⎠

ur,�

−ℚ66u�,rr −
ℚ66

r
u�,r − r−2

⎛

⎜

⎜

⎝

ℚ
∗

22
−

ℚ
∗2

23

ℚ
∗

33

⎞

⎟

⎟

⎠

u�,��

+ 2r−2ℚ66u� + r−2�0
�

2ur,� + u�,�� − u�
�

− r−1
ℚ

∗

23

ℚ
∗

33

�z,� .

(14)
d�

dz
= G�,

where � = {ur u� uz �z �rz ��z}
T.

And the relations for different boundary conditions can 
be formulated as follows:

Also, for a circular plate at r = 0:

3  Applying linear and torsional elastic 
foundation

The Winkler–Pasternak foundations for HLNRACP/ HLN-
RAAP reinforced by GPLs can be formulated as:

The used parameters in Eq. (17) can be given as:

The torsional elastic foundation can be formulated as:
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These coefficients are considered as

3.1  Solution procedure

To date, many studies showed that computer and numerical 
methods [63–72] are highly used for modeling different phe-
nomena. In this research for solving the governing equations 
we apply DQM that have [19, 73]:

here, g(n) , can be extracted as below:

where:

The derivatives of Eq. (24) can be written as the follow-
ing equations [74]:

In addition, via greed points of Chebyshev polynomials, 
the seed along with r-axes is as follows:
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RAAP reinforced by GPLs are as:
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where: Pm = m. We assumed, the following dimensionless 
form of equations:

Substitution of Eqs. (28a–b), (27a–b) and (22) into 
Eq. (14):
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where:

Substitution of Eqs. (15)–(16) into Eqs. (29a–f) gives the 
following state-space equations

where �b =
{

ur u� uz �z �rz ��z
}T is the column matrix 

of state variables. In addition, subscript, b in Eq.  (31) 
denotes the state equation includes the boundary condi-
tions[38, 75, 76].
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(30)uki = uk(r, �, z); (k = ri, �, z), �ki = �k(r, �, z), ��zi = ��z(r, �, z) , �rzi = �rz(r, �, z)

(31)
��b

�z
= Gb�b,

By using a layer-wise technique, Gb
 is decreased to the 

constant matrix and finally Eq. (31) can be solved analyti-
cally for Nt fictitious layer as the follows

At the inner and outer radius of kth layer, the relation 
between the state variables can be given as follows:

In which Mk = exp

(

Gbkhf

Nt

)

.

(32)�k
(

z
)

= �ok exp
(

Gbk

(

z − zk−1
)

)

, zk−1 ≤ z ≤ zk.

(33)�k
(

zk
)

= Mk�ok.
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3.2  Static analysis

Whereas for static analysis it is assumed following surface 
traction boundary condition.

Applying Eqs. (33) and (34) gives the following homog-
enous equation:

(34)
�z = � , �rz = 0, ��z = �r at z = −

1

2

�z = p cos
(

�0
)

, �rz = ��z = 0 at z =
1

2
.

In addition, p = {p1,… , pN}
T . Displacements at the bot-

tom surface can be obtained by solving Eq. (35) and then 
by using Eq. (33) transverse normal and shear stresses as 
well as displacements as a function of radial coordinated are 
determined. Finally, in-plane normal and shear stresses are 
computed from the following equations;
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Table 1  Compare the wF

0
(0, 0) 

of functionally graded clamped 
circular plates with the result in 
Ref. [79]

n h/a = 0.05 h/a = 0.1 h/a = 0.15 h/a = 0.2

Ref. [79] PS Ref. [79] PS Ref. [79] PS Ref. [79] PS

0 2.554 2.8702 2.639 2.9195 2.781 3.1057 2.979 3.2186
2 1.402 1.5820 1.444 1.6081 1.515 1.6962 1.613 1.8903
4 1.282 1.4483 1.320 1.4727 1.384 1.5513 1.473 1.6545
6 1.220 1.3796 1.257 1.4037 1.318 1.4792 1.404 1.5656
8 1.181 1.3366 1.217 1.3605 1.278 1.4348 1.362 1.5625
10 1.155 1.3070 1.190 1.3307 1.250 1.4043 1.333 1.5641
15 1.114 1.2621 1.149 1.2853 1.208 1.3584 1.289 1.4750
20 1.092 1.2369 1.126 1.2597 1.184 1.3326 1.265 1.3996
25 1.077 1.2208 1.112 1.2433 1.169 1.3162 1.250 1.4209
30 1.067 1.2096 1.101 1.2319 1.159 1.3047 1.239 1.3555
35 1.060 1.2014 1.094 1.2235 1.151 1.2964 1.231 1.3583
40 1.054 1.1952 1.088 1.2170 1.145 1.2900 1.225 1.4598
50 1.046 1.1903 1.080 1.2119 1.137 1.2850 1.216 1.3685
102 1.029 1.1863 1.063 1.2078 1.119 1.2810 1.199 1.3925
103 1.013 1.1683 1.047 1.1892 1.103 1.2624 1.182 1.3448
104 1.011 1.1569 1.045 1.1773 1.101 1.2508 1.180 1.3012
105 1.011 1.1569 1.045 1.1773 1.101 1.2508 1.180 1.3880
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(36c)𝜏r𝜃i = Sr
−1

i
Pm

̂
ℚ66uri + S

̂
ℚ66

N
∑

j=1

giju𝜃j + Sr
−1

i

̂
ℚ66u𝜃i.

4  Result

Material properties of graphene nanoplates, matrix, and the 
poroelastic constants are presented in Refs. [77, 78].
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Fig. 2  Convergence number of grid points for an investigation 
of the displacement and stress fields of the FG-GPLRC annu-
lar plates. Ri = 0.5, Ro = 2Ri, h = 0.1Ri, ΛGPL  = 1 (wt%), GPL-UD, 

Kwo = Kpo = 100, f1 = f2 = 0.1, Kr10 = Kr20 = 100, �0 = �∕4 , �0 = �∕4 
and Simply–Simply boundary conditions
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4.1  Validation

The properties in this validation section can be written as:

(37a)E(z) = Em

(

h − 2z

2h

)n

+ Ec

[

1 −
(

h − 2z

2h

)n
]

The properties dimensionless stress and displacement in 
this example can be written as:

(37b)Er = 0.396, Ec = 125.83 × 109, Em = Ec × Er

(37c)Ro = 1, h = 0.2 × Ro, � = 0.288.
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Fig. 2  (continued)
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(37c)
(

�
F

0
, �

F

rz

)

=

(

�F
0

q0
,
�F
rz

q0

)

.

Table 1 presents a validation study for proving the result 
of the current paper. For this regard, the Non-dimensional 
maximum deflections in the conditions of various power 
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Fig. 3  Stress and displacement fields of the FG-GPLRC annular plate for different FG patterns with Ro/Ri = 2, h = 0.1Ri, ΛGPL= 0.01 wt%, 
Kwo = Kpo = 100, f1 = f2 = 0.1, Kr10 = Kr20 = 10, �0 = �∕4 , and Simply–Simply boundary conditions
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index (n) value wF

0
(0, 0) , uF

0

(

0,−
h

2

)

 , �F

z

(

R

2
, 0
)

 and �F
rz
(R, 0) 

are compared with those outcomes in the Ref. [79]. As 
shown in the comparison studies, this paper’s results have a 
suitable agreement with the presented study in the literature. 
The difference between the present study and Ref. [79] using 
three-dimensional elasticity theory in the present study 
shows that this theory presents an exact method.

The impact of the N on the convergence condition is 
reported in Fig. 2 for investigation of bending response and 
stress analysis of FG-GPLRCAAP under initially stressed 
interacting with the gradient elastic foundations. In this 
regard, the static and bending behaviors of the structure are 
presented for four N. Based on the presented diagram in 
Fig. 2, we can report that when the N is more than seven, the 
stress and displacement fields don’t have a dependency on 
the number of grid points. As a conclusion from Fig. 2, the 

convergence condition of the GDQ method is achieved by 
employing seven grid points for the semi-analytical method.

In Fig. 3 shows the influence of five kinds of GPLs pat-
terns on the static and stress responses of the FG-GPLRC 
circular/annular plates under initially stressed interacting 
with the gradient elastic foundations. Generally, GPL-A 
structure has the best bending responses, but at the inner 
and outer layers, the structure with GPL-X and GPL-O pat-
terns encounter us with the best static responses. In addition, 
the structure with the GPL-UD pattern provides the most 
uniform distribution of displacement and stress fields. In 
addition, the weakest system against bending responses is 
the structure with a GPL-V pattern. The normal stress in the 
structure with GPL-A is high, but the displacement is low. 
The higher shear stresses at the inner, middle, and outer 
layers can see in the composite disk with GPL-A, GPL-O, 
and GPL-V patterns.
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The static and bending behaviors of the FG-GPLRC cir-
cular/annular plates under initially stressed interacting with 
the gradient elastic foundations are presented in Fig. 4 by 

focusing on the effect of three kinds of boundary condi-
tions. According to Fig. 4, when the structure is encoun-
tered with the clamped edges, the better bending response 
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Fig. 4  Stress and displacement fields of the structure for three kinds of boundary conditions with Ro/Ri = 2, h = 0.1Ri, ΛGPL = 0.01 wt%, GPL-X, 
Kwo = Kpo = 10, f1 = f2 = 0.1, Kr10 = Kr20 = 10, �0 = �∕4 , and annular plate
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and the lowest stress are seen. In addition, in the middle 
layers cannot see any effect from boundary conditions on 
the normal axial stress, while in the inner and outer lay-
ers, when the structure is encountered with simple edges, 
we can see the highest axial normal stress. In addition, if 
the structure encounters the clamped edges (C–C and C–S 
boundary conditions), we cannot find a remarkable change 
in the radial bending response while having simply–simply 
edges, we can see an increase in the radial displacement 
filed. Besides, for each boundary condition, the maximum 
axial shear stress is seen in the middle layers, and the struc-
ture with clamped edges has the lowest shear stress along 

the thickness direction. In addition, boundary conditions on 
normal stress are more remarkable in the inner and outer lay-
ers. Last but not the list, bending, and static responses of the 
structure will improve by increasing the structure’s rigidity.

The purpose of Fig.  5 is an investigation about the 
effect of Winkler and Pasternak factors ( Kwo andKpo ) on 
the stress and displacement fields of the structure. Accord-
ingly, as the Winkler and Pasternak factors of the founda-
tion increase, the in-plane and out plane stress decrease. 
Also, the impact of Winkler and Pasternak factors on the 
in-plane or shear stress ( �rz and ��z ) is more remarkable at 
the middle layers. in addition, increasing the foundation 
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factors is a reason to decrease the axial stress ( �z ) and this 
issue becomes bold by increasing z− or at the outer lay-
ers. Furthermore, the system’s static stability and bending 

behavior improve due to increasing the value of Winkler 
and Pasternak factors, and the stress distribution becomes 
more uniform.
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Fig. 5  Investigation the effect of the foundation coefficients on the stress and displacement fields of the structure with  Ro/Ri = 2, h = 0.01Ri, 
ΛGPL = 0.01 wt%, GPL-X,  f1 = f2 = 0.1,  Kr10 = Kr20 = 10, �0 = �∕4 , Clamped–Clamped boundary conditions, and annular plate
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Stress and displacement fields versus to weight fraction of 
GPLs ( ΛGPL ) are presented in Fig. 6 for five kinds of GPLRC 
patterns. Generally, increasing ΛGPL factor makes a positive 
impact on the structure’s static and bending behaviors, and 
the mentioned relation is more considerable by employing 
the GPL-X pattern. In addition, when the GPL-UD pattern 
makes the structure, the weight fraction of GPLs has the 
lowest positive impact on stress and displacement fields. For 
all patterns, as the ΛGPL factor increases, the displacement 
and stress fields decrease.

The purpose of Fig. 7 is an investigation about the effect 
of initial or residual internal stress on the stress and displace-
ment fields of the FG-GPLRCACP/FG-GPLRCAAP under 

initially stressed interacting with the gradient elastic founda-
tions. By having attention to Fig. 7 as the value of the initial 
stress increases, the system’s bending properties improve. In 
addition, there are no effects from internal stress on the axial 
stress, but other components of stress fields decrease own-
ing to increasing the initial internal stress. In addition, the 
impact of residual internal stress on the hoop and axial shear 
stress is bold at − 0.35 ≤ z− ≤ 0.15 and the influences of the 
internal stress on the displacement fields is more remark-
able at the z− = − 0.5 and 0.5. Furthermore, the stress and 
displacement fields’ distribution become more uniform due 
to increasing the initial stress. At z− = − 0.5, 0, and 0.5, we 
can find that initial stress doesn’t affect axial normal stress.
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Stress and displacement fields the FG-GPLRCACP/FG-
GPLRCAAP under initially stressed interacting with the 
gradient elastic foundations are presented in Fig. 8 by con-
sidering the effects of thickness and width of the GPLs. Gen-
erally, increasing thickness and width of the GPLs positively 
impact the bending behaviors of the structure. In addition, 
adding the length of the GPLs increases, the value of stress 
and displacement increases, so the system’s static stability 
decreases.

5  Conclusion

This article explored the bending response of the HLN-
RACP/ HLNRAAP reinforced by GPLs resting on gradi-
ent elastic foundation within non-polynomial framework 
under initially stresses for different cases of boundary con-
ditions. The main advantage is that it benefited from the 
exact theory (three-dimensional elasticity theory) to describe 
the kinematics of the structure. The numerical results were 
determined using the fast converging DQM. The continuity 
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condition was considered between each of the heterogenous 
sections to satisfy the equality of displacement terms at the 
contact surfaces. Finally, the most bolded results of this 
paper were as follows:

• Among the five GPL distribution patterns considered in 
the present study, GPL-X works more effectively and 
results in the smallest displacement and stress, also 
GPL-O has the highest displacement and stress.

• As the ΛGPL parameter increases the bending response in 
the structure improves.

• When the structure is encountered with the clamped 
edges, the better bending response and the lowest stress 
happens in the sandwich disk.

• The system’s static stability and bending behavior 
improve due to increasing the value of Winkler and Pas-
ternak factors, and the stress distribution becomes more 
uniform.

• Increasing the thickness and width of the GPLs positively 
impacts the bending behaviors of the structure. In addi-
tion, adding the length of the GPLs increases, the value 
of stress and displacement increases, so the system’s 
static stability decreases.
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